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Abstract. We have investigated the potential impact on or-

ganic aerosol formation from biotic stress-induced emissions

(SIE) of organic molecules from forests in Europe (north

of lat. 45◦ N). Emission estimates for sesquiterpenes (SQT),

methyl salicylate (MeSA) and unsaturated C17 compounds,

due to different stressors, are based on experiments in the

Jülich Plant Atmosphere Chamber (JPAC), combined with

estimates of the fraction of stressed trees in Europe based on

reported observed tree damage.

SIE were introduced in the EMEP MSC-W chemical trans-

port model and secondary organic aerosol (SOA) yields from

the SIE were taken from the JPAC experiments. Based on es-

timates of current levels of infestation and the JPAC aerosol

yields, the model results suggest that the contribution to SOA

in large parts of Europe may be substantial. It is possible that

SIE contributes as much, or more, to organic aerosol than the

constitutive biogenic VOC emissions, at least during some

periods. Based on the assumptions in this study, SIE-SOA are

estimated to constitute between 50 and 70 % of the total bio-

genic SOA (BSOA) in a current-situation scenario where the

biotic stress in northern and central European forests causes

large SIE of MeSA and SQT. An alternative current-situation

scenario with lower SIE, consisting solely of SQT, leads to

lower SIE-SOA, between 20 and 40 % of the total BSOA.

Hypothetical future scenarios with increased SIE, due to

higher degrees of biotic stress, show that SOA formation due

to SIE can become even larger.

Unsaturated C17 BVOC (biogenic volatile organic com-

pounds) emitted by spruce infested by the forest-honey gen-

erating bark louse, Cinara pilicornis, have a high SOA-

forming potential. A model scenario investigating the ef-

fect of a regional, episodic infestation of Cinara pilicornis

in Baden-Württemberg, corresponding to a year with high

production of forest honey, shows that these types of events

could lead to very large organic aerosol formation in the in-

fested region.

We have used the best available laboratory data on biotic

SIE applicable to northern and central European forests. Us-

ing these data and associated assumptions, we have shown

that SIE are potentially important for SOA formation but the

magnitude of the impact is uncertain and needs to be con-

strained by further laboratory, field and modelling studies.

As an example, the MeSA, which is released as a conse-

quence of various types of biotic stress, is found to have a

potentially large impact on SIE-SOA in Europe, but differ-

ent assumptions regarding the nighttime chemistry of MeSA

can change its SOA potential substantially. Thus, further in-

vestigations of the atmospheric chemistry of MeSA and ob-

servational field studies are needed to clarify the role of this

compound in the atmosphere.

1 Introduction

The emissions of biogenic volatile organic compounds

(BVOC) by forests are the major sources of hydrocarbons

to the atmosphere (Guenther et al., 2012; Lamarque et al.,

2010; Simpson et al., 1999). Photo-oxidation of BVOC, in

the presence of nitrogen oxides (NOx), contributes to the for-

mation of tropospheric ozone and leads to secondary organic
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aerosol (SOA) particle formation (Hallquist et al., 2009).

Many BVOC, e.g. isoprene, α-pinene, and sesquiterpenes

(SQT), are unsaturated and react with all main oxidants in

the atmosphere (OH, ozone and NO3), while the saturated

BVOC preferably react with OH. SOA formation is caused

by the gas-to-particle transformation of some of the oxida-

tion products, depending on, for example their vapour pres-

sure. Studies using carbon-14 and other tracer compounds

have shown that such biogenic SOA (BSOA) is often the

major contributor to ambient organic aerosols (OA) at rural,

and even some urban, sites in Europe (Gelencsér et al., 2007;

Minguillon et al., 2011; Szidat et al., 2004, 2009; Yttri et al.,

2011).

BSOA formation can play an important (but complex) role

in the radiation balance of the Earth, and thus for surface tem-

perature (Arneth et al., 2010). In a future climate, vegetation

growth may increase in many areas, especially in the boreal

and temperate regions (e.g. Ahlström et al., 2012; Morales

et al., 2007; Lathiere et al., 2005), with possible increases

in BVOC emissions because of increasing foliar expansion

and increasing temperatures (Lathiere et al., 2005; Guenther

et al., 2006, 2012; Duhl et al., 2008; Arneth et al., 2011).

Increased BVOC emissions will result in more and larger at-

mospheric particles (Joutsensaari et al., 2005; Allan et al.,

2006; VanReken et al., 2006; Tunved et al., 2008; Mentel

et al., 2009; Riipinen et al., 2011).

The emissions of BVOC are regarded as being “consti-

tutive” if produced and released in the unperturbed, non-

stressed state of the vegetation. In BVOC-emission algo-

rithms, the constitutive emissions are assumed to be under

the control of meteorological factors, especially temperature

and light, as well as phenological cycles (Guenther et al.,

2012). The SOA forming potential of these emissions, espe-

cially isoprene and monoterpenes (MT), and to a lesser extent

SQT, have been extensively investigated in laboratory studies

over many years (e.g. Bonn and Moortgat, 2003; Lee et al.,

2006; Hallquist et al., 2009, and references therein; Winter-

halter et al., 2009; Donahue et al., 2012; Jaoui et al., 2013).

Algorithms derived from such laboratory data have been

applied in atmospheric chemical transport models (CTMs),

using a variety of techniques to treat BVOC emissions, chem-

istry and gas-particle partitioning (Bowman et al., 1997;

Andersson-Sköld and Simpson, 2001; Schell et al., 2001;

Kanakidou et al., 2005; Donahue et al., 2006, 2009; Simpson

et al., 2007; Kroll and Seinfeld, 2008; Hallquist et al., 2009;

Jimenez et al., 2009; Murphy and Pandis, 2009; Bergström

et al., 2012; Li et al., 2013). For many years OA and SOA

were largely underestimated by some CTMs compared to

field observations (Heald et al., 2005; Kanakidou et al., 2005;

Volkamer et al., 2006). This gap has been reduced in recent

years, partly by improved gas-particle mechanisms consider-

ing higher generations of oxidation products of VOC as SOA

sources, i.e. chemical ageing (Donahue et al., 2006, 2009,

2012). Indeed there are indications that with simplified mod-

els for ageing chemistry (lacking fragmentation reactions)

newer schemes can even overestimate SOA in some cases

(e.g. Bergström et al., 2012; Lane et al., 2008).

Still, with the exception of Berg et al. (2013), all model

studies to date, that we are aware of, have only considered

the standard constitutive emissions discussed above. Besides

constitutive emissions, vegetation also releases so-called in-

duced emissions into the atmosphere. Induced emissions are

often caused by “biotic stress” — by infestation of insects,

viruses, fungi, etc. (e.g. Arneth and Niinemets, 2010; Amin

et al., 2012, 2013; Berg et al., 2013), but they are also af-

fected by other stressors like heat or drought (e.g. Kleist

et al., 2012). In this paper we will collectively denote these

emissions as stress-induced emissions (SIE).

Berg et al. (2013) investigated the impact of bark beetle

infestations on MT emissions and SOA formation in west-

ern North America. MT emissions due to bark beetles may

both increase (during attack) and decrease (after tree death),

and Berg et al. found that beetle infestations in pine trees can

have a significant regional impact on SOA concentrations (up

to 40 % increase) during some years; responses may be sub-

stantially larger if spruce trees are infested (Berg et al., 2013).

