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Abstract. This paper details a new method of regression for

sparsely sampled data sets for use with time-series analy-

sis, in particular the Stratospheric Aerosol and Gas Experi-

ment (SAGE) II ozone data set. Non-uniform spatial, tem-

poral, and diurnal sampling present in the data set result in

biased values for the long-term trend if not accounted for.

This new method is performed close to the native resolution

of measurements and is a simultaneous temporal and spatial

analysis that accounts for potential diurnal ozone variation.

Results show biases, introduced by the way data are prepared

for use with traditional methods, can be as high as 10 %. De-

rived long-term changes show declines in ozone similar to

other studies but very different trends in the presumed recov-

ery period, with differences up to 2 % per decade. The regres-

sion model allows for a variable turnaround time and reveals

a hemispheric asymmetry in derived trends in the middle to

upper stratosphere. Similar methodology is also applied to

SAGE II aerosol optical depth data to create a new volcanic

proxy that covers the SAGE II mission period. Ultimately

this technique may be extensible towards the inclusion of

multiple data sets without the need for homogenization.

1 Introduction

The Stratospheric Aerosol and Gas Experiment (SAGE) II

flew onboard the Earth Radiation Budget Satellite (ERBS)

for over 20 years from its launch in October 1984 until its

retirement in August 2005. It employed the solar occulta-

tion technique to measure multi-wavelength slant-path atmo-

spheric transmission profiles at seven channels during each

sunrise and sunset encountered by the spacecraft. During its

operation, SAGE II produced high-precision vertical profiles

of atmospheric ozone (∼ 1 % 1σ uncertainty in the mid-

dle stratosphere) with excellent vertical resolution (∼ 1 km)

(Damadeo et al., 2013). The combination of precise mea-

surements and a long data record has seen SAGE II data

consistently used for long-term ozone trend analysis (e.g.,

WMO, 1988, 2011; SPARC, 2010). Traditionally this is per-

formed via multiple linear regression of monthly zonal mean

ozone data to a set of predictor variables. However, given the

sparse sampling of SAGE II measurements (∼ 30 observa-

tions per day), biases can be introduced if the data are not

carefully treated. Herein we present a new way to perform

time-series analysis on a sparsely sampled data set, in par-

ticular SAGE II, and compare the results and influence on

trends with monthly zonal mean methods. The method out-

lined in this paper is similar to that of Bodeker et al. (2013)

in that it utilizes a simultaneous temporal and spatial regres-

sion (though the terms used and how the regression is applied

are different), but differs fundamentally in that it regresses to

daily mean values separated by event type.

2 Predictor variables

The choices of predictor variables are important and thus are

chosen based on atmospheric variability that ozone has his-

torically shown to be responsive to, namely seasonal cycle,

quasi-biennial oscillation (QBO), El Niño–Southern Oscilla-

tion (ENSO), solar variability, volcanic eruption, and long-

term trend terms. Ideally, each predictor variable is orthog-

onal to each other predictor variable. Since this is almost

never the case, predictor variables are pretreated to create

normalized orthogonal functions from multiple component

data sets using empirical orthogonal function (EOF) analy-

sis (also known as principal component analysis). When the
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use of EOF analysis becomes impossible due to having only

one component data set, an orthogonal function is created

by shifting the original function in time until the dot prod-

uct between the shifted function and original function is zero

over the overlap period, hereafter referred to as the temporal

shift method. The use of orthogonal functions for predictors

is better than the use of a single term because it allows for the

regression model to account for both magnitude and phase

changes in the response. Ultimately, however, each set of or-

thogonal functions, while orthogonal internally within a set,

is not necessarily orthogonal between sets.

With these tools in mind, a full set of predictor vari-

ables is created from component data sets in order to reduce

the amount of multicollinearity. The seasonal cycle is sim-

ply a Fourier series with periods of 12 (annual), 6, 4, and

3 months (semiannual). To create a set of QBO predictor

variables, EOF analysis is performed on compiled monthly

mean equatorial wind data (http://www.geo.fu-berlin.de/en/

met/ag/strat/produkte/qbo/) at seven pressure levels (70, 50,

40, 30, 20, 15, and 10 hPa), resulting in seven orthogonal ba-

sis functions. The leading four terms account for over 99 %

of the variance in the QBO data, so these are used as the

QBO predictor variables. To create a pair of ENSO predictor

variables, the temporal shift method is applied to multivariate

ENSO index data (http://www.esrl.noaa.gov/psd/enso/mei/).

