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Abstract. The Biosphere Effects on AeRosols and Photo-
chemistry EXperiment (BEARPEX) took place in Blodgett
Forest, a Ponderosa pine forest in the Sierra Nevada of Cal-
ifornia, USA, during summer 2009. We deployed a pro-
ton transfer reaction–quadrupole mass spectrometer (PTR-
QMS) to measure fluxes and concentrations of biogenic
volatile organic compounds (BVOCs). Eighteen ion species,
including the major BVOC expected at the site, were mea-
sured sequentially at 5 heights to observe their vertical gra-
dient from the forest floor to above the canopy. Fluxes of
the 3 dominant BVOCs methanol, 2-Methyl-3-butene-2-ol
(MBO), and monoterpenes were measured above the canopy
by the disjunct eddy covariance (EC) method. Canopy-scale
fluxes were also determined by the flux–gradient similarity
method (K-theory). A universalK (Kuniv) was determined
as the mean of individualK ’s calculated from the measured
fluxes divided by vertical gradients for methanol, MBO, and
monoterpenes. ThisKuniv was then multiplied by the gradi-
ents of each observed ion species to compute their fluxes. The
flux–gradient similarity method showed very good agree-
ment with the disjunct EC method. Fluxes are presented
for all measured species and compared to historical mea-
surements from the same site, and used to test emission al-
gorithms used to model fluxes at the regional scale. MBO
was the dominant emission observed, followed by methanol,
monoterpenes, acetone, and acetaldehyde. The flux–gradient
similarity method is shown to be tenable, and we recommend

its use, especially in experimental conditions when fast mea-
surement of BVOC species is not available.

1 Introduction

Defining source strengths of biogenic volatile organic com-
pounds (BVOC; e.g., isoprene and monoterpenes) and un-
derstanding their role in ozone (O3) and secondary organic
aerosol (SOA) formation are critical issues in atmospheric
chemistry and climate science (Chameides et al., 1988; An-
dreae and Crutzen, 1997; Fuentes et al., 2000; Jang et al.,
2002). On the global scale, VOC emissions from terres-
trial vegetation are estimated to be an order of magnitude
greater than those from fossil fuel combustion (Guenther
et al., 1995). Additional unmeasured organics in the atmo-
sphere are assumed to exist in both the gas and particle
phases (Goldstein and Galbally, 2007). Substantial evidence
has also been presented for the emissions of highly reac-
tive BVOCs from forest ecosystems that have yet to be ad-
equately quantified and included in BVOC emission mod-
els (Kurpius and Goldstein, 2003; Di Carlo et al., 2004;
Holzinger et al., 2005). More comprehensive observations
are needed to better constrain the full range of BVOC emis-
sions from ecosystems and their importance for atmospheric
chemistry.
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Canopy-scale (horizontal scales of order 102–103 m)
BVOC flux measurement techniques (e.g., eddy covariance,
relaxed eddy accumulation, and surface layer gradient) have
been increasingly implemented in recent years (Goldstein et
al., 1996; Schade and Goldstein, 2001; Karl et al., 2002; Lee
et al., 2005). The eddy covariance (EC) method using pro-
ton transfer reaction–quadrupole mass spectrometry (PTR-
QMS) is currently the most direct and reliable measurement
for measuring BVOC fluxes at the canopy scale (Rinne et al.,
2001; Karl et al., 2002; Lee et al., 2005). However, this in-
strument requires the user to decide beforehand which com-
pounds to monitor for EC flux measurements and is generally
used for a relatively small number in order to obtain adequate
signal. Recently, use of the new PTR time of flight mass spec-
trometer (PTR-TOF-MS) allows measurement of full mass
spectra at high mass resolution fast enough to measure fluxes
for all masses simultaneously (Ruuskanen et al., 2011; Park
et al., 2013), but it is more expensive than the PTR-QMS.
The flux–gradient similarity approach, generally calledK-
theory, can be used for measuring fluxes at the canopy scale.
In this method, the flux is calculated by multiplying the at-
mospheric eddy diffusivity (K) by the vertical concentration
gradient of trace gases (Baldocchi et al., 1988; Goldstein et
al., 1996). In past applications for estimating BVOC fluxes
using this approach,K was determined from (i) turbulent
exchange coefficients derived using Monin–Obukhov simi-
larity theory but this method is indirect and highly uncertain
for heterogeneous forest canopies (Fuentes et al., 1996), or
(ii) direct flux and vertical gradient measurements of H2O,
CO2 or sensible heat; thus, this approach requires at least one
more fast-response sensor to determineK. Then,K was mul-
tiplied by a 30 min average vertical BVOC gradient measured
by in situ gas chromatography (GC) (Goldstein et al., 1998;
Schade et al., 2000). In this study, taking advantage of PTR-
QMS, determination of BVOC fluxes by this approach for a
wide range of species should be possible using EC flux and
vertical gradient measurements of a few dominant BVOCs to
determineK, and then multiplyingK by vertical gradients
for each of the observed BVOCs.

The Biosphere Effects on Aerosols and Photochemistry
Experiment (BEARPEX) 2009 was designed to study the
emissions of BVOC and their role in SOA formation, ox-
idant, and ozone photochemistry. As part of BEARPEX
2009, we deployed a PTR-QMS (Ionicon Analytik, Inns-
bruck, Austria) to measure EC fluxes and vertical gradi-
ents of BVOCs in a ponderosa pine plantation in the Sierra
Nevada of California, USA, with the goals to (1) determine
fluxes of BVOCs (17 species) by a combination of direct EC
flux measurements and the flux–gradient similarity approach,
(2) compare measured fluxes with historical measurements
from the same site in order to highlight vegetation change
effects on emissions, and (3) test emission algorithm for the
main BVOC species emitted by the vegetation and provide
basal emission factors that could be used to model fluxes at
regional scale.

2 Experiment

2.1 Measurement site

The BEARPEX 2009 intensive field campaign took place in
Blodgett Forest from 15 June to 31 July 2009. This site is
a Ponderosa pine forest located in the western foothills of
the Sierra Nevada of California, USA (38.90◦ N, 120.63◦ W,
1315 m elevation),∼ 75 km downwind of Sacramento, and
has been described in detail elsewhere (Goldstein et al., 2000;
Lamanna and Goldstein, 1999; Schade and Goldstein, 2001;
Dillon et al., 2002). Briefly, the land is owned and operated
by Sierra Pacific Industries (SPI), and the plantation is dom-
inated by ponderosa pine (Pinus ponderosaL.) trees with an
average tree height of 8.7 m in 2009. The understory is dom-
inated by manzanita (Arctostaphylosspp.) and whitethorn
(Ceanothus cordulatus). In summertime, winds at this site
are predominantly westerly to southwesterly (220–280◦) dur-
ing the day and northeasterly at night (30–60◦). This daytime
wind pattern transports polluted air from the Sacramento ur-
ban area to the pine forest site, along with isoprene and
its oxidation products dominantly emitted from oak forests
∼ 30 km southwest of the site (Dreyfus et al., 2002). The site
is characterized by a Mediterranean type climate, with the
majority of precipitation occurring between September and
May, and almost no rain in the summer. Average daily tem-
perature ranged from 12◦ to 26◦C during the campaign pe-
riod, with no rain recorded.

