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Abstract. Multi-year objective analyses (OA) on a high spa-
tiotemporal resolution for the warm season period (1 May
to 31 October) for ground-level ozone and for fine partic-
ulate matter (diameter less than 2.5 microns (PM2.5)) are
presented. The OA used in this study combines model out-
puts from the Canadian air quality forecast suite with US
and Canadian observations from various air quality surface
monitoring networks. The analyses are based on an opti-
mal interpolation (OI) with capabilities for adaptive error
statistics for ozone and PM2.5 and an explicit bias correc-
tion scheme for the PM2.5 analyses. The estimation of er-
ror statistics has been computed using a modified version of
the Hollingsworth–Lönnberg (H–L) method. The error statis-
tics are “tuned” using aχ2 (chi-square) diagnostic, a semi-
empirical procedure that provides significantly better verifi-
cation than without tuning. Successful cross-validation ex-
periments were performed with an OA setup using 90 % of
data observations to build the objective analyses and with the
remainder left out as an independent set of data for verifi-
cation purposes. Furthermore, comparisons with other exter-
nal sources of information (global models and PM2.5 satellite
surface-derived or ground-based measurements) show rea-
sonable agreement. The multi-year analyses obtained pro-
vide relatively high precision with an absolute yearly aver-
aged systematic error of less than 0.6 ppbv (parts per billion
by volume) and 0.7 µg m−3 (micrograms per cubic meter) for
ozone and PM2.5, respectively, and a random error generally
less than 9 ppbv for ozone and under 12 µg m−3 for PM2.5.
This paper focuses on two applications: (1) presenting long-
term averages of OA and analysis increments as a form of

summer climatology; and (2) analyzing long-term (decadal)
trends and inter-annual fluctuations using OA outputs. The
results show that high percentiles of ozone and PM2.5 were
both following a general decreasing trend in North America,
with the eastern part of the United States showing the most
widespread decrease, likely due to more effective pollution
controls. Some locations, however, exhibited an increasing
trend in the mean ozone and PM2.5, such as the northwest-
ern part of North America (northwest US and Alberta). Con-
versely, the low percentiles are generally rising for ozone,
which may be linked to the intercontinental transport of in-
creased emissions from emerging countries. After removing
the decadal trend, the inter-annual fluctuations of the high
percentiles are largely explained by the temperature fluctua-
tions for ozone and to a lesser extent by precipitation fluctua-
tions for PM2.5. More interesting is the economic short-term
change (as expressed by the variation of the US gross do-
mestic product growth rate), which explains 37 % of the total
variance of inter-annual fluctuations of PM2.5 and 15 % in
the case of ozone.

1 Introduction

Long-term series of surface objective analyses (OA) of
chemical species are valuable tools for understanding the
historical evolution of pollution, providing long-term com-
parisons with models, building a climatology of sur-
face pollutants, evaluating the efficiency of existing pol-
lution control and abatement measures and regulations,
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computing pollution trends, and supporting epidemiological
studies. Among the most important surface pollutants are
ground-level ozone and PM2.5 (particulate matter with di-
ameter less than 2.5 microns), which are primary contribu-
tors to poor air quality in the US (EPA, 2012). These pol-
lutants are also the main constituents of smog and, together
with NO2, form the basis of the Canadian Air Quality Health
Index (AQHI; Stieb et al., 2008).

Ozone is not directly emitted but produced by com-
plex photochemical reactions of nitrogen oxides (NOx) and
volatile organic compounds (VOCs) from natural and anthro-
pogenic sources. In urban areas, over one hundred chemical
reactions are involved in ozone production (Jacobson, 2002;
Seinfeld and Pandis, 2006). Ozone is an oxidant and is detri-
mental to health (Hazucha et al., 1989; Berglund et al., 1991).
For example, it exacerbates asthma, especially with simul-
taneous presence of allergenic pollen (White et al., 1994;
Newman-Taylor, 1995; Cashel et al., 2003). It also impacts
agricultural productivity (Skärby and Selldén, 1984; Tingey
et al., 1991), causes injuries and additional stress to forest
ecosystems (Reich, 1987; Badot, 1989; Chappelka and Fla-
gler, 1991) and to materials by cracking rubber and poly-
mers (Cass, 1991). Ozone is also an important source of the
hydroxyl radical, which breaks down many pollutants and
certain greenhouse gases (GHG) and acts itself as an effec-
tive GHG (Jacobson, 2002; IPCC, 2007; Houghton, 2009).
The atmospheric lifetime of tropospheric ozone is from a few
weeks above the boundary layer (Tarasick et al., 2010) to a
few hours near the surface at night (IPCC, 2007).

Another hazardous pollutant is fine particulate matter, or
PM2.5. Primary emissions of PM2.5 can be manmade (mostly
by burning of fossil fuels in power plants or vehicles and
various industrial processes) or produced naturally (volca-
noes, dust storms, forest or grass fires and sea spray). Sec-
ondary formation of PM2.5 is also an important source, orig-
inating basically from the atmospheric transformation of in-
organic and organic species (Seinfeld and Pandis, 2006).
PM2.5 aerosols can cool or warm the atmosphere via inter-
action with incoming solar radiation (aerosol direct effect)
or via their ability to act as cloud condensation or ice nu-
clei, and thus play a role in cloud formation (indirect ef-
fect) (Hobbs, 1993; Jacobson, 2002; IPCC, 2007; Houghton,
2009). Health impacts of PM2.5 are also numerous, includ-
ing the promotion of asthma (Newman-Taylor, 1995; Cashel
et al., 2003) and other respiratory problems (ALA, 2012),
the stimulation of high plaque deposits in arteries producing
vascular inflammation, oxidative stress and atherosclerosis (a
hardening of the arteries that reduces their elasticity), lead-
ing to heart attacks and related cardiovascular problems and
therefore an increase in morbidity and mortality (Pope et al.,
2002; Sun et al., 2005; Reeves, 2011). According to Pope
et al. (2002), a 10 µg m−3 increase in PM2.5 has been asso-
ciated with a 6 % increase in death rate. Exposure to ambi-
ent fine particles was recently estimated to have contributed
3.2 million premature deaths worldwide in 2010 due largely

to cardiovascular disease, and 223 000 deaths from lung can-
cer (IARC, 2013). Together, ozone and PM2.5 can also trig-
ger bronchial micro-lesions, which facilitate the penetration
of macromolecules such as pollen augmenting the allergenic
reaction (Gervais, 1994). Table 1 summarizes the main envi-
ronmental and health issues related to both pollutants. Given
the above evidence, it is therefore of paramount importance
to provide the public and health specialists with the best in-
formation about these pollutants.

This study uses an optimal interpolation (OI) technique
to produce a long-term series of ground-level ozone and
PM2.5 concentrations over a large region at a relatively low
cost. Models are generally characterized by known deficien-
cies whereas measurement systems suffer from representa-
tiveness problems and lack of sufficient coverage, therefore
providing often only local information. The OI technique,
used in operational meteorology for decades, provides an
optimal framework to extract the maximum information of
both model and observations (Rutherford, 1972; Daley, 1991;
Kalnay, 2003; Brasnett, 2008). Producing maps of objective
analyses based on OI on a regular basis has numerous appli-
cations in air quality (AQ):

1. initializing numerical AQ models at regular time inter-
vals (usually every 6 or 12 h) with appropriate fields
having overall bias and error variance that are ideally
minimum (Blond et al., 2004; Tombette et al., 2009;
Wu et al., 2008),

2. providing users with a more accurate picture of the true
state of a given chemical species by using an appropri-
ate optimal blend of model fields together with obser-
vations so that it produces the best possible analysis
(given available data), not only in the vicinity of ob-
servation points but also elsewhere in a given domain,
even where the observation network does not have an
optimal density,

3. building potentially useful maps of health indices (Air
Quality Health Index), environmental indices or pollu-
tant burden on ecosystems,

4. producing surface pollutant climatology,

5. computing temporal trends.

One of the key components of data assimilation, or objec-
tive analysis, is error statistics but the prescription of ade-
quate error statistics for air quality can be challenging. Un-
like the free troposphere or the stratosphere, boundary layer
problems and complex topography make it difficult to pro-
duce error covariance statistics for ground pollutants such
as ozone (Tilmes, 1999, 2001). Moreover, models are often
imprecise over complex boundary layer surfaces. However,
the relatively flat topography found over eastern and central
North America and the importance of transport of ozone and
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Table 1.Summary of environmental and health impacts of ozone and PM2.5.

Impact/Surface pollutant Ozone PM2.5

Oxidizing capacity Primary precursor of OH radicals1 –
Radiative and climate impact Infrared absorber and greenhouse gas2 Through absorption and diffusion of so-

lar light: direct and indirect effect2.
Environmental impact Damage crops and yield loss3

− Reduce the ability of plants to uptake
carbon dioxide8

Visibility degradation8

PM can clog stomatal openings of
plants and interfere with photosynthesis
functions6

Acidification of aquatic and terrestrial
ecosystems9

Health impact Aggravates asthma occurrence, acute and
chronic respiratory problems4

Alter lung function, increases cardiovas-
cular problems and risk of cancer5

Increase of premature death5

Impact on autoimmune inflammatory
disease10

Damage to materials Cracking of rubber and polymers7

1Ozone in presence of sunlight decomposes into O2 and O. The oxygen molecule combines with water vapor to give OH (Jacobson, 2002; IPCC, 2007).
2Hobbs (1993); Jacobson (2002); IPCC (2007); Houghton (2009).
3Skärby and Sélden (1984); Tingey et al. (1991).
4Berglund et al. (1991); White et al. (1994).
5Gervais (1994); Pope et al. (2002), Sun et al. (2005); Reeves (2011); IARC (2013).
6Hogan, (2010).
7Cass (1991).
8EPA (2012); IMPROVE (2011).
9Lehman and Gay (2011).
10Bernatsky et al. (2011).

PM2.5 above and within the boundary layer make these pol-
lutants excellent candidates for objective analysis and data
assimilation since the correlation length is much larger than
model resolution. Consequently, information can be spread
around efficiently over more than one model grid point. Pro-
ducing a long series of multi-year analyses retrospectively
may also pose many other technical problems, causing dis-
continuities or inconsistencies in time series: for example,
changes of model version, set of imprecise or out-of-date
emissions inventories or changes in instrumentation through
the years. However, in this study, efforts were made to elimi-
nate biases in the analyses likely caused by the above factors.

This study focuses on (1) obtaining optimal (adaptive)
error statistics that can follow diurnal and seasonal cycles
and adapt, to a certain degree, to changes over time; and
(2) reducing, as much as possible, systematic errors so that
the analyses form an unbiased, consistent and coherent data
set throughout the whole period. Multi-year analyses pre-
sented here combine the information provided by a long se-
ries of air quality model outputs from the Canadian Air Qual-
ity Regional Deterministic Prediction System (AQRDPS),
that is, the CHRONOS (Canadian and Hemispheric Regional
Ozone and NOx System) model for the period 2002–2009
and GEM-MACH (Global Environmental Multi-scale cou-
pled with Model of Air quality and CHemistry) model for the
period 2010–2012. The observations used during the same
period are taken from US and Canadian air quality mon-

itoring surface networks. One of the main applications of
OA, which is presented in this paper, is the summer clima-
tology. Other methods to derive a multi-year climatology
within the troposphere exist, such as the traditional spatial
domain-filling techniques using observations and trajecto-
ries (Tarasick et al., 2010). However, uncertainties of up to
30–40 % are noted with the meteorological inputs of trajec-
tory models (Harris et al., 2005). Moreover, in the bound-
ary layer, complex dispersion and turbulence tend to render
trajectories near the surface less precise than that of higher
levels, as reported by Tarasick et al. (2010). The climatol-
ogy presented here avoids the process of high uncertainties
associated with back trajectories near the surface. The spa-
tial interpolation used in this study is accomplished naturally
through exponential functions (see Sect. 2.1) so that mete-
orological and chemical patterns from the model are pre-
served. Numerous studies on stratospheric ozone climatol-
ogy, based on satellite observation combined with various
mapping techniques, have appeared in the last decade or two
(Fortuin and Kelder, 1998; McPeters et al., 2007; Ziemke et
al., 2011). There have also been numerous studies on tro-
pospheric climatology, based mostly on ozonesondes (Lo-
gan, 1999; Logan et al., 1999; Tarasick et al., 2010). How-
ever, comparatively little research has been done focusing on
multi-year analyses or climatology specifically for ground-
level ozone and PM2.5 for the whole domain of North Amer-
ica. The MACC (Monitoring Atmospheric Composition and
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Climate) reanalysis project of the global tropospheric com-
position (http://www.gmes-atmosphere.eu/about/project/) is
one of the few initiatives to produce a long series of surface
and tropospheric pollutant analyses but has a focus in Eu-
rope. RETRO-40 (REanalysis of the TROpospheric chemical
composition over the past 40 yr,http://retro.enes.org) is also
a project of global reanalyses initiated in Europe. In the US,
efforts to combine model results and observations of surface
ozone and PM2.5 have been attempted (Berrocal et al., 2010,
2012; McMillan et al., 2010) using a hierarchical Bayesian
space–time modeling. However, these studies have focused
only on the eastern US.