A pair of solar predictor variables is created by applying

the temporal shift method to solar 10.7 cm radio flux data

(ftp://ftp.geolab.nrcan.gc.ca/data/solar_flux/). Each of these

ancillary data sets is smoothed before the creation of orthog-

onal functions (Fig. 1) in order to minimize the effect of noise

on the creation of orthogonal functions.

Two separate terms are explored for use to represent long-

term changes in ozone. One is a simple piecewise linear term

joined at the beginning of 1997 (i.e., both terms are linear,

with one being zero everywhere before 1997 and the other

being zero everywhere during 1997 and after) like that in

Kyrölä et al. (2013). The other is the use of terms repre-

senting equivalent effective stratospheric chlorine (EESC),

which represents the total amount of chlorine and bromine

loading in the stratosphere that contributes to ozone deple-

tion. EOF analysis is performed on EESC data sets (Newman

et al., 2007) for multiple mean ages of air (1, 2, 3, 4, 5, and 6

years) to retrieve two primary orthogonal functions (Fig. 1)

that account for over 99 % of the EESC data variance. A sim-

ple linear term in addition to EESC terms could also be in-

cluded, but we found that it results in pathological behavior

in the tropics in extrapolated data and is thus omitted.

The creation of a predictor variable to represent volcanic

eruptions is ideally performed with atmospheric aerosol data.

Often data from periods of heavy aerosol loading are omitted

(e.g., Randel and Wu, 2007; Kyrölä et al., 2013; Bourassa

et al., 2014) or a simple functional form for an eruption is

used (e.g., Stolarski et al., 2006; Bodeker et al., 2013), but

this does not take into account the varying times of injection,

the change in rate of accumulation via transport, or varying
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Figure 1. Orthogonal functions used for the regression. There are four QBO EOFs (blue [1], red
[2], green [3], and black [4]), two time-shifted ENSO orthgonal functions (blue [1] and red [2]), two
time-shifted solar orthogonal functions (blue [1] and red [2]), and two EESC EOFs (blue [1] and red
[2]).
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Figure 1. Orthogonal functions used for the regression. There are

four QBO EOFs (blue [1], red [2], green [3], and black [4]), two

time-shifted ENSO orthogonal functions (blue [1] and red [2]), two

time-shifted solar orthogonal functions (blue [1] and red [2]), and

two EESC EOFs (blue [1] and red [2]).

decay rates, which are all functions of latitude. Other aerosol

databases exist, but these are representative of total aerosol

instead of just eruptive effects and seasonality cannot be triv-

ially removed. A seasonal cycle in a predictor variable would

alias into the seasonal cycle in ozone. Since the seasonal vari-

ation of ozone is related to but not entirely dependent upon

aerosol, it is preferential to have a purely eruptive term. The

same is true for QBO effects or spatially varying means in the

aerosol data set. SAGE II has aerosol measurements along-

side ozone measurements, so in theory these data could be

used as a predictor variable. However, these data have noise

that is autocorrelated, making them a poor choice for use

as a predictor variable. In addition, the effects of aerosol on

ozone are not purely local (i.e., chemical reactions with lo-

cal aerosol) but also dependent upon radiative effects from

aerosol layers above and below the altitude layer in ques-

tion. In the end, we chose to create our own volcanic pre-

dictor variable based on stratospheric aerosol optical depth

in the 1020 nm channel. This procedure is described in Ap-

pendix A.
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In addition to predictor variables that act as proxies for

geophysical variability, a number of cross-terms (products of

terms) can also be considered. In the end, only one is in-

cluded. The data used for the QBO proxy come from equa-

torial data up to an altitude of ∼ 32 km. However, it has been

shown that the frequencies at which the QBO oscillates are

different at higher latitudes than at the Equator (Tung and

Yang, 1994) and at higher altitudes (Remsberg and Lingen-

felser, 2010). While the use of a proxy is better than sim-

ply using oscillating functions of different frequencies (since

the QBO changes frequencies over time) and the use of or-

thogonal functions allows for the change in amplitude and

phase of the response, it cannot account for the change in

frequencies. In other words, regressing a QBO proxy from

the Equator at higher latitudes will not capture all of the vari-

ation, nor will regressing a QBO proxy from lower altitudes

at higher altitudes even at the Equator. It has been shown,

however, that the annual cycle modulates the QBO at higher

latitudes (Tung and Yang, 1994), and thus the inclusion of

this cross-term would better fit the response of ozone to the

QBO at higher latitudes. Ideally a multi-dimensional QBO

proxy would be used that captures global variability, but to

the authors’ knowledge, no such proxy exists.