Recently, SOA mass yields from the laboratory stud-

ies in the Jülich Plant Atmosphere Chamber (JPAC),

with real plants as sources, showed that terpenoidic SIE,

such as sesquiterpenes, and phenolic BVOC (e.g. methyl

salicylate, MeSA), originating downstream of the shiki-

mate pathway (e.g. Wildermuth, 2006), are very effi-

cient in forming SOA (Mentel et al., 2013). Their parti-

cle mass yields are 3–4 times larger than those of MT,

see Sect. 2.2. In a case where a spruce was infested by

Cinara pilicornis (honeydew-generating lice) unsaturated

C17 BVOC (mainly 8-heptadecene, 6,9-heptadecadiene, and

3,6,9-heptadecatriene) were observed with particle mass

yields 6 times higher than those of MT (Mentel et al., 2013).

Given that SIE are a ubiquitous source of BVOC and thus

SOA in forests, these laboratory findings suggest that SIE

may account for a significant fraction of ambient SOA mass.

Neglect of the SIE in models might explain some of the dis-

crepancies between observed OA and model predictions.

If the SIE increase in the future (e.g. with increasing fre-

quencies of insect damage, Jonsson et al., 2009), the SIE-

SOA concentrations will also rise; and indeed the role of

SIE in a changing climate is attracting increasing atten-

tion (Peñuelas and Staudt, 2010; Holopainen, 2011). Even

current-condition SIE, due to, for example, biotic stres-

sors, are difficult to assess; inherent difficulties include the

episodic character and time lags of the emissions, dependen-

cies on plant history, and adaption to stresses, as well as the

scaling of emissions from leaf level to regional scale (Arneth

and Niinemets, 2010; Niinemets et al., 2010). All of these

aspects require substantial research, and, as discussed by Ar-

neth and Niinemets (2010), building modules that simulate

induced emissions is a difficult if not impossible task at the

current level of understanding.
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SIE are generally not explicitly included in atmospheric

models because of (i) a lack of awareness of their possi-

ble importance, (ii) a lack of suitable data and information

about the distribution of stress and its specific effects, and

(iii) a lack of appropriate SOA formation algorithms. How-

ever, given these difficulties, it is still appropriate and im-

portant to assess the order of magnitude of such SIE-SOA

contributions to ambient aerosol. Here we want to demon-

strate how the neglect of SIE in models may affect current

SOA predictions and the possible effects of SIE on SOA in

the future.

The goal of this model study is to draw attention to the

possible importance of SIE emissions, and to make a first

estimate of their contribution to SOA formation (both in cur-

rent conditions and with a projection of what could happen in

the future under the assumption that stress to plants becomes

more frequent or severe). We combine experimental emission

and SOA formation results from JPAC with estimates of the

possible geographical extent of the SIE, and use the EMEP

MSC-W regional chemical transport model (Simpson et al.,

2012; Bergström et al., 2012) to assess potential SOA for-

mation over Europe. To construct continental scale emission

scenarios for the SIE, we make use of European and national

forest damage reports. These are in general based on ocular

inspection of defoliation and insect infestation in European

forests; the inspections are performed regularly and follow

well defined protocols (Lorenz, 2010; Ferretti et al., 2010).

A major strength of this study is that both the emission fac-

tors of SIE/constitutive emissions and SIE-SOA mass yields

are determined from the same experimental JPAC data for

relevant forest species. As shown for new particle forma-

tion and SOA yields the results from the JPAC studies can

be transferred to atmospheric situations (Mentel et al., 2009).

Uncertainties arise from the estimates of the fraction and spa-

tial distribution of infested trees, as well as limited knowl-

edge of the seasonal variation of some of the infestations.

Despite these uncertainties, this work, by use of selected sce-

narios, clearly shows that SIE and SIE-SOA deserve closer

consideration as potentially significant sources of organic

aerosol in Europe.

2 Methods

This model sensitivity study of potential effects of biotic

SIE is based on the following: (1) evaluation of experimen-

tally observed BVOC emissions by insect-infested plants and

their photochemical conversion to SOA, (2) estimation of the

potential fraction of infested trees in European forests, and

(3) construction of future scenarios with increased fractions

of infested trees. The stepwise procedure employed in the

present study is described in detail below and a summary of

the resulting model scenarios is given in Table 1.

2.1 Experimental

SOA mass yields and emission ratios were determined in

the same experiments in the JPAC as published in Mentel

et al. (2013). In short, JPAC consists of three continuously

stirred flow reactors, made of Borosilicate glass, which are

placed in temperature controlled housings. One of these is

operated as a reaction chamber and SOA is formed therein

by photooxidation and ozonolysis products (Mentel et al.,

2009). One of the other chambers serves as plant chamber

and house the plants under controlled conditions. The plant

chamber is permanently flushed with clean air to which CO2

and water vapour are added. A fraction of the outflow of the

plant chamber is led into the reaction chamber; ozone and

water vapour are added by a second stream. Switching on

a UV lamp (λmax = 254 nm) initializes the photochemistry.

The strength and pattern of the plant emissions are measured

by GC-MS (e.g. Kleist et al., 2012) in the outflow of the plant

chamber, i.e. in absence of oxidants and chemical reactions.

For the emission factors applied here, the concentrations of

MT and the respective SIE in the outgoing airstream of the

plant chamber were averaged for the same time intervals as

in which the SIE-SOA mass yields were determined.

2.2 BVOC emission factors for infested trees

In order to keep our model results transparent, we used a sim-

plified direct approach for preparing the model emission sce-

narios. We used the standard EMEP emissions for monoter-

penes (Simpson et al., 2012) and applied emission ratios

for SIE/MT based on experimental data from JPAC (Mentel

et al., 2013) to set the SIE in the model. The SIE consid-

ered here (SQT and MeSA) are of de novo type (Kleist et al.,

2012), i.e. they are emitted in connection with biosynthetic

production.

Monoterpene emissions (from storage pools) are often in-

creased due to plant stress (especially as a consequence of

mechanical wounding; Juuti et al., 1990, Schade and Gold-

stein, 2003, Haase et al., 2011, Kaser et al., 2013). However,

in this study all MT emissions were assigned to the consti-

tutive emissions, based on the fact that the MT emissions

measured during the JPAC experiments were quite similar to

those measured for unstressed plants of the same species.

The emission ratios were determined in JPAC under steady

state conditions as described above. The direct use of JPAC-

derived data for application or extrapolation to ambient con-

ditions has been confirmed in earlier studies for particle for-

mation rates and SOA mass yields for boreal tree species

(Mentel et al., 2009), the chemical composition of the result-

ing SOA (Kiendler-Scharr et al., 2009b), interaction of iso-

prene and MT emissions (Kiendler-Scharr et al., 2009a), and

the distribution of highly oxidized aerosol precursors (Ehn

et al., 2012). The use of real plant emissions and close to

ambient concentrations make us think that the laboratory-
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Table 1. Biotic stress-induced emissions (SIE) of sesquiterpenes (SQT), methyl salicylate (MeSA) and unsaturated C17 BVOC (C17) in the

different model scenarios. The SIE are expressed as fractions of the daytime model emissions of monoterpenes (MT).

