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Abstract. In this study, the effect of CO2 observations on an

analysis of surface CO2 flux was calculated using an influ-

ence matrix in the CarbonTracker, which is an inverse mod-

eling system for estimating surface CO2 flux based on an en-

semble Kalman filter. The influence matrix represents a sen-

sitivity of the analysis to observations. The experimental pe-

riod was from January 2000 to December 2009. The diago-

nal element of the influence matrix (i.e., analysis sensitivity)

is globally 4.8 % on average, which implies that the anal-

ysis extracts 4.8 % of the information from the observations

and 95.2 % from the background each assimilation cycle. Be-

cause the surface CO2 flux in each week is optimized by 5

weeks of observations, the cumulative impact over 5 weeks

is 19.1 %, much greater than 4.8 %. The analysis sensitivity is

inversely proportional to the number of observations used in

the assimilation, which is distinctly apparent in continuous

observation categories with a sufficient number of observa-

tions. The time series of the globally averaged analysis sensi-

tivities shows seasonal variations, with greater sensitivities in

summer and lower sensitivities in winter, which is attributed

to the surface CO2 flux uncertainty. The time-averaged anal-

ysis sensitivities in the Northern Hemisphere are greater than

those in the tropics and the Southern Hemisphere. The trace

of the influence matrix (i.e., information content) is a mea-

sure of the total information extracted from the observations.

The information content indicates an imbalance between the

observation coverage in North America and that in other re-

gions. Approximately half of the total observational infor-

mation is provided by continuous observations, mainly from

North America, which indicates that continuous observations

are the most informative and that comprehensive coverage of

additional observations in other regions is necessary to esti-

mate the surface CO2 flux in these areas as accurately as in

North America.

1 Introduction

Atmospheric CO2 observations can be used to quantitatively

estimate the sources and sinks of surface carbon fluxes. Thus,

atmospheric CO2 inversion studies using atmospheric CO2

observations have been conducted (Gurney et al., 2002; Ciais

et al., 2010; Peylin et al., 2013). Various studies applying

state-of-the-art data assimilation methods have been carried

out to estimate the surface carbon cycle at global and regional

scales. The methods employed for the atmospheric CO2 in-

version studies include variational data assimilation methods

(Chevallier et al., 2005, 2009a, b; Baker et al., 2006, 2010;

Basu et al., 2013), the ensemble Kalman filter (EnKF) (Peters

et al., 2005, 2007, 2010; Feng et al., 2009; Miyazaki et al.,

2011; Kang et al., 2011, 2012; Chatterjee et al., 2012; Kim

et al, 2012, 2014), and maximum likelihood ensemble filter

(Zupanski et al., 2007; Lokupitiya et al., 2008). These studies

have applied the data assimilation method used in numerical

weather prediction (NWP) to estimate surface CO2 fluxes.

Recent studies on atmospheric CO2 inversion have fo-

cused on analyzing the difference between prior and opti-

mized surface CO2 fluxes obtained by using new inversion

methods or observations (Chevallier et al., 2009a; Basu et

al., 2013), as well as the carbon cycle based on optimized

surface CO2 fluxes. By contrast, the impact of various atmo-

spheric CO2 observations on the estimation of surface CO2

fluxes has rarely been studied. One method employed to eval-

uate the impact of observations on atmospheric CO2 inver-
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sion is the calculation of the uncertainty reduction (Peters et

al., 2005; Meirink et al., 2008; Chevallier et al., 2009b; Feng

et al., 2009), which is a ratio between the variances of the

prior and posterior state vectors. A large uncertainty reduc-

tion implies that observations have a large impact on the es-

timation of surface CO2 fluxes. However, the uncertainty re-

duction cannot measure the impact of individual observations

on the estimated (i.e., analyzed) surface CO2 fluxes. Another

method for assessing the impact of observations is to calcu-

late the information content, which is the amount of infor-

mation obtained from observations (Rodgers, 2000). Enge-

len and Stephen (2004) calculated the information content of

infrared satellite sounding observations on atmospheric CO2

concentrations. To estimate the impact of simulated CO2 ob-

servations on surface flux analysis, Zupanski et al. (2007)

calculated the information content using the information ma-

trix in the ensemble subspace. However, similar to the un-

certainty reduction, these methods calculate the impact of all

observations, rather than calculating the impact of individual

observations on surface CO2 flux analysis.

Data assimilation algorithms are fundamentally based on a

linear statistical assumption (Talagrand, 1997). Both sequen-

tial and variational algorithms combine background and ob-

servation information to estimate parameters based on the

linear assumption. According to the linear assumption, the

influence matrix that measures the impact of individual ob-

servations on estimated parameters can be calculated in the

observation space. Cardinali et al. (2004) suggested a method

for calculating the influence matrix within the general data

assimilation framework and applied the method to a forecast

model of the European Centre for Medium Weather Fore-

casts (ECMWF). The diagonal elements of the influence ma-

trix are the analysis sensitivities (i.e., self-sensitivity), which

are proportional to the spread of the analysis and are in-

versely proportional to the predetermined observation error.

The trace of the diagonal elements of the influence matrix

reflects the information content, which is the amount of in-

formation extracted from observations. The influence matrix

provides objective diagnostics regarding the impact of obser-

vations on the analysis and hence the performance of the data

assimilation system because inaccurate observations can be

identified by analyzing the observation impact (Cardinali et

al., 2004). Liu et al. (2009) suggested a method for calcu-

lating self-sensitivity and cross-sensitivity (i.e., off-diagonal

elements of the influence matrix) within the EnKF frame-

work and diagnosed the relative importance of individual ob-

servations within an observation system using the idealized

Lorenz 40 model and the simplified hydrostatic model.

Although Cardinali et al. (2004) and Liu et al. (2009)

suggested methods for calculating the impact of individual

observations on an analysis, their studies focused on NWP.

Therefore, the impact of individual observations on surface

CO2 flux analysis has not been diagnosed in a study on at-

mospheric CO2 inversion using the state-of-the-art data as-

similation method. Because the analysis is more important

than the forecast in atmospheric CO2 inversion, the methods

suggested by Cardinali et al. (2004) and Liu et al. (2009) can

be applied to diagnose the impact of observations on the CO2

flux analysis.

CarbonTracker is a system developed by the National

Oceanic and Atmospheric Administration (NOAA), which

optimizes the surface CO2 flux by assimilating mole frac-

tion observations (i.e., concentration) of surface CO2 (Pe-

ters et al., 2005). CarbonTracker has been applied in stud-

ies on atmospheric CO2 inversion in North America (Peters

et al., 2010), Europe (Peters et al., 2010), and Asia (Kim et

al., 2014). To develop CarbonTracker for use in Asia, Kim

et al. (2012) performed an experiment employing Carbon-

Tracker in this region and demonstrated that CarbonTracker

produces optimized surface CO2 fluxes for Asia. Kim et

al. (2014) showed that the estimates of the surface CO2 flux

are more consistent with observed CO2 concentrations in

Asia when using the nesting domain of the transport model

on Asia in CarbonTracker. Zhang et al. (2014) conducted a

study on the assimilation of aircraft CO2 observations from

the Comprehensive Observation Network for TRace gases by

AIrLiner (CONTRAIL; Machida et al., 2008) in Asia using

CarbonTracker.