3 Pretreatment of data

3.1 SAGE II observations

SAGE II was launched into a 57◦ inclined orbit and took two

measurements per orbit. Each measurement was either a sun-

rise or sunset as seen by the spacecraft (spacecraft event type)

and also either a sunrise or sunset as would be seen by an ob-

server on the ground (local event type). Most of the time the

spacecraft and local event types are the same, except occa-

sionally at high latitudes. Given the nature of the orbit and

observation technique, the instrument took measurements in

two ground-track swaths across the surface of the Earth in a

given day: one made of spacecraft sunrises and one made of

spacecraft sunsets (Fig. 2). Each swath spans about 3 to 10◦

in latitude for high to low latitudes, respectively, and ∼ 360◦

in longitude.

3.2 Data filtering

For the purpose of this work, the same basic methodology

is applied to the same source data, with the difference be-

ing how those data are pretreated. The process begins by ex-

tracting SAGE II version 7.0 ozone (O3) number density pro-

files for all events not flagged as “dropped” in the SAGE II

inversion algorithm and for all altitudes above the reported

tropopause. A modification of the Wang et al. (2002) filter-

ing criteria is applied, which includes the following: exclu-

sion of any profile where the O3 uncertainty exceeds 10 %

between 30 and 50 km, exclusion of all data below where the

O3 uncertainty exceeds 200 % below 30 km, and exclusion
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Figure 2. Locations of SAGE II events for a single day. Ground-track swaths are separated by satel-
lite event type. While local event types are typically uniform within a swath, they can occasionally be
different at high latitudes.
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Figure 2. Locations of SAGE II events for a single day. Ground-

track swaths are separated by satellite event type. While local event

types are typically uniform within a swath, they can occasionally be

different at high latitudes.

of any data where the O3 uncertainty exceeds 100 % above

30 km. These filtering criteria also include aerosol filters to

remove data within and below clouds (typically within the

troposphere) and also to remove periods of heavy aerosol

interference from the volcanic eruption of Mount Pinatubo.

However, since this regression includes a volcanic term, data

within the eruptive periods are not filtered out via aerosol

criteria.

3.3 Data binning

The binning of data is one of the primary differences be-

tween the two methods. The first method, hereafter referred

to as MZM (monthly zonal mean), is simply to take all data

within a latitude zone (in this case 10◦ wide) and within a

particular month and compute the mean value at each alti-

tude. The time associated with this mean value is the center

of the month and the latitude is the center of the zone. Dif-

ferent event types are not separated for these monthly zonal

means. The second method, hereafter referred to as STS (si-

multaneous temporal and spatial), utilizes the data on a daily

basis for each altitude. For each day, the events are separated

into four subsets governed by the combination of local and

spacecraft sunrises and sunsets (most of the time each day

only contains two subsets of events). The mean of each sub-

set is taken and the time associated with each mean is at the

center of the day and the latitude is the mean of the latitudes

of each event in the subset. The time of day is actually irrele-

vant here, since no diurnal model is used and each daily mean

is already separated by event type, which will be treated dif-

ferently as shown later.

www.atmos-chem-phys.net/14/13455/2014/ Atmos. Chem. Phys., 14, 13455–13470, 2014
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3.4 Data averaging

We can consider, for each subset of events that we are taking

a mean, that we have a collection of N data points (Y ). The

daily mean and standard deviation of the mean are simply the

following:

Y =
1

N

N∑
i=1

Yi, (1)

σY =

√√√√ 1

N(N − 1)

N∑
i=1

(Yi −Y )
2. (2)

Each data point also has some uncertainty value (δ) such that

δY =
1

N

√√√√ N∑
i=1

δ2
i . (3)

Therefore, for each subset, the mean value η is simply Y and

the uncertainty in η is

δη =

√
σ 2

Y
+ δ2

Y
. (4)

In this way, the uncertainty in the daily or monthly mean is

representative both of the uncertainty in the measurements

and the overall variance. This is important, particularly at

higher latitudes, where it is possible that one or two measure-

ments of a subset dip into the vortex and produce abnormally

low values that are not representative of the entire zonal band.