Scenario (notes, exp.) Area SQT/MT MeSA/MT C17/MT

Case 0a everywhere 0.05e – –

Case 1b Lat > 60◦ N 0.24 – –

45◦ N < Lat ≤ 60◦ N 0.48 – –

Lat ≤ 45◦ N 0.05 – –

Case 2c Lat > 60◦ N 0.49 0.35 –

45◦ N < Lat ≤ 60◦ N 0.98 0.70 –

Lat ≤ 45◦ N 0.05 – –

Case 1Fb Lat > 60◦ N 1.2 – –

45◦ N < Lat ≤ 60◦ N 1.6 – –

Lat ≤ 45◦ N 0.05 – –

Case 2Fc Lat > 60◦ N 2.45 1.75 –

45◦ N < Lat ≤ 60◦ N 3.27 2.33 –

Lat ≤ 45◦ N 0.05 – –

Case 3d Jun–Jul, Lat: 47.8–49.8◦ N, 0.38 – 6.8

Lon: 8.0–10.2 ◦ E

Elsewhere (and rest of year) 0.05 – –

Notes: The model scenarios are based on the following JPAC chamber experiments a Mentel et al. (2009); b Exp. 2 in

Mentel et al. (2013); c Exp. 1 in Mentel et al. (2013); d Exp. 3 in Mentel et al. (2013). e SQT emissions from unstressed

plants are set to 5 % of the MT emissions.

derived data from JPAC provide the best-available estimate

of SIE-SOA yields for our purposes.

From the observations by Mentel et al. (2013), we con-

structed three biotic stress scenarios. Case 1 treats aphid in-

festation with enhanced SQT emissions with SQT/MT = 2.4

(mass based ratios). Case 2 covers aphid infestations

which caused enhanced emissions of SQT (SQT/MT = 4.9)

and triggered MeSA emissions via the shikimate pathway

(MeSA/MT = 3.75). Case 1 and Case 2 were assumed to be

typical for all trees of boreal and central European forests.

As the SIE emissions studied here are of de novo type, they

were only switched on during daytime.

A further Case 3 was constructed from an experiment

investigating infestation of a spruce by Cinara pilicornis,

which led to strong emissions of several unsaturated lin-

ear C17 BVOC with an emission factor C17 BVOC/MT = 18.

Mentel et al. (2013) did not determine whether the C17 com-

pounds originated from the plant or the infesting insects; the

C17 BVOC emissions were considered as originating from

the coupled plant–insect system.

The louse under consideration here, Cinara pilicornis, be-

longs to the family of bark lice that produce honeydew, which

is collected by bees. Such bark lice are of economic inter-

est for beekeepers; observations by beekeepers in Baden-

Württemberg (BW), in south-west Germany, show that such

infestations (or more precisely the honey production from

Cinara pilicornis and similar infestations) vary strongly from

year to year and have high seasons during June/July (http:

//www.stockwaage.de/). Accordingly we constructed a SIE

emission pulse of C17 BVOC, which was limited in time and

spatial extension. As the C17 BVOC emissions in JPAC were

2–3 times larger at daytime than during night, we switched

them on only during daytime in the model, like the other two

SIE.

Mentel et al. (2013) focused on tree species from the bo-

real region and from central Europe. Therefore, we have fo-

cused our analysis on northern and central Europe, and im-

plement SIE for areas north of lat. 45◦ N, although it may

be assumed that stress also affects the emissions from plants

growing in other regions.

2.3 Estimation of fraction of infested trees

Since the observed emission factors only consider infested

trees, the fraction of infested trees has to be estimated. It

is difficult to estimate the degree of insect infestations on

larger scales in real forests. In the present study we chose

a relatively simple approach to make what we believe to

be a rough but reasonable estimate of the present-day situ-

ation. We base the estimate on regular surveys of the Eu-

ropean forests. ICP Forests (the International Co-operative

Programme on Assessment and Monitoring of Air Pollution

Effects on Forests operating under the UNECE Convention

on Long-range Transboundary Air Pollution) provides an-

nual executive reports on the conditions of the forests in Eu-

rope (http://www.icp-forests.org/); they also publish reports

of the national member forest agencies. From these, Fischer

et al. (2012) provide details of tree crown damage and defo-

liation in many European countries; they report that a fifth

of all trees are rated as damaged and that “defoliation rep-

resents a valuable early warning system for the response of

forest ecosystems to different stress factors”. They also re-

Atmos. Chem. Phys., 14, 13643–13660, 2014 www.atmos-chem-phys.net/14/13643/2014/
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Figure 1. Fraction (%) of damaged trees (> 25 % defoliation) in different European forest ecosystems. The top two bars refer to the main

forest types investigated in the present study. (Figure adapted from ICP Forests, Fischer et al., 2012, used with permission.)

port that insects are the most frequent cause of damage to

trees in Europe.

Relatively large fractions of the northern and central Euro-

pean trees show a significant degree of defoliation (> 25 %,

rated as damaged by Fischer et al., 2012); the fractions of

damaged trees are 11 % for northern boreal forests, 19 %

for north–central coniferous/mixed forests (e.g. Germany

and southern Sweden), 28 % for central European deciduous

forests, and 24 % for beech forests, as can be seen in the top

two bars and 4th to 5th bar of Fig. 1. We suggest that the re-

ported defoliation damage can be used as a measure of stress

effects. The applicability of our assumption is supported by

the large European forest survey 2010 (ICP Forests, 2011),

which found that insects are the greatest cause of damage

to trees; 17 % of all investigated trees were damaged by in-

sects (corresponding to 27 % of the total number of damaged

trees). For comparison, about 10 % of the trees were dam-

aged by “fungi” and ca 9 % by abiotic factors (e.g. drought

and frost) (for more details about different damaging agents

see Fig. 2–5, in ICP Forests, 2011).

Insect infestations are well distributed over northern and

central European forests as shown by Fischer et al. (2012)

(see their Fig. 2–3). For the boreal forests, the Finnish forest

damage report from Merilä et al. (2007) stated that about 10–

12 % of the pines showed a significant degree of defoliation

(> 25 %). Similarly to the European situation, about the same

order of trees (about 10 %) showed damage caused by insects

and fungi, with in general more being caused by fungi. By

combining these two types of forest observations, we con-

clude for our cases that the fraction of trees with significant

defoliation (> 25 %) may serve as a first order approach to

assess the fraction of stressed trees in the current situation.

Consequently, we adopt these numbers and assume that the

fraction of currently stress-affected trees is 10 % for latitudes

greater than 60◦ N and 20 % between 45◦ N and 60◦ N. This

will constitute our base case for impact of contemporary SIE

(Case 1 and Case 2).

2.3.1 Increased degree of infestation – possible future

scenarios?

For the future scenarios our hypothesis is that the degree of

infestation may increase if the climate changes unfavourably

for an established vegetation. Considering that the knowl-

edge about the present-day degree of infestation is limited,

it is even more problematic to describe how SIE will develop

in the future. However, we use a similar approach as for the

current situation, but take it a step further and assume that

insect infestations may affect trees that today are at the next

reported degree of defoliation (greater than 10 %). This will

then include about 2/3 of the trees in central Europe (Fischer

et al., 2012) and about 50 % of the trees in the boreal forests

(Finnish National Report 2007: Merilä et al., 2007). This may

be considered as a severe-case scenario of a possible future.