Two towers were set up at this site. One was a 15 m
tall walk-up tower that had been installed in 1997. Me-
teorological parameters such as air temperature, humidity,
wind speed and direction, and photosynthetically active ra-
diation (PAR) were measured continuously from this tower
(at 12.5 m, 8.75 m, 4.9 m, 3.0 m, and 1.2 m) and stored in
30 min averaged data sets. Ecosystem-scale fluxes and mix-
ing ratios of trace gases, including CO2, O3 and VOCs, had
been measured at this original tower since its construction
(Goldstein et al., 2000; Kurpius et al., 2002; Holzinger et al.,
2005; Lee et al., 2005; Fares et al., 2010). The second tower
was a new 18 m tall scaffolding tower built in 2007 and lo-
cated∼ 10 m north from the original tower. During the 2007
and 2009 summer intensive campaigns (BEARPEX 2007 and
BEARPEX 2009), a full range of atmospheric trace gases and
aerosols were measured by researchers from more than 10
institutions (Bouvier-Brown et al., 2009a; Wolfe et al., 2009;
Smeets et al., 2009; Ren et al., 2010). Observations of verti-
cal gradients and fluxes of BVOCs by PTR-QMS were made
from 17 June (25 June for fluxes) to 29 July 2009 at the new
tower. Electrical power was provided by a propane generator
located approximately 125 m north of the new tower. Con-
tamination from generator exhaust was observed occasion-
ally at night when wind was slow and variable, but BVOC
measurements were rarely affected, and we removed genera-
tor contaminated spikes such as benzene (m/z 79).

Atmos. Chem. Phys., 14, 231–244, 2014 www.atmos-chem-phys.net/14/231/2014/



J.-H. Park et al.: Biogenic volatile organic compound emissions 233

2.2 PTR-QMS BVOC measurement

2.2.1 Instrument setup

A PTR-QMS (Ionicon Analytik, Innsbruck, Austria) was set
up to measure BVOC mixing ratios at multiple heights for
determination of fluxes and vertical gradients. All measured
compounds are listed by mass to charge ratios (m/z) in Ta-
ble 1. The principles of the PTR-QMS have been described
in detail elsewhere (Lindinger et al., 1998; de Gouw and
Warneke, 2007). Briefly, the PTR-QMS is a chemical ioniza-
tion technique that uses hydronium ions (H3O+) to transfer
a proton (H+) from water to the VOC of interest; thus, any
VOC with a proton affinity higher than water is ionized in the
instrument’s drift tube, introduced into the quadrupole mass
spectrometer and detected by the secondary electron multi-
plier (SEM). The same instrument has been employed for
past measurements of fluxes and vertical gradients at Blod-
gett Forest (Holzinger et al., 2005; Lee et al., 2005) and also
for a similar measurement setup in a citrus orchard (Fares et
al., 2012).

Air sample inlet heights on the measurement tower are de-
picted in Fig. 1. During each hour, six gas sampling inlets
were used. One sampling inlet and a 3-D sonic anemome-
ter (Campbell CSAT-3) were colocated at the top of the
tower (17.8 m, about twice the canopy height) to measure
flux by EC during the first 30 min of each hour. During sec-
ond 30 min of every hour the other five inlets were sampled
sequentially to measure vertical gradients above and within
the forest canopy for 6 min at each height (17.8 m, 13.6 m,
9.5 m, 5.7 m, and 1.5 m). In retrospect, this sampling strategy
is not the optimal for averaging out all the turbulent varia-
tions in a 30 min period; thus, we recommend having more
cycles through the five (or less) heights for future studies
(e.g., for a 30 min period, measuring 3 cycles of 5 heights
with 2 min at each height). All inlets were protected by iden-
tical Teflon filters (PFA holder, PTFE membrane, pore size
2 µm) to avoid contamination by particles in the air sample.
Each inlet was plumbed to the PTR-QMS with identical 30 m
lengths of PFA tubing (OD 6.35 mm, ID 3.96 mm). A sample
flow of 10 L min−1 was maintained at all times through each
sample tube to minimize residence time and any memory ef-
fects from previously sampled air, and to maintain a turbulent
flow for the EC flux measurement. Nevertheless, potential
tubing wall loss was expected, particularly for some sticky
compounds such as sesquiterpenes; see Bouvier-Brown et
al. (2009a), who reported this issue. The Teflon filters were
replaced every week and no signal differences for any mea-
sured compounds were observed after changing the filters.
The PTR-QMS sequentially subsampled∼ 0.6 L min−1 from
each inlet, and was maintained at an E / N (electric field to
buffer gas number density) ratio of 139 Td by adjusting drift
tube pressure, temperature, and voltage to 200 Pa, 50◦C, and
604 V, respectively. The reaction time in the drift tube was
100 µs and the count rate of H3O+H2O ions (water clusters)
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Fig. 1. Inlet configuration and sampling schedule on the 18 m tall tower during BEARPEX 2009. The PTR-MS 724 
sampled from an inlet (F1) at 17.8 m co-located with a 3-dimensional sonic anemometer during the first 30 min of 725 
each hour for eddy covariance flux measurements, then sampled sequentially from five inlets (L1 – L5) positioned at 726 
17.8, 13.6, 9.5, 5.7, and 1.5 m above ground during the next 30 min to measure vertical gradients. Mean tree height 727 
was 8.8 m. 728 
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Fig. 1. Inlet configuration and sampling schedule on the 18 m tall
tower during BEARPEX 2009. The PTR-MS sampled from an in-
let (F1) at 17.8 m colocated with a 3-dimensional sonic anemome-
ter during the first 30 min of each hour for eddy covariance flux
measurements, then sampled sequentially from five inlets (L1–L5)
positioned at 17.8, 13.6, 9.5, 5.7, and 1.5 m above ground during
the next 30 min to measure vertical gradients. Mean tree height was
8.8 m.

was less than 3 % of the count rate of H3O+ ions. The H3O+

reactant ion was kept in the range 8± 2× 106 counts s−1.

2.2.2 Measurement calibration

Calibrations were performed by dynamic dilution of gravi-
metrically mixed gas-phase standards (Apel & Riemer,
USA), including 2.2–5.1 ppmv of methanol, acetaldehyde,
acetone, isoprene, methyl-vinyl-ketone, benzene,α-pinene,
d-limonene, and1-3-carene into zero air at ambient humid-
ity levels. Zero air was created by passing sampled ambi-
ent air through a stainless steel tube filled with platinum-
coated quartz wool (Shimadzu) heated to 350◦C, catalyti-
cally removing VOCs from the sample. This zero air was
directly measured to determine instrumental background
counts twice daily (02:30–02:40 and 15:00–15:10 PST), and
no significant difference between daytime and nighttime
background was observed. Calibrations were also done twice
a day for 20 min each after background measurement by di-
luting with purified air to concentrations of 40–100 ppbv.
In order to check linearity of calibration curves at different
concentrations of standard gases and compare them to the
twice daily calibrations, we also performed 5-level multi-
point calibrations using the same standard gas cylinder used
for regular base calibration, every time before and after in-
strument and site maintenance activities during the cam-
paign, such as optimizing the PTR-QMS SEM voltage and
shutting down the electrical generator for oil changes. Mea-
sured mixing ratios from before-and-after calibration curves
were in very good agreement for all compounds, with max-
imum difference within 6 %, and a minimumR-square of
0.98. To determine mixing ratios of masses for which stan-
dard gases were not available, we calculated normalized
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Table 1.Mixing ratio and flux information for 18 selected ion species.