4 Regression methodology

After filtering and binning the data for both the MZM and

STS methods, the following functional form is regressed to

the data:

η(θ, t)=
∑
i

∑
j

βi,j2i(θ)Tj (t), (5)

where η is the concentration of O3, 2(θ) is the functional

form of the latitude dependence, T (t) is the functional form

of the temporal dependence, and β are the coefficients of the

regression. The concept of a two-dimensional regression is

similar to the work of Bodeker et al. (2013). The measure

of time for the purposes of regression is year fraction (e.g.,

1994.655). This regression is done separately for each alti-

tude. For the MZM method, 2(θ) is identically 1, since the

data are regressed separately within each latitude zone. For

the STS method, 2(θ) is a series of seven Legendre polyno-

mials in spherical harmonics (no longitudinal dependence),

which have the properties of a zero derivative at the poles and

mutual orthogonality. The temporal dependence is simply the

sum of the predictor variables and a constant. However, the

STS method also includes a conditional temporal term based

on the local event type. This accounts for any differences in

the mean values between sunrise and sunset events based on

diurnal variation in the data, be it geophysical or algorithmic

in origin.

A generalized least-squares regression technique, outlined

in Appendix B, is applied, which accounts for autocorrela-

tion, heteroscedasticity, and data gaps. Due to the nature of

the data, very careful consideration is given when calculat-

ing the autocorrelation coefficient φ for the STS regression

method. Only daily means with the same satellite event type

can be correlated, and even then the temporal and spatial

separation must be considered due to gaps in the data. We

make the assumption that the level of autocorrelation does

not change significantly over sufficiently small separations,

because the amount of autocorrelation is related to geophys-

ical variability that is not well modeled, which is nearly con-

stant over sufficiently small time and spatial scales. Thus, any

consecutive data points that are within 5 days and 20◦ in lat-

itude are included in the calculation of φ. No dependence

upon the temporal or spatial separation was found within

these limiting criteria, and so a simple lag-1 autocorrelation

was still considered. In this way, a set of pairs of points was

created for each event type, which were then all fed into the

calculation of φ (Eq. B12) to determine a single value for use

in the autocorrelation correction. The autocorrelation correc-

tion is then iterated until φ converges to within 0.05.

To account for the iterative correction of the heteroscedas-

ticity, it was assumed that values of the adjustment vector k

in Eq. (B13) had a simultaneous spatial and seasonal depen-

dence (or purely seasonal for the MZM method). Regression

was thus performed to a combination of the seasonal and spa-

tial predictor variables. The fit to these data was used as the

values of k, and this process is iterated until k converges to

values sufficiently near 1.

Residual filtering is performed using the deweighted, un-

correlated residuals (ε in Eq. (B7), which have zero mean and

unit variance) to remove outliers in the data. In order to cre-

ate a filtering criterion, the median absolute deviation (MAD)

is computed (Muller, 2000). Values of ε that deviate from

the median by six MADs are omitted in future processing.

Because residual filtering is performed on the deweighted,

uncorrelated residuals, only data that both disagree with the

model and are highly uncorrelated with any other data are

omitted. This process is iterated and the number of addi-

tional data points omitted decreases rapidly after each iter-

ation. Since the filtering is performed with the use of MADs

instead of standard deviations, an iteration can converge to

exclude no additional data points, though in practice only a

few iterations are required.

When performing regressions to data of this type, a com-

mon problem can be the excess of predictor terms. To over-

come this, one can use a priori knowledge of what terms are

and are not significant, or one can use all terms and manu-

ally determine which terms are statistically insignificant and

Atmos. Chem. Phys., 14, 13455–13470, 2014 www.atmos-chem-phys.net/14/13455/2014/
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omit those terms. This can, however, prove to be a tedious

process, particularly when performing the same regression

repeatedly for multiple latitudes and altitudes and with po-

tentially several hundred terms. We instead choose to auto-

mate this process. A predictor term could be considered sta-

tistically significant if it is statistically different from zero

at the 2σ (∼ 95 %) level. In other words, if the ratio of the

1σ uncertainty in a coefficient (σβi,j ) to the coefficient itself

(βi,j ) is less than 0.5, it can be considered significant. Af-

ter the residual filtering process is completed, an analysis of

this ratio is done. During the first iteration, all coefficients

with a ratio greater than 8 are omitted from future process-

ing and the entire process is repeated (from the beginning).

This threshold is iteratively lowered until only those coeffi-

cients that are statistically significant at the 2σ level remain.

In this way, all final coefficients are statistically significant

at the 2σ level. This does not, however, mean that all result-

ing terms are non-negligible. However, excluding predictor

terms that are negligible (i.e., their contribution to the overall

variance is minimal) is, in practice, unnecessary. Addition-

ally, while each coefficient is statistically significant at the 2σ

level, groups of terms (e.g., piecewise linear slopes or EESC)

can collectively become statistically insignificant depending

upon their interactions.