Multi-year analyses of ground-level ozone and PM2.5 pre-
sented in this paper are delivered on a comparatively high
spatiotemporal resolution (15 km or 21 km – on an hourly ba-
sis) for both Canada and the US. The rest of our manuscript
is organized as follows: Sect. 2 describes the methodology
and theory of OA, models and observation used. Section 3
presents a cross-validation and comparison of OA results
with external sources. Section 4 presents results of long-term
averages of OA during the CHRONOS era (2002–2009) and
the GEM-MACH era (2010–2012), from which summer cli-
matology is derived for both periods. Section 5 introduces
pollution trends and analyzes inter-annual fluctuations ob-
tained using OA. Finally, Sect. 6 provides a discussion about
certain aspects of the methodology and special issues related
to OI, and Sect. 7 contains our summary and conclusions.

2 Methodology

2.1 The analysis scheme

The analysis scheme used in this study is based on an opti-
mal interpolation (OI) that utilizes two independent pieces of
information: surface air quality short-term forecasts and sur-
face observations. The OI method adopted is standard and
has been described elsewhere (for a review, see Daley, 1992,
chap. 4; Ménard, 2000; Kalnay, 2003, Sect. 5.4 and Ménard
and Robichaud, 2005). In this section, the analysis scheme
is extended to include a semi-empirical adaptive scheme for
error statistics designed to obtain optimal weights for model
and observations. A residual bias correction for PM2.5 is also
proposed. The basic goal of an objective analysis scheme is
to find an expression that minimizes the error variance of the
combined field of model and observation. The background
information xn

f at a timen provided by the model can be
written as:

xn
f = xn

t + εn
f (1)

wherexn
t ,ε

n
f are, respectively, the true value and the back-

ground error at timen. Similarly, the observation provides
the following information:

yn
o = xn

t + εn
o, (2)

with εn
o including instrumental and interpolation error.

The background error variance is then defined as

B =< εn
f (ε

n
f )

T >, (3)

and the observation error variance as

R =< εn
o(ε

n
o)

T > . (4)

It can be shown that the optimization problem yields the fol-
lowing form for the analysis vectorxn

a (e.g., Daley, 1991;
Kalnay, 2003):

xn
a = xn

f + K(yn
o − Hxn

f ), (5)

wherexn
f is the background field vector (with length as the

total number of model grid points,N , for both background
and analysis vectors). The background field vector is ob-
tained from a short-term forecast, andH is an operator that
performs an interpolation from the model grid point space
to the observation space (here we use a bilinear interpola-
tion), yn

o is the vector that contains all the observations at
a given timen (length of this vector is equal to the number
of total valid observations, e.g., nobs), andK is the optimal
Kalman gain matrix to be defined below (with dimension is
N*nobs) and contains information about optimal error vari-
ances (Eqs. 3 and 4). The second term on the right-hand side
of Eq. (5) is called analysis increment (Daley, 1991; Kalnay,
2003) and could be viewed as the correction to the model
due to observations that brings the analyses closer to the
true value. In OI, error statistics are stationary and prescribed
from past experiments (rather than as time-evolving as in a
Kalman filter), and error correlations are given as functions
of space (rather than matrices defined on a specific grid),
so there is no need to interpolate the error correlations onto
the observation locations. The computation of the Kalman
gain does, however, involve the inversion of a matrix (see
Eq. 6). In meteorology, because of the large number of ob-
servations, this inversion is calculated in batches in smaller
domains using either data selection or a compactly supported
covariance function (Daley, 1991; Houtekamer and Mitchell,
1998). In air quality, the number of surface observations at a
given time is limited (in North America approximately 1300
observations or less per species) and hence the inversion of
the matrix can be computed directly. The analysis scheme
presented in this paper is therefore equivalent to a 2-D-VAR
(two-dimensional variational analysis). The derivation of the
analysis equation (Eq. 5) can be obtained as a best linear
unbiased estimator (BLUE) or by assuming that the errors
are Gaussian distributed. Other assumptions associated with
Eq. (5) are (i) the observation errors are uncorrelated with
the background errors, and (ii) interpolated observations are
linearly related to the model state (e.g., the observation op-
erator is linear). Furthermore, for OI the background error
correlation is modeled as a function, generally assumed to
be isotropic and homogeneous. It could be shown that in
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Eq. (5), the optimal gain matrixK has the following form
(see Kalnay, 2003):

K = (HB)T (H(HB)T + R)−1 (6)

whereB is the background error covariance matrix defined
on the model grid. But in OI, each term in Eq. (6) is computed
as a function between pair of points. For example, for a pair
of observation sitesk1 andk2, a typical form of the optimum
interpolation has the following form (Daley, 1991; Ménard,
2000):

H(HB)T (k1,k2) = σf(k1)σf(k2)exp{−|x(k1) − x(k2)|/Lc} (7)

(assuming here that the background error correlation is a ho-
mogeneous isotropic first-order auto-regressive model). The
error covariance between a given sitek1 and a particular anal-
ysis grid point (i,j ) is also given explicitly as

(HB)T (i,j,k1) = σf(i,j)σf(k1)exp{−|x(i,j) − x(k1)|/Lc}, (8)

which represents the background error covariance between
a given stationk1 and the nearest model grid point.B is
the background error covariance matrix itself;R the obser-
vation error covariance matrix;x(k1) andx(k2) the position
in space of the corresponding stationsk1 andk2; andx(i,j)

the grid point position. Finally,σf(j,i) and Lc represent re-
spectively the background error standard deviation and the
correlation length at a specific grid point (i,j ) and are as-
sumed in this study to be constant throughout the domain.
However,σf(k) andσo(k) for all observation locationsk are
defined locally and obtained with an autocorrelation model
fitting the observation-minus-forecast residuals, a procedure
known as the Hollingsworth–Lönnberg (H–L) method (see
Sect. 2.2). Equations (7) and (8) describe a first order autore-
gressive model which is positive definite (the product of all
the terms on the right-hand side of the equation is always pos-
itive; see Daley 1991; Ménard, 2000), so that the right-hand
side of Eq. (6) is also positive definite. In this study it should
be noted that the background error covariance is univariate
(e.g., no correlation between ozone and PM2.5).

Unlike meteorology, where the objective analysis or
data assimilation cycle of 6 h are most commonly used
(Houtekamer and Mitchell, 1998; Gauthier et al., 1999; Bras-
nett, 2008), in air quality a cycle of 1 h is more appropriate
(Blond et al., 2004; Tombette et al., 2009; Wu et al., 2008)
since there is a significant diurnal variation of surface pol-
lutants and care must be taken to resolve short or intermit-
tent episodes. Therefore, over the entire study period (2002–
2012) analyses were produced hourly. Only warm season
(1 May–31 October) analyses are presented due to unre-
solved biases issues for the cold season for PM2.5 and due
to the fact that ozone and related photochemical species are
less of an environmental threat in winter in most of North
America.

To verify the consistency of error statistics, the innovation
vector (d = yn

o − Hxn
f ) is computed to obtain the chi-square

diagnostic in real time as follows (Ménard, 2000):

χ2

p
=

dT S−1d

p
≈ 1 (9)

wherep is the number of ingested observations, and

S= H(HB)T + R (10)

is called the innovation matrix,d is the innovation vector, and
dT its transpose. In theory, the value of chi-square divided
by the number of observations should be close to unity (Mé-
nard, 2000; Ménard and Lang-Ping, 2000) for optimal error
statistics. The matrixSgiven by Eq. (10) needs to be inverted
only one time per analysis for the non-adaptive scheme, and,
in the case of the adaptive scheme, several times until con-
vergence is achieved. In both cases, the matrix inversion is
performed using a Cholesky decomposition (Golub and Van
Loan, 1996, Sect. 4.2). A potential problem with this method
may exist when the matrixS is of moderate to large size
(typically when the dimension is greater than 1500× 1500).
In this case, the inversion may become inaccurate and alter-
native methods should be used. In this study, the maximum
number of monitoring sites used for analyses is always infe-
rior to that number (around 1100 for the period 2002–2009,
progressively increasing to around 1300 in 2012).

At a specific grid point, the analysis error varianceσ 2
a is

always smaller than both the background error varianceσ 2
f

and the observation error varianceσ 2
o at a specific grid point

(e.g., Kalnay, 2003 for a derivation), e.g.,

1/σ 2
a = 1/σ 2

f + 1/σ 2
o , (11)

with σ 2
a defined as follows:

σ 2
a =< εn

aεn
a > (12)

where εn
a is the analysis error andσ 2

f and σ 2
o defined by

Eqs. (3) and (4), respectively at a particular grid point. Note
that since Eq. (11) was derived using the least square method
theory, there is no assumption whether the distribution needs
to be Gaussian or not (Kalnay, 2003). According to Eq. (11),
mapping historical evolution of pollutants is therefore more
appropriate, with an objective analysis being more accurate
than model and observations, each of them taken separately.
Following the same theory, the analysis error matrixA could
also be derived and has the following form (see Kalnay, 2003
for a demonstration):

A = (I − KH )B (13)

2.2 Adaptive error statistics

Great care should be given to the production of error statis-
tics. Not doing so may destroy the effective optimality of an
assimilation scheme (Daley, 1992; Tilmes, 2001; Sandu and
Chai, 2011). Moreover, inappropriate error statistics could
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cause numerous rejection of valid observations in the qual-
ity control step (Gauthier et al., 2003; see also Robichaud
et al., 2010). Innovations are the best sources of informa-
tion to compute error statistics (Daley, 1991; Blond et al.,
2004). The technique used here consists of pairing up dif-
ferent monitoring sites, calculating the covariance of OmP
(observation minus model prediction) between the paired sta-
tions, plotting the result as a function of distance, and fitting
an autoregressive correlation model as a function of distance
but excluding the data at the origin. This method was origi-
nally adopted in meteorology by Gandin (1963) using clima-
tology and by Rutherford (1972) utilizing a short-term fore-
cast. This technique was further developed by Hollingsworth
and Lönnberg (1986) and became a standard in the design of
optimum interpolation. For this paper’s focus on surface air
quality, not all stations could be adjusted with a correlation
function due to insufficient data or too much noise in the data,
likely caused by the proximity of emission sources or surface
and boundary layer effects. Consequently, a regional average
of error statistics obtained for other monitoring stations was
provided as a replacement for these particular stations where
statistical estimation could not be obtained.

Figure 1 shows an example of the application of the
Hollingsworth and Lönnberg method for a typical site (here
the Goddard Space Flight Center air quality monitoring sta-
tion): σ 2

f is the intercept of the fitted first-order autoregres-
sive model, andσ 2

o is the residual (or nugget) error variance
at zero distance. As a result of the fitting, an estimation of
the local isotropic correlation length,Lci , at sitei is also ob-
tained. Since the correlation model does not allow for non-
homogeneous background error correlations, a spatially av-
eraged uniform correlation length is used in the optimum in-
terpolation computer code (see Sect. 6 for a discussion of the
implications of the homogeneous assumption). A sensitivity
analysis of the two parameters revealed that a smaller analy-
sis error can be obtained whenever Eq. (9) was satisfied (e.g.,
normalized chi-squareχ2

/
p is one). On this basis, an adap-

tive scheme has been developed by utilizing the chi-square
diagnostic to scale the error statistics. The scheme to tune
error statistics parameters (correlation length scale and back-
ground error varianceσf) is presented below. The two tun-
able parameters are automatically adjusted “on-line” using a
recalculation of theK matrix for each iteration. We will first
describe the case when the initial value ofχ2

/
p is greater

than one. The algorithm proceeds as follows:

1. Let n be the (first) iterate for which the Kalman gain
is recalculated (at a given time step). FirstLc is reiter-
ated,

Ln+1
c =

Ln
c(

χ2
n

p

) , (14)

until there is convergence to a minimum ofLc and also
to a minimum Chi-square. If this minimum value is

one, that is,

χ2

p
≈ 1, (15)

then the convergent value ofLc that is associated with
the condition of Eq. (15) is the correlation length scale
used in the optimum interpolation code.

2. If Eq. (15) is not fulfilled, e.g., wheneverχ2
/
p does

not reach the value one, then an adjustment onσ 2
f is

performed as well:(
σ 2

f

)m+1
=

(
σ 2

f

)m
(

χ2
m

p

)
(16)

until the chi-square condition Eq. (15) is reached.