These high degrees of infestation were used to illustrate how

severe biotic stress can enhance SIE and contribute to SOA,

and we address these as two extreme future scenarios, Case

1F and 2F. Given the uncertainty of estimating future SIE

emissions, the MT emissions were, for the sake of simplic-

ity, kept at the current level.

www.atmos-chem-phys.net/14/13643/2014/ Atmos. Chem. Phys., 14, 13643–13660, 2014
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2.3.2 Regional episodic infestation by bark lice

The construction of Case 3 with C17 BVOC emission from

the Cinara pilicornis infestation is somewhat more indirect.

Here we make use of the fact that the honeydew produced by

Cinara pilicornis (and other bark lice) is a source of a cer-

tain kind of honey: the forest honey. Detailed observational

data on forest-honey production exist in Baden-Württemberg

(see http://www.stockwaage.de/), so we selected this region

of south-west Germany for an episodic test case. The rela-

tion between infestation and forest-honey production is well

known to beekeepers (e.g. see http://stockwaage.de/) and

from their statistics we can extract the seasonality and the

annual variation of the forest-honey production as related to

Cinara pilicornis infestation. In a good honey year the infes-

tation is widespread, even if there are some local variations,

and lasts through the summer months.

Since Mentel et al. (2013) observed C17 BVOC emission

from the Cinara pilicornis / Norway spruce system, we as-

sume for simplicity that all spruce in BW are infested and the

resulting SIE occur during the months June and July, with

the given C17 BVOC/MT ratio of 18. The forests in BW con-

sist of 38 % spruce (http://www.mlr.baden-wuerttemberg.de/

Die_Baumarten/507.html). Other conifers, mainly fir and

pine, make up another 19 % of the forest. The rest are

broadleaf species mainly beech (21 %) and oak (7 %). This

causes a small flaw in our concept of applying the emis-

sion ratios as observed in JPAC, as the emission strength of

spruce and the other conifers and specifically of the broadleaf

species may be different. For simplicity, we assume that dur-

ing an active year all spruce are affected and that these also

accounts for 38 % of the emissions. As a consequence, the

C17 BVOC/MT emission ratio from the JPAC experiment is

weighted by a factor of 0.38 in BW. Although the assump-

tion that all spruce trees in BW are heavily infested may be

viewed as an extreme case, we note that other tree species

may also be simultaneously infested by lice and, on the bee-

keeper web page http://stockwaage.de/index.php/rueckblick,

there is indeed a year described (2006) when lice even in-

fested deciduous trees and contributed to honeydew produc-

tion.

2.4 The EMEP MSC-W model

The standard EMEP MSC-W chemical transport model has

been described in detail by Simpson et al. (2012); a re-

search version of the model (Bergström et al., 2012), with

extended treatment of particulate carbonaceous matter, has

been used in the present study. The EMEP MSC-W model

is a development of the 3-D CTM of Berge and Jakobsen

(1998), extended with photo-oxidant and aerosol chemistry.

The model domain used in this study covers the whole of

Europe, and includes a large part of the North Atlantic and

Arctic areas. The standard grid system of the model is based

on a polar stereographic projection, with a horizontal res-

olution of ca. 50 km× 50 km at latitude 60◦ N. The model

includes 20 vertical layers, using terrain-following coordi-

nates, and the lowest layer has a thickness of about 90 m. The

model has been extensively compared with measurements of

many different compounds (e.g. Jonson et al., 2006; Simp-

son et al., 2006; Fagerli and Aas, 2008; Aas et al., 2012;

Bergström et al., 2012; Sakalli and Simpson, 2012; Gen-

berg et al., 2013; Gauss et al., 2014). For short-lived radi-

cals, evaluation against measurements is problematic for re-

gional scale CTMs. The EMEP MSC-W chemical mecha-

nism has been shown to provide results for OH and NO3 in

line with other (more detailed) models (Andersson-Sköld and

Simpson, 1999; Kuhn et al., 1998; Karl et al., 2014). Model

results for NO3 are discussed further in Sect. 3.3. For the

present study meteorological data from the European Cen-

tre for Medium Range Weather Forecasting Integrated Fore-

casting System (ECMWF-IFS) model (http://www.ecmwf.

int/research/ifsdocs/) were used; all simulations were per-

formed for the (meteorological) year 2007.

This study focuses on OA from biogenic emissions. The

constitutive emissions of monoterpenes and isoprene are

calculated in the model, using near-surface air temperature

(T2 m) and photosynthetically active radiation. Standard con-

dition emission factors for forests are based on tree species

specific monoterpene emission factors for 115 different tree

species, combined with detailed maps of the distribution of

the trees in Europe, as described by Simpson et al. (2012).

Such emissions are of course very uncertain given the lack of

underlying measurements for European ecosystems, as dis-

cussed in more detail in Simpson et al. (1999, 2012) and

Keenan et al. (2009), and illustrated for European isoprene

emissions (with results from four models) in Langner et al.

(2012). The EMEP values are believed to be well grounded

in recent reviews of emissions rates (Simpson et al., 2012).

As with most BVOC emission databases, the standard

EMEP system does not explicitly include SIE emissions.

Sesquiterpene emissions were also deliberately omitted in

earlier studies because it was judged that the emission rates

and underlying emission algorithms were too uncertain com-

pared to even those of isoprene and monoterpenes (e.g. Duhl

et al., 2008). Other models do include some sesquiterpene

emissions, but with the assumption that these are a fraction

of the normal constitutive emissions (e.g. Fountoukis et al.,

2011; Aksoyoglu et al., 2011). Some level of SIE may be

included in the emission measurements which underlie the

BVOC emission factors inventories used. To our knowledge,

no other CTM has so far treated SIE-SOA production from

MeSA or the C17 BVOC included in the present study.

All SOA in this work is assumed to be formed through

gas-particle partitioning to the accumulation mode, which

in the EMEP MSC-W model has a mass-median diameter

of 330 nm. This assumption is consistent with many studies

over Europe and at Hyytiälä (e.g. Allan et al., 2006; Beddows

et al., 2014). This means that the difference between OA in

PM1 and PM2.5 is negligible in the model.
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Some updates have been done to the model, compared to

Bergström et al. (2012). As in the standard EMEP model

(Simpson et al., 2012), emissions from open biomass fires

were taken from the FINNv1 inventory (Wiedinmyer et al.,

2011), and hourly variation of anthropogenic emissions were

used instead of the simpler day-night system used in ear-

lier EMEP models. For this study, we use updated emissions

of primary organic aerosol (POA), with a recently devel-

oped inventory for residential combustion of biofuels (De-

nier van der Gon et al., 2014). In the present study we set the

background concentration of organic aerosol to 0.4 µgm−3,

to prevent an overestimation of OA seen at many sites when

using the previous background concentration of 1 µgm−3

(Bergström et al., 2012).

Bergström et al. (2012) implemented and tested a number

of different organic aerosol schemes, based on the volatility

basis set (VBS) approach. The base case in the present study

uses the PAP version (Partitioning and atmospheric Ageing

of Primary semi- and intermediate-volatility OC emissions),

from Bergström et al. (2012), that distributes the POA emis-

sions over different volatilities and assumes that the POA

emissions are accompanied by emissions of intermediate

volatility compounds (IVOC) that react with OH in the at-

mosphere (as in Shrivastava et al., 2008); this “ageing” trans-

forms the species to lower volatilities that may partition to

the particle phase. The base case OA scheme used here is al-

most identical to the PAP model in Bergström et al. (2012);

the only difference is that a small emission of sesquiterpenes

is added (equal to 5 %, by mass, of the daytime MT emis-

sions) based on observed emissions from plants with no ob-

servable biotic stress by Mentel et al. (2009).