5 Regression quality and results

5.1 Residual analysis

A quick look at some examples of the fit (Fig. 3) shows that

the algorithm works well, with the exception of potential

overfitting in the regions of data gaps. However, as with any

regression technique, great care must be taken in interpreting

the results. The process is ultimately a numerical one, and

just because the solution converges and yields a result does

not mean that result is accurate. As such, a proper investi-

gation of the total residuals is still required to ensure that

the data and model reasonably agree. If the data and model

agree well, one would expect no systematic biases to emerge

in the residuals. A quick look at the total and uncorrelated

residuals (Fig. 4) shows this to be the case. The total and

uncorrelated residuals show no systematic bias with respect

to time or latitude. However, a clear pattern in the spread of

the residuals can be seen as a function of latitude, though

this is expected. The total residuals are a combination of

the correlated and uncorrelated residuals. Correlated residu-

als (or those removed from the lag-1 autocorrelation correc-

tion) represent geophysical variability that is well sampled

but not well modeled. Uncorrelated residuals (or those that

remain after the lag-1 autocorrelation correction) represent

instrumental noise present in the data as well as geophysical

variability that is not well sampled, which mathematically

represent the heteroscedasticity in the data.
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Figure 3. Some examples of the STS regression. Data within the stated latitude bin are shown in
blue while a fit at the center of the bin is shown in red. The data shown have autocorrelation and
diurnal variation removed for the purposes of plotting.

32

Figure 3. Some examples of the STS regression. Data within the

stated latitude bin are shown in blue, while a fit at the center of

the bin is shown in red. The data shown have autocorrelation and

diurnal variation removed for the purposes of plotting.

The residuals from the regression can be used to ascertain

the quality of the model and the data set itself, independent

of any offset in the mean value. Since the mean of the residu-

als is nearly zero (as it should be), the spread of the residuals

is used instead. To avoid the over-influence of outliers in the

data, a weighted running mean of the absolute value of the

residuals as a function of latitude at a particular altitude is

taken. The result is shown in Fig. 5. Analysis of the uncorre-

lated residuals reveals the amount of uncertainty in the data

that are being regressed (in this case, daily means). The un-

correlated residuals will increase in the presence of increased

noise in the instrument data (e.g., at higher and lower alti-

tudes) or in the vicinity of increased geophysical variability

within a daily mean (e.g., in the tropics, where each daily

mean spans a greater range in latitude, or at high latitude in

the local winter, where measurements may dip into and out

of the vortex), but the attribution of this uncertainty to each

source separately cannot be determined. However, the contri-

bution to the uncertainty from unresolved geophysical vari-

ability could be minimized by applying the regression model

to the data at their native resolution. The difference between

the total and uncorrelated residuals are the correlated residu-

als. These correlated residuals are a measure of the discrep-

ancy between the model and the data. Namely, they are a re-

sult of the geophysical variability that is well sampled but not

well modeled as well as any instrumental variability (e.g., bi-

ased meteorological or ephemeris input data). Residual anal-

ysis is useful, because applying the same model to different

data sets could be used to independently assess the quality

of the measurements via the uncorrelated residuals, as well

as to ascertain deficiencies in the model or the data itself via

analysis of the total residuals. A preliminary version of this

technique was applied in Damadeo et al. (2013) to both the

www.atmos-chem-phys.net/14/13455/2014/ Atmos. Chem. Phys., 14, 13455–13470, 2014
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Figure 4. Total and uncorrelated residuals (as percentages) as a

function of both time and latitude at 25 km from the STS regression

(see Eq. B7). Results are similar at other altitudes, though scales

may change.

previous (v6.2) and current (v7.0) versions of the SAGE II

data set to demonstrate and assess improvements made to the

new version.

5.2 Predictor coefficient analysis

One of the problems with multiple linear regression is the is-

sue of multicollinearity, or the possibility that two or more

predictors are highly correlated. Multicollinearity, or even

the presence of any correlation between predictors, does not

affect the regression results as a whole (short of the possibil-

ity of poor inversion for numerical algorithms), but it does af-

fect the interpretation of individual predictors. For example,

if aerosol data were used (instead of just a volcanic proxy)

that had an annual cycle in addition to the fitting of an annual

cycle term, the annual cycle term would be biased because

some of the annual variation in ozone would be attributable to

the aerosol term. Fortunately, this effect is captured in the un-

certainties in the predictor coefficients, but it still illustrates a

problem when attempting to interpret single-predictor coef-

ficients. One could analyze the covariance matrix that results

from the regression to determine the level of correlation be-

tween predictors, but care should nonetheless be taken when

interpreting results.