In this study, an influence matrix is calculated in Carbon-

Tracker to evaluate the impact of mole fraction observations

of CO2 on the analyzed surface CO2 fluxes. The relative

importance of each observation site and each observation

site category is evaluated by analyzing the self-sensitivity

and information content, and the characteristics of the self-

sensitivity and information content are subsequently investi-

gated. Section 2 presents the experimental framework, which

includes CarbonTracker, EnKF, observations, the methodol-

ogy for calculating the influence matrix, and the experimen-

tal framework. Section 3 presents the results, and Sect. 4 pro-

vides a summary and conclusion.

2 Methodology

2.1 CarbonTracker

CarbonTracker is an atmospheric CO2 inversion system that

estimates the surface CO2 flux consistent with CO2 obser-

vations. In CarbonTracker, the optimized flux with a 1◦× 1◦

horizontal resolution is calculated as

F(x,y, t)= λr ·Fbio(x,y, t)+ λr ·Focn(x,y, t)

+Fff(x,y, t)+Ffire(x,y, t), (1)

where Fbio(x,y, t) is the prescribed prior biosphere flux from

the Carnegie–Ames–Stanford Approach Global Fire Emis-

sions Database (CASA GFED) version 3.1 (van der Werf

et al., 2010); Focn(x,y, t) is the prescribed prior ocean flux

based on Jacobson et al. (2007); Fff(x,y, t) is the prescribed

prior fossil fuel flux determined using the Carbon Dioxide

Information and Analysis Center (CDIAC) and the Emission
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Database for Global Atmospheric Research (EDGAR) inven-

tories; Ffire(x,y, t) is the prescribed prior fire flux derived

from CASA GFED version 3.1 (van der Werf et al., 2010);

and λr is the scaling factor to be optimized in the data assim-

ilation process, corresponding to 156 ecoregions around the

globe. CarbonTracker adopts a smoother window to reflect

the transport speed of CO2, which is based on the temporal

relationship between the surface CO2 flux and atmospheric

CO2 observations, as found in Bruhwiler et al. (2005) (Peters

et al., 2005). For this reason, the scaling factor is optimized

for 5 weeks of lag, which implies that the observations made

in the most recent week affect the optimized surface CO2

flux in the preceding 4 weeks. The optimization of the scal-

ing factor during the data assimilation process is presented in

Fig. 1. In each assimilation cycle, 5 weeks of analysis scaling

factors are estimated by observations from the most recent

week. After the fifth cycle, the scaling factor estimated by

these 5 weeks of observations is saved as the optimized scal-

ing factor and used to calculate the optimized surface CO2

flux in Eq. (1). During this process, a new mean background

scaling factor for the next week is calculated by the estimated

mean scaling factors of the previous 2 weeks using a simple

dynamic model, as follows:

λb
t =

(λa
t−2+ λ

a
t−1+ λ

p)

3
, (2)

where λb
t is a prior mean scaling factor for the new analysis

week; λa
t−2 and λa

t−1 are posterior mean scaling factors es-

timated 2 weeks and 1 week previous, respectively; and λp

is a prior value fixed as 1. Thus, the information from the

previous observations is included in λb
t .

The TM5 model (Krol et al., 2005) is used as a transport

model that calculates model CO2 concentrations correspond-

ing to the observed CO2 concentrations. The TM5 model

uses the surface CO2 fluxes calculated from Eq. (1) and the

ECMWF meteorological field to calculate model CO2 con-

centrations and is used as the observation operator, which

will be explained in Sect. 2.2.

2.2 Ensemble Kalman filter

The EnKF data assimilation method used in CarbonTracker

is the ensemble square root filter (EnSRF) suggested by

Whitaker and Hamill (2002). The analysis equation for data

assimilation is expressed as

xa
=Kyo

+ (In−KH)xb, (3)

where xa is the n-dimensional analysis (posterior) state vec-

tor; yo is the p-dimensional observation vector; K is the n× p

dimensional Kalman gain; In is the identical matrix; H is the

linearized observation operator, which transforms the infor-

mation in the model space to the information in the observa-

tion space; and xb is the background state vector. In EnSRF,

the ensemble mean and perturbed state vectors are updated

Figure 1. Schematic diagram of the assimilation process employed

in CarbonTracker. In each analysis cycle, observations made within

1 week are used to update the state vectors with a 5-week lag. The

dashed line indicates how the simple dynamic model uses analysis

state vectors from the previous 1 and 2 weeks to produce a new

background state vector for the current analysis time. The TM5

model is used as the observation operator to calculate the model

CO2 concentration for each corresponding observation location and

time.

independently using the following equations:

xa
= xb+K

(
yo
−Hxb

)
, (4)

x′a
i = x′b

i − k̃Hx′b
i , (5)

where xa and xb are mean state vectors of the analysis and

background, respectively, and x′a
i and x′b

t are perturbation

state vectors of the analysis and background, respectively.

Many inflation techniques (e.g., Wang and Bishop, 2003;

Bowler et al., 2008; Whitaker et al., 2008; Li et al., 2009; An-

derson, 2009; Miyoshi, 2011; Kang et al., 2012) have been

used to maintain proper ensemble spread and to improve

the performance of EnKF data assimilation. Although the

EnSRF in CarbonTracker does not use the inflation method,

Kim et al. (2012) demonstrated that the ensemble spread

measured by rank histograms is maintained properly. In Car-

bonTracker, the state vector corresponds to the scaling factor,

as described in Sect. 2.1. K and the reduced Kalman gain, k̃,

are defined as

K=
(

PbHT
)(

HPbHT
+R

)−1

, (6)

k̃=K ·α, (7)

where Pb is the background error covariance; R is the obser-

vation error covariance, which is predefined at each observa-

tion site; and α is a scalar value that varies whenever each

observation is used in the analysis process and is calculated

as
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α =

(
1+

√
R

HPbHT+R

)−1

, (8)

PbHT and HPbHT in Eqs. (6) and (8) can be calculated as

PHT
≈

1

m− 1

(
x′1,x

′
2, . . .,x

′
m

)
·
(
Hx′1,Hx

′
2, . . .,Hx

′
m

)T
, (9)

HPHT
≈

1

m− 1

(
Hx′1,Hx

′
2, . . .,Hx

′
m

)
·
(
Hx′1,Hx

′
2, . . .,Hx

′
m

)T
, (10)

where m is the number of ensembles.

To reduce the sampling error and filter divergence due

to the underestimation of background error covariance

in EnSRF, the covariance localization method is used

(Houtekamer and Mitchell, 2001). Because the physical dis-

tance between the scaling factors cannot be defined in Car-

bonTracker, correlations between the ensemble of the scal-

ing factor and the ensemble of the model CO2 concentration

are calculated, and a statistical significance test is performed

on the correlations. Then, the Kalman gain which has an in-

significant statistical value is set to zero. This type of lo-

calization is applied to all observation sites except for ma-

rine boundary layer (MBL) sites, because the observations

at MBL sites are considered to include information on large

footprints of flux signals (Peters et al., 2007).