Compounds Mass/ Empirical Detection Mixing ratio Flux
charge molecular formulae limit 24 h-mean 24 h-mean
(m/z) (protonated mass) [ppbv] (day/night)a (day)a

[nmol mol−1] [mg C m−2 h−1]

Methanol 33 CH3OHH+ 0.53± 0.09 16 (13/16) 0.18 (0.48)
Acetonitrile 42 C2H3NH+ 0.05± 0.01 0.15 (0.16/0.15) 0.003 (0.008)
Acetaldehyde 45 C2H4OH+ 0.21± 0.04 1.9 (1.6/2.4) 0.038 (0.104)
Acetone 59 C3H6OH+ 0.14± 0.03 3.6 (3.5/4) 0.073 (0.18)
MBOb

+ isoprene 69 C5H8H+ (C5H10OH+)c 0.38± 0.12 4.2 (5.6/2.1) 0.90 (2.51)
MVK + MACRd 71 C4H6OH+ 0.12± 0.04 1.2 (1.5/1.3) 0.013 (0.019)
Benzene 79 C6H6H+ 0.04± 0.01 0.071 (0.059/0.083) 0.001 (0.003)
Monoterpenes 81, 137 C6H8H+, C10H16H+ 0.05± 0.01 1.1 (0.6/1.3) 0.2 (0.46)
Hexanal, hexenols 83 C6H10H+ 0.06± 0.01 0.14 (0.12/0.16) 0.010 (0.023)
Hexenals 99 C6H10OH+ 0.04± 0.01 0.16 (0.15/0.18) 0.012 (0.031)
Unknown OVOCs 111 C8H14H+, C6H6O2H+, 0.02± 0.02 0.026 (0.02/0.029) 0.003 (0.006)

C7H10OH+

Unknown OVOCs 113 C8H16H+, C7H12OH+, 0.02± 0.02 0.15 (0.18/0.15) 0.0001 (−0.0001)
C6H8O2H+, C5H4O3H+

Nopinone 139 C9H14OH+ 0.02± 0.02 0.056 (0.046/0.071) 0.006 (0.016)
Methyl chavicol 149 C10H12OH+ 0.02± 0.02 0.099 (0.064/0.084) 0.015 (0.038)
Pinonaldehyde 151 C10H14OH+ 0.02± 0.02 0.021 (0.017/0.023) 0.002 (0.004)
Linalool, 155 C10H18OH+, 0.02± 0.02 0.015 (0.016/0.017) 0.0007 (0.003)
unknown OVOCs C9H14O2H+

Sesquiterpenes 205 C15H24H+ 0.03± 0.03 0.095 (0.072/0.098) 0.028 (0.06)

a Daytime and nighttime means are for hours 10:00–14:00 and 22:00–02:00 PST, respectively.
b 2-Methyl-3-butene-2-ol.
c Parent MBO ion in parenthesis. MBO main fragment ion is the same as isoprene parent ion.
d Sum of methyl vinyl ketone and methacrolein.

sensitivities (counts/concentration) based on calculated pro-
ton transfer reaction rate coefficients and the instrument-
specific transmission curve (de Gouw and Warneke, 2007).
This curve was determined form/z 33 to 219 using a gas
standard mixture (methanol, acetonitrile, acetaldehyde, ace-
tone, methacrolein, benzene, toluene, xylene, trifluoroben-
zene, bromobenzene, trichlorobenzene, and iodotoluene) at
concentrations of 100 ppb (Apel & Riemer, USA). The trans-
mission test was conducted along with each multipoint cal-
ibration. PTR-QMS signal atm/z 69 is the sum of a frag-
ment of 2-methyl-3-butene-2-ol plus the parent mass of iso-
prene (MBO+ isoprene). Calibration of the mixing ratio for
this mass was achieved by scaling the PTR-QMS measure-
ment to equal the sum of MBO+ ISOP measured simultane-
ously by gas chromatography–flame ionization detector (GC-
FID) (C. Park and G. Schade group, Texas A&M University,
correlation coefficient; slope 1,R2 0.73). For monoterpenes
(MTs), the parent ion is observed atm/z 137 and the most
abundant fragment occurs atm/z 81. The signal intensity
was higher atm/z 81 thanm/z 137 because of higher trans-
mission efficiency. Thus,m/z 81 was used for total monoter-
pene EC flux measurements and calibrated by using a mixed
monoterpene (alpha-pinene, 3-carene, andd-limonene) stan-
dard gas. The sum ofm/z 81 and 137 was used for vertical

gradient measurement. Comparison between the monoter-
pene concentrations from the EC flux inlet determined on
m/z 81 with the vertical gradient inlet at the same height
(17.8 m) for the adjacent 30 min period determined on the
sum ofm/z 81+137 showed good agreement (slope 0.95,R2

0.84). Measurement accuracy for all compounds included in
the calibration gas standard cylinder was better than±20 %.
For all other compounds the concentration was estimated us-
ing the collision rate constant, which should equal the reac-
tion rate constant within±30 % (Holzinger et al., 2005).

2.3 Disjunct eddy covariance flux measurements

Fluxes of four BVOC masses (m/z 33, 69, 81, and 113) were
measured using the disjunct eddy covariance method. Mix-
ing ratios were measured with dwell time of 0.2 s per mass
(5 Hz measurement resolution,∼ 0.8 s per a cycle), resulting
in 2120 measurement cycles per 30 min flux period. Wind
speed and temperature signals from 3-D sonic anemometer
were recorded on a datalogger (Campbell Scientific CR-23x)
at 10 Hz. For each 30 min flux measurement period, horizon-
tal and vertical wind vectors were rotated according to a pla-
nar fit technique (Wilczack et al., 2001). Individual lag times
for each 30 min flux period were determined by finding the
time point with the maximum cross-correlation coefficient of
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Fig. 2. Cross correlation of vertical wind speed (w) and vol-
ume mixing ratios for 3 ion species (m/z 33, 69, and 81) at
14:00–14:30 PST on 18 July 2009. Lag time corrections between
vertical wind speed and volume mixing ratio ofX seconds have
been applied to these data.

vertical wind speed and BVOC mixing ratios in±60 s time
windows. Lag times accounted for changes in clock synchro-
nization between the PTR-QMS computer and the data log-
ger recording wind data, and for sampling flow and instru-
ment response times. In cases in which a clear covariance
peak was not observed, particularly at nighttime when verti-
cal turbulence was low, we interpolated lags between the two
nearest points having strong covariance peaks. The lag time
correction has been applied to these data, and we used the
same lag time for all masses. After the lag time correction,
Fig. 2 shows the cross correlations between vertical wind
speed and each BVOC (m/z 33, 69, and 81) by time peak at
0 s, indicating all BVOCs measured have the same lag times
in one flux period.