Very simplified mechanisms for SOA formation from

SQT, MeSA and C17-BVOC were added to the model. Fixed

SOA (mass) yields, based on experimental data (Mentel

et al., 2013), were used for these three model compounds.

Note that the SOA-yield from SQT oxidation (17 mass %)

is based on experimentally determined yields from SQT-

emissions from aphid-infested Norway Spruce trees (see

Mentel et al., 2013); here we assume the same SOA-yield

from all SQT-emissions. For MeSA and C17-BVOC the

yields are 22 and 33 %, respectively:

SQT(+Ox)→ 0.17 SQT_SOA, (R1)

MeSA(+OH)→ 0.22 MeSA_SOA, (R2)

C17−BVOC(+Ox)→ 0.33 C17B_SOA, (R3)

where Ox is a general oxidant (O3 or OH; NO3 may also re-

act with SQT, and possibly with C17-BVOC; however, since

we only consider daytime SIE in this study, the NO3 reac-

tion is of minor importance compared to the fast O3 and OH

reactions). The parentheses around the oxidants indicate that

these oxidants are not depleted in the chemical mechanism.

As in Simpson et al. (2012) and Bergström et al. (2012),

gas-phase BVOC chemical mechanisms are only available

for isoprene, for which the EMEP model traces degradation

through species such as methyl-vinyl-ketone, methacrolein

and methylglyoxal. Other BVOC species are treated in a

very simplified manner, whereby oxidation of the BVOC pro-

duces only the compounds specified by the VBS scheme

or the fixed-yield non-volatile SIE-SOA components. For

such compounds, the chemistry is assumed to be “oxidant-

neutral”; that is, we assume that as much O3 or OH is re-

formed in the neglected part of the chemistry as is consumed

in the initial BVOC reactions. This procedure ensures that

the ozone chemistry will be the same as in the standard pho-

tochemistry version of the EMEP MSC-W model.

SOA-formation from sesquiterpenes is rapid; in the model

we use rates based on the β-caryophyllene chemistry scheme

in the Master Chemical Mechanism (MCM v3.2 (Jenkin

et al., 2012), via website: http://mcm.leeds.ac.uk/MCM).

For the C17 BVOC no kinetic information is available.

As observed in JPAC, the C17 BVOC had a short life-

time with respect to oxidation by O3 and OH; for sim-

plification, we therefore applied the same OH- and O3-

reaction-rate coefficients (1.97× 10−10 cm3 molecule−1 s−1

and 1.16× 10−14cm3 molecule−1 s−1, respectively) for the

C17 BVOC as for β-Caryophyllene.

MeSA is much more stable in the atmosphere

(Canosa-Mas et al., 2002) and, based on experimen-

tal data from JPAC, an OH-reaction-rate coefficient of

4× 10−12 cm3 molecule−1 s−1 was used. The low reaction

rate of MeSA with OH allows for significant MeSA con-

centrations during the night and since MeSA is a phenolic

compound we must also consider the reaction with NO3:

MeSA(+NO3)→ αMeSA_SOA. (R4)

The rate of the MeSA + NO3 reaction is not known and nei-

ther is the SOA-yield (α) of the reaction; nighttime degra-

dation of MeSA by NO3 reaction could possibly be fast

(Canosa-Mas et al., 2002). Canosa-Mas et al. (2002) as-

sumed that MeSA could react as fast with NO3 as phe-

nol does (k = 3.8×10−12 cm3 molecule−1 s−1); however, the

MeSA + NO3 reaction may be slower, because the MeSA

molecule may form an internal hydrogen bond between the

OH-hydrogen and the ester group, leading to an increased

stability in comparison to phenol. The MeSA + OH reaction,

for example, is 7 times slower than the phenol + OH reaction

(IUPAC: http://www.iupac-kinetic.ch.cam.ac.uk; 2008). Pre-

liminary results from laboratory experiments in JPAC indi-

cate that the MeSA + NO3 reaction is about an order of mag-

nitude slower than the phenol + NO3 reaction. Details of the

measurements regarding the determinations of the rate con-

stants will be published elsewhere.

Therefore, in the present study we used k = 5.4×

10−13 cm3 molecule−1 s−1 for the MeSA + NO3 reaction,

which is equal to the phenol + NO3 reaction rate divided by

seven (the scaling factor of the OH reaction).

The rate coefficient was combined with two different

SOA-yields for the reaction, 0 or 22 mass %, resulting in

two different sensitivity test cases:
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(a) kR4 = 5.4× 10−13 cm3 molecule−1 s−1,α = 0

(b) kR4 = 5.4× 10−13 cm3 molecule−1 s−1,α = 0.22.

Canosa-Mas et al. (2002) suggest that photolysis may be the

most important daytime loss process for MeSA but other

studies have shown that MeSA and related compounds have

“striking photostability” (e.g. Acuna et al., 1981) and there-

fore we neglect this process in the model simulations.

Deposition of gas-phase MeSA is a potentially important

loss process since the oxidation rate is relatively slow. Karl

et al. (2008) measured the Henry’s law constant for MeSA

and obtained a value of ca 34 Matm−1; that is, MeSA is

somewhat more soluble than CH3CHO but much less sol-

uble than HCHO. In the standard set-up of the present study

we treat MeSA-deposition in the same way as CH3CHO (and

other higher aldehydes) in the EMEP model (Simpson et al.,

2012); this means wet deposition is neglected and that the

dry deposition is relatively slow. Two sensitivity tests were

performed regarding the MeSA deposition: (A) neglecting

both dry and wet deposition, and (B) assuming dry and wet

deposition to be as efficient as for HCHO.

2.5 Model emission scenarios

In total, five different biotic stress emission scenarios are ex-

plored in this study and compared to a reference simulation

without explicit stress-induced emissions. The different sce-

narios are based on the combination of the biotic stress emis-

sion factors described in Sect. 2.2 and the fractions of in-

fected forest in Sect. 2.3; the resulting emission scenarios

are summarized below and in Table 1. Note that in all sce-

narios except Case 3, the SIE are assumed to occur during

the whole period with MT emissions (for central and north-

ern Europe most of the MT emissions occur between March

and October); i.e. biotic stress is assumed to be present dur-

ing the whole growing season. This is a simplification, since

many forms of biotic stress are of more limited duration (e.g.

Hakola et al., 2006), but various stressors may be active at

different times of the year. In the present study, the focus is

on getting estimates of the potential relative importance of

SIE compared to the constitutive BSOA for long-term OA

concentrations.

Case 0 – reference scenario

Case 0 is a reference scenario excluding most stress-induced

emissions. The biogenic emissions are the same as in the

standard EMEP MSC-W model for carbonaceous aerosol

(Bergström et al., 2012; Simpson et al., 2012) except that

some SQT emissions were added (5 % of the MT emissions).

The SOA-yield from SQT oxidation is set to 17 mass-%

(Mentel et al., 2013). The addition of 5 % SQT is based on

observations at the JPAC for experiments with no observable

biotic stress. Since SQT emissions are mostly induced by bi-

otic stress (Kleist et al., 2012; Mentel et al., 2013) the 5 %

SQT emissions used in Case 0 can be considered as covering

a low “background” biotic stress situation.