Appendix A gives more mathematical details for the reason
why the formulation for Eq. (14) works; that is, because (a)
it allows the value of chi-square equals 1 as a possible fixed-
point solution and (b) Eq. (14) is a contracting transforma-
tion for an initial chi-square greater than one. For such trans-
formation, Banach (1922) demonstrated that it has a unique
fixed point so that the transformation converges in that case.
Finally, for initial chi-square less than one, the correlation
length is inflated until Eq. (15) is verified. Although the lat-
ter situation occurs less frequently, it is also convergent, as
shown by numerical experiment. In that case, note that the
correlation length undergoes inflation (rather than contract-
ing) according to Eq. (14). Note also that the rationale for
Eq. (15) is based on the findings of Menard (2000) where
it is demonstrated that this leads to optimal error statistics.
The adaptive scheme proposed in this study requires invert-
ing Eq. (10) several times until convergence. This procedure
avoids tedious work of constructing new error statistics set
for each hour, season and year, as would be required other-
wise (e.g., without the adaptive scheme). Nevertheless, a set
of basic errors statistics were constructed for one month dur-
ing summer for both 2004 (CHRONOS era) and 2012 (GEM-
MACH era), while for other periods the adaptive scheme was
relied upon to adjust for changing conditions. Typically less
than 10 iterations are required to achieve the minimization
procedure (satisfying the criteria of convergence within less
than 1 %). This methodology is used to produce a long series
of multi-year analyses. Since several million hourly analy-
ses were required for this study, care was taken to limit the
CPU time. However, the solver of the Optimal Interpola-
tion scheme was computationally optimized so that an hourly
map of objective analysis could be produced within a minute
by a typical Linux station with the adaptive scheme.

In Sect. 3 it is demonstrated that the adaptive scheme
shows better skill than the non-adaptive scenario (e.g., origi-
nal un-tuned error statistics obtained from H–L, as in Fig. 1).
Contraction of the correlation length has been done by other
authors in a similar context, such as Frydendall et al. (2009)
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Fig. 1. Determining error statistics from the Hollingsworth and
Lönnberg (H–L) method. Fitting model follows a FOAR (first order
autoregressive) model for the error covariance (COV). For a par-
ticular monitoring station, the intercept of the curve represents the
background error variance (indicated by anX on the vertical axis)
and Lci , the correlation length (value at 1/e). Note that averages
(prior to fit) are calculated in bins of 30 km. The cutoff distance is
taken to be 900 km.

(their Eq. 4), who scaled the correlation length obtained from
the Hollingsworth and Lönnberg method (1986) according
to the density of monitoring in a surface pollutant measure-
ment network. The procedure used in this study, although
very different from Frydendall et al. (2009), follows the same
rationale that whenever the initial chi-square is greater than
one, for instance, results improve significantly when the cor-
relation length from H–L is reduced by a factor from 1 to
5 (as in Frydendall et al., 2009). More research needs to be
done to obtain a general theoretical framework on how to op-
timally tune error statistics parameters.

The procedure presented in this paper (Eqs. 14, 15 and
16) is shown to be a practical solution to get a better anal-
ysis but the authors do not claim that this method is a gen-
eral solution. The adaptive procedure reduces the correlation
length, thereby significantly reducing the systematic error
and, to a lesser extent, the random error (as will be shown
in Sect. 3). The mean value of the correlation length,Lc,
is contracted to a range between 30–100 km, as opposed
to the 75–300 km range obtained from the H–L method, or
non-adaptive scheme. This reduced value for the correlation
length is more in agreement with the correlation length used
in the CMAQ (Community Multiscale Air Quality Modeling
System) data assimilation algorithm (e.g., correlation length
of 60 km; see Sandu and Chai, 2011). In the free troposphere,
the correlation length is about one order of magnitude higher
(500–1000 km), according to the literature (Liu et al., 2009;
Tarasick et al., 2010; van der A et al., 2010 and others). These
values are closer to the original H–L results found in this
study when not using the adaptive scheme. To explain this
difference, the authors suggest that the boundary layer and

the topography or the proximity to emission sources results
in a lower the correlation length required for surface assimi-
lation.

2.3 Bias correction

Bias correction for analysis is a difficult problem and some
hypotheses have to be made in order to obtain a solution (Dee
and da Silva, 1998; Ménard, 2010). Two cases are discussed,
both of which have a tractable solution: either the observa-
tion systematic errors are small with respect to the system-
atic model error, or vice versa. In the first case, a model
bias correction can be developed, as seen below; in the latter
case, an observation bias correction needs to be calculated.
When both model and observations have significant biases,
a bias correction scheme (for both model and observations)
can still be developed, provided that statistics of the bias er-
rors are known and have different characteristic length scales
(see Ménard, 2010). In this study, the observation bias is as-
sumed to be small compared to the model bias. The diagnos-
tic model bias correction would subsequently be calculated
as follows. Assuming the model biasê is known, an unbi-
ased analysiŝx is obtained by the following equation (i.e.,
the sequential form; see Eq. (41) in Ménard, 2010):

x̂ = xf − ê + K
(
yo − H(xf − ê)

)
. (17)

The Kalman gain matrix is standard here, i.e., this is the same
as the one used in Eq. (5). Grouping terms in Eq. (17) yields
to:

x̂ = xf + K
(
yo − Hxf

)
− (I − KH )ê. (18)

The last term on the right-hand side of Eq. (18) can be iden-
tified as being the analysis bias. As the observation bias is
assumed to be small, the residuals〈O−A〉 = 〈yo−Hxa〉 can
be used as a source of information of the analysis bias〈εa〉.
Since < O−A > is only defined at the observation locations,
we extend it to the whole model domain surface as follows:

〈
εa

〉 = (I − KH )ê =


−〈O− A〉region
inside the region
−〈O− A〉regionexp(1− 12)

outside the region

(19)

with 〈O− A〉region is time and spatial average of O−A over a
certain region and where12 is defined by

12
=

x2

a2
+

y2

b2
. (20)

Equations (19) and (20) are applied to four regions having
a form of ellipses (instead of a rectangular form to avoid
“corner effects”), wherea andb are the ellipse semi-axes,
x andy the horizontal distance from the center of the ellipse.
The time average〈εa〉 is computed over a whole season and
for four different regions, as depicted in Fig. 2b. The values
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chosen fora andb in Eq. (20) were obtained through trial
and error so that they reduce the bias as much as possible
in the cross-validation mode. Values of the seasonal aver-
age bias correction are constant through the region (within
a given ellipse) but vary with time of day and changes with
season. The〈O− A〉 itself are evaluated a posteriori using
a previous set of objective analyses. The bias correction is
uniform inside a given region with its value equal to the re-
gion average. Outside of a region, the bias correction decays
as a function of the square distance12. Outside of all the
four regions, the bias correction is the sum of the individ-
ual distance-decaying region contributions (bottom part of
Eq. (19), e.g., when1 > 1, the grid point is outside the ellip-
tical region). Two criteria were used to define the ellipse po-
sition and parameters (e.g., values ofaandb in Eq. 20): (1)
the ellipses were centered where the density of stations are
higher, and (2) the highest model biases (e.g., time-averaged
analysis increments) were located inside the ellipses so that
modeling of bias correction outside the ellipses were not crit-
ical and had little impact. The numerical value fora is taken
as 1000–1200 km andb in the range 250–500 km, depending
on the particular region. This is an empirical bias correction
that was tailored for the problem under study. The authors do
not claim that this is a general bias correction algorithm but a
simple semi-empirical method that turns out to verify slightly
better than without using bias correction (see the verification
described below).

Finally, it is important to point out that the adaptive
scheme (Eqs. 14 and 16 above) is applied before the bias cor-
rection scheme in this methodology because it was found that
the adaptive scheme more efficiently corrects the bias than
the bias correction scheme itself (see the verification below).
Therefore, there is a need to use the bias correction scheme
only for PM2.5, (Eqs. 18 and 19) to remove the residual bias.

2.4 Models (trial fields)

In this study, we use CHRONOS (Canadian Hemispheric
and Regional Ozone and NOx System), a chemical transport
model (CTM) for air quality prediction of oxidants on both
regional and hemispheric scales in Canada (Pudykiewicz et
al., 1997). This model has been adopted as the trial field for
the first period, 2002–2009. CTMs or any air quality mod-
els solve the mass balance equation for chemical species.
They also have a photochemical module, which is the only
tool available to simulate chemical transformations and ca-
pable to reproduce, in an approximate way, the chemistry of
lower tropospheric pollution at every grid point of a given
domain (Jacobson, 2002; Pudykiewicz et al., 1997; Sein-
feld and Pandis, 2006; Pagowski et al., 2010). Archived op-
erational model outputs have been used and the algorithm
of OI applied in an off-line fashion for every hour dur-
ing the period. For the period 2010–2012, an on-line model
GEM-MACH replaced CHRONOS as the main model of
the AQRDPS (Air Quality Regional Deterministic Prognos-

Fig. 2. Map of available observation sites (circa 2010) used for
multi-year analyses for(A) ozone and(B) PM2.5. The four ellipses
superimposed on the bottom part of panel(B) are indicated for the
four regions where a bias correction is performed for PM2.5. Equa-
tions for the bias correction (inside and outside the ellipses) are
given in the text (see Eqs. 19 and 20).

tic System) suite at the Canadian Meteorological Centre
(CMC). GEM-MACH is a limited area air quality model with
the same gas-phase chemistry as CHRONOS (e.g., ADOM-
II) but its meteorological driver is now accessible on-line.
Its boundary conditions are driven by the operational ver-
sion of the regional GEM model (Moran et al., 2012). This
new operational model is a technical improvement over the
CHRONOS model, primarily due to its better boundary con-
ditions and that it also brings the possibility of full coupling
between air quality and meteorology. The domain of both
models covers most of North America and the model reso-
lution is 21 km for CHRONOS and 15 km for GEM-MACH.
The reader is referred to Côté et al. (1998) for further infor-
mation on the meteorological driver GEM. Main character-
istics and more details about CHRONOS and GEM-MACH
are to be found in Appendix B.

2.5 Observation system

Figure 2a shows the location of surface observations for
ozone used by the OA scheme (valid for summer 2010). The
site density is high over the eastern US, the US west coast
and the US Gulf States, lower elsewhere in the US and south-
ern Canada, and almost vanishing in northern Canada and
Alaska. For the PM2.5 network (Fig. 2b), the number of sites
is approximately two times less, although the geographical
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Table 2. Number of stations available from US/EPA AIRNow
database and Canadian stations for 2005 (CHRONOS era) and 2012
(GEM-MACH era).

Ozone PM2.5

Canada US Canada US
2005 ∼ 110 ∼ 1100 ∼ 100 ∼ 400
2012 ∼ 200 ∼ 1100 ∼ 190 ∼ 570

distribution of sites is fairly similar to that of ozone. Ta-
ble 2 provides more detail about the average number of
hourly observations available in Canada and the US during
the warm season for the years 2005 (CHRONOS era) and
2012 (GEM-MACH era). Canadian data include the Cana-
dian Air and Precipitation Monitoring Network (CAPMon),
and the Canadian National Air Pollution Surveillance Net-
work (NAPS). The US observations originate from a data
repository centralized by Sonoma Tech (officially mandatory
for the US EPA, Environmental Protection Agency) within
the context of the AIRNow (Aerometric Information Re-
trieval Now) program. Raw data are provided by numerous
US local air quality agencies (between 150 and 200 agencies
in US) as well as Canadian agencies1. The AIRNow US EPA
ozone and PM2.5 real-time data base has been available to
us for surface ozone observations since 2002 for a large part
of North America and since 2003 for PM2.5. However, the
multi-year analysis retrospective examines data since 2004
for PM2.5, at which time the observation network became
more stable. By 2012, approximately 1200 AIRNow sites
provided data on an hourly basis, plus an extra 100 stations
originating from Canadian provinces and territories that are
not part of the AIRNow program.

Ozone is usually measured by ultraviolet absorption with
instrument requirements specified under the US National
Ambient Air quality Standards (NAAQS) (www.epa.gov/air/
ozonepollution/actions.html). Instrument noise error is as-
sumed to be 1 ppbv (one part per billion in volume). How-
ever, the standard deviation of the observation error, which
includes the representativeness error, is believed to be higher
than 5 ppbv (Fleming et al., 2003). For PM2.5, TEOM (Ta-
pered Element Oscillating Microbalance) and beta atten-
uation monitors have been accepted under NAAQS since
1990 (www.epa.gov/particles/actions.html). One of the most
commonly used PM2.5 monitors (TEOM-SES), however,
largely underestimates concentrations in winter. The correc-
tion needed to account for that depends mostly on tempera-
ture, especially when the daily temperature is below 10◦C,
due to the volatilization of the semi-volatile component of
particulate mass (Allen and Sioutas, 1997). In this study, the

1In Canada, air quality monitoring falls under a provincial ju-
risdiction and is managed by Environment Canada as a partnership
(such as in the case of Montreal, MUC – Montreal Urban Commu-
nity and Metro Vancouver).

analyses focused on the warm season (1 May–31 October),
which experiences much less this instrument bias problem
since temperature is normally above 10◦C in the US and
southern Canada. Overall uncertainties due to PM2.5 instru-
ment noise are evaluated to 2 µg m−3 (Pagowski et al., 2010).
The effectiveness of monitors to represent the pollution con-
centration in a given area depends largely on local sources
and sinks, topography and meteorology, monitor location and
the spatiotemporal variability (Brauer et al., 2011). Problems
related to spatial representativeness and other specials issues
will be addressed in future studies.