2.3 Influence matrix

The influence matrix for EnKF is calculated as in Liu et

al. (2009). The projection of Eq. (3) onto the observation

space becomes

Hxa
= ya

=HKyo
+ (Ip −HK)yb, (11)

where ya is the analysis value in the observation space and

the projection of the state vector xa on the observation space.

The influence matrix So, representing the sensitivity of the

analysis state vector ya to the observation vector yo (i.e.,

analysis sensitivity to observation) in the observation space,

is calculated as follows:

So
=
∂ya

∂yo
=KTHT

= R-1HPaHT, (12)

where So is proportional to the analysis error covariance and

is inversely proportional to the observation error covariance.

By contrast, the analysis sensitivity to background is

Sb
=
∂ya

∂yb
=

∂ya

∂(Hxb)
= Ip −KTHT

= Ip −So, (13)

where yb is the projection of the background on the observa-

tion space, and Ip is an identity matrix with the size of the

number of observations. Consequently, the sum of the anal-

ysis sensitivity to observation in Eq. (12) and the analysis

sensitivity to background in Eq. (13) is one.

Substituting Eq. (10) into Eq. (12) becomes

So
= R−1HPaHT

=
1

m− 1
R-1(HXa)(HXa)T, (14)

where HXa is the analysis ensemble perturbation matrix in

the observation space, and the ith column of HXa is calcu-

lated as

HXa
i
∼= h

(
xa
i

)
−

1

m

m∑
i=1

h
(
xa
i

)
, (15)

where xa
i is the ith analysis ensemble member;m is the num-

ber of ensembles (i.e., 150); and h(·) is the linear or nonlinear

observation operator. More specifically, if the observation er-

rors are not correlated, the diagonal elements of the influence

matrix (i.e., self-sensitivity) are calculated as

So
jj =

∂ya
j

∂yo
j

=

(
1

m− 1

)
1

σ 2
j

m∑
i=1

(HXa
i )j · (HXa

i )j , (16)

where σ 2
j is the error variance of the j th observation. The

cross-sensitivity is the off-diagonal elements of the influence

matrix. The influence matrix is calculated for the most re-

cent week of each cycle because the background at the most

recent week of each cycle is updated once by observations.

The cumulative impact of the influence matrix for the 5

weeks of lag can be calculated because the background in

the lagged window already includes the effect from previous

observations. For example, Fig. 2 shows that Sb(5) is affected

by So(1), So(2), So(3), and So(4), where the number inside

parentheses represents the week of the 5-week assimilation

lag. If So(·) has a value between 0 and 1, Sb(1) (i.e., the anal-

ysis sensitivity to background at the first week) represents

information from a previous analysis cycle and is calculated

as

Sb(1)= (1−So(1))(1−So(2))(1−So(3))

(1−So(4))(1−So(5)). (17)

Using Eq. (13), the cumulative impact of the influence matrix

is

So
cum = 1−Sb(1)= 1− (1−So(1))(1−So(2))

(1−So(3))(1−So(4))(1−So(5)), (18)

where So
cum is the cumulative impact of observations dur-

ing the lagged window. The cumulative impact was de-

fined within the 5-week assimilation lag and calculated when

So(5) exists.

The information content (i.e., degrees of freedom for sig-

nal), which is a measure of the information extracted from

the observations, is calculated by the trace of the influence
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Figure 2. Schematic diagram of calculating cumulative impact in

CarbonTracker. Sb(·) indicates the analysis sensitivity to back-

ground at each analysis cycle within 5 weeks of lag, where · de-

notes each week from 1 to 5. So(·) indicates the analysis sensitivity

to observation at each analysis cycle.

Figure 3. Observation network of CO2 concentrations around the

globe and the nested domain of the TM5 transport model over Asia

(dashed box). Each observation site is assigned to different cate-

gories (4: MBL;©: Continental; �: Mixed land/ocean and moun-

tain; ?: Continuous; �: Difficult).

matrix. As suggested by Cardinali et al. (2004), the globally

averaged influence of the observations can be calculated by

averaging the global self-sensitivities as

GAI=
tr(So)

p
, (19)

where p is the total number of observations used in each as-

similation cycle. The partial influence of a subset of observa-

tions is calculated as

PAI=

∑
i∈ I

So
ii

pI
, (20)

where pI represents the number of observations in subset I ,

which can either be set as specific observation types or as

specific vertical and horizontal domains.

2.4 Observations

The observations used in this study are surface CO2 mole

fraction data observed at sites distributed around the globe

(Table 1, Fig. 3). As in Peters et al. (2007), the surface CO2

mole fraction data used in this study includes surface air sam-

ples collected around the globe and from tall towers. These

data were observed by NOAA, the Commonwealth Scien-

tific and Industrial Research Organization (CSIRO), Envi-

ronment Canada (EC), the National Center for Atmospheric

Research (NCAR), and Lawrence Berkeley National Lab-

oratory (LBNL) (Masarie et al., 2011). Observations from

three additional sites made by the Japan Meteorological

Agency (JMA) are also used in this study. The site categories

and model–data mismatch values (i.e., observation error) are

shown in Table 2. The model–data mismatch is determined as

the innovation χ2 in Eq. (21) becomes 1 at each observation

site (Peters et al., 2007).

χ2
=

(yo
−Hxb)

2

HPbHT+R
(21)

The innovation χ2 statistics for each observation site in Asia

during the experimental period are presented in Table 3. The

model–data mismatch for the TAP site (Tae-ahn Peninsula,

South Korea; 36.73◦ N, 126.13◦ E, 20 m) was changed from

the value of 7.5 ppm (parts per million) used in previous stud-

ies to 5 ppm because the innovation χ2 value obtained using

5 ppm was closer to 1. However, TAP was still included in the

Difficult category in the statistical analysis in Sect. 3. The

model–data mismatches of the three JMA sites were set to

3 ppm, as in Zhang et al. (2014).

2.5 Experimental framework

The surface carbon flux analysis system used in this study is

based on the CarbonTracker 2010 release (CT2010). How-

ever, the system employed in this study is different from

CT2010 in two aspects: first, the nesting domain of the TM5

model, with 1◦× 1◦ horizontal resolution, is centered in Asia

rather than in North America, which enables a more detailed

analysis of the surface CO2 fluxes over Asia, as shown in

Kim et al. (2014); second, as mentioned in Sect. 2.4, three

new JMA observation sites are added in this system, which

also enhances the analysis of surface CO2 fluxes over Asia.

The global horizontal resolution is 3◦× 2◦, as in CT2010.

The experimental period is from 1 January 2000 to 31 De-

cember 2009. The number of ensembles is 150, and the scal-

ing factor includes 5 weeks of lag, as in Peters et al. (2007,

2010) and Kim et al. (2012, 2014).
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Table 1. Information on the observation sites used in this study. MDM represents the model–data mismatch, which is the observation error.