Case 1 – sesquiterpene emissions from biotic stress –

current situation

The first SIE scenario is based on experimental data for

aphid-infested Norway spruce with a SQT/MT emission ratio

of 2.4. In the EMEP model simulation for Case 1 we apply

10 % of these emissions to all monoterpene emitting plants

north of latitude 60◦ N, during daytime, and 20 % for 45–

60◦ N. This means that the (daytime) SQT emissions are set

to 24 and 48 % of the MT emissions in the two different re-

gions. The SOA yield from the SQT is the same as for Case

0 (17 %).

Case 2 – methyl salicylate + sesquiterpene emissions

from biotic stress – current situation

The second scenario simulates an aphid-infested boreal for-

est, based on chamber data from experiments with a combi-

nation of Silver birch, Scots pine and Norway spruce. Cham-

ber emission ratios were SQT/MT = 4.9 and MeSA/MT = 3.5.

The assumption of 10 % infested trees in the boreal forests

(latitudes greater than 60◦ N) and 20 % for 45–60◦ N leads to

model SQT/MT and MeSA/MT emissions of 49 and 35 % for

the northern region and 98 and 70 % in the central region. For

MeSA the SOA yield from oxidation by OH is 22 % (Mentel

et al., 2013); the standard Case 2 simulation assumes that

MeSA only reacts with OH, see Sect. 3.3 for sensitivity tests

of different assumptions regarding the MeSA + NO3 reactiv-

ity and SOA production.

Case 1F – increased degree of infestation – sesquiterpene

emissions

The first “future” scenario, Case 1F, uses the same biotic

stress emission ratios as Case 1, but a larger proportion of

the vegetation is assumed to be infested: 50 % in the boreal

region (north of 60◦ N) and 2/3 of the trees in the 45–60◦ N

region. This leads to SQT/MT emission ratios of 120 and

160 %, respectively.

Case 2F – increased degree of infestation – methyl

salicylate + sesquiterpene emissions

The second scenario of increased biotic stress, Case 2F, uses

the same assumptions as Case 2 regarding the emissions from

infested trees and the same proportion of infestation as in

Case 1F. This leads to SQT/MT emission ratios of 245 %, in

the northern region, and 327 %, in the central region. The cor-

responding MeSA/MT emission ratios were 175 and 233 %,

respectively.
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Figure 2. Modelled diurnal mean organic carbon in PM2.5 (OC2.5) at Hyytiälä (Finland) for 2007 compared to measured OC in PM1 (Aurela

et al., 2011). Results from three different model simulations (see Sect. 2.5) are shown in the top panel: Case 0 (black line) – reference scenario,

without explicit stress-induced emissions (SIE); Case 1 (blue) – current situation scenario with SIE of sesquiterpenes (SQT); Case 2 (red) –

current situation scenario with SIE of SQT and methyl salicylate. The lower panels show the model–measurement scatter plots for the three

cases. Unit: µg(C)m−3.

Case 3 – C17 BVOC + sesquiterpene emissions from

regional episodic infestation by bark lice

The Case 3 scenario, simulates an episodic infestation of

Norway spruce by Cinara pilicornis in Baden-Württemberg

(SE Germany, 47.8–49.8◦ N, 8.0–10.2◦ E). The emission ra-

tios, C17 BVOC/MT = 18 and SQT/MT = 1, were applied to

38 % of the BW forests during June and July, leading to large

C17 BVOC emissions (6.8× the MT emissions) and substan-

tial SQT emissions (0.38×MT) during this period. The SOA

yield from the oxidation of C17 BVOC is 33 % (Mentel et al.,

2013).

3 Results and discussion

The EMEP MSC-W model for OA was thoroughly evalu-

ated against observations by Bergström et al. (2012). One of

the conclusions of that study was that simple VBS based OA

models can give reasonably good results for summer condi-

tions. Since the biotic SIE primarily occur during the summer

half-year, we focus here mainly on results for this period.

3.1 Current situation

Model calculated diurnal mean concentrations of organic car-

bon (OC2.5) for the Finnish site Hyytiälä (located in a for-

est area in south-central Finland) are compared to measured

OC (219 measurements in 2007 of OC in PM1) in Fig. 2.

The model OC from all three “current-situation” scenarios

(Case 0, 1 and 2) are well correlated with the observations

www.atmos-chem-phys.net/14/13643/2014/ Atmos. Chem. Phys., 14, 13643–13660, 2014
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(a) Total OM2.5 (b) BSOA-fraction (%)

Figure 3. Model calculated 6-month mean (Apr–Sep) concentrations of (a) total Organic Matter in PM2.5 (OM2.5) (Unit: µgm−3). (b)

Fraction of biogenic secondary organic aerosol (BSOA) (% of total OM2.5) for the reference scenario without explicit biotic stress emissions

(Case 0).

(R2-values are 0.56, 0.60 and 0.66 for Cases 0, 1 and 2, re-

spectively); the model-calculated concentrations are close to

the observations, the average model bias is −0.12, −0.08

and +0.03 µgm−3 (corresponding to −12, −9 and +3 % of

the observed average); and the relative mean absolute devi-

ation of the model OC2.5 from the observed OC1 are 39, 36

and 33 %, respectively. The differences in performance be-

tween the three different model scenarios are not very large

but Case 2 is slightly closer to observations than Case 1 and

both SIE-scenarios are in better agreement with observations

than the reference scenario (Case 0) that does not explicitly

treat biotic stress emissions.

Since the model SIE are treated as a simple fraction of

the “unstressed” MT emissions, an improvement in model

results when adding SIE is not a proof that the stress-induced

emissions are correctly modelled; the model improvement

could also be due to compensation of underestimated reg-

ular BVOC emissions (see the example given for the Swiss

site Payerne in Bergström et al., 2012). However, the model

results for Hyytiälä shows that the additional SIE emissions

do not lead to unrealistic model OA concentrations, and that

such SIE can have a significant effect on ambient OA levels

during the summer period.

Model calculated OM2.5 (organic matter in PM2.5) and the

relative fraction of BSOA, from the reference case model

simulation without explicit SIE from vegetation (Case 0), for

the summer half-year (Apr–Sep) 2007, are shown in Fig. 3.

The modelled BSOA is low in most of Europe. The rela-

tive contribution of BSOA to modelled regional background

OM2.5 is below 20 % except in parts of Northern Europe

(parts of Sweden, Finland, the Baltic states, Russia, Belarus

etc.) and some BVOC-emission hotspots. (The simulated ab-

solute BSOA concentrations are below 0.6 µgm−3, except in

the south-eastern Mediterranean region, parts of Russia, and

some smaller high-BVOC-emission areas.)