3 Validation of results

In this section, validation tests are presented to assess the
performance of the basic objective analysis compared to dif-
ferent options: adaptive vs. non-adaptive, and with or without
bias correction. First, cross-validation will be shown, which
consists of reprocessing the objective analysis but with 90 %
of the data to produce OA outputs, leaving out 10 % of the
data to perform the verification itself. This group of 10 % of
observations has never been seen by the analysis and is hence
considered as a set of independent data. Three sets of addi-
tional similar verifying experiments are then performed and
put together for the final verification. Second, comparisons
with data from other sources will also be presented.

Objective analyses should be unbiased, have low random
error and high reliability. Three metrics are proposed to
evaluate the performance of the multi-year objective analy-
ses (OA), and also to compare with the model results. The
three metrics for performance evaluation used in the cross-
validation are: (1) average O−P (observation minus predic-
tion) and O−A (observation minus analysis), (2) standard
deviation of O−P and O−A, and (3) frequency of being cor-
rect within a factor two (FC2). Together, these metrics are
nonredundant (Chang and Hanna, 2004) and were used as a
set throughout this study. In fact, these metrics respectively
measure the systematic bias, random error (accuracy) and re-
liability. The latter is a more robust measure of the perfor-
mance, which is not sensitive to “outliers” or “compensating
errors” (Chang and Hanna, 2004).

3.1 Cross-validation tests

Since performing cross-validation involves reprocessing of
objective analyses several times to obtain a sufficient amount
of data for verification purposes, only specific years were se-
lected for this evaluation. The warm seasons of 2005 and
2007 during the CHRONOS era were chosen for the val-
idation process of ozone and PM2.5 respectively, and the
year 2011 during the GEM-MACH era for both ozone and
PM2.5. This 3 yr sample provides enough information so that
a high degree of statistical confidence (e.g.,p value < 0.05)
exists for the results obtained. The verification examined
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Table 3.Performance of model and OA for the warm (May–October) season 2005 (cross-validation mode) evaluated using FC2 (frequency of
correct value within a factor two when compared to observations) in cross-validation mode for ozone (a) for Canada (N ∼ 1440 observations)
and (b) for the US (N ∼ 13200 observations). Note thatZ stands for UTC (universal coordinated time); BC for bias correction.

a

CAN (N ∼ 1440) FC2 (00Z) FC2 (06Z) FC2 (12Z) FC2 (18Z)

Model 0.700 0.402 0.400 0.805
OA (basic) 0.907 0.662 0.646 0.923
OA adap, no BC 0.914 0.679 0.654 0.927

b

US (N ∼ 13200) FC2 (00Z) FC2 (06Z) FC2 (12Z) FC2 (18Z)

Model 0.741 0.395 0.340 0.826
OA (basic) 0.904 0.663 0.624 0.965
OA adap, no BC 0.914 0.729 0.641 0.969

Table 4.As Table 3 but for PM2.5 and for the warm season 2007 (N ∼ 1200 for Canada andN ∼ 8000 for US).

a

CAN (N ∼ 1200) FC2 (00Z) FC2 (06Z) FC2 (12Z) FC2 (18Z)

Model 0.436 0.470 0.420 0.390
OA (basic) 0.453 0.507 0.474 0.435
OA adap, no BC 0.481 0.521 0.530 0.479
OA adap, with BC 0.512 0.521 0.492 0.511

b

US (N ∼ 8000) FC2 (00Z) FC2 (06Z) FC2 (12Z) FC2 (18Z)

Model 0.476 0.549 0.523 0.510
OA (basic) 0.513 0.564 0.581 0.588
OA adap, no BC 0.581 0.586 0.602 0.638
OA adap, with BC 0.670 0.581 0.578 0.699

four different regions for ozone and PM2.5. Figure 3 shows
the results for ozone: the top left panel is for North Amer-
ica during the warm season (1 May–31 October), top right
panel is for Canada, and bottom left and right for eastern and
western US, respectively. The orange and blue navy curves
are in all panels associated with the systematic and ran-
dom errors, respectively, for the basic (non-adaptive) objec-
tive analysis scheme, and the green and cyan curves for the
tuned (adaptive scheme) objective analysis. The red curves
depict the model systematic errors and the black curves de-
pict the model random errors. The latter curves are shown
for purpose of reference comparison with OA. A very sig-
nificant reduction of both errors (systematic and random) is
obtained with the objective analyses at almost any time of
the day as compared to the model forecast. For ozone, the
adaptive scheme (iteratively adjusted error statistics) shows
the smallest errors (random and systematic: i.e., green and
cyan curves) in any region. Whenever a green dot appears
on top (Fisher’s test for the variance) and/or bottom (T test
for average) for a specific hour, it means that the adaptive vs.

non-adaptive are significantly different at the level of confi-
dence exceeding 95% (p value < 0.05).

The performance of the analyses for PM2.5 during the
warm season of 2007 in the cross-validation mode is shown
in Fig. 4. In this particular verification, a new experiment is
introduced that is adaptive with bias correction (Adap/BC)
since it was established that an attempt to explicitly cor-
rect the bias for PM2.5 was achievable and successful us-
ing Eq. (19). For the CHRONOS era, it is demonstrated
that the adaptive scheme with bias correction (gray and pink
curves for systematic and random error respectively) yields
the best results overall, especially during the daytime pe-
riod (e.g., more obvious for the 15Z–24Z period; see top
and bottom left panels). Finally, Fig. 5 indicates that for
2011 independent verification is also excellent for OA dur-
ing the GEM-MACH era (green and cyan curves, respec-
tively) as compared to the model (red and black curves),
the latter revealing relatively large biases during the day-
time (12:00–24:00 UTC). In both eras, the verification shows
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Fig. 3. Warm season cross-validation for the year 2005 (CHRONOS era) for ozone vs. time of day (UTC). The metrics used are mean
(systematic error) and standard deviation (random error) of OmP (observation minus precipitation) and OmA (observation minus analysis).
The diurnal variation of systematic and random errors, respectively, for model (red and black curves), non-adaptive objective analysis (orange
and blue navy) and adaptive OA (green and cyan) are presented for four different regions. Top left panel: North America, top right: Canada,
bottom left: eastern US, and bottom right: western US. Green dots at the top (bottom) of each panel indicate a successfulF test variance
(T test bias) for statistical significance of the difference between two selected experiments (i.e., adaptive vs. non-adaptive scheme). Units are
in ppbv.

nearly unbiased analyses as compared to the model as well
as much lower random errors.

Values of FC2 for both Canada and the US for both
ozone and PM2.5 for different hours of the day (00:00 UTC,
06:00 UTC, 12:00 UTC and 18:00 UTC) were also computed
(Tables 3 and 4). In principle, FC2 values can vary between
0 (absolutely unreliable) up to 1 (absolutely reliable). It is
shown that, overall, the best FC2 scores are obtained with the
OA adaptive scheme for ozone and the OA adaptive with bias
correction (BC) in the case of PM2.5. At any time and any-
where, FC2 scores for OA are largely superior (e.g., more
reliable) to that of the model, as should be expected from
Eqs. (11) and (13).

Success of the cross-validation suggests not only that the
methodology presented in Sect. 2 is sound but also implies
that OA yields reasonably precise values in areas where there
are no observations (but not too far away from other sur-
rounding monitoring sites). This builds a case for using OA
in several applications whenever observations are often miss-
ing (e.g., producing a climatology of pollutants with OA, or
calculating trends from OA rather than directly using obser-
vations).

3.2 Comparison with other sources (global models,
satellite and IMPROVE)

It is also interesting for validation purposes to compare re-
sults with external and totally independent information from
various sources, such as model and satellite climatology. Fig-
ure 6 presents objective analyses averaged during the whole
year of 2005 (bottom left panel), CHRONOS model output
(upper left panel) with compatible yearly outputs from the
MOZART model (Horowitz et al., 2003, Model for OZone
And Related Tracer – version 2: horizontal resolution of
2.8◦: upper right panel) and GEM-AQ (Global Environmen-
tal Multiscale coupled with Air Quality) model (Kaminski et
al., 2008, resolution of 1.5◦: bottom right panel). Although
the global MOZART (Model for Ozone and Related Tracers)
and GEM-AQ models have lower horizontal resolution (few
hundreds kilometers) than that of the Canadian AQ model
suite (resolution of 21 km for OA-CHRONOS), the compar-
ison is nonetheless instructive. In fact, the general pattern
of the two global models is roughly in agreement with the
objective analyses (OA) especially near coastlines and the
Gulf of Mexico where the uncertainty of OA is higher due
to less observations available there. MOZART overestimates
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Fig. 4. As Fig. 3 but with cross-validation for the year 2007 for PM2.5. The diurnal variation of systematic and random errors, respectively,
for model (red and black), non-adaptive OA (orange and blue navy) and adaptive OA (green and cyan) and adaptive OA with an explicit bias
correction (gray and pink) are presented for four different regions. Top left panel: North America, top right: Canada, bottom left: eastern US,
and bottom right: western US. Significance tests for difference are as in Fig. 3. The differences tested are between the adaptive with bias
correction vs. the adaptive scheme with no bias correction. NA: adaptive scheme OFF, Adap: Adaptive scheme ON, NBC: no bias correction,
BC: with bias correction. Units are in µg m−3.

Fig. 5. Cross-validation for July 2011 (GEM-MACH era) for ozone (left) and PM2.5 (right) vs. time of day (UTC). Systematic error and
random error are respectively shown for OA (green and cyan curve) and for model (red and black curve). Statistical significance tests are as
in Figs. 3 and 4.

ozone concentration mostly over northern and central US
compared to OA while GEM-AQ seems to be halfway be-
tween MOZART and CHRONOS, although GEM-AQ under-
estimates ozone over most of the US. The CHRONOS model
(upper left panel), significantly underestimates ozone over
many regions. The average of the three models provides a

much better agreement with OA than each model taken indi-
vidually (results not shown). Thus, OA could serve as a point
of comparison and verification for global or regional mod-
els or with global surface climatologies such as provided, for
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Fig. 6. Comparison of surface ozone OA annual average for 2005
(all hours, all seasons combined) with external sources. Top left
panel: CHRONOS model 2005 (no observation ingested). Bottom
left: OA – average for 2005. Top right: MOZART model annual av-
erage (version 2). Bottom right: GEM-AQ annual average for 2005.
High ozone values are in red, low values are in blue. Note that (1) for
the sake of the comparison only for this figure, units are given in
mass mixing ratio (ppbm) instead of volume mixing ratio (ppbv);
(2) 1 ppbm= 1.66 ppbv.

example, by RETRO-4 or MACC or from other sources such
as the CDC/EPA2 project in the US.

Figure 7 compares a surface global climatology obtained
from the satellite instrument MODIS (Moderate Resolution
Imaging Spectroradiometer) for PM2.5 for the period 2001–
2006 (van Donkelaar et al., 2010) with a climatology ob-
tained from OA for the period 2004–2009 (near 18:00 UTC,
which is roughly the time of satellite overpass). For the pur-
pose of comparison, the same methodology described for the
warm season was extended to the whole year (both warm
and cold season) for the period 2004–2009. Although the
years are different, the comparison is again instructive and
could indicate flaws or weaknesses in both OA and satellite.
The result is that although the respective climatology roughly
agrees, important differences appear over some areas such
as the Rocky Mountains (southwest US) and northern Mex-
ico. These differences could be caused by satellite retrieval
artefacts over higher elevation (R. Martin, personal com-
munication, January 2012) or by imprecise Mexican emis-
sions not represented correctly in the CHRONOS model, or
due to meteorological conditions. Other likely explanations
include a lack of dense monitoring in these areas, making OA

2CDC project is a US initiative from the Center for Disease
Control and Prevention in collaboration with the US/EPA to com-
bine numerical model outputs and observations using the Bayesian
space–time modeling (seehttp://www.epa.gov/heasd/research/cdc.
html for more information).