Site code Location Latitude Longitude Height Laboratory MDM (ppm)

ALT_01D0 Alert, Nunavut, Canada 82.45◦ N 62.51◦W 200 m ESRL 1.5

ALD_06C0 Alert, Nunavut, Canada 82.45◦ N 62.51◦W 200 m ESRL 2.5

AMT_01C3 Argyle, Maine, United States 45.03◦ N 68.68◦W 50 m ESRL 3

AMT_01P0 Argyle, Maine, United States 45.03◦ N 68.68◦W 50 m ESRL 3

ASC_01D0 Ascension Island, United Kingdom 7.92◦ S 14.42◦W 54 m ESRL 0.75

ASK_01D0 Assekrem, Algeria 23.18◦ N 5.42◦ E 2728 m ESRL 1.5

AZR_01D0 Terceira Island, Azores, Portugal 38.77◦ N 27.38◦W 40 m ESRL 1.5

BAL_01D0 Baltic Sea, Poland 55.35◦ N 17.22◦ E 3 m ESRL 7.5

BAO_01C3 Boulder Atmospheric Observatory, Colorado, United States 40.05◦ N 105.00◦W 1584 m ESRL 3

BAO_01P0 Boulder Atmospheric Observatory, Colorado, United States 40.05◦ N 105.00◦W 1584 m ESRL 3

BKT_01D0 Bukit Kotobang, Indonesia 0.20◦ S 100.32◦ E 864 m ESRL 7.5

BME_01D0 St. Davids Head, Bermuda, United Kingdom 32.27◦ N 64.65◦ E 30 m ESRL 1.5

BMW_01D0 Tudor Hill, Bermuda, United Kingdom 32.27◦ N 64.88◦ E 30 m ESRL 1.5

BRW_01D0 Barrow, Alaska, United States 71.32◦ N 156.61◦W 11 m ESRL 1.5

BRW_01C0 Barrow, Alaska, United States 71.32◦ N 156.61◦W 11 m ESRL 2.5

BSC_01D0 Black Sea, Constanta, Romania 44.17◦ N 28.68◦ E 3 m ESRL 7.5

CBA_01D0 Cold Bay, Alaska, United States 55.21◦ N 162.72◦W 21 m ESRL 1.5

CDL_06C0 Candle Lake, Saskatchewan, Canada 53.99◦ N 105.12◦W 600 m ESRL 3

CFA_02D0 Cape Ferguson, Queensland, Australia 19.28◦ S 147.06◦ E 184 m ESRL 2.5

CGO_01D0 Cape Grim, Tasmania, Australia 40.68◦ S 144.69◦ E 94 m ESRL 0.75

CGO_02D0 Cape Grim, Tasmania, Australia 40.68◦ S 144.69◦ E 94 m CSIRO 0.75

CHR_01D0 Christmas Island, Republic of Kiribati 1.70◦ N 157.17◦W 3 m ESRL 0.75

CRZ_01D0 Crozet Island, France 46.45◦ S 51.85◦ E 120 m ESRL 0.75

CYA_02D0 Casey, Antarctica, Australia 66.28◦ S 110.5◦ E 51 m CSIRO 0.75

EGB_06C0 Egbert, Ontario, Canada 44.23◦ N 79.78◦W 251 m EC 3

EIC_01D0 Easter Island, Chile 27.15◦ S 109.45◦W 50 m ESRL 7.5

ESP_06C0 Estevan Point, British Columbia, Canada 49.38◦ N 126.54◦W 7 m EC 3

ETL_06C0 East Trout Lake, Saskatchewan, Canada 54.35◦ N 104.98◦W 492 m EC 3

FEF_03C0 Fraser, Colorado, United States 39.91◦ N 105.88◦W 2745 m NCAR 3

FSD_06C0 Fraserdale, Canada 49.88◦ N 81.57◦W 210 m EC 3

GMI_01D0 Mariana Islands, Guam 13.43◦ N 144.78◦ E 2 m ESRL 1.5

HBA_01D0 Halley Station, Antarctica, United Kingdom 75.58◦ S 26.50◦W 30 m ESRL 0.75

HDP_03C0 Hidden Peak (Snowbird), Utah, United States 40.56◦ N 111.65◦W 3351 m NCAR 3

HUN_01D0 Hegyhatsal, Hungary 46.95◦ N 16.65◦ E 248 m ESRL 7.5

ICE_01D0 Storhofdi, Vestmannaeyjar, Iceland 63.40◦ N 20.29◦W 118 m ESRL 1.5

KEY_01D0 Key Biscayne, Florida, United States 25.67◦ N 80.16◦W 3 m ESRL 2.5

KUM_01D0 Cape Kumukahi, Hawaii, United States 19.52◦ N 154.82◦W 3 m ESRL 1.5

KZD_01D0 Sary Taukum, Kazakhstan 44.06◦ N 76.82◦ E 601 m ESRL 2.5

KZM_01D0 Plateau Assy, Kazakhstan 43.25◦ N 77.88◦ E 2519 m ESRL 2.5

LEF_01C3 Park Falls, Wisconsin, United States 45.95◦ N 90.27◦W 472 m ESRL 3

LEF_01P0 Park Falls, Wisconsin, United States 45.95◦ N 90.27◦W 472 m ESRL 3

LLB_06C0 Lac La Biche, Alberta, Canada 54.95◦ N 112.45◦W 540 m EC 3

MAA_02D0 Mawson Station, Antarctica, Australia 67.62◦ S 62.87◦ E 32 m CSIRO 0.75

MHD_01D0 Mace Head, County Galway, Ireland 53.33◦ N 9.90◦W 5 m ESRL 2.5

MID_01D0 Sand Island, Midway, United States 28.21◦ N 177.38◦W 4 m ESRL 1.5

MKN_01D0 Mt. Kenya, Kenya 0.05◦ S 37.30◦ E 3897 m ESRL 2.5

MLO_01C0 Mauna Loa, Hawaii, United States 19.54◦ N 155.58◦W 3397 m ESRL 0.75

MLO_01D0 Mauna Loa, Hawaii, United States 19.54◦ N 155.58◦W 3397 m ESRL 1.5

MNM_19C0 Minamitorishima, Japan 24.29◦ N 153.98◦ E 8 m JMA 3

MQA_02D0 Macquarie Island, Australia 54.48◦ S 158.97◦ E 12 m CSIRO 0.75

NMB_01D0 Gobabeb, Namibia 23.58◦ S 15.03◦ E 456 m ESRL 2.5

NWR_01D0 Niwot Ridge, Colorado, United States 40.05◦ N 105.58◦W 3523 m ESRL 1.5

NWR_03C0 Niwot Ridge, Colorado, United States 40.05◦ N 105.58◦W 3523 m NCAR 3

OBN_01D0 Obninsk, Russia 55.11◦ N 36.60◦ E 183 m ESRL 7.5

OXK_01D0 Ochsenkopf, Germany 50.03◦ N 11.80◦ E 1022 m ESRL 2.5

PAL_01D0 Pallas-Sammaltunturi, GAW Station, Germany 67.97◦ N 24.12◦ E 560 m ESRL 2.5