The model calculated SIE-SOA for the two present-day

biotic-stress emission scenarios (Case 1 and 2) are compared

to the model BSOA from mostly unstressed plants (Case 0)

in Fig. 4. Case 1-type SIE (only SQT-emissions) contribute

somewhat less to BSOA than the (unstressed) constitutive

BVOC emissions (SIE-SOA is below 0.3 µgm−3 in most

of Europe, for the 6-month (Apr-Sep) mean and the SIE-

SOA fraction of the total BSOA is between 20 and 40 %

in most of Europe north of lat. 45◦ N). However, biotic SIE

including MeSA (Case 2) give rise to high SIE-SOA in the

model (between 0.6 and 1 µgm−3 in large parts of eastern and

central Europe), clearly higher than the unstressed BSOA-

concentration for the same period (between 50 and 80 % of

the total BSOA is SIE-SOA, for most of latitudes greater than

45◦ N, in the Case 2 scenario). This shows that even with re-

alistic present-day levels of biotic stress, it is possible that at

least for some periods, the stress-induced emissions are more

important for organic aerosol production than the constitutive

emissions of BVOC.

3.2 Future scenarios

We have estimated the potential increase of OM2.5 due to the

much higher degree of infestation assumed in the two future

scenarios (Case 1F and 2F). The differences in summer-half-

year mean OM2.5 between Case 1F and Case 1, and between

Case 2F and Case 2 are shown in Fig. 5. If the biotic SIE in-

crease to the high levels tested in these scenarios a substan-

tial increase in organic particle mass can be expected. The

results from the Case 2F (biotic MeSA+SQT) simulation in-

dicate that SIE-SOA could potentially become an important

source of regional background PM2.5 in large parts of cen-
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Figure 4. Model calculated 6-month mean (Apr–Sep) concentrations of BSOA and biotic stress-induced OA (SIE-OA); (a) BSOA in Case

0 (reference case without explicit stress-induced emissions), (b) SIE-OA in Case 1 (biotic stress with sesquiterpene (SQT) emissions), (c)

SIE-OA in Case 2 (biotic stress with emissions of SQT and methyl salicylate). Unit: µgm−3.

Figure 5. Potential increase of OM2.5 (6-month mean, Apr–Sep) from increased biotic stress-induced emissions (SIE) in two “maximum”

impact scenarios, compared to the corresponding current-situation model calculated concentrations. The concentration-difference fields il-

lustrate potential effects of a changed climate that the northern/central European forests have not had time to adapt to; (a) Difference in

OM2.5 between Case 1F and Case 1 (SIE with only SQT), (b) Case 2F – Case 2 (SIE of both SQT and methyl salicylate). Unit: µgm−3.

Note: Different colour scales.

tral/eastern Europe; the increase in OM2.5 compared to the

present-day Case 2-scenario is larger than 1.5 µgm−3 in parts

of central and most of eastern Europe. The Case 1-type sce-

nario, with only SIE of SQT included, have a much lower

BSOA-forming potential but still the SIE-SOA production

may become fairly substantial in the future scenario (Case

1F); the increase compared to the corresponding current sit-

uation scenario (Case 1) is above 0.3 µgm−3 in much of cen-

tral, northern and eastern Europe.

3.3 Importance of stress-induced MeSA emissions –

sensitivity tests of MeSA chemistry and deposition

Considering the high emissions of MeSA and high SOA-

yield from this component, further constraints on MeSA

emissions and their impact on organic aerosol are impor-

tant. MeSA is emitted by many different plant species, in re-

sponse to various types of stress, not only the ones considered

here (e.g. Vuorinen et al., 2007; Blande et al., 2010; Schnit-

zler et al., 2010). Assuming Case 2 SIE, model calculated

MeSA concentrations in the gas-phase are relatively high;

depending on the assumptions regarding MeSA-deposition

and NO3-reactivity, the average MeSA concentrations for

the period Mar–Oct at Hyytiälä are from 110 to 260 ppt(v);

see Fig. 6, which shows the diurnal variation of the mod-

elled MeSA for four different model setups. If the model

assumptions regarding the emissions and reactivity are re-

alistic, MeSA should be easily detected in the atmosphere

e.g. by PTR-MS or GC-MS. Our estimated MeSA concen-
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Figure 6. Modelled diurnal variation (average for the period Mar–

Oct) of methyl salicylate (MeSA) at Hyytiälä (Finland), using the

Case 2 scenario for biotic stress-induced emissions. Comparison

of model runs with four different assumptions regarding deposi-

tion losses and NO3-reactivity of MeSA. Black curve: only OH

reaction, no deposition of MeSA; dark blue: OH reaction, dry de-

position of MeSA with the same deposition velocity as acetalde-

hyde; light blue: OH reaction, wet and dry deposition of MeSA

with the same treatment as formaldehyde; red: NO3 reaction (k =

5.4× 10−13 cm3 molecule−1 s−1), OH reaction, dry depostion as

acetaldehyde. The modelled concentration of NO3 is also shown

(orange curve, right axis). Unit: ppt(v).

trations are of the same order of magnitude as observed

by Karl et al. (2008). They found MeSA mixing ratios of

∼ 100 ppt(v) within and above the canopy of a walnut agro-

forest.

The amount of SIE-SOA produced in the model in Case 2

is based on the observed SOA formation in the JPAC plant-

chamber experiments (Mentel et al., 2013); in addition it de-

pends on the assumptions regarding the deposition of MeSA,

the MeSA + NO3 reactivity and the SOA-formation from the

NO3 reaction. We illustrate the sensitivities in Fig. 7, which

shows the mean diurnal variation of SIE-SOA at Hyytiälä for

the period Mar–Oct.

The modelled SIE-SOA is not very sensitive to the MeSA

deposition; the differences between the setups with no depo-

sition or faster deposition (as HCHO) to the base case deposi-

tion (as CH3CHO) are only about +5 and−7 %, respectively;

similar differences (+3 – +7 % and −3 – −10 %) are seen in

the part of the model domain where the SIE are included in

Case 2 (the relative differences are larger at longer distances

from the SIE regions).

If the MeSA + NO3 reaction occurs at the rate tested in

this study, (kR4 = 5.4× 10−13 cm3 molecule−1 s−1), and has

the same SOA-yield as MeSA+OH, a substantial nighttime

production of SIE-SOA is seen in the model. The average

modelled (total) SIE-SOA concentration at Hyytiälä is about
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Figure 7. Modelled diurnal variation (average for the period Mar–

Oct) of SIE-SOA at Hyytiälä using the Case 2 scenario for bi-

otic stress-induced emissions, with different assumptions regard-

ing MeSA deposition losses, NO3-reactivity and SOA-yield. Black

curve: only OH reaction, no deposition of MeSA; dark blue: OH

reaction, dry deposition of MeSA with the same deposition veloc-

ity as acetaldehyde; light blue: OH reaction, wet and dry deposition

of MeSA with the same treatment as formaldehyde; red: OH reac-

tion, NO3 reaction (k = 5.4×10−13 cm3 molecule−1 s−1), no SOA

from MeSA + NO3 reaction, dry depostion as acetaldehyde; pink:

OH reaction, NO3 reaction with 22 % SOA-yield, dry depostion as

acetaldehyde. Unit: µgm−3.

30 % higher when the NO3 reaction is included than for the

case with only the OH reaction (results are similar in most

of Europe north of lat. 45◦ N, for Apr–Sep: typically +20 –

+30 %). If the MeSA + NO3 reaction consumes the MeSA

without SOA-production, the SIE-SOA formation is reduced

compared to the case with only OH reaction; at Hyytiälä

modelled SIE-SOA is about 20 % lower than for the case that

neglects the MeSA + NO3 reaction (similarly, for most of the

region with significant SIE in Case 2, the modelled SIE-SOA

is reduced by ca. 15–25 %, compared to the base case with

only OH reaction included).