Fig. 7.Comparison of surface PM2.5 climatology obtained from(A)
satellite surface-derived PM2.5 2001–2006 (MODIS), van Donke-
laar et al. (2010);(B) OA PM2.5 average for all hours, all seasons
2004–2009 near 18:00 UTC (at approximately the time of satellite
overpass). Note that both figures(A) and(B) have the same color
bar. High values are in red, low values in blue (units are in µg m−3).

less reliable over western higher elevation regions, and com-
plex terrain meteorology not well simulated by the trial field
(model), affecting the quality of OA. Other satellite clima-
tologies exist for PM2.5 such as produced by van Donkelaar
et al. (2006) for the period January 2001 to October 2002 but
the result was found similar to that of Fig. 7.

Comparisons were also made between the annual recon-
structed fine mass concentrations (PM2.5) obtained from
the IMPROVE (Interagency Monitoring of Protected Visual
Environments) and from the US EPA’s Chemical Specia-
tion Network (CSN) with selected results obtained in this
study. For example, for the annual mean 2005–2008 (see IM-
PROVE report V, 2011, Fig. 2.2.8b), the comparison with this
study’s results (obtained also from averaging years 2005–
2008 for PM2.5; figure not shown) indicates the same spa-
tial patterns (maxima in southern California and eastern US)
with mean maximum values that are also in agreement (in the
range 15–21 µg m−3).

4 Objective analyses and analysis increments for
surface ozone and PM2.5 over North America

4.1 A climatology of summer pollution

One of the main applications of multi-year series of anal-
yses is to produce a climatology of surface pollutants. In
this study, a climatology (ground-level ozone and PM2.5) is
created by averaging objective analyses produced using the
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methodology described in Sect. 2 during the summer months
(June-July-August) for all available years in this study. Map-
ping a climatology with OA is more appropriate and more
precise than either using models or observations alone (ac-
cording to Eqs. 11 and 13) as long as the OA biases are rel-
atively small throughout the whole study period. Moreover,
in OA, missing observations are not critical for the quality of
OA if there are other observations available in the neighbor-
hood (according to independent verification, as previously
discussed in Sect. 3). Figure 8 shows the monitoring of OA
systematic (bias) and random (standard deviation) errors for
the period 2002–2012 and compares with the model in use at
the time for (a) ozone and (b) PM2.5. Throughout the study
period, the OA errors (bias and systematic) are rather sta-
ble as compared to the model. In fact, the OA systematic er-
ror (bias) is near zero for both ozone (Fig. 8a) and PM2.5
(Fig. 8b), which is not the case with the model systematic er-
ror, which is much higher than that of OA. The latter is due to
changes of model version, improvement of the parameteriza-
tions, and changes of biogenic and anthropogenic emissions
through the years. As previously discussed, the very low bias
of OA is due mostly to the impact of the adaptive scheme and
to some extent to the bias correction in the case of PM2.5. The
random error for OA is approximately 2 times less than that
for model ozone (Fig. 8a) and approximately 1.5 times less
for OA-PM2.5 as compared to the model (Fig. 8b). Figure 8
shows a relatively high accuracy for OA: e.g., an average ab-
solute systematic error less than 0.6 pbbv and 0.7 µg m−3 re-
spectively for ozone and PM2.5 and a random error generally
less than 9 ppbv for ozone and under 12 ug m−3 for PM2.5
during the warm season. The fact that OA for ozone and
PM2.5 is virtually unbiased with relatively low systematic er-
rors provides confidence in using it for different applications.

Figure 9a and b show average OA outputs for the two
main eras for ozone and for PM2.5, respectively: prior to
and including 2009 using the CHRONOS model, and after
2009 using the GEM-MACH model. The top panels of both
figures are computed averages of all the objective analyses
for all hours during the summer (June-July-August), for all
available years. The bottom panels are also for summer but
valid at midday (2 p.m. LT: local time). The left panels are
for ozone and the right panels for PM2.5. One can observe
that the highest levels of ozone and PM2.5, key components
of smog, in both periods tend to be observed in the east-
ern US (south of the Great Lakes) and southern California,
as expected (according to US/EPA;www.epa.gov/airquality/
greenbook/; those regions also correspond to the highest fre-
quency of NAAQS non-attainment). The diurnal variation
is stronger for ozone than that for PM2.5 since the maps at
2 p.m. LT (bottom panels) are quite different than the aver-
age computed for all hours (top panels). This particular time
of day is of interest because (1) during the warm season, the
planetary boundary layer is often well mixed so that the pol-
lutant values are more representative of the whole boundary
layer rather than just the surface values, and (2) it is roughly

Fig. 8.Evolution of the systematic and random error for model and
OA suite over a decade for(A) ozone (2002–2012) in ppbv,(B)
PM2.5 (2004–2012) in µg m−3. The model in use is indicated at the
bottom of the figure (e.g., either CHRONOS or GEM-MACH).

coincident with geo-synchronous satellite passage such as
MODIS. The analyses of the second era (2010–2012), using
the GEM-MACH model (Fig. 9b), roughly indicate the same
situation as for the CHRONOS era (Fig. 9a), except for an in-
crease of average values of background ozone, especially in
northern Canada. However, the reliability of OA is uncertain
in northern Canada. Together both Fig, 9a and b (multi-year
averaged objective analyses) satisfactorily represent a sum-
mer climatology for the past decade for ground-level ozone
and PM2.5 over North America. To our best knowledge, this
is the first peer-review manuscript of ground-level climatol-
ogy (ozone and PM2.5) for both Canada and the US based on
a series of multi-year analyses on a high spatiotemporal res-
olution (15–21 km; 1 h). Similar analyses in the US covered
only the eastern part of the country (Berrocal et al., 2010,
2012; CDC/EPA project).

4.2 Long-term averages of analysis increments

In principle, a long-term average of analysis increment (cor-
rection to the model due to observations) reveals, among
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Fig. 9. (A) Long-term average OA (CHRONOS era; i.e., before 2010) for summer months (JJA) for surface ozone and PM2.5. Top left panel:
all hours ozone analysis. Bottom left: ozone analysis at 2 p.m. LT. Top right: all hours PM2.5 analysis. Bottom right: PM2.5 analysis at 2 p.m.
LT. High ozone values are in red and low values are in blue.(B) as(A) but for the GEM-MACH era (2010–2012). Units are ppbv for ozone
and µg m−3 for PM2.5.

other things, how much the model is different from the analy-
sis for various time of day and for various regions and chem-
ical species. In this study the mean increment is used to an-
alyze and monitor the change between the CHRONOS era
to the GEM-MACH era. Figure 10a and b depict the aver-

age analysis increment (AI) for both eras (CHRONOS and
GEM-MACH, respectively). A dipolar structure in the zonal
direction of the AI (indicated by+ and − in the figures)
is noted for ozone during the CHRONOS era (2002–2009),
meaning that the model had the tendency to overestimate in
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Fig. 10. (A) Long-term average analysis increment (CHRONOS era: i.e, before 2010) for summer months June-July-August (JJA) for
surface ozone (in ppbv) and PM2.5 (in µg m−3). Top left panel: all hours ozone analysis increment. Bottom left: ozone analysis increment
at 18:00 UTC. Top right: all hours PM2.5 analysis increment. Bottom right: PM2.5 analysis increment at 18:00 UTC. Red values are strong
positive corrections to the model, blue values are strong negative corrections.(B) as(A) but for the GEM-MACH era (i.e., 2010–2012).

the eastern part of North America and to underestimate in
the western part (Fig. 10a, left panels). This tendency is also
present for the GEM-MACH model (Fig. 10b, left panels)
but negative increments seem to be augmented for this lat-
ter model in the east while positive increments have dimin-

ished in the west, so overall the zonal gradient remains al-
most unchanged. PM2.5 analysis increment climatology re-
veals that the CHRONOS model generally underestimated
PM2.5 (positive AI, Fig. 10a, right panels) whereas the GEM-
MACH model overestimated (negative AI) in the eastern US
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and underestimated (positive AI) in the west, leading to the
presence of a noticeable zonal dipolar pattern appearing for
PM2.5 during the GEM-MACH era (Fig. 10b, right panels).
Observations of persistent AI may provide insight on the AQ
forecasting suite behavior and possible model weaknesses.
In principle, patterns in analysis increment or a presence of a
dipole (persistent negative values in eastern US and positive
in western US) may reveal structures of compensating model
errors that are corrected by the OA. Therefore, a climatol-
ogy of analysis increment is also necessary in the monitor-
ing of forecasting systems because it reveals how much the
correction is needed to get close to the true value. In fact,
the random error augmented for PM2.5 when the switch from
CHRONOS to GEM-MACH took place in November 2009
(see Fig. 8b), which is consistent with the above findings re-
garding analysis increment patterns for PM2.5. Note that de-
spite the models’ larger systematic and random errors, the
OA adaptive scheme naturally dampens erratic model behav-
ior, as revealed by Fig. 8. More specifically, it shows a low
and steady bias near zero through time.

5 A study of decadal trend and mapping of warm
season pollution

Another important application of a long series of analyses is
to calculate temporal trends over different regions in order
to evaluate the effectiveness of pollution control measures
and regulation, and also to monitor any rise of the back-
ground pollution related to intercontinental transport. As pre-
viously explained, missing observations are not critical for
OA. Moreover the multi-year analyses presented here offer
low biases and random error (see Fig. 8 and Sect. 3), they
can be used to compute trends. To complement this analy-
sis of trend, differences in the model grid space between two
similar years (2005 and 2012) are also mapped. Using OA for
trends or for mapping purposes is more advantageous than
performing computations of only local observations at spe-
cific sites. This is because, according to Eq. (11), the overall
objective analysis error variance (σ 2

a ) is always smaller than
the observation variance error (σ 2

o ) or the model/background
error variance (σ 2

b ), no matter if we have Gaussian distri-
butions errors or not for both observations and model fore-
casts. Furthermore, OA has a series of quality controls such
as background checks so that outliers are filtered out more
efficiently. Particularly, the background check step (compar-
ison of observations with model prediction, e.g., O−P) pro-
vides a powerful quality control test that rejects data which
are approximately five (ten) times the standard deviation of
O−P for ozone (PM2.5). For example, in this study, the back-
ground check was found effective in eliminating the zero-
span test of the ozone analyzer, which is spurious and which
sometimes is not filtered out from Canadian observation raw
data. The background check was also able to remove, at
times, data influenced too heavily by the immediate prox-

imity of local strong sources of PM2.5, such as acute spikes
observations produced by too close proximity to local fires or
fireworks, making data non-representative at the scale of the
OA, i.e., 15–21 km. Moreover, if an observation was missing,
there was no hole in the spatiotemporal sequence, since the
analysis provided a likely value at a specific site where oth-
erwise a break in the observation sequence would have been.
Finally, OA provides maps and permits the study of the inter-
annual evolution across geographical regions for the whole
of North America at once, not only at a single site.

5.1 Decadal trends and inter-annual fluctuations
for ozone and PM2.5

Inter-annual fluctuations over the past decade or so are
driven by the five main driving mechanisms: (1) impact of
better regulation and anti-pollution measures (EPA, 2010,
2012; Oltmans et al., 2013), (2) meteorological fluctuations
(Thompson et al., 2001; Camalier et al., 2007; Zheng et al.,
2007; Davis et al., 2011), (3) socio-economic changes (e.g.,
recession; Friedlingstein et al., 2010; Granados et al., 2012;
Castellanos and Folkert Boersma, 2012), (4) increase of
background levels due to intercontinental transport (Cooper,
2010, 2012), and (5) inter-annual variability of stratospheric–
tropospheric exchanges (Tarasick et al., 2010; Lin et al.,
2012a, b). Following Cooper et al. (2010, 2012) and Vautard
et al. (2006), a general trend analysis is computed by using
the percentiles to take into account the changes of the full
distribution through time. High percentiles (e.g., 95th, 98th
or 99th) changes are more likely to indicate local changes
in emission whereas low percentiles changes rather indicate
global or background changes (Cooper at al., 2010, 2012;
Lelieveld et al., 2004). However, increases of low percentiles
could also be caused by lesser urban nocturnal titration of
ozone by NOx (Vautard et al., 2006). According to Fig. 11a
and Table 5a, ozone high percentiles are decreasing overall
whereas low percentile as well as the median and the mean
are all increasing. This implies that the standard deviation
of the distribution is becoming smaller with time. Note that
high percentiles of ozone values mostly occur in the after-
noon. For PM2.5 (Fig. 11b), high percentiles are also de-
creasing with time but low percentiles are neither increasing
nor decreasing (see also Table 5a). Note that Table 5 is also
broken down into individual regions (eastern US: Table 5b,
western US: Table 5c, eastern Canada: Table 5d, and western
Canada: Table 5e). Overall, similar results are found on the
regional scale. As previously mentioned, the decrease of high
percentile is likely associated with successful anti-pollution
measures and regulations, which act to lower the peak values
through time. The authors believe that the general downward
decadal trend of the 95th, 98th and 99th percentile for both
ozone and PM2.5 (black dashed line in Fig. 11a, b) are ro-
bust and are likely to indicate less exceedances of air quality
standards and therefore overall cleaner air in North Amer-
ica, especially in the east. It has been reported elsewhere
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Fig. 11.Long-term trend of percentiles (5th, 25th, 50th, 75th, 95th,
98th and 99th) and standard deviation (STD DEV) for(A) ozone
distribution (units are in ppbv) and(B) PM2.5 distribution (units are
in µg m−3). Computations were done in the observation space for
summer months using all hours available. Procedure REG of SAS
(SAS, 1988 for more details) was used to draw the dash line trend
(decade tendency).

that summertime extreme ozone events in many US urban
areas have indeed decreased (Lefohn et al., 2008), which
agrees with the results obtained here. In general, Fig. 11a,
b and Table 5 also agree with results of Cooper et al. (2010,
2012). Background ozone is increasing, likely due to inter-
continental transport from emerging countries (Stohl et al.,
2002; Cooper et al., 2010, 2012). One exception is the region
of western Canada where the decrease of high percentile is
not statistically significant and even reverses to show an in-
crease at the percentile 95th. Therefore, in that region, it is
likely that the effect of the growing oil business overcame
the decreasing trends associated with better regulations seen
in other regions.