Fluxes for 4 mass to charge ratios of interest (m/z 33,
69, 81 and 113, but we do not reportm/z 113 fluxes in
this paper) were determined according to the virtual (con-
tinuous flow) disjunct eddy covariance method (Rinne et al.,
2001; Karl et al., 2002), which can be regarded as a vari-
ant of the EC method. The vertical fluxes of BVOCs were
calculated as the mean covariance between deviations of the
vertical wind speed and each BVOC mixing ratio for a flux
period (30 min); thus, we used a subsample of the vertical
wind speed (w) data after subtracting the lag time (1t) due to
slower data acquisition frequency for each measured BVOC
(5 Hz) than the wind (10 Hz). Flux was determined according
to the following equation:

FEC =
ρ

N

N∑
i=1

w′
· c′(i), (1)

whereρ is the air density (mol m−3), w′ is the instantaneous
deviation of the vertical wind speed from its average,c′ is
that of the BVOC mixing ratio (nmol mol−1) (i.e.,w′

= w −

w, c′
= c−c), andN is the total number of data points in the

measurement period.
The EC method requires that the estimated fluxes within

an analyzed period are stationary. To test for stationarity, we
divided each 30 min flux period into 5 segments (6 min data
for each), calculated the EC flux for each segment, and com-
pared the average to the EC flux for the full 30 min period.
We rejected fluxes for any times when the segmental flux was
not within±30 % of the full 30 min flux (Lee et al., 2004; Fo-
ken and Wichura, 1996). More than 92 % of daytime (09:00–
15:00 PST) and 86 % of nighttime (21:00–03:00 PST) data
passed these filtering criteria.

We tested for potential flux errors from several known
sources. Spectral attenuation by sensor separation and in-
let dampening effects were estimated using transfer func-
tions described elsewhere in detail (Moore, 1986; Massman,
1991), and these had less than 1 % effect on our measured EC
fluxes. Loss of flux signal can arise from inadequate sensor
response time and can be estimated as

Fmeas

Ftrue
=

1

1+ (2π · fm · τc)α
, (2)

whereFmeasis the measured flux,Ftrue is the true flux (non-
attenuated flux),fm is the frequency of the peak at which the
frequency weighted cospectrum maximizes,τc is the first-
order response time of the instrument, andα is 7/8 for neu-
tral and unstable stratification within the surface layer and
1 for stable condition (Horst, 1997). Based on this consid-
eration, if we consider only daytime (09:00 to 17:00 PST)
fluxes withτc of 1 s andfm of ranges between 0.01 and 0.02
for daytime, fluxes could be underestimated by 8–14 %. This
is a similar range to what was estimated during a previous
study at this site (Lee et al., 2005), and we did not correct
flux data for this effect.

The storage of BVOC emission between the ground and
the flux measurement height can be important during times
when the air is in a stable stratified condition or turbulent
mixing is weak; thus, plant or soil emissions in such peri-
ods may not be well represented in the above canopy flux
measurements (Rummel et al., 2007; Wolfe et al., 2009). We
incorporated this into our flux calculation using

F = FEC+
∂

∂t

∫ h

0
[BVOC](z)dz, (3)

wherez and h are the height of vertical gradient and EC
flux measurements, respectively, and [BVOC] is the mix-
ing ratio of each compound. The storage term for methanol
(m/z 33), MBO+ isoprene (m/z 69), and monoterpenes
(m/z 81) contributed 57 %, 8 %, and 65 %, respectively, com-
pared to EC flux in the morning hours 06:00–08:00 PST,
and were extremely small or negligible (less than 0.7 %)
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Fig. 3. Volume mixing ratio time-series of (a) methanol, (b) MBO+isoprene and (c) monoterpenes, (d) air 736 
temperature, (e) photosynthetically active radiation (PAR), and EC fluxes of (f) methanol, (g) MBO+isoprene and 737 
(h) monoterpenes. All data are averaged on an hourly basis.738 

Fig. 3. Volume mixing ratio time series of(a) methanol,
(b) MBO + isoprene and(c) monoterpenes,(d) air temperature,
(e) photosynthetically active radiation (PAR), and EC fluxes of
(f) methanol,(g) MBO + isoprene and(h) monoterpenes. All data
are averaged on an hourly basis.

during the daytime (08:00–18:00 PST) and at nighttime
(20:00–06:00 PST).

2.4 Vertical gradient measurements

Vertical gradients were measured for 18 masses, as listed in
Table 1. These masses were chosen to observe the most im-
portant compounds at this site based on previous BVOC ob-
servations performed by gas chromatography (GC) and PTR-
QMS from 1997 to 2007 (Lamanna and Goldstein, 1999;
Schade et al., 2000; Holzinger et al., 2005; Bouvier-Brown
et al., 2009a). Using multiple ion detection mode in the PTR-
QMS software (Balzer QS 422), these masses were scanned
for 14 cycles over 6 min for each height with a dwell time
on each mass of 1 s, except form/z 205 for which we used a
dwell time of 5 s to improve detection limits for this mass.
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Fig. 4. Averaged diurnal cycles of vertical gradients for (a) methanol, (b) MBO+isoprene, (c) monoterpenes, and (d) 740 
ozone. Measurement heights are indicated in the legend (a). 741 

742 

Fig. 4. Averaged diurnal cycles of vertical gradients for
(a) methanol, (b) MBO + isoprene, (c) monoterpenes, and
(d) ozone. Measurement heights are indicated in the legend(a).

The first 4 cycles after switching inlet heights were dis-
carded, and data for the last 10 cycles for each height were
used to compute hourly averaged data sets.

3 Results

3.1 Concentration and vertical gradients

Figure 3a–c respectively show the full time series of vol-
ume mixing ratios for methanol (m/z 33), MBO+ isoprene
(m/z 69), and the sum of monoterpenes (m/z 81+ m/z 137),
with mixing ratios averaged from all measurement heights.
All these compounds appear dependant on temperature, as
shown in Fig. 3d. Methanol is most abundant, followed
by MBO+ isoprene, acetone, acetaldehyde, MVK+ MACR,
and total monoterpenes, as summarized in Table 1. Figure 4
presents the average diurnal profile of vertical gradients for
methanol, MBO+ isoprene, and monoterpenes in addition to
ozone. Mixing ratios of all these BVOCs decrease with in-
creased inlet height, indicating emission from the forest, and
this higher mixing ratio at lower heights within the canopy
is due to more biomass near the surface. In contrast, the
ozone gradient is inversed, suggesting active BVOC oxi-
dation processes and/or stomatal uptake by plants existing
within the canopy (Kurpius and Goldstein, 2003; Fares et
al., 2010). Mixing ratios of these 3 BVOCs were the highest
in the morning and evening. This is mainly due to breakup
of the atmospheric boundary layer (ABL) in the morning,
while the ABL lowers in the evening coupled with stom-
atal opening/closing by plant circadian cycle, with the peaks
corresponding to the transition time of ABL height, as ob-
served by Choi et al. (2011). After these morning peaks,
mixing ratios decrease because of dilution of emissions into
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Fig. 5. Mean vertical gradient diurnal patterns for MVK+MACR (left) and sesquiterpenes (right). Color represents 744 
interpolated concentration gradients with actual measurement timing and vertical positions indicated by open circles. 745 