Due to these possible shortcomings, the analysis of any

single predictor requires the analysis of all of the predictors

in order to ensure they are reasonable. The annual cycle is

fairly trivial with the exception of some overfitting in regions

of missing data (Fig. 3) and ENSO lacks any substantial con-

tribution above 20 km (not shown). Since long-term trends

are discussed later, this section will take a brief look at the

remaining influential terms: QBO, solar cycle, and volcanic.

It has been shown that SAGE II data quality is best between
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Figure 5. Spread of the total and uncorrelated residuals as a function of latitude and altitude from
the STS regression. White regions show areas where insufficient data exist, generally due to being
in the troposphere or early profile termination during retrievals.
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Figure 5. Spread of the total and uncorrelated residuals as a function

of latitude and altitude from the STS regression. White regions show

areas where insufficient data exist, generally due to being in the

troposphere or early profile termination during retrievals.

20 and 50 km (Damadeo et al., 2013) and there are fewer

gaps in sampling below 60◦ in latitude. As such, the follow-

ing analysis will focus on this region.

5.2.1 QBO

After the annual cycle, the QBO is the largest source of vari-

ation in ozone. Figure 6 shows the amplitude of the response

of ozone to the QBO as a function of latitude and altitude as

a percentage of the local mean value (i.e., the mean value is a

function of latitude and altitude). The amplitude is computed

as the root-mean-square amplitude multiplied by
√

2, and is

analogous to half of the peak-to-peak amplitude for a sine

wave. As can be seen, the influence of the QBO is largest in

the tropics in the lower and middle stratosphere as well as in

the middle stratosphere at midlatitudes. Figure 7 shows ex-

amples of the QBO term at the Equator as a function of time

and altitude and at 23 km as a function of time and latitude.

The altitude-dependent and latitude-dependent phase lags are

easily noticeable in the two figures. However, it should be

noted that some deficiencies still remain due to the fact that

the QBO proxy term originated from data at the Equator. The

frequencies at altitudes above where the proxy is available do

not change and the frequencies at midlatitudes are slightly

different only because of the inclusion of a cross-term with

the annual cycle. It should also be noted that the amplitude of

the QBO is larger around the time of the Pinatubo volcanic

eruption, which may be a physical response of the QBO it-

self to the Pinatubo eruption (Thomas et al., 2009), or it may

simply be a byproduct of correlation with the volcanic term.

Additionally, the fact that the regression is both temporal and

spatial means that the inability to accurately model the QBO

Atmos. Chem. Phys., 14, 13455–13470, 2014 www.atmos-chem-phys.net/14/13455/2014/
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Figure 6. Amplitude of oscillation of the QBO term as a percentage of the local mean.

35

Figure 6. Amplitude of oscillation of the QBO term as a percentage

of the local mean.

Figure 7. Examples of the QBO term. Contour lines are plotted at

intervals of 2 %.

at higher latitudes will detract from the ability to accurately

model the QBO at lower latitudes.

5.2.2 Solar

To include a response of ozone to the solar cycle, the regres-

sion model can include either one or two solar predictor vari-

ables. The biggest differences between one or two terms are

seen in the tropics between 25 and 35 km. The amplitudes of

the oscillation are similar, as shown in Fig. 8, with the excep-

tion of a very weak oscillation in this region if only a single

term is used. This is because, when two terms are used, the

solar term, if allowed to change phase, exhibits strong cor-

relations with the volcanic term in this region as shown in

Fig. 9. Here, the solar cycle is shifted later in phase by about

2 years to coincide with the peak of volcanic increase sur-

rounding the Pinatubo eruption, which is similar to results

shown in Remsberg (2014).
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Figure 8. Amplitude of oscillation of the solar term as a percentage of the local mean for the use of
one and two solar proxy terms while including a volcanic term. Contour lines are plotted at intervals
of 0.5%.
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Figure 8. Amplitude of oscillation of the solar term as a percentage

of the local mean for the use of one and two solar proxy terms while

including a volcanic term. Contour lines are plotted at intervals of

0.5 %.

The inclusion of a volcanic term reduces the overall resid-

uals regardless of whether one or two solar terms are in-

cluded (not shown), but there is a negligible difference in

residuals and resulting trends between the use of one or

two solar terms if a volcanic term is also used. It is unclear

whether the response of ozone to the solar cycle really does

lag by about 2 years in the mid-stratosphere in the tropics

or whether the algorithm is simply trying to attribute some

of the response of ozone to aerosol to the solar cycle instead

(Solomon et al., 1996).