Further analysis was conducted to focus on the causes
of inter-annual fluctuations and not only on long-term
trends. To study this, the decadal trend (dash black line in

Fig. 11a, b) is removed and the inter-annual fluctuations
correlated with selected predictors such as the US temper-
ature and the mean monthly precipitation of each summer
(June-July-August) for ozone (N = 11 yr, which is 2002–
2012) and PM2.5 (N = 9, which is 2004–2012). Correla-
tions were also computed between those fluctuations with
known economical indices such as the Industrial Dow Jones
(http://www.djaverages.com) and various forms of the gross
domestic product growth rate (http://www.tradingeconomics.
com/united-states/gdp-growth) in order to analyze the influ-
ences of economic fluctuations on pollution levels. A mul-
tiple regression model using a stepwise-like procedure es-
tablishes the explained variance of the main predictors to
the overall model (stepwise procedure of SAS, Statistical
Analysis Software version 9.3). Stepwise regression is an
automatic procedure to select the best predictors for a regres-
sion model using a sequence of F-tests in a stepwise manner
(for more details, see Weisberg, 1985 or Draper and Smith,
1981). Table 6 presents the regression equation along with
the percentage of the statistical model explained by each pre-
dictor. For PM2.5, gdpmol (previous year warm season gross
domestic product growth rate) explains 37 % of the variance
of the 98th percentile fluctuations (devp98-PM25) whereas
the mean summer precipitation (pjjaus) explains 27.5 % of
the total variance of the inter-annual fluctuations. The statis-
tical model itself explains 64.5 % (R2

= 0.645) of the total
variance. For ozone, as expected, the mean temperature of
June-July-August (ttjjaus) explains most of the fluctuations
for the 98th percentile (R2

= 76 %) whereas the warm season
gdpmo (gross domestic product from May through October
of the current year) explains 11 % of the fluctuations. Finally,
the US gross domestic product growth rate from July to De-
cember of the previous year (e.g., gdpjdl) explains the re-
mainder (4 %) for a total of 91 % for the whole model. These
links between pollution and recent economic fluctuations es-
tablished here have also been observed elsewhere, notably
Castellanos and Folkert Boersma (2012), who attributed the
acceleration of the downward trend of tropospheric NO2 col-
umn over Europe in 2008–2009 to distinct changes in an-
thropogenic activity in Europe linked to sharp downturns in
gross domestic product caused by the global economic reces-
sion. Finally, downward trends shown in Fig. 11a, b compare
well to national US trends for ozone and PM2.5 (EPA, 2012,
Fig. 4).

5.2 Mapping differences between 2005 and 2012 for
ozone and PM2.5 using OA

The goal of this section is to complement the trend computa-
tion performed in Sect. 5.1 by mapping geographic changes.
Differences are mapped in the analysis grid space for surface
ozone and PM2.5 between two similar years. The method-
ology to select these two similar years is given below. Be-
side the reduction of emissions due to regulations, the fac-
tors that most influence the formation of a photochemical
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Table 5. Trends for selected percentile (PCT), mean and standard deviation for OA-ozone (ppbv yr−1) and OA-PM2.5 (µg m−3 yr−1) for
different regions. (a) Southern Canada and US, (b) Eastern US. (c) Western US, (d) Eastern Canada, (e) Western Canada. Thep value is given
for statistical significance. NS indicates no statistical significance (p value > 0.15). Positive (negative) values indicate an increase (decrease)
from 2005 to 2012. Computations are for all hours during summer (JJA).

a

ALL Trend (O3) p value Trend (PM2.5) p value
REGIONS (ppbv yr−1) (µ g m−3 yr−1)

99th percentile −0.836 0.076 −1.31 0.022
98th percentile −0.717 0.060 −1.07 0.016
95th percentile −0.488 0.071 −0.757 0.014
75th percentile 0.115 (NS) > 0.15 (NS) −0.267 0.039

Median 0.470 0.001 −0.068 (NS) > 0.15 (NS)
25th percentile 0.71 0.0002 −0.013 (NS) > 0.15 (NS)
5th percentile 0.35 0.001 ∼ 0 (NS) > 0.15 (NS)

Mean 0.303 0.0125 −0.177 0.038
Std. dev. −0.307 0.0045 −0.232 0.054

b

99th percentile −0.827 > 0.15(NS) −1.125 0.048
98th percentile −1.191 0.033 −1.09 0.020
95th percentile −0.525 > 0.15(NS) −0.82 0.032
75th percentile 0.495 > 0.15(NS) −0.425 0.021

Median 0.41 0.022 −0.248 0.01
25th percentile 0.556 0.0025 −0.135 0.04
5th percentile 0.235 0.0002 −0.092 0.11

Mean 0.237 > 0.15(NS) −0.316 0.009
Std. dev. −0.248 0.091 −0.169 0.10

c

99th percentile −1.041 0.002 −1.65 0.058
98th percentile −1.686 0.002 −1.428 0.031
95th percentile −0.673 0.033 −0.922 0.025
75th percentile −0.095 > 0.15 (NS) −0.348 0.072

Median 0.325 0.0742 −0.223 0.033
25th percentile 0.592 0.0009 −0.1733 0.026
5th percentile 0.341 0.0174 −0.0883 0.0433

Mean 0.159 > 0.15(NS) −0.316 0.021
Std. dev. −0.366 0.0009 −0.266 > 0.15 (NS)

d

99th percentile −1.015 0.054 −1.843 0.004
98th percentile −0.296 0.006 −1.752 0.001
95th percentile −0.432 > 0.15(NS) −1.053 0.009
75th percentile ∼ 0 (NS) > 0.15(NS) ∼ 0 (NS) > 0.15(NS)

Median 0.328 0.009 0.167 0.008
25th percentile 0.540 0.004 0.1133 0.001
5th percentile 0.305 0.004 ∼ 0 (NS) > 0.15(NS)

Mean 0.21 0.110 ∼ 0 (NS) > 0.15(NS)
Std. dev. −0.296 0.006 −0.364 0.009

e

99th percentile −0.596 > 0.15(NS) −1.33 > 0.15(NS)
98th percentile −0.115 > 0.15(NS) −1.94 0.135
95th percentile 0.677 0.15 −1.263 0.144
75th percentile 1.095 0.006 −0.235 > 0.15(NS)

Median 1.311 0.002 −0.055 > 0.15(NS)
25th percentile 1.155 0.0003 −0.057 > 0.15 (NS)
5th percentile 0.558 0.002 −0.040 0.001

Mean 1.043 0.0004 −0.236 > 0.15(NS)
Std. dev. ∼ 0 > 0.15(NS) −0.193 > 0.15(NS)
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Table 6.Multiple regression models to explain high percentile fluc-
tuations for ozone and PM2.5. The % of the variance explained
by each predictor is indicated below each term of the equation. tj-
jaus: mean US temperature (in◦C) for June July and August of
the current year, pjjaus: mean US precipitation (in mm) for June
July and August of the current year, gdpmo: gross domestic product
growth rate (in %) from May–October of the current year, gdpjdl:
gross domestic product growth rate of July–December of the past
year (in %), gdpmol: same as gdpmo but for the previous year,
devp98: deviation of percentile 98 (decadal trend removed). Com-
putations are for all hours during summer (JJA). The statistical mod-
els were obtained through the use of procedure STEPWISE of SAS
(SAS/STAT, 1988). Units of dev98 are ppbv for ozone and µg m−3

for PM2.5.

PM2.5 (N = 9)
devp98= 11.265+ 0.947∗gdpmol− 0.1825∗pjjaus
R2

= 0.645 37 % 27.5 %
(p < 0.10) (p < 0.10)

O3 (N = 11)
devp98= −87.7+ 3.776∗tjjaus+ 0.566∗gdpmo+ 0.2476∗gdpjdl
R2

= 0.91 76 % 11 % 4 %
(p < 0.001) (p < 0.05) (p < 0.15)

pollutant such as ozone are the weather (more specifically
the temperature; see for example, Camalier et al., 2007),
the short-term fluctuations of economy (Friedlingstein et al.,
2010; Castellanos and Folkert Boersma, 2012; Granados et
al., 2012), and forest fire activity. A principal component
analysis was constructed to include these loading factors3

and other related ones: (1) summer temperature anoma-
lies for the US (http://www.ncdc.noaa.gov/temp-and-precip/
time-series/and Canada (http://www.ec.gc.ca), gross do-
mestic product for Canada and the US (http://www.
tradingeconomics.com), total area burned by wildfires for
Canada (http://cwfis.cfs.nrcan.gc.ca/en_CA/report/archives)
and for the US (http:/www.nifc.gov/fireInfo/fireInfo_stats_
totalFires.html), and, finally, the most prominent Internet-
accessible indices: NAO (North Atlantic Oscillation,
http://www.esrl.noaa.gov/psd/data/correlation/nao.data) and
the atmospheric expression of El Niño–Southern Oscil-
lation (ENSO/MEI,http://www.esrl.noaa.gov/psd/enso/mei/
table.html). The result of the analysis is given in Appendix C
as a form of the plot of the first two principal component
axes based on input numerical values given in Table 7. It
was observed that, using the PRINCOMP procedure of SAS
(see SAS/STAT User’s guide, Ed. 6.03, 1988, SAS Institute
Inc, US), the strongest loading factors for the first two prin-
cipal components (factors having the most explained vari-
ance of the first eigenvector) are respectively the gross do-
mestic product growth rate in the US and Canada and the
area burned by wildfires in the US. These variables seem to
control the criteria of similarity for different specific years

3The theory about principal component analysis and loading fac-
tors can be found elsewhere in textbooks such as Morrison (1976).

(see Fig. C1 in Appendix C). Note that the weather fluctu-
ations control only the third principal component axis (re-
sults not shown). This means that the first two components
(first and second principal axes on the graph) could be in-
terpreted in terms of the dominant variables (gross domestic
product and area burned by wildfires). The proximity of the
two years 2005 and 2012 in the principal component anal-
ysis plot (depicted by the arrow on Fig. C1) indicates sim-
ilarities of the above-mentioned factors. These two years
(2005 and 2012) were therefore selected because they both
show roughly similar dominant loading factors: e.g., simi-
lar gross domestic product growth rate in both the US and
Canada that are positive and above average in both coun-
tries for both years, and also similar fire regime, which is
above average in the US for both years and below average in
Canada for both years (see Table 7). Computing differences
between these two “similar” years minimizes biases caused
by the inter-annual fluctuations of the above-mentioned dom-
inant factors during the study period, allowing the impact of
anthropogenic emissions changes to be isolated. As shown
in Appendix C, other years also showing similarities with
2012 (2006, 2007 and 2011) could also have been selected
but 2005 was chosen because (1) 2005 OA was fully tested
with an in-depth cross-validation and shown to verify very
well against independent observations, and (2) the difference
with 2012 gives the longest period difference (7 yr). Never-
theless, results obtained with other pairs of years (e.g., 2012
minus 2006, 2012 minus 2007) were found to show similar
patterns to that of 2012–2005 (figures not shown).