746 

Fig. 5. Mean vertical gradient diurnal patterns for MVK+ MACR (left) and sesquiterpenes (right). Color represents interpolated concentra-
tion gradients with actual measurement timing and vertical positions indicated by open circles.

a larger mixing layer and faster oxidation of BVOCs dur-
ing daytime from high daytime ozone mixing ratios, which
were observed up to 100 ppbv. High mixing ratios and strong
gradients for methanol and monoterpenes for nighttime re-
flect temperature-dependent emission, but MBO+ isoprene
emissions are known to be temperature and light dependent
(Harley et al., 1998; Schade et al., 2000; Guenther et al.,
2006). A distinctively higher methanol mixing ratio near the
surface (1.5 m height) suggests that soil, leaf litter, and/or
understory plant emission may significantly contribute to
methanol emission at this site (Schade and Goldstein, 2001).
The same diurnal pattern has been shown previously at the
site (Holzinger et al., 2005; Bouvier-Brown et al., 2009a).
In addition to these compounds, Fig. 5 shows vertical gra-
dients and diurnal cycles for MVK+ MACR and sesquiter-
penes. MVK and MACR are well known as major secondary
products from the atmospheric oxidation of isoprene, but iso-
prene emission from this site is minor without strong ver-
tical gradients observed during daytime, meaning that lo-
cal isoprene emissions and MVK+ MACR production are
small. The maximum mixing ratio peak showed around hours
15:00–16:00 PST. This pattern is because the air parcel from
oak forest, which is a high isoprene emitter, undergoes oxi-
dation of isoprene and is transported to the site with isoprene
oxidation products (i.e., MVK and MACR), this result be-
ing consistent with a previous study (Dreyfus et al., 2002).
Sesquiterpenes are not easy to measure in the ambient air be-
cause (1) they exist at low concentrations; (2) many of them
have a very short lifetime; and (3) their large molecule struc-
ture and low volatility make them harder to sample through
the Teflon tubing due to stickiness. However, we successfully
measured sesquiterpenes by setting dwell time of mass scan-
ning to 5 s and having a fast and continuous sample flow in
the tube (residence time of∼ 2.3 s); nevertheless, the mea-
surement of sesquiterpenes are still highly uncertain due to
their low transmission efficiency passing through PTR-QMS
quadrupole lens and losses in the sampling inlet and instru-
ment’s internal inlet surfaces. However, vertical gradients of

sesquiterpenes showed a very similar pattern to monoter-
penes, indicating emission patterns are similar.

An averaged daytime (10:00–17:00 PST) sesquiterpene
mixing ratio of 84 ppt at 1.5 m above the ground was ob-
served. This is about twice greater than GC measurements
conducted in the similar season during BEARPEX 2007
(Bouvier-Brown et al., 2009a), but the GC data included
only 6 speciated sesquiterpenes, suggesting that additional
sesquiterpene species could be emitted in this ponderosa pine
forest site.

3.2 Eddy covariance fluxes

The full time series of fluxes for methanol (m/z 33),
MBO + isoprene (m/z 69) and monoterpenes (m/z 81) are
depicted in Fig. 3f–h. Generally, fluxes of all 3 species show
strong temperature dependent emission throughout the mea-
surement period. For example, low emissions were observed
around day 190 when temperatures were relatively low, with
high emissions observed during the high temperatures of day
200. Similar diurnal cycles between the three masses are also
observed, with emissions starting at sunrise, increasing as
air temperature and light intensity increased during daytime,
and stopping after sunset. Based on the vertical gradient for
methanol and monoterpenes shown in Fig. 4a and b, night-
time emissions seem to occur, but no significant fluxes were
observed due to lower vertical turbulent mixing.

The sum of MBO and isoprene is quantified asm/z 69;
however, MBO is the main contributor tom/z 69 fluxes since
isoprene emission at this site is minor, as described above.
Therefore, MBO is the predominant emission from the site
with a day average∼ 0.90 mg C m−2 h−1, and is about 5
times greater than either methanol or monoterpene emis-
sions.
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Fig. 6. Mean diurnal variation of air temperature (dashed black line) and fluxes for methanol (red line), 748 
MBO+isoprene (green line), and monoterpenes (blue line). Error bars denote standard deviations of all 749 
measurements at the respective hour of the day. 750 

751 

Fig. 6.Mean diurnal variation of air temperature (dashed black line)
and fluxes for methanol (red line), MBO+ isoprene (green line),
and monoterpenes (blue line). Error bars denote standard deviations
of all measurements at the respective hour of the day.

4 Analysis and discussion

4.1 Flux estimation by flux–gradient relationship
(K-theory)

Fluxes of the other 14 species selected for vertical gradients
were not measured because the PTR-QMS can measure EC
fluxes only for a few compounds at a time due to limita-
tions of the quadrupole mass filter. Instead, we used a flux–
gradient similarity approach, also known asK-theory, for de-
termining fluxes of all compounds not measured by the EC
method (Goldstein et al., 1996, 1998). The trace gas flux (F )
is assumed to be proportional to the time-averaged mixing ra-
tio gradient (dC/dz) above the forest for intervals longer than
the timescale of the slowest significant turbulence events:

F = −K
dC

dz
(4)

where K is the eddy diffusivity and is determined for
each hour of measurements. In previous studies that used
K-theory for quantifying VOC fluxes,K was computed from
flux and vertical gradient measurements of carbon dioxide
(CO2), water (H2O), or sensible heat, and then multiplied by
VOC vertical gradients (Goldstein et al., 1996, 1998; Schade
et al., 2000). However, this approach requires another sen-
sor to measure CO2, H2O, and/or sensible heat. In order
to overcome this, we derivedK directly from BVOC EC
fluxes and vertical gradients (Km33 for methanol,Km69 for
MBO + isoprene, andKm81 for monoterpenes) measured by
one instrument (i.e., PTR-QMS), and we further derived a
universalK (Kuniv) by averagingK computed from the three

Table 2.Comparison ofKs calculated fromm/z 33, 69 and 81.

Ky vs.Kx Slope (Ky/Kx) R2 No. of samples

Km33 vs.Km69 0.96 0.63 168
Km69 vs.Km81 0.94 0.57 169
Km81 vs.Km33 0.93 0.62 193

different BVOCs according to the following equation:

Kuniv =
(Km33+ Km69+ Km81)

3
≈

−Fm33

dCm33/dz
(5)

≈
−Fm69

dCm69/dz
≈

−Fm81

dCm81/dz
.