The standard Case 2 simulation (as used in Sect. 3.1),

which neglects the MeSA + NO3 reaction, leads to SIE-SOA

concentrations between those obtained in the two test case

simulations that include the MeSA + NO3 reaction (with 0

and 22 % SOA yield); the average SIE-SOA (for Mar–Oct)

are 0.34 µgm−3 (only OH reaction), 0.27 µgm−3 (incl. NO3

reaction with 0 % SOA-yield) and 0.44 µgm−3 (incl. NO3 re-

action, 22 % SOA-yield). Neglecting the NO3 reaction means

that more MeSA survive during nighttime and can produce

SIE-SOA the following day via OH reaction. As seen in

Fig. 6 almost all MeSA is lost during night when the NO3

reaction is taken into account.
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Figure 8. Model calculated regional background PM2.5 concentration (2-month-mean for Jun–Jul). (a) Total model PM2.5 without explicit

biotic stress emissions (Case 0) (µgm−3); (b) Additional PM2.5 due to organic aerosol formation caused by biotic stress-induced emissions in

Case 3 (infestation of Spruce in Baden-Württemberg by Cinara pilicornis) (µgm−3); (c) Relative increase in modelled regional background

PM2.5 (in %) due to the simulated infestation.

The model calculated NO3 concentrations are very high

compared to the sub-ppt levels reported by Rinne et al.

(2012) at canopy height in Hyytiälä. However, aloft levels of

NO3 are often observed or calculated to be far higher than

ground-level data (Brown and Stutz, 2012; Johansson and

Janson, 1993), so our values may be reasonable. In any case,

model calculations where we relax our oxidant-neutrality

assumption (Sect. 2.4) and allow 100 % loss of NO3 have

shown that even though NO3 levels are reduced dramatically,

the effect on SIE-SOA is moderate, about 30 %.

The SOA formation from the NO3 reaction is difficult to

assess, but if the ambient MeSA levels are indeed often at a

level higher than 100 ppt it is worthwhile to study the MeSA

– NO3 yield in more detail. Moreover, recent data indicate

very efficient SOA formation from NO3 reactions of e.g. pool

emitted MT (Fry et al., 2009, 2011).

3.4 Regional bark lice infestation – Case 3

The very large episodic C17-BVOC emissions in Baden-

Württemberg, simulated in Case 3, lead to a large produc-

tion of SIE-SOA in the infested region. For the 2-month

infestation period, the average modelled SIE-SOA contri-

bution to PM2.5 is larger than 3 µgm−3 in BW and above

0.5 µgm−3 in all of southern Germany. For BW, the mod-

elled regional background PM2.5 concentration is more than

twice that in the reference case without SIE, as shown in

Fig. 8. Since Case 3 assumes a wide-spread, severe infes-

tation of spruce trees in BW, it could be considered a “worst-

case” scenario for lice infestation in BW (or best-case for

the honey-production) but it should be pointed out that bark

lice may infect other tree species as well and that infesta-

tions are likely to occur simultaneously in other regions of

Europe. The very high modelled impact of this scenario also

indicates that even a much more limited degree of infestation

could lead to substantially enhanced OA concentrations. The

emissions of C17 BVOC from insect-infested vegetation is

thus a field worth further investigation.

4 Conclusions

A large number of different biotic stressors exist in the envi-

ronment and many plants are obviously infested by at least

some stress-inducing organisms as shown in ICP Forests,

2011 (chap. 2, Figs. 2–4 and 2–5). The inspections of Eu-

ropean forests suggest that totally non-infested plants are

not likely to be common and thus some stress is the normal

state of vegetation. New laboratory data indicate that stress-

induced emissions (SIE) from trees common in central and

northern Europe may be of great importance for SOA for-

mation under current conditions. SIE are difficult to assess

but the emission factors for the different SIE compounds in-

cluded in this study (sesquiterpenes, SQT; methyl salicylate,

MeSA; unsaturated linear C17 BVOC) have been inferred

from plant chamber SOA experiments.

In this study we estimated the degree of stress from for-

est damage observations in Europe and forest-honey pro-

duction data from beekeepers in south-west Germany. Com-

bining these estimates with the plant-chamber-experiment-

based stress-induced emission factors, we constructed dif-

ferent SIE scenarios, and implemented SIE-SOA formation

in the EMEP MSC-W model in order to get a first model

estimate of the potential impact of SIE in Europe north of

lat. 45◦ N.

The implementation of SIE in the model resulted in less

bias and better correlation coefficients, for particulate or-

ganic carbon at a forest site in Finland, compared to the

standard model simulation with only constitutive biogenic

emissions. However, based on these results alone, we cannot

draw the conclusion that this is proof of the importance of

SIE, since any increase in BVOC emissions, or BSOA yields

from unstressed BVOC, would have essentially identical ef-

fects on total organic aerosol concentrations: we cannot dis-

tinguish SIE induced SOA from SOA from unstressed vege-

tation with higher emission rates. On the other hand we also

cannot distinguish between much higher abundance of SIE-

www.atmos-chem-phys.net/14/13643/2014/ Atmos. Chem. Phys., 14, 13643–13660, 2014
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SOA already at present and overestimated SOA from consti-

tutive emissions. Furthermore, the fate of the SIE in the at-

mosphere is uncertain, as shown by the sensitivity tests of the

MeSA chemistry and deposition, and the modelling of SOA

is still so fraught with difficulty that we cannot use model–

measurement discrepancy for total OA concentrations to es-

tablish the likely level of SIE-SOA.

Having stated this, we want to point out that if our as-

sumptions regarding the magnitude of the SIE are overall

about right, it is possible that, at least for some periods, the

SIE including MeSA could be more important for organic

aerosol production than the constitutive emissions of BVOC.

SIE of SQT have a lower BSOA-forming potential but still

the SIE-SOA production from SQT may become fairly sub-

stantial in the future in much of central, northern and east-

ern Europe. The emissions of unsaturated C17 BVOC from

insect-infested vegetation, although episodic and regional,

could have a large impact on SOA formation. If the climate

changes relatively rapidly (on the time scale of the life span

of individual trees), established vegetation may have prob-

lems adapting to the new conditions, which could make the

trees more vulnerable to different stressors; this can lead to

increased SIE in the future.

Measurements using real plant emissions have shown that

SIE can have higher potential to form SOA mass than consti-

tutive emissions. On the laboratory scale, SIE can dominate

SOA formation, as is also reflected by the model calcula-

tions. But up-scaling of laboratory results is complicated be-

cause the contribution of SIE to biogenic emissions in the air

over large areas is uncertain. We constructed plausible sce-

narios, for central and northern Europe, by using independent

data on European forest systems. This approach is only a first

step and may lead to over or underestimations of the impor-

tance of SIE-SOA. However, without consideration of SIE-

SOA, modelling scenarios will remain unrealistic. A limita-

tion of the present study is that the stress-induced emissions

and SIE-SOA yields are based on data for a limited number

of tree species and stressors (Mentel et al., 2013).

The uncertainties encountered in our approach point to the

need to quantify SIE directly in the field. The agreement of

the model-predicted MeSA level with observations by Karl

et al. (2008) encourage such initiatives. Our findings suggest

that the SIE and SIE-SOA are potentially important, at least

in large parts of Europe, and that there is need for additional

efforts in further investigations.
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