5.2.1 Ozone

Maps depicting summer averages (June-July-August) for
2005 (Fig. 12a) and for 2012 (Fig. 12b) have been produced
using the OA adaptive scheme described in Sect. 2. The dif-
ference between the two selected years (2012 minus 2005)
is presented in Fig. 12c. The details for each region (in %
change for different percentiles, average and standard devia-
tion trends) are given numerically and computed separately
in the observation space in Table 8a. The gray areas over
oceans and over continental northern Canada are considered
artefacts (unreliable zones in Fig. 12c) and therefore not in-
cluded in computations in Table 8. The reasons for this are
that very few observations are available in those locations,
and a problem with boundary conditions was present with
the CHRONOS model such that the objective analysis could
not correct the model due to lack of available observations
in northern Canada and over oceans. Therefore, in those re-
gions where the analysis error is equal to that of the model,
the analysis has no skill. In Sect. 6 we will discuss this is-
sue in more detail. Increases of average ground-level ozone
are noticeable in several parts of the US from 2005 to 2012,
but especially obvious over high plains, foothills, and also
in western Canada (Alberta), where positive differences be-
come meaningful and present over large areas (e.g., regions
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Table 7.Numerical data for factors potentially influencing inter-annual variability of ozone and PM2.5 for the period 2002–2012 (tacan and
taus: summer temperature anomaly (◦C) for Canada and US, respectively; gdprc and gdprus: current summer gross domestic growth rate (%)
for Canada and US, respectively; wfabc and wfabus: wildfire area burned in Canada and US, respectively, in millions of hectares; noajja and
ensojja: summer North Atlantic oscillation index and El Niño–Southern Oscillation MEI index, respectively).

Year tacan taus gdprc gdprus wfabc wfabus naojja ensojja

2002 0.5 0.622 2.30 1.55 2.76 7.18 0.570 0.798
2003 0.8 0.672 2.35 1.65 1.64 3.96 0.060 0.201
2004 −0.2 0.572 2.45 4.00 3.28 8.10 −0.057 0.464
2005 0.6 0.861 3.10 3.15 1.71 8.69 0.043 0.392
2006 1.3 1.244 3.55 3.00 2.05 9.87−0.090 0.686
2007 0.8 0.883 1.85 1.45 1.31 9.33−0.620 −0.556
2008 1.0 0.133 1.40 1.00 1.70 5.29−1.320 −0.193
2009 0.3 0.172 −3.65 −3.80 0.76 5.92 −1.130 0.897
2010 1.2 0.522 2.85 2.15 3.16 3.42−0.870 −1.363
2011 1.1 0.622 2.50 1.95 2.60 8.71−1.440 −0.373
2012 1.9 1.806 1.81 3.05 1.91 9.33−1.640 0.723
Avg 0.845 0.737 1.93 1.74 2.08 7.25 −0.59 0.15

within the black ellipse in Fig. 12c). Part of those changes
could be attributed to increasing pollution brought by the
intercontinental transport originating from emerging coun-
tries (Stohl et al., 2002; Cooper et al., 2005, 2010), a change
of local patterns of emissions linked with forest fire activ-
ity or a possible change of vertical transport due to deep
stratospheric intrusions inter-annual variability and, finally,
to growing regional socio-economic factors. For the latter,
oil and gas drilling in the US and oil sands activities in west-
ern Canada have both increased during the recent decade. For
example, US crude oil production increased from 5 million
barrels production per day in 2008 to 6.5 million barrels per
day in 2012 (US Energy Information Administration, 2013).
Figure 12c also shows increases of mean ozone in several ur-
ban areas. These ozone increases may be due to a reduction in
NOx titration associated with mobile-source NOx decrease.
Conversely, a decrease of the average from 2005 to 2012
(blue colors in Fig. 12c) is noted mostly in northern Califor-
nia, central Arizona, northern Utah, eastern Texas, Louisiana,
over the Great Lakes and Maine. Southern British Columbia
and New-Brunswick show the largest decrease in Canada.
These changes are partially attributed to the impacts of bet-
ter municipal, state or province air pollution measures and
regulations and also to local economic slowdown. More pre-
cisely, according to the US EPA, the overall decline of ozone
in United States is due largely to reductions in nitrogen ox-
ides (NOx) emissions as required under the NOx State Imple-
mentation Plan (SIP) Call, preliminary implementation if the
Clean Air Interstate Rule (CAIR), and Tier 2 Light Duty Ve-
hicle Emission Standards (EPA, 2012). However, the west-
ern parts of the US and Canada are more likely to be im-
pacted by free tropospheric air masses containing enhanced
ozone from upwind emission sources, such as Asia or from
the stratosphere, than the eastern parts of North America be-
cause of higher topography (Cooper et al., 2012 and ref-

erences therein; Lin et al., 2012a, b). This could partially
explain the absence of a negative trend of high ozone per-
centiles and a strong increase of low percentiles in western
Canada (according to Table 5e). Finally, differences between
the two years could also be partly explained in terms of tem-
perature and possibly other meteorological factors conducive
to ozone formation, which are different for 2005 and 2012 lo-
cally and regionally (see EPA website for ozone corrected
due to weather,http://www.epa.gov/airtrends/weather.html
and Thompson et al., 2001 for a review of statistical cor-
rection methods for year-to-year meteorological changes im-
pacting of ozone formation).

5.2.2 PM2.5

A similar computation is presented for PM2.5 in Fig. 13.
Table 8b gives the details in percent change for all per-
centiles and statistical first two moments (mean and standard
deviation) for each region in the observation space. As ob-
served for ozone, PM2.5 has significantly decreased in the
eastern US (particularly in regions near and south of the
Great Lakes, e.g., blue areas in Fig. 13c) where most of
the industrial US activities usually takes place. Differences
in Fig. 13c suggest decreases of 5 to 20 µg m−3 during the
whole period (from 2005 to 2012). Since it is known that
a change of 10 µg m−3 in PM2.5 is associated with an ap-
proximate 6 % change of death rate (Pope et al., 2002), this
improvement in air quality should have a significant positive
impact on the health of the inhabitants of these regions. On
the other hand, a significant increase of PM2.5 up to about
10 µg m−3 in the western part of North America, as seen in
Fig. 13c, is expected to significantly reduce the health of ex-
posed people in those regions. The spatial scale of changes
in eastern North America (meso-scale) contrasts with that in
the west, which seems to be more localized (smaller spatial
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Table 8. Percentage changes of OA (2012 minus 2005) for ozone (a) and (b) PM2.5 in North America. Positive (negative) values indicate
an increase (decrease) from 2005 to 2012. Computations are for all hours during summer (JJA). Trends were computed using the procedure
REG of SAS (SAS, SAS/STAT, 1988).

a

Ozone
(%) change

North America Eastern Canada Western Canada Eastern USA Western USA

Avg 5.41 6.17 15.48 2.84 7.98
Std dev −6.22 −9.08 −13.38 −4.86 −5.62
PCT 99 −1.67 −3.70 0.19 −1.12 6.61
PCT 95 −2.07 −2.30 −2.17 −2.91 0.00
PCT 75 1.46 1.43 4.96 −0.92 4.81
PCT 50 7.19 9.52 21.11 4.79 9.65

b

PM2.5
(%) change

North America Eastern Canada Western Canada Eastern USA Western USA

Avg −25.22 −6.01 −2.89 −22.46 −20.31
Std dev −11.49 −34.97 21.61 −13.96 0.14
PCT 99 −14.82 −36.98 9.43 −15.52 −8.38
PCT 95 −20.67 −32.76 −0.47 −18.64 −14.65
PCT 75 −22.95 3.64 −1.26 −20.53 −15.50
PCT 50 −27.55 28.57 11.77 −22.89 −26.47

scale). In the east, the decrease suggests a generalized pos-
itive effect of anti-pollution measurements adopted through
the years, which in turn has had a successful impact in re-
ducing domestic emissions. For ozone and PM2.5, especially
in the western part of North America, positive increase from
2005 to 2012 noted locally are more symptomatic of grow-
ing local socio-economic and industrial activities as men-
tioned above (e.g., increasing oil and gas drilling activities).
But it could also be linked with increase of fire occurrence
at specific locations, which generates locally great amounts
of PM2.5. In other words, even if the total area burned by
wildfires in the US was roughly similar in 2005 compared to
2012, as mentioned above, at the local scale, local fires and
wildfires are not likely to have occurred in the exact same lo-
cations. This could partially explain the very local scale na-
ture of the differences in some areas. Note that in the future,
the increase of PM2.5 and ozone is likely to occur in the west-
ern US and Canada. According to the US National Council
study, 200–400 % increases in burned area are expected per
degree of warming in the western US (National Academy of
Sciences, 2011).

The impact of anti-pollution measures (negative trends)
is obvious in eastern parts of the US and southern Ontario
(Canada) (as indicated by the black ellipse on Fig. 13c) as
well as in some local parts of southern California, while in
other geographical areas other factors, as mentioned above,
seem to overcome these reduction measures such that it re-
verts to positive differences over a broad area inside the
black ellipse in the western US and Canada (e.g., Montana,

Idaho, Utah, Colorado, North and South Dakota, Alberta
and Saskatchewan). Finally, both Figs. 12c (ozone) and 13c
(PM2.5) show differences of roughly the same pattern (some
increase in the west and a general decrease in the east), in-
dicating some consistency between the two pollutants. The
results obtained in this section for the US are broadly consis-
tent with those produced by other sources (EPA, 2010, 2012
for ozone and PM2.5; IMPROVE, 2011 for PM2.5).

6 Discussion

6.1 Implication of homogeneous and isotropic
assumptions

Homogeneous and isotropic assumptions were used in deriv-
ing the analysis scheme in Sect. 2. Whenever the urban-scale
pollution gradient is high, the topography is irregular or the
density of stations is weak, homogeneous and isotropic as-
sumptions can be questionable. In this study, the fact that the
density of the data over the US and southern Canada is high
(Fig. 2), at least in urban centers and for some cases near
coastline stations (California and US eastern seaboard), the
assumption can be made that homogeneity and isotropy are
not critical, at least for these locations. Moreover, the veri-
fication with independent data in different regions and with
different types of sites (rural, semi-urban and urban; results
not shown) does not indicate major differences or any serious
problem with the above hypotheses. Simulations using non-
homogeneous background error statistics were performed in
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Fig. 12. Comparison of surface average ozone summer months
(JJA) in 2012 vs. 2005:(A) OA ozone 2005 (CHRONOS era),(B)
OA ozone 2012 (GEM-MACH era),(C) difference (OA-2012 mi-
nus OA-2005). Note that the areas indicated unreliable are due to
model artefacts and unavailable observations so that differences are
meaningless and therefore not shown. These areas are also where
the analysis error is too high (see Fig. 14a, b). Within the ellipse is
a region of significant changes over a widespread region (see text).
Note: units are in ppbv.

the context of this study but were found to be inconclusive.
More studies are needed to examine the impact of using the
homogeneous and isotropic assumptions, which is beyond
the scope of the present study. Reference is made to the work
of Frydendall et al. (2009) for the treatment of anisotropy

Fig. 13. (A), (B) and(C) are the same as Fig. 12 but for PM2.5 (units
are in µg m−3).

and to Blond et al. (2004) for non-homogeneous treatment of
error statistics for air quality assimilation.

6.2 Biases, accuracy and limitations of multi-year
analyses

Multi-year analyses of high spatiotemporal resolution (15–
21 km; every hour) were built in this study instead of
reanalyses4. Standard chemical reanalyses, which use the
same model setup to generate all the historical analyses, tend

4We define here “reanalyses” as reprocessed analyses using the
same model version, the same set of emission input version and the

www.atmos-chem-phys.net/14/1769/2014/ Atmos. Chem. Phys., 14, 1769–1800, 2014



1792 A. Robichaud and R. Ménard: Multi-year objective analyses of warm season ground-level ozone

Fig. 14. Analysis errors based on Eq. (13) for(A) ozone and(B)
PM2.5. Deep blue corresponds to very small analysis errors whereas
red is associated to higher errors. The locations where there are no
values plotted are where the analysis has no skill (i.e., OA is unreli-
able due to model erratic behavior and/or no observations available
to correct model values).

to require an enormous amount of human resources and very
tedious work (e.g., RETRO-40 or MACC projects in Europe
or CDC project in the US). Conversely, multi-year objective
analyses for surface, as produced in this study, are simply
off-line objective analyses reprocessed from the archived op-
erational model outputs and are less demanding on resources.
For example, the computing cost of integration is signifi-
cantly lower and could be done on a Linux machine since
model outputs are precalculated. However, the main advan-
tages of reanalysis are retained only if care is taken to elimi-
nate the systematic biases at any time in the analyses, as was
done in this study. Otherwise, incorrect trends could be pro-
duced due to various changes of model versions, out-of-date

same resolution throughout the whole study period, whereas multi-
year analyses can allow for some change during the period.

emissions and/or increases in resolution if the biases are not
eliminated in the objective analysis scheme.