POC_01D1 Pacific Ocean, N/A 0.39◦ S 132.43◦W 10 m ESRL 0.75

PSA_01D0 Palmer Station, Antarctica, United States 64.92◦ S 64.00◦W 10 m ESRL 0.75

PTA_01D0 Point Arena, California, United States 38.95◦ N 123.74◦W 17 m ESRL 7.5

RPB_01D0 Ragged Point, Barbados 13.17◦ N 59.43◦W 45 m ESRL 1.5

RYO_19C0 Ryori, Japan 39.03◦ N 141.82◦ E 260 m JMA 3

SCT_01C3 Beech Island, South Carolina, United States 33.41◦ N 81.83◦W 115 m ESRL 3

SEY_01D0 Mahe Island, Seychelles 4.67◦ S 55.17◦ E 3 m ESRL 0.75

SGP_01D0 Southern Great Plains, Oklahoma, United States 36.80◦ N 97.50◦W 314 m ESRL 2.5
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Site code Location Latitude Longitude Height Laboratory MDM (ppm)

SGP_64C3 Southern Great Plains, Oklahoma, United States 36.80◦ N 97.50◦W 314 m ESRL 3

SHM_01D0 Shemya Island, Alaska, United States 52.72◦ N 174.10◦ E 40 m ESRL 2.5

SMO_01C0 Tutuila, American Samoa 14.25◦ S 170.56◦W 42 m ESRL 0.75

SMO_01D0 Tutuila, American Samoa 14.25◦ S 170.56◦W 42 m ESRL 1.5

SNP_01C3 Shenandoah National Park, United States 38.62◦ N 78.35◦W 1008 m ESRL 3

SPL_01C3 Storm Peak Laboratory (Desert Research Institute), United States 40.45◦ N 106.73◦W 3210 m NCAR 3

SPO_01C0 South Pole, Antarctica, United States 89.98◦ S 24.80◦W 2810 m ESRL 0.75

SPO_01D0 South Pole, Antarctica, United States 89.98◦ S 24.80◦W 2810 m ESRL 1.5

STM_01D0 Ocean Station M, Norway 66.00◦ N 2.00◦ E 0 m ESRL 1.5

STR_01P0 Sutro Tower, San Francisco, California, United States 37.76◦ N 122.45◦W 254 m ESRL 3

SUM_01D0 Summit, Greenland 72.57◦ N 38.48◦W 3238 m ESRL 1.5

SYO_01D0 Syowa Station, Antarctica, Japan 69.00◦ S 39.58◦ E 11 m ESRL 0.75

TAP_01D0 Tae-ahn Peninsula, Republic of Korea 36.73◦ N 126.13◦ E 20 m ESRL 5

TDF_01D0 Tierra Del Fuego, Ushuaia, Argentina 54.87◦ S 68.48◦W 20 m ESRL 0.75

THD_01D0 Trinidad head, California, United States 41.73◦ N 91.35◦W 107 m ESRL 2.5

UTA_01D0 Wendover, Utah, United States 39.90◦ N 113.72◦W 1320 m ESRL 2.5

UUM_01D0 Ulaan Uul, Mongolia 44.45◦ N 111.10◦ E 914 m ESRL 2.5

WBI_01C3 West Branch, Iowa, United States 41.73◦ N 91.35◦W 242 m ESRL 3

WBI_01P0 West Branch, Iowa, United States 41.73◦ N 91.35◦W 242 m ESRL 3

WGC_01C3 Walnut Grove, California, United States 38.27◦ N 121.49◦W 0 m ESRL 3

WGC_01P0 Walnut Grove, California, United States 38.27◦ N 121.49◦W 0 m ESRL 3

WIS_01D0 WIS Station, Negev Desert, Israel 31.13◦ N 34.88◦ E 400 m ESRL 2.5

WKT_01C3 Moody, Texas, United States 31.32◦ N 97.33◦W 251 m ESRL 3

WKT_01C3 Moody, Texas, United States 31.32◦ N 97.33◦W 251 m ESRL 3

WLG_01D0 Mt. Waliguan, Peoples Republic of China 36.29◦ N 100.90◦ E 3810 m ESRL 1.5

WSA_06C0 Sable Island, Nova Scotia, Canada 49.93◦ N 60.02◦ E 5 m EC 3

YON_19C0 Yonagunijima, Japan 24.47◦ N 123.02◦ E 30 m JMA 3

ZEP_01D0 Ny-Alesund, Svalbard, Norway and Sweden 78.90◦ N 11.88◦ E 475 m ESRL 1.5

Table 2. Observation site categories and corresponding MDM values.

Observation category Description Observation frequency MDM (ppm)

Marine boundary layer (MBL) Observation site close to marine boundary layer Once a week 0.75

Mixed land/ocean and mountain (Mixed) Observation site located in mixed land, ocean, and mountain Once a week 1.5

Continental Observation site located in the continent Once a week 2.5

Continuous Observation site with continuous observations Once a day 3

Difficult Difficult Once a week 7.5 (5.0)

3 Results

3.1 Self-sensitivity

3.1.1 Average self-sensitivity

Cardinali et al. (2004) demonstrated that the self-sensitivity

is theoretically between 0 and 1 if observations are not corre-

lated. In 4D-VAR, Cardinali et al. (2004) denoted that anal-

ysis error covariance based on the Hessian representation

with truncated eigenvector expansion can introduce the self-

sensitivities greater than 1 for only a small percentage of the

cases. In contrast, the self-sensitivity in EnKF theoretically

has a value lesser than 1 (Liu et al., 2009). Nevertheless, the

self-sensitivity in this study shows a value greater than 1 be-

cause the sparse observations cause insufficient reduction of

the background and the observation operator used has nonlin-

earity in calculating the transport of CO2 concentrations. In

this study, 13 observations from the total of 76 801 observa-

tions used for data assimilation present a value greater than

1. This is only 0.02 % of the total number of observations,

which implies that the calculated self-sensitivity is generally

valid.

Because the spatial coverage and number of observa-

tions varies during the experimental period, the average self-

sensitivity throughout the experimental period was analyzed

to evaluate the overall characteristics of the self-sensitivity

at each observation site. As in previous studies (e.g., Peters

et al., 2007, 2010; Kim et al., 2014), the results for the year

2000 were excluded from the data analysis because 2000 is

considered as the spin-up period.

Figure 4 shows the average self-sensitivities at each ob-

servation site during the experimental period. Different sizes

of circles are used in some locations to distinguish sites at

the same location or at geographically close locations. In the

globe, negative correlations between the spatial density of

the observation sites and the self-sensitivities are not as ap-

parent as those reported by Cardinali et al. (2004) and Liu et
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Table 3. Information on the observation sites located in Asia, including the number of observations, number of rejected observations, MDM

values, innovation χ2 statistics, and the average bias of the model CO2 concentrations calculated by optimized fluxes. For the TAP_01D0

site, the numbers in parentheses are values used in previous studies, and the numbers without parentheses are the modified values based on

the innovation χ2 statistics in this study.