To calculateK for eachm/z, we used gradient data from
17.8 m (mixing ratio data from EC flux measurements were
used) and 9.5 m (gradient measurements), which were above
the canopy, since concentration differentials between two up-
per heights (17.8 m and 13.6 m) were too low. With one in-
strument it is not possible to simultaneously measure mixing
ratios for different heights, and one also needs to consider
the time difference between flux and gradient measurements.
Therefore all gradient data were interpolated to match the
same time period as the flux measurements. In addition, data
were not used if the gradient for an hour was too small to be
detected reliably (less than twice standard deviation of zero
air signal) since those values induce a large uncertainty inK,
or if the gradient was inverted, e.g., a higher mixing ratio at
17.5 m than 9.5 m with upward flux. Based on these criteria,
75 % for methanol, 51 % for MBO+ isoprene, and 77 % for
monoterpene data were used, with the vast majority of un-
used observations occurring at night. At least one to threeK

values (Km33, Km69, and/orKm81) were calculated for ev-
ery hour, and averaged to aKuniv of which was then applied
to estimate fluxes for all compounds with measured vertical
gradients. Figure 7 presents the diurnal variation ofKm33,
Km69, Km81, andKuniv. The pattern ofK is similar to the
flux diurnal profile for most species with maxima during the
day when vertical turbulent mixing is strongest. The three
K values (Km33, Km69, Km81) agreed well with each other
(within 7 % by slope of scatter plots, Table 2). This indicates
that the two sampling heights have similar footprint charac-
teristics in terms of underlying vegetation and soil, and the
different timescales in photooxidation processes for these 3
compounds do not significantly affect the calculation ofK at
this site. To validate thatKuniv can be properly used to calcu-
late fluxes for the other compounds, we appliedKuniv to ver-
tical gradients of methanol, MBO+ isoprene, and monoter-
penes. Hourly fluxes computed byKuniv were compared to
direct EC flux measurements, and on average these agreed
within 4 % with R-square of higher than 0.83 for all three
species (Fig. 8).

Fluxes of the other 14 species selected for vertical gradi-
ent measurement were determined by multiplying observed
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Fig. 7. The eddy diffusivity diurnal patterns calculated from measured fluxes and vertical gradients of methanol (red 753 
circle, Km33), MBO+isoprene (green asterisk, Km69), monoterpenes (blue plus, Km81) and the mean universal K (black 754 
line, Kuniv) calculated according to Eq. (5). Shaded area denotes 10

th
-90

th
 percentile of data. 755 

756 

Fig. 7. The eddy diffusivity diurnal patterns calculated from
measured fluxes and vertical gradients of methanol (red circles,
Km33), MBO+ isoprene (green asterisks,Km69), monoterpenes
(blue pluses,Km81) and the mean universalK (black line,Kuniv)

calculated according to Eq. (5). Shaded area denotes 10–90th per-
centile of data.

gradients withKuniv. Figure 9 shows the resultant diurnal
flux cycles for 15 BVOC species, including methanol for ref-
erence. Daily average net fluxes are presented in Table 1.
Among these 14 species, acetone (m/z 59) and acetalde-
hyde (m/z 45) fluxes showed the most significant emis-
sions throughout the day with maximum around noon of
0.21 and 0.12 mg C m−2 h−1, respectively. After the noon
peak, emission rates of both compounds decreased at hours
13:00–14:00 PST, indicating that active photochemical pro-
duction/loss processes of VOC above the canopy may sup-
press the measurable flux strength of these compounds. This
phenomenon was also observed in summer 1999 at the
same site using a GC-REA (gas chromatography–relaxed
eddy accumulation) system (Schade and Goldstein, 2001).
Methyl chavicol (m/z 149) and sesquiterpene (m/z 205)
emissions were also apparent with daytime maxima of 0.06
and 0.08 mg C m−2 h−1, respectively. Low level emissions of
acetonitrile (m/z 42), hexanal and hexenols (m/z 83), hexe-
nal (m/z 99), andm/z 111 (unidentified OVOCs) were ob-
served with daytime maxima each below 0.05 mg C m−2 h−1.
Interestingly, some oxygenated BVOCs produced by pho-
tooxidation of terpenes or isoprene such as MVK+ MACR
(m/z 71), m/z 113 (unidentified OVOCs),m/z 151 (pinon-
aldehyde), andm/z 155 (linalool + unidentified OVOCs)
were both emitted and deposited throughout the day, though
the flux magnitudes were relatively small. This observation
implies those compounds were produced by photooxida-
tion within/above the canopy and were also deposited from
the atmosphere to the ecosystem. We observed emission of
nopinone (m/z 139) in the afternoon during hours 13:00–
15:00 PST. Nopinone is a mainβ-pinene plus OH oxidation
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Fig. 8. Comparison between flux determined by the eddy covariance method and flux determined by the flux-758 
gradient similarity method using the universal K (Kuniv) for methanol (m/z 33, red star), MBO+isoprene (m/z 69, 759 
green triangle), and monoterpenes (m/z 81, blue circle). The red, green, and blue lines are the best linear fit for 760 
methanol, MBO+isoprene, and monoterpenes, respectively. 761 

762 

Fig. 8.Comparison between flux determined by the eddy covariance
method and flux determined by the flux–gradient similarity method
using the universalK (Kuniv) for methanol (m/z 33, red asterisks),
MBO + isoprene (m/z 69, green triangles), and monoterpenes (m/z

81, blue circles). The red, green, and blue lines are the best linear fit
for methanol, MBO+ isoprene, and monoterpenes, respectively.

product, andβ-pinene is one of the most abundant monoter-
pene species at this site (Lee et al., 2005; Bouvier-Brown et
al., 2009a). This observation of nopinone emission from the
canopy with maximum in the afternoon is consistent with the
daily maximum combination of light and temperatures driv-
ing both theβ-pinene emissions and its oxidation by OH rad-
icals. Hourly total and fractional BVOC fluxes for all mea-
sured species are presented in Fig. 10. A 24 h mean net total
emission of 1.5 mg C m−2 h−1 was estimated with a daytime
(10:00–14:00 PST) average of 4.0 mg C m−2 h−1. Emissions
were dominated by MBO+ isoprene (61 % of total, and al-
most exclusively MBO due to minimal isoprene emission at
this site, as shown by Schade and Goldstein, 2001), followed
by monoterpenes (13 %) and methanol (12 %). For the other
compounds that were estimated byK-theory, acetone and
acetaldehyde emissions were respectively 4.9 % and 2.6 %
of the total emission, followed by sesquiterpenes (1.9 %),
methyl chavicol (1.0 %), and low levels of emissions for the
others (less than 1 % for each). Though we did not observe
substantial deposition fluxes, the maximum total deposition
(−0.015 mg C m−2 h−1) by 2 OVOCs (m/z 151 and 155) oc-
curred at noontime.

4.2 BVOC emission model

To parameterize measured emissions with commonly used
BVOC emission models, we categorized the observed emis-
sions into species that are dependent on temperature versus
dependent on both light and temperature. The emission of
monoterpenes from this site is known from past observations
to be mainly dependent on temperature (e.g., Schade and
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Fig. 9. Mean diurnal cycles of fluxes determined by the similarity method using the universal K for 15 ion species 764 
observed. Vertical bars denote 25
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Fig. 9. Mean diurnal cycles of fluxes determined by the similarity
method using the universalK for 15 ion species observed. Vertical
bars denote 25–75th percentile.