5.2.3 Volcanic

The results of the volcanic term need to be interpreted very

carefully. On the one hand, it is clear from the data that ozone

responds to changes in aerosol, particularly after Pinatubo.

On the other hand, the SAGE II inversion algorithm can pro-

duce biases in ozone in the presence of high aerosol loading

(Wang et al., 2002), and so some of the response to aerosol,

particularly at lower altitudes in the tropics, can have algo-

rithmic rather than physical origins. However, omitting data

based on aerosol extinction (e.g., Wang et al., 2002) and as-

suming that the influence of aerosol has been removed would

be incorrect.

A look at the response of ozone near the Pinatubo erup-

tion reveals both physical and algorithmic responses as well

as regressive responses. Figure 10 shows the peak of the vol-

www.atmos-chem-phys.net/14/13455/2014/ Atmos. Chem. Phys., 14, 13455–13470, 2014
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Figure 9. Examples of the solar term for the use of one and two solar proxy terms while including a
volcanic term. Contour lines are plotted at intervals of 0.5%.
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Figure 9. Examples of the solar term for the use of one and two

solar proxy terms while including a volcanic term. Contour lines

are plotted at intervals of 0.5 %.

canic term in the few years after the Pinatubo eruption as

a percentage of the mean. Ozone shows a positive response

above 28 km with a corresponding negative response just be-

low that in the tropics, which are similar to results in Bodeker

et al. (2013). These responses can be the result of local (i.e.,

chemical) effects of aerosol, radiative (e.g., thermal and/or

photochemistry) effects of aerosol at other altitudes, or algo-

rithmic responses of ozone to aerosol retrievals. The anoma-

lously large responses at low altitudes are the result of over-

fitting to data gaps (e.g., Fig. 3 top). However, given the re-

sults from the QBO and solar terms, some correlation be-

tween these terms exists. Regardless of these correlations,

however, it is clear that ozone does respond to changes in

aerosol in SAGE II data and that the use of a volcanic term

in these regressions is necessary.

6 SAGE II sampling and biases

As previously mentioned, SAGE II took ∼ 30 observations

per day in two ground-track swaths that each span 3 to 10◦

in latitude and∼ 360◦ in longitude (Fig. 2). This sparse sam-

pling caused SAGE II measurements at a particular latitude

to occur at roughly the same times of the year, resulting

in full seasonal coverage at midlatitudes, and restricted (or

sparser) seasonal coverage at high (or low) latitudes. Fig-

ure 11 shows SAGE II sampling at both the beginning and

end of the mission. Sampling is sparser at the end of the

mission due to problems with the azimuth pointing system

forcing the instrument to operate at 50 % duty cycle starting

in late 2000. The increased spread during the later period is

a result of an increased rate of precession of the orbit. This

demonstrates a form of potential bias due to sampling present

throughout the mission, though more pronounced in the later
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Figure 10. Peak of volcanic term near the time of Pinatubo as a percent of mean. Anomalously high
values at lower altitudes are the result of overfitting to gaps in data as shown in Fig. 3.
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Figure 10. Peak of volcanic term near the time of Pinatubo as a

percentage of mean. Anomalously high values at lower altitudes are

the result of overfitting to gaps in data as shown in Fig. 3.
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Figure 11. Locations of daily means for each satellite event type (sunrises are blue and sunsets are
red) at the beginning and end of the mission.
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Figure 11. Locations of daily means for each satellite event type

(sunrises are blue and sunsets are red) at the beginning and end of

the mission.

period, where the orbit crosses a particular latitude but at pro-

gressively earlier times each successive year. If the sampling

were constant over the lifetime of the instrument, it would

only result in biases in the MZM seasonal cycle. However,

because the sampling drifts over time, this bias also aliases

into the MZM long-term trend.

Given the nature of this sampling, another potential prob-

lem could clearly arise if any difference existed between the

mean values of sunrise and sunset events. Figure 12 illus-

trates the differences in the means of local sunrise and sunset

event types. These differences can be the result of geophys-

ical variability and/or algorithmic biases (Damadeo et al.,

2013). Regardless of the source, however, these differences

are present in the data and must be accounted for in the re-

gression.