Site name Number of Number of rejected MDM Innovation χ2 Bias of model

observations observations CO2 concentration

BKT_01D0 207 0 7.5 0.57 −4.01

KZD_01D0 430 11 2.5 1.25 −0.4

KZM_01D0 384 9 2.5 1.22 −0.67

MNM_19C0 3304 0 3 0.16 −0.45

RYO_19C0 3149 108 3 0.53 −0.9

TAP_01D0 339 10 5 0.59 0.01

(269) (3) (7.5) (0.37) (−0.26)

UUM_01D0 454 10 2.5 1.03 0.26

WIS_01D0 489 3 2.5 0.72 −0.15

WLG_01D0 347 10 1.5 1.14 0.04

YON_19C0 2947 8 3 0.53 −0.9

Figure 4. Average self-sensitivity at each observation site from

2001 to 2009. The overlapping observation sites at the same loca-

tions or at close locations are distinguished by different sizes of

circles.

al. (2009). Negative correlations between the spatial density

of the observation sites and the self-sensitivities are apparent

in the Northern Hemisphere (NH). In particular, some obser-

vation sites in Asia show high sensitivities and a low spatial

density of observation sites. The observation sites located in

deserts, remote oceans, and high-altitude regions generally

exhibit low sensitivities.

The average self-sensitivities of each observation site cat-

egory over the globe, in the NH, tropics, and Southern Hemi-

sphere (SH) are shown in Fig. 5. The average global self-

sensitivity is 4.8 % (Fig. 5a), which implies that the analy-

sis extracts 4.8 % of its information from the observations

and 95.2 % from the background each assimilation cycle.

Although the average self-sensitivity seems low, the back-

ground contains the observation information included in the

previous analysis cycle, as reported in Cardinali et al. (2004).

Moreover, the surface CO2 fluxes in CarbonTracker are op-

timized by 5 weeks of observations during the assimilation

Figure 5. Histograms of the average self-sensitivity for each obser-

vation site category from 2001 to 2009 (a) around the globe and in

the (b) Northern Hemisphere, (c) tropics, and (d) Southern Hemi-

sphere. N(obs) in the upper right corner represents the number of

observations used in data assimilation.

process. Therefore, the cumulative impact over 5 weeks is

19.1 % much greater than 4.8 %, which only represents the

most recent week of each cycle. Although the cumulative

impact shows a higher value, the noncumulative impact mea-

sured in the most recent week of each cycle is used to discuss

the impact of observations because the noncumulative impact

has been generally used as the observation impact.

In the globe, the Mixed site category shows the high-

est average self-sensitivity, and the Difficult site category

shows the lowest average self-sensitivity (Fig. 5a), which
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Figure 6. Time series of the average self-sensitivity (red solid line with blue dots) and the number of observations (black solid line) with a

weekly temporal resolution (a) around the globe and in the (b) Northern Hemisphere, (c) tropics, and (d) Southern Hemisphere from 2001 to

2009. The dashed lines represent the regression lines for the average self-sensitivity (red dashed line) and the number of observations (black

dashed line).

is related to the model–data mismatch values shown in Ta-

ble 2. The model–data mismatch for the Mixed site cate-

gory is relatively low, while that of the Difficult site cate-

gory is high. Although the MBL site category has the low-

est model data mismatch, the MBL site category does not

show the highest average self-sensitivity due to the small

spread of the analysis CO2 concentrations at MBL sites. As

shown in Eq. (16), the model–data mismatch and the spread

of the analysis CO2 concentrations are two factors determin-

ing the self-sensitivity. Because MBL sites are located far

from strong source and sink regions of CO2, the spread of the

analysis CO2 concentrations at these sites is small. The aver-

age self-sensitivity in the NH is 5.3 %, which is the highest

of all global regions (Fig. 5b). Similar to the global results,

the average self-sensitivity is highest for the Mixed site cate-

gory, while that for the Difficult site category is lowest. The

average self-sensitivity in the tropics is 3.6 % (Fig. 5c); the

Mixed site category shows the highest values, but they are

not significantly higher than those of other categories. In the

tropics, there is no Continuous site category. In the SH, the

average self-sensitivity is 3.0 %, which is the lowest among

the global regions (Fig. 5d); the MBL site category shows the

highest values, and there is no Continuous site category.

3.1.2 Time series of self-sensitivity

Figure 6 shows the time series of the average self-sensitivity

and number of observations around the globe and in each re-

gion. Globally, two apparent characteristics can be identified

in the time series (Fig. 6a): first, the average self-sensitivity

decreases as the number of observations increases, show-

ing an inversely proportional relationship; second, there is

seasonal variability in the average self-sensitivity, showing

high values in summer and low values in winter. In the NH,

the above two features are more apparent than in other re-

gions (Fig. 6b). Because most of the observation sites are

located in the NH, characteristics of the average global self-

sensitivity are mostly determined by those in the NH. As the

number of observations in the tropics increases in the late

2000s, a slight inversely proportional relationship between

the average self-sensitivity and the number of observations

appears in the tropics (Fig. 6c). However, the average self-

sensitivity in the tropics does not show distinct seasonal vari-

ability. In the SH, an inverse relationship between the average

self-sensitivity and the number of observations is not clearly

shown (Fig. 6d), which is due to the insufficient increase of

the number of observations assimilated in the SH compared

with the other regions. However, the seasonal variability of

the average self-sensitivity appears clearly in the SH. There-

fore the inverse relationship is distinctly shown when the in-

crease of the number of observations is enough to cause the

decrease of the average self-sensitivity.

Figure 7 shows the average self-sensitivity for each ob-

servation site category. Although the MBL site category

has the second largest number of observations, the average

self-sensitivity shows little variation with respect to time

(Fig. 7a). Similarly, the average self-sensitivity for the Con-

tinental site category does not vary with respect to time
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Figure 7. Time series of the average self-sensitivity (red solid line with blue dots) and the number of observations (black solid line) with a

weekly temporal resolution for the (a) MBL, (b) Continental, (c) Mixed, (d) Continuous, and (e) Difficult observation site categories from

2001 to 2009. The dashed lines represent the regression lines for the average self-sensitivity (red dashed line) and the number of observations

(black dashed line).

(Fig. 7b). The average self-sensitivity of the Mixed site cat-

egory shows distinct seasonal variation (Fig. 7c). The Con-

tinuous site category displays distinct seasonal variability in

the average self-sensitivity and an inversely proportional re-

lationship between the average self-sensitivity and the num-

ber of observations (Fig. 7d). Because Continuous sites are

mostly located in North America with relatively large num-

bers (Fig. 3), the impact of a single observation decreases

as the number of observations increases. Therefore, the in-

versely proportional relationships between the average self-

sensitivity and the number of observations around the globe

(Fig. 6a) and in the NH (Fig. 6b) are mainly attributed

to the Continuous site category. The Difficult site category

shows a slight inverse relationship between the average self-

sensitivity and the number of observations (Fig. 7e).