Goldstein, 2003), with a relationship that can be expressed
as (Tingey, 1980; Guenther et al., 1993)

ET = BERT eβ(Tair−30), (6)

where BERT is the basal emission rate at 30◦C, β (◦C−1)

is a temperature dependence coefficient, andTair (◦C) repre-
sents the within-canopy air temperature. From our EC flux
data, BERT (0.6± 0.14 mg C m−2 h−1, mean± standard de-
viation) was determined as the mean of data collected at
the within-canopy air temperature range of 29–31◦C, and
β (0.12± 0.01◦C−1) was computed by inverting Eq. (6).
Canopy-scale flux measurements previously reported from
this site using PTR-QMS EC and GC-FID REA systems
had ranges of 0.47–1.2 mg C m−2 h−1 for BERT and 0.06–
0.15◦C−1 for β (Schade and Goldstein, 2003; Lee et al.,
2005; Holzinger et al., 2006; Bouvier-Brown et al., 2012),
in good agreement with the results reported here.

In contrast to monoterpenes, MBO emissions are driven
by both temperature and light intensity as described here
(Harley et al., 1998; Schade and Goldstein, 2001):

ET +L = BERT +L · γL · γT , (7)

where BERT +L represents the basal emission rate at standard
condition (PAR of 1000 µmol m−2 s−1 and within-canopy air
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Fig. 10. Total hourly mean BVOC diurnal flux on a carbon mass basis shown as staged bar plots with contributions 768 
indicated for each of the 17 masses measured. The eddy covariance flux data were used for 3 masses (m/z 33, 69, 769 
81) and flux data calculated by flux-gradient similarity method were applied for the other 14 masses (m/z 42, 45, 59, 770 
71, 79, 83, 99, 111, 113, 139, 149, 151, 155, 205). Largest fluxes are at the bottom. The percentages in the legend 771 
indicate contributions of individual compounds to the daily total emission.  772 
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Fig. 10.Total hourly mean BVOC diurnal flux on a carbon mass ba-
sis shown as staged bar plots with contributions indicated for each
of the 17 masses measured. The eddy covariance flux data were
used for 3 masses (m/z 33, 69, 81) and flux data calculated by flux–
gradient similarity method were applied for the other 14 masses
(m/z 42, 45, 59, 71, 79, 83, 99, 111, 113, 139, 149, 151, 155, 205).
Largest fluxes are at the bottom. The percentages in the legend indi-
cate contributions of individual compounds to the daily total emis-
sion.

temperature of 30◦C).γL andγT are respectively light emis-
sion activity factor and temperature emission activity factor,
computed as follows:

γL = α · c ·

(
PAR√

1+ α2 · PAR2

)
(8)

γT = Eopt

 CT 2 · e
(1/Topt−1/T )

R
·CT 1

CT 2 − CT 1 · (1− e
(1/Topt−1/T )

R
·CT 2)

 , (9)

whereα (= 0.0011) andc (= 1.37) are empirical coefficients,
Eopt (= 1.45) is the maximum normalized emission capac-
ity, Topt (= 312 K by default) is the temperature at which
Eopt occurs,T is air temperature (K),R is the ideal gas
constant (= 0.00831 kJ mol−1 K−1), andCT 1 (131 kJ mol−1)

andCT 2 (154 kJ mol−1) are the energies of deactivation and
activation, respectively. All constants used were taken from
Schade and Goldstein (2001). Based on this model, BERT +L

(3.8± 0.7 mg C m−2 h−1) was derived from our MBO EC
flux data. Applying this BER with PAR and temperature,
the model showed good agreement with our EC flux mea-
surement data (slope: 0.93,R2: 0.89, n = 388), with the
model slightly underestimating observations on average by
7 %. This basal emission rate is at least 1.2 times larger than
previously reported in summer 1999 and the daytime emis-
sion also increased from summer 1998 and 1999 but not
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Table 3.Modeled values for basal mission rate (BERT and BERT +L) and temperature-dependence factor (β).

Compound Basal emission rate at 30◦C, β [◦C −1]
BER [mg C m−2 h−1]

MBO + isoprene (m/z 69) (3.8± 0.70)a (N.A.)b

Monoterpenes (m/z 81) 0.60± 0.14 0.12± 0.01
Methanol (m/z 33) 0.54± 0.17 (0.71± 0.21)a 0.08± 0.01 (N.A.)b

Acetone (m/z 59) 0.24± 0.14 0.09± 0.04
Acetaldehyde (m/z 45) 0.13± 0.07 0.07± 0.05
Sesquiterpenes (m/z 205) 0.11± 0.10 0.07± 0.09
Methyl chavicol (m/z 149) 0.08± 0.06 0.20± 0.06

a Basal emission rate at PAR of 1000 µmol m−2 s−1 and air temperature of 30◦C for light+ temperature
algorithm.
b Not available for light+ temperature algorithm. Detailed equations are described in Eqs. (7)–(9).

linearly (Baker et al., 1999; Schade and Goldstein, 2001;
Bouvier-Brown et al., 2012). Daytime maxima of 1.2, 1.7,
and 2.6 mg C m−2 h−1 were observed for years 1998, 1999,
and 2009, respectively. The shaded area below the canopy
has increased as the forest has matured, so lower emission ca-
pacity in lower canopy is expected while an overall increase
is expected due to the increase in emitting biomass at the
site. Based on tree survey, the biomass of the site in summer
2009 (1005 g m−2) has increased at least 5 times more from
summer 1998 (184 g m−2).

Methanol emission is also known to be correlated with
light and temperature (Nemecek-Marshall et al., 1995;
Schade and Goldstein, 2001). Interestingly, our vertical gra-
dients for methanol shown in Fig. 4 strongly indicate night-
time emission and this is similar with monoterpene gradi-
ents, suggesting the main emission driver is temperature.
In contrast, the daytime mixing ratio pattern is similar to
that of MBO, not like monoterpenes, indicating temperature
and light dependent emission is important during the day.
In addition, the flux pattern is similar to that of monoter-
penes in the morning when upward flux starts to increase
but similar to that of MBO in the afternoon when the flux
decreases. This suggests methanol emission is possibly less
dependent on light, and this may be due to methanol emis-
sion from the soil. Soil methanol emission has been reported
by Schade and Goldstein (2001) and Schade and Custer
(2004). Based on our analysis of both emission model al-
gorithms, the model of light+ temperature for methanol
(BERT +L: 0.71± 0.21 mg C m−2 h−1) resulted in better cor-
relation with EC flux measurements (slope: 0.91,R2: 0.74,
n = 351) for the daytime data. This is mainly due to methanol
emissions being dominated by release from plants through
stomata during the day. Our 2009 measurements had at least
2 times lower emission for daytime fluxes than summer 1999.
This is possibly due to understory shrub removal performed
in spring 1999, which may have induced an unusually large
emission due to decay of plant debris during summer 1999
(Warneke et al., 1999). Methanol emission is also associated
with pectin demethylation when cell walls elongate during

leaf/needle expansion, as plant growth is recognized as the
primary global source of methanol to the atmosphere (Fall
and Benson, 1996; Galbally and Kirstine, 2002). Methanol
bursts from expanding needles is a phenomenon that may
have been occurring at higher rates in summer 1999 when
pine trees were younger and growing more rapidly as com-
pared to the pine trees in 2009. Moreover, a limited under-
story biomass in 1999 represented a minor sink for methanol,
while in 2009 dense understory vegetation may have repre-
sented a sink for this OVOC (Bouvier-Brown et al., 2012).