Due to this nonuniform sampling, every monthly zonal

mean value computed for ozone is biased. The primary rea-

son is that the data sampled within a given month and zonal

Atmos. Chem. Phys., 14, 13455–13470, 2014 www.atmos-chem-phys.net/14/13455/2014/
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Figure 12. Results of the local event type piecewise term from the STS regression plotted as the
percent difference between sunrise and sunset events.
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Figure 12. Results of the local event type piecewise term from the

STS regression plotted as the percent difference between sunrise

and sunset events.

band has a mean sampling time and place that is not at the

exact center of the month and zone. The true spatial and tem-

poral center of each monthly zonal band can be computed

and values can be extracted from the results of the STS re-

gression method. These values can then be compared to the

results of the MZM regression method to produce Fig. 13.

Figure 13 shows the spatial and temporal dependence of the

bias (i.e., how the MZM method is biased compared to the

STS method) at two altitudes. Since the MZM method does

not differentiate between event types, the bias is computed

against the STS method for each type, showing how the

MZM method is biased against each type, but only for where

data of that type exist. As can be seen, biases in individual

monthly zonal bands exist as large as 10 % due to nonuni-

form spatial and temporal sampling, and large systematic bi-

ases exist at higher altitudes due to differences between event

types. Large gaps in sampling that are asymmetric in event

type (both in location and bias) are seen later in the mission,

illustrating the problem with not accounting for the differ-

ences in sampling and event type in the regression.

7 Long-term trends

The primary focus of time-series analysis of long-term ozone

data sets is typically the long-term trend of ozone. Most of-

ten this has been done using two piecewise linear trend terms

joined at some predetermined time. The regression is per-

formed four different ways utilizing the combinations of the

MZM and STS regression methods and two piecewise linear

trend terms or two orthogonal EESC trend-like terms. The re-

sulting mean trends are computed both for the traditional de-

crease in ozone (in this case between 1985 and 1995) and for

the traditional increase in ozone (in this case between 1998

and 2005) for all four analyses. The results for the earlier

period are shown in Fig. 14 and the later period in Fig. 15.
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Figure 13. Biases for each monthly zonal mean for the MZM method compared to the STS method
computed as (MZM-STS)/STS*100. The MZM method does not differentiate between event types
so it does not have different values for each type. White areas show regions where data do not exist
or where one or both regression methods failed to converge to a solution.
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Figure 13. Biases for each monthly zonal mean for the

MZM method compared to the STS method computed as

(MZM−STS)/STS·100. The MZM method does not differentiate

between event types, so it does not have different values for each

type. White areas show regions where data do not exist or where

one or both regression methods failed to converge to a solution.

At first glance, the four plots in Fig. 14 seem very similar.

Each plot shows regions of significant decreases in ozone

between 35 and 50 km at middle to high latitudes, as well

as some slight positive trends in the tropics at lower alti-

tudes. However, there are some important discrepancies to

point out. The MZM method, regardless of which pair of

trend terms is used, shows a slight positive trend in the trop-

ics between 30 and 35 km, which is consistent with other

studies (e.g., Randel and Wu, 2007; Kyrölä et al., 2013;

Bourassa et al., 2014), though those studies show this in-

crease to be statistically insignificant. However, the use of the

STS method removes this feature, regardless of which trend

terms are used. In addition, the magnitude of the trends, when

using the same trend terms, is biased slightly negative for the

MZM method compared to the STS method. This is a result

of the biases from nonuniform sampling, and is explained in

more detail in the next paragraph.

The results shown in Fig. 15 are very different. Whereas

the results of the MZM method are consistent with other

studies (e.g., Kyrölä et al., 2013; Bourassa et al., 2014, which

make use of multiple data sets extending to 2013), show-

ing regions of large ozone recovery in the Southern Hemi-

sphere and smaller recovery in the Northern Hemisphere,

the results from the STS method show a significant increase

only in the Northern Hemisphere, which is slightly smaller

than in the MZM method. To understand this difference, one

should take another look at Fig. 12 and Fig. 13. In the South-

ern Hemisphere at midlatitudes before the pointing problems

in late 2000, the concentration of sampling shows a roughly

equal mix of sunrise and sunset events. Given the difference

in ozone between sunrise and sunset events in this region at

www.atmos-chem-phys.net/14/13455/2014/ Atmos. Chem. Phys., 14, 13455–13470, 2014
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Figure 14. Mean trend between 1985 and 1995 for four analysis scenarios computed as (Tr(1995)−Tr(1985))/Tr(1985)·100, where Tr(t)

represents the value of the long-term trend term at time t . The analysis was run for both the MZM and STS regression methods, each using

either a piecewise linear term joined at 1997.0 or two orthogonal EESC terms. Stippling shows regions where the linear slope is not significant

at the 2σ level. No similar calculation