3.1.3 Effect of the ensemble spread of the model

surface CO2 flux on the average self-sensitivity

Despite the inversely proportional relationship between the

self-sensitivity and the number of observations in the NH

time series (Fig. 6a), the average self-sensitivity in the NH

is higher than in the other regions (Fig. 5). In addition, the

average self-sensitivities in the NH and SH are greater in

summer than in winter (Fig. 6). The above two character-

istics imply that another factor in addition to the number of

observations affects the self-sensitivity. As briefly mentioned

in Sect. 3.2.1, another factor that affects the self-sensitivity is

the spread of the analysis CO2 concentrations. Therefore, the

average standard deviations of surface CO2 fluxes are evalu-

ated in Fig. 8 to investigate the influence of the surface CO2

flux uncertainties on the seasonal and regional characteristics

of the self-sensitivities. The ensemble spread of the back-

ground surface CO2 fluxes reflects the uncertainties, which

are projected onto the ensemble spread of the background
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Figure 8. Average standard deviation of background biosphere and

ocean fluxes in (a) JJA and (b) DJF; the posterior biosphere and

ocean fluxes optimized by 1-week observations in (c) JJA and

(d) DJF; and the posterior biosphere and ocean fluxes optimized

by 5 weeks of observations in (e) JJA and (f) DJF. The units are in

grams of carbon per square meter per week (g C m−2 week−1).

and analysis CO2 concentrations (i.e., HXa in Eq. 16) by the

transport model. The uncertainties of the background surface

CO2 fluxes over the terrestrial portion of the NH are high in

summer months (i.e., June, July, and August: JJA) (Fig. 8a)

compared with those in winter months (i.e., December, Jan-

uary, and February: DJF) (Fig. 8b). Due to the high surface

CO2 flux uncertainties in North America (Fig. 8a), the self-

sensitivities in North America are not lower than those in

the other regions (Fig. 4), regardless of the large number of

observations in this region. By contrast, despite the high un-

certainties of the surface CO2 fluxes in the Eurasian boreal

region, the self-sensitivities in this region cannot be evalu-

ated owing to the absence of observations. Instead, the self-

sensitivities of the observation sites near the Eurasian boreal

region show high values (Fig. 4).

The uncertainties of the optimized biosphere and ocean

fluxes from 1 week of observations, shown in Fig. 8c and d,

are reduced compared with those of the background fluxes,

shown in Fig. 8a and b. The magnitude of the reduction of

the surface CO2 flux uncertainties in North America is rela-

tively greater than in other regions, which is consistent with

the greater self-sensitivities found in North America. By con-

trast, when using 5 weeks of observations, the magnitude of

the reduction of the surface CO2 flux uncertainties is greater

in Asia than in North America (Fig. 8e, f).

Therefore, the surface CO2 flux uncertainty is one of the

components to determine the magnitude and seasonal varia-

tion of the self-sensitivities.

Figure 9. Average normalized information content for each obser-

vation site from 2001 to 2009. The overlapping observation sites

at the same locations or at close locations are distinguished using

different sizes of circles.

3.2 Information content

3.2.1 Average information content

Figure 9 shows the average information content at each ob-

servation site during the experimental period. This value was

calculated by averaging the ratio of information contents for

each cycle at each site during the experimental period. Note

that this average value is not the amount of information con-

tent extracted from observations but rather the relative ratio

of each site’s information content, normalized by the total

influence of all observations. Because the magnitude of the

information content at one observation site is proportional to

the self-sensitivity and the number of observations, the ob-

servation sites with a high average self-sensitivity or a large

number of observations show high information content. The

number of observations at one station depends on the tempo-

ral resolution, missing rate, and total period of observations.

Therefore, the observation sites located in North America

and Asia generally show high average information content.

To investigate the distribution of the information content

in each region, histograms of the average information con-

tent around the globe and in the NH, tropics, and SH were

generated (Fig. 10). The average information content was

80.2 % in the NH, 13.3 % in the tropics, and 6.5 % in the SH,

which implies that the observations in the NH are the most

informative. This is due to the large number of observations

and high self-sensitivities in the NH. Around the globe, the

most informative observation site category is the Continuous

category (Fig. 10a). The MBL, Continental, and Mixed site

categories show a similar magnitude of information content,

but the Difficult site category shows the lowest information

content. As in the globe, the Continuous site category is the

most informative in the NH (Fig. 10b). In the current Car-

bonTracker system, the observation sites of the Continuous

site category are mainly located in North America, except

for the three JMA sites, which are located in Asia. There-
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Figure 10. Histograms of the average information content for each

observation site category (a) around the globe and in the (b) North-

ern Hemisphere, (c) tropics, and (d) Southern Hemisphere from

2001 to 2009. N (obs) in the upper right corner represents the num-

ber of observations used in data assimilation.

fore, most of the information extracted from the Continuous

site category is used to constrain the surface CO2 fluxes of

North America. In the tropics, the MBL and Mixed site cate-

gories provide the most information (Fig. 10c). In the SH, the

MBL site category provides the most information, but infor-

mation extracted from the Continental, Mixed, and Difficult

site categories is rare (Fig. 10d). In addition, the information

from the Continuous site category is zero because there is no

Continuous data in the SH.

3.2.2 Time series of information content

Figure 11 shows the time series of the weekly averaged infor-

mation content for each site category in each region. In the

globe, the proportion of the information content of the Con-

tinuous site category increases steadily over time (Fig. 11a),

which is associated with the steady increase in the number of

observations of the Continuous site category over time. In the

NH, the increase of the proportion of the information content

and the number of observations of the Continuous site cate-

gory is more readily apparent (Fig. 11b). In the tropics, the

MBL and Mixed site categories provide the most informa-

tion, while the Difficult site category provides limited infor-

mation from 2004 onward (Fig. 11c) because, after this date,

observations from only one Difficult observation site (Bukit

Kotobang (BKT), Indonesia, 0.2◦ S, 100.32◦ E, 864 m) are

used in the data assimilation. In the SH, most information

is extracted from observations made in the MBL site cate-

gory (Fig. 11d). Because the number of observations in the

SH is much lower than in the other regions, the information

content extracted from the observations made in this region

is also lower. The information content in summer is greater

than in winter in the SH owing to the seasonal variability in

self-sensitivity.

To investigate the regional distribution of the information

content in the NH, the time series of the information contents

in Asia, North America, and Europe are shown in Fig. 12.

The information content in North America is greater than

that in the other regions because the self-sensitivities are high

and the number of observations increases with time in North

America. However, the rate of increase in the information

content is lower than that of the number of observations be-

cause self-sensitivity decreases as the number of observa-

tions increases in North America.

3.2.3 Relationship between the information content

and the optimized flux

Because CarbonTracker is a system that optimizes the sur-

face CO2 flux using measurements of surface CO2 concen-

trations, the effect of the observations on the optimized sur-

face CO2 fluxes is important. To investigate the relationship

between the information content and the optimized surface

CO2 fluxes, the root mean square differences (RMSDs) be-

tween the optimized surface CO2 fluxes and the background

fluxes were calculated (Fig. 13). The surface CO2 fluxes pre-

dicted by the dynamic model in Eq. (2) (i.e., background)

show a high RMSD in the NH, with the highest values in

North America, followed by Asia (Fig. 13a). In terms of

seasonal variation, the impact of the observations in JJA is

greater than in DJF (Fig. 13a, b). The large difference be-

tween the prior fluxes and the surface CO2 fluxes predicted

by the dynamic model implies that the assimilation of previ-

ous observations substantially affects the results. The RMSD

of the analyzed surface CO2 fluxes constrained by 1 week

of observations from the background fluxes in JJA is greater

in the NH compared with the other regions. The JJA RMSD

value for North America (especially in the midcontinental

region of the US) is the highest in the NH (Fig. 13c). Al-

though the RMSD of North America in DJF is lower than

that in JJA, the RMSD of North America is still greater than

that of other regions in DJF (Fig. 13d). The regions with a

high average information content are consistent with the re-

gions with a high RMSD (compare Figs. 9 and 13), which

implies that the observations from North America provide

more information in the first cycle than those from other re-

gions because the observations in North America are charac-

terized by high self-sensitivities and abundant observations.