In addition to these three dominant BVOCs, acetone, ac-
etaldehyde, sesquiterpenes, and methyl chavicol have been
reported as significant emissions from this site (Schade and
Goldstein, 2001; Bouvier-Brown et al., 2009c), and our esti-
mations of flux viaK-theory are also consistent with these
reports. Diurnal cycles of emissions for these compounds
correlated better with that of monoterpenes than MBO, sug-
gesting mainly temperature dependent emission. By assum-
ing temperature as the main emission driver, we determined
BERT andβ, as summarized in Table 3, for these 4 com-
pounds. For acetone and acetaldehyde, we found slightly
smaller BERT and β than those reported by Schade and
Goldstein (2001), but within the uncertainty range. The day-
time fluxes and concentrations showed similar magnitude to
summer 1999, which is interesting since the biomass of the
site has increased substantially over this 10 yr period.

Leaf-scale emission rates of monoterpenes, sesquiterpenes
and methyl chavicol were previously reported from this site
(Bouvier-Brown et al., 2009c), but canopy-scale fluxes of
sesquiterpenes and methyl chavicol have not been previ-
ously reported. We estimated the canopy-scale basal emis-
sion rate by multiplying the ecosystem foliar density (1005 g
[dry weight] m−2 for BEARPEX 2009) to leaf-scale basal
emission rate and applied the emission model using the
scaled BERT with β. Figure 11 presents temperature depen-
dent emissions for monoterpenes and sesquiterpenes from
leaf-scale emissions, canopy-scale fluxes, and temperature-
algorithm basal emission model results optimized for this
study. For monoterpenes, the canopy-level emissions are in
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Fig. 11. Comparisons between leaf scale emissions and canopy scale emissions of (a) monoterpenes and (b) 775 
sesquiterpenes as a function of temperature. Shaded area indicates the range of expected canopy level emissions 776 
from leaf scale emissions reported previously by Bouvier-Brown et al. (2009). Blue dots represent canopy scale (a) 777 
eddy covariance flux for monoterpenes and (b) flux determined by the similarity method using the universal K for 778 
sesquiterpenes.  All fluxes were aggregated into 2

o
C temperature bins, and error bars denote standard deviations. 779 

Red dotted line represents basal emission model optimized for this study based on the canopy scale fluxes, and the 780 
inset in (b) enlarges the vertical scale, showing the exponential relationship between temperature and sesquiterpene 781 
flux. 782 

Fig. 11.Comparisons between leaf-scale emissions and canopy-scale emissions of(a) monoterpenes and(b) sesquiterpenes as a function of
temperature. Shaded area indicates the range of expected canopy-level emissions from leaf-scale emissions reported previously by Bouvier-
Brown et al. (2009). Blue dots represent canopy-scale(a) eddy covariance flux for monoterpenes and(b) flux determined by the similarity
method using the universalK for sesquiterpenes. All fluxes were aggregated into 2◦C temperature bins, and error bars denote standard
deviations. Red dotted line represents basal emission model optimized for this study based on the canopy-scale fluxes, and the inset in(b)
enlarges the vertical scale, showing the exponential relationship between temperature and sesquiterpene flux.

the middle of the range of leaf-scale emissions, and this in-
dicates little or no loss before escaping the canopy. In con-
trast, sesquiterpenes are known to be oxidized rapidly in the
tree canopy due to their high reactivity (Ciccioli et al., 1999;
Bouvier-Brown et al., 2009c); this can justify the lower emis-
sions measured at the canopy level as compared to upscaled
emission from leaf-level measurements. Moreover, assum-
ing the majority of sesquiterpenes are very reactive with hy-
droxyl radical and/or ozone, sesquiterpene flux estimated by
K-theory may be considered an upper limit due to chemical
loss between two measurement heights. For methyl chavi-
col, we derived a lower BERT (0.08± 0.06 mg C m−2 h−1)

from the canopy-scale flux data than was reported for leaf-
scale measurements (range 0.16–1.1 mg C m−2 h−1, scaled
for canopy scale) by Bouvier-Brown et al. (2009c), but we
observed a higherβ (0.2± 0.06◦C−1 for this study, and the
range of 0.12–0.2◦C−1 for leaf scale). Bouvier-Brown et
al. (2009b) reported that methyl chavicol emission accounted
for 4–24 % of carbon mass emitted as MBO. Our methyl
chavicol to MBO ratios were in the range 0.8–7.8 % during
hours 13:00–15:00 when methyl chavicol and MBO emis-
sion were maximum, consistent with the lower end of the
range previously reported.

5 Summary

Proton transfer reaction–quadrupole mass spectrometry
(PTR-QMS) has been applied to the disjunct eddy co-
variance method for measurement of BVOC fluxes for 4
ion species in this study. To quantify fluxes of a broader
range of BVOCs, we simultaneously measured EC fluxes
and vertical gradients of BVOCs during BEARPEX 2009.
Using a flux–gradient relationship (“K-theory”), we suc-
cessfully determined fluxes of 14 BVOC species in addi-
tion to MBO, monoterpenes, and methanol by disjunct EC.

MBO (m/z 69) was the dominant BVOC emission observed
(0.90 mg C m−2 h−1 in a 24 h mean), followed by monoter-
penes (m/z 81) and methanol (m/z 33), which were sim-
ilar (0.20 and 0.18 mg C m−2 h−1, respectively). Fluxes of
the other 14 BVOC species all showed net emission, with
24 h mean total emission of 0.2 mg C m−2 h−1, equivalent to
monoterpene or methanol emissions. Of these 14, acetone
(m/z 59) and acetaldehyde (m/z 45) emissions were largest
at 0.07 and 0.04 mg C m−2 h−1, respectively, followed by
sesquiterpene (m/z 205, 0.03 mg C m−2 h−1), methyl chavi-
col (m/z 149, 0.02 mg C m−2 h−1), and a lower level of emis-
sion for all the others (less than 0.01 mg C m−2 h−1 for each).
By comparing with leaf-scale emission of monoterpenes
and sesquiterpenes previously studied at the site, we found
there was significant chemical loss of sesquiterpenes before
they could escape the forest canopy, but not for monoter-
penes, consistent with previous studies (Ciccioli et al., 1999;
Bouvier-Brown et al., 2009a). Overall, estimating BVOC
emissions using the flux–gradient relationship applied to di-
rect measurements proved to be a useful method for investi-
gation of ecosystem scale BVOC fluxes.
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