The long-term analyses presented here are unbiased, or
have very small biases (see Figs. 3, 4, 5 and 8), and are avail-
able on a 21 km grid prior to 2009 and 15 km after 2009. They
are also available in terms of hourly, daily, monthly, season-
ally, yearly and multi-year averages. The model domain cov-
ers most of North America but since surface observations are
only dense over the continental US and southern Canada, it
is only in these regions that observations can constrain the
model and that the confidence in the results is high. A typical
map of analysis error using Eq. (13) is presented in Fig. 14a
for ozone and Fig. 14b for PM2.5. In areas where the den-
sity of stations is high (see Fig. 2), the analysis error could
be 2–4 times lower than in those locations where the den-
sity is low. Note that values above a certain threshold are not
plotted on the maps of Fig. 14 because there are insufficient
observational data in these regions. Therefore, there is no
added value of analyses compared to the model in these re-
gions and the analysis is thus considered unreliable. A useful
simple application of the analysis error map could be in the
assessment of an optimal network density. In regions where
the analysis error is high (low), it is necessary (unnecessary)
to increase the network density. In locations where there are
no monitoring stations but other available observations, the
OA still yields good results. This is considered an advantage
for some applications (climatology, trend computation) using
OA instead of observations or modeling alone. For example,
missing observations or model biases are not an issue for OA.

6.3 Comparison of trend analyses with other studies

The summertime trends in ozone found in this study are
consistent with observations made in other studies. A re-
view of reported ozone trends by Chan and Vet (2010) found
mean positive trends ranging between 0.3–1.0 ppbv yr−1 for
Canada and the US. A study by Vautard et al. (2006) for
Europe also established a positive trend in ozone levels of
0.65 ppbv yr−1, which is within the same range of values.
The above results are also consistent with Table 5a of this
study, that is, an increase of 0.47 ppbv yr−1 for the median
(percentile 50th) and a mean upward trend of 0.3 ppbv yr−1

for southern Canada and the US. As global temperatures
continue to rise, more favorable conditions for ozone for-
mation are likely to occur due to factors such as increases
in biogenic and soil emissions (IPCC, 2007; Zheng et al.,
2008) and increases in wildfires (IPCC, 2007; Jaffe et al.,
2003, Houghton, 2009; National Academy of Science, 2011).
These factors, which in the recent past exhibited a downward
trend during the warm season, may result in higher future
percentiles of ozone and PM2.5 (see US EPA, 2010, Fig. 35
for an outlook for the eastern US). Moreover, expanding gas
and oil drilling could also contribute more to ozone forma-
tion in the short-term future.
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6.4 Spatial scale representativeness

It is also important to discuss the spatial scale representa-
tiveness of OA. Spatial variability is important and pollutant
concentration gradients could be high at times, raising the is-
sue of the local representativeness in the objective analysis,
especially in urban environments. For ozone, the urban-scale
gradient could be strongly dependent on the distribution of
sinks (mostly NOx titration associated with urban traffic) and
certainly not picked up correctly by the OA. In urban areas,
the spatial variation of NOx is important in determining the
surface ozone urban-scale gradient. It is possible for future
work to utilize land use regression models, which are highly
correlated with NOx, to capture the urban-scale gradient as
a means of producing better data fusion of information at
higher resolution. The spatial scale represented by the OA is
the scale of the analysis grid (15–21 km). More research is
needed to capture adequately local scale features.

For PM2.5, Brauer et al. (2011) indicate that in some Cana-
dian cities significant spatial variation exists, while in others
PM2.5 mass is spatially homogeneous. Therefore, within-city
spatial variation of ozone and fine particulate matter (PM2.5)

is case specific. NOx and ultrafine particles (diameter less
than 1 micron) are known to be highly correlated but this as-
sociation does not necessarily hold true for larger particles.
Difficulties also arise because primary and secondary PM2.5
observations are considered together and treated as one sin-
gle family. However, information on the chemical compo-
sition of PM is required in order to elucidate the processes
governing production, transport and deposition at different
scales, as well as chemical composition, which differs be-
tween and within primary and secondary PM (Hobbs, 1993;
Jacobson, 2002; Seinfeld and Pandis, 2006). Furthermore,
primary PM2.5 exhibits spatial variability over small scales
while secondary particles tend to be more uniformly dis-
tributed (Blanchard et al., 1999; Pinto et al., 2004). These
issues will be addressed by future work within the context of
OA further development.

7 Summary and conclusions

The purpose of this study is twofold: (1) to present multi-year
analyses of ground-level ozone and PM2.5 over North Amer-
ica during the warm season (1 May–31 October), from which
a climatology could be built; and (2) to apply the results for
computation of a summer (JJA) decadal trend and map dif-
ferences of summer average of two similar years in order to
isolate the impact of reduction of anthropogenic emissions
over the past decade or so. The multi-year analyses them-
selves form a coherent and continuous data set for the pe-
riod 2002–2012 for ozone and 2004–2012 for PM2.5. The
analyses are freely available upon request. To the best of the
authors’ knowledge, no such multi-year analyses have ever
been presented for both ground-level ozone and PM2.5 for

both the US and Canada covering a large portion of North
America over a decadal period and at such a high spatiotem-
poral resolution (15–21 km; every hour) over a decade or so.
The analyses are based on a methodology that utilizes a mod-
ified optimal interpolation scheme adapted for air quality.
Analyses have been obtained through an optimal combina-
tion of the CMC’s Air Quality Regional Deterministic Pre-
diction System (ARDQPS: composed of CHRONOS 2002–
2009 and GEM-MACH 2010–2012) for which model out-
puts are available for every hour and AIRNow surface ob-
servations database (2002–2012), supplemented with extra
Canadian stations (not part of the AIRNow program added
during the GEM-MACH era). A semi-empirical tuning pro-
cedure (referred to here as the adaptive scheme) using the
Chi-square statistic was developed and applied on-line to
adjust some sensitive parameters of the error statistics set.
The methodology was tested successfully and verification
with independent data has shown excellent results. The im-
pact of the adaptive scheme was shown to significantly re-
duce both the bias and random error. An explicit bias correc-
tion scheme was also used for PM2.5 to further reduce the
residual biases. By running this optimal interpolation over
a decade or so, a high-quality integrated estimate of two of
the main components of human health-threatening smog has
been produced. The multi-year analyses presented here are
at high spatiotemporal resolution and show a relatively high
accuracy with an average absolute systematic error less than
0.6 pbbv and 0.7 µg m−3 respectively for ozone and PM2.5
and a random error generally less than 9 ppbv for ozone and
under 12 µg m−3 for PM2.5 during the warm season.

Long-term averages are presented as summer climatology
maps (June-July-August) for ground-level ozone and PM2.5.
The objective analyses obtained are also used to compute
trends for ozone and PM2.5. Low percentiles of ozone exhibit
an upward trend (southern Canada and US together) while
high percentiles of ozone show a downward trend overall for
North America during the warm season. Some local excep-
tions to the overall downward trend in high percentile ozone
are found in the northwestern part of North America (north-
west US and Alberta). The results presented in this study are
comparable with other studies that have examined long-term
trends in ozone (Vautard et al., 2006; Chan and Vet, 2010;
Cooper et al., 2010, 2012; EPA, 2010, 2012). The decreasing
trends in the high percentiles of ozone and PM2.5 strongly
suggest that domestic emissions reduction has been effective;
this is especially obvious for the eastern parts of North Amer-
ica. The reduction in high percentile concentrations of these
pollutants implies that human and environmental health risks
associated with air pollutant exposure have decreased over
the last decade, at least in the eastern US. However, global
(background) transport of ozone is increasing and, combined
with climate warming, could produce a further increase in
ozone (high and low percentiles) in the future. Moreover, oil
and gas industries are still developing in North America at a
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high rate, which could also contribute to increases in ozone
and PM2.5 in the future.

Finally, a multiple linear regression (stepwise-like proce-
dure) confirms that a significant part of the variance of inter-
annual fluctuations of high percentiles for both ozone and
PM2.5 is linked with economical fluctuations. For PM2.5, the
gross domestic product growth rate of the preceding warm
season (gdpmol) explains 37 % of the total variance of the
inter-annual variation of the 98th percentile (after remov-
ing the linear trend tendency), e.g., devp98. For ozone, al-
though the summer temperature explains most of the vari-
ance (76 %), various forms of the gross domestic product
growth rate explain up to 15 % of the variance. Economic re-
cession can trigger noticeable short-term changes in anthro-
pogenic emissions that can reduce pollution. Sharp down-
turns in the economy are linked to decreases in industrial,
construction, transportation and in other human activities in
North America during the recession of 2008–2010. Presum-
ably, this has lead to an analogous decrease in the high per-
centiles for ozone and PM2.5 during that period.

The multi-year analyses presented here were intended
mainly for model evaluation, computation of regional pol-
lution trends and for epidemiological studies. Unresolved is-
sues include the treatment of random high pollution events
such as forest fires. Monitoring stations in the vicinity or
downwind generally record high levels of PM2.5, since forest
fire emissions are not captured by the operational ARDQPS
suite. Consequently, the OA quality control could reject part
of the data associated with such an extreme event. Another
unresolved issue is the inability of the long-term average or
climatology to correctly capture fine-scale pollution gradi-
ents. These topics will be addressed in future work.

Appendix A

Mathematical notes related to the adaptive scheme
(Eqs. 14 and 16)

The adaptive scheme of Sect. 2.1 for the correlation length
(Eq. 14) and the background error covariance (Eq. 16) has
been developed on a trial-and-error basis. However, some
connection to the theory could be done and is given here.
In general, we can express the original correlation length ob-
tained from the Hollingsworth and Lönnberg method (1986),
Ln

c as

Ln
c = f (X2

n) (A1)

with the chi-square metric

X2
= χ2

/
p. (A2)

Therefore, the iterative scheme (called adaptive scheme in
the text, Eq. 14) can then be written as

f (X2
n+1) = f (X2

n)/X2
n. (A3)

A fixed point of our iterative scheme is such that

Lim X2
n = X∗2 asn −→ ∞;

Eq. (A3) then becomes

X∗2
f (X∗2

) = f (X∗2
) (A4)

whereX∗2 is the fixed point. One possible converging solu-
tion is X∗2

= 1. This solution was often experimentally ob-
tained in our study in the case of initialX2 > 1 through the
successive application of Eq. (14). In that case, the iterative
scheme A3 (and Eq. 14) is a contracting transformation, e.g.,

|X2
n+1 − X2

n| ≤ q|X2
n − X2

n−1| (A5)

whereq is a positive constant smaller than one. The condition
A5 is known as the Lipschitz condition, and the Banach fixed
point theorem (Banach, 1922) states that if Eq. (A5) is true
there exists a convergent fixed point. The reader is referred to
Collet and Eckmann (1980) for more information on iterative
schemes.

If the fixed-point value is not one, then the inflation proce-
dure for the background error covariance was automatically
activated (Eq. 16) and experimental results show that the con-
vergence was achieved as well and the following was verified
by successive iteration:

X∗2
= 1. (A6)

Finally, in the case of initial values ofX2 less than one,
Eq. (14) was also applied and was found to converge to the
condition A6 with inflation of the correlation length (accord-
ing to Eq. 14). Therefore, the scheme (Eqs. 14 and 16) was
always found to be convergent in all cases. Note that when-
ever the initial value ofX2 was far away from one, (greater
than 1.5 or lower than 0.8), the use of Eq. (16) was found
necessary to get the condition of Eq. (A6), likely due to a
high nonlinearity relation between the correlation length, er-
ror covariance and the chi-square metric.
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Appendix B

Table B1.Characteristics and differences between CHRONOS and GEM-MACH models.

Characteristics/model GEM-MACH 15 CHRONOS
in operational use at CMC 2010–2012 2002–2009

Meteorological driver GEM (on-line) GEM (off-line)

Resolution 15 km 21 km

Advection scheme Semi-Lagrangian method
(Côṫe et al., 1998)

Positive-definite,
nonoscillatory,
semi-Lagrangian
(Smolarkiewicz and
Pudykiewicz, 1991)

Number of vertical levels 58 25

PM composition and represen-
tation

9 species 4 species

Emissions Major and minor point sources,
area and mobile sources for 17
gas and 2 bins for particles
(PM2.5, PM10).
Inventories: Canada, 2006;
US, 2005; Mexico 1999.

Similar to GEM-MACH15

Gas-phase chemistry ADOM-II (47 species
advected; 114 chemical
reactions)
(Lurmann et al., 1986)

Idem

Gas-phase chemical solver Vectorized version of Young
and Boris (1977); Makar (1985)

Idem

Aqueous-phase chemistry Based on ADOM (20 reactions,
7 gases and 13 aqueous species)

None

Aqueous-phase solver Makar (1995) None

Heterogeneous chemistry Based on ISORROPIA Based on ISORROPIA

Secondary organic aerosol IAY scheme, Jiang (2003) Based on Pandis et al. (1992)

Dry deposition modified scheme of
Weseley (1989) for gas;
Zhang et al. (2001) for particles

similar to CHRONOS

Wet deposition Gong et al. 2003 Based on Sundqvist formula
Chemical boundary condition Lateral and upper climatologi-

cal profiles
Zero gradient inflow,
open boundary outflow
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Appendix C

Fig. C1.Plot of principal component analysis based on data of Table 7 for the period 2002–2012.
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