By contrast, the RMSD values obtained in the first cycle in

other regions are not as high as those in North America. The

RMSD in Asia and other regions increases after 5 weeks of

optimization (Fig. 13e, f). In particular, the magnitude of the

RMSD in the Eurasian boreal region increases after 5 weeks

of optimization (Fig. 13e), which implies that, by the trans-

port of the CO2 concentrations, the observation information
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Figure 11. Time series of the average information content for each observation site category (a) around the globe and in the (b) Northern

Hemisphere, (c) tropics, and (d) Southern Hemisphere from 2001 to 2009.

Figure 12. Times series of the (a) weekly averaged information

content and (b) number of observations in Asia (black line), Europe

(blue line), and North America (red line) from 2001 to 2009.

from remote regions affects the optimization of the surface

CO2 fluxes in the Eurasian boreal region. This remote influ-

ence is due to the absence of observations in this region. In

Figure 13. RMSD between the background flux and prior flux in

(a) JJA and (b) DJF; RMSD between the background flux and pos-

terior flux optimized by 1-week observations in (c) JJA and (d) DJF;

and RMSD between the background flux and posterior flux opti-

mized by 5 weeks of observations in (e) JJA and (f) DJF. The units

are g C m−2 week−1.

addition, the 5-week assimilation lag is effective in optimiz-

ing the surface CO2 flux in this region. Therefore, a longer,

smoother window is necessary to optimize the surface CO2

www.atmos-chem-phys.net/14/13515/2014/ Atmos. Chem. Phys., 14, 13515–13530, 2014
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flux in Asia, where there are sparse observations; this may

imply that in the current version of CarbonTracker, the un-

certainty of the surface CO2 flux in Asia may be reduced

when using a longer, smoother window than that used for

North America. A study on the effect of various assimilation

window and ensemble sizes on the estimation of the surface

CO2 flux in Asia is under way to investigate which lag win-

dow and ensemble sizes are appropriate for Asia in Carbon-

Tracker.

4 Summary and conclusion

In this study, the effect of observations of CO2 concentrations

on the optimized surface CO2 fluxes in CarbonTracker was

evaluated by calculating the influence matrix for a 10-year

period from 2000 to 2009. CarbonTracker is a system used

to optimize the surface CO2 flux using EnKF as a data as-

similation algorithm. Most of the calculated influence values

were in the range of the theoretical limit, from 0 to 1, which

makes it possible to objectively diagnose the performance of

the data assimilation system used in this study.

The average global self-sensitivity is 4.8 %, which implies

that the impact of the background on the optimized flux is

95.2 %. The value of 4.8 % obtained in CarbonTracker is

lower than the 15 % value obtained from NWP models, as re-

ported by Cardinali et al. (2004) and Liu et al. (2009). How-

ever, as indicated by Cardinali et al. (2004), the background

fluxes predicted by the dynamic model already include in-

formation extracted from earlier observations used in previ-

ous cycles. Because the state vector used in CarbonTracker

includes 5 weeks of lag, the cumulative impact of the obser-

vations on the analysis is greater than the impact calculated

for a single assimilation cycle. The cumulative impact over

5 weeks is 19.1 %, much greater than 4.8 %, and the large

cumulative impact is confirmed by the RMSD of the surface

CO2 fluxes associated with each assimilation process.

The self-sensitivity and spatial coverage of the observa-

tion sites are inversely correlated in the NH, whereas these

factors are not apparently related in the tropics and SH. The

lower correlation between the self-sensitivity and the spatial

coverage of the observation sites in the tropics and SH is at-

tributed to either the sparseness of the observation sites or

the locations of the observation sites which are not appropri-

ate for detecting the variability of CO2 concentrations with

a high temporal resolution but are appropriate for detecting

the global trend of the background CO2 concentrations. By

contrast, the observation sites near the Eurasian boreal region

show high self-sensitivity because there are no available ob-

servations in the Eurasian boreal region.

The self-sensitivity time series is characterized by sea-

sonal variations. In both hemispheres, the self-sensitivity in

summer is greater than in winter, which is clearly evident

in the Mixed and Continuous site categories and is asso-

ciated with the background surface CO2 flux uncertainties.

The number of observations used in data assimilation in-

creases over time, which causes the average self-sensitivities

to decrease. The decreasing trend of the self-sensitivity over

time for the Continuous site observations in North America

may indicate the limited impact of additional observations

in this region. Schuh et al. (2013) reported that additional

tower measurements (i.e., observations in the Continuous site

category) in the Corn Belt region of the US did not signifi-

cantly alter the surface CO2 flux estimates for 2008, which is

consistent with the low self-sensitivity detected over North

America in the same period. Therefore, under the current

CarbonTracker framework, to obtain the beneficial effect of

additional observations on the surface CO2 flux analysis, new

observations should be added in regions with a low spatial

density of observation sites (e.g., Asia).

The observation sites with a high average self-sensitivity

and a small number of observations show low average in-

formation content, whereas the observation sites with a low

average self-sensitivity and a large number of observations

show high average information content because the range of

average self-sensitivity is bounded from 0 to 1, but the range

of the number of observations is large. Therefore, the Con-

tinuous site category shows high average information con-

tent. In general, the information extracted from observations

is concentrated in the NH, especially in North America. A

strong correlation exists between the information content and

the optimized surface CO2 fluxes. The high information con-

tent found in regions with a large number of observations

implies that much of the information is extracted from ob-

servations, and as a result, the fluxes are optimized quickly

in a relatively short period. However, the surface CO2 fluxes

in regions without local observation sites (e.g., Siberia) are

optimized by remote observations during relatively long as-

similation windows with a lag.

The effect of various observations on the analyzed surface

CO2 fluxes can be calculated using the method suggested in

this study. More CO2 observations become available in data

assimilation for estimating the surface CO2 fluxes. These ad-

ditional sources include CONTRAIL data, which are aircraft

observations (Machida et al., 2008); column-averaged CO2

concentrations retrieved from the Japanese Greenhouse gases

Observing SATellite (GOSAT) (Yokota et al., 2009); and data

from the Total Carbon Column Observing Network (TC-

CON), which are observed by ground-based Fourier trans-

form spectrometers (Wunch et al., 2010). As a next step, the

impact of various observations on the optimization of surface

CO2 fluxes can be evaluated using the method suggested in

this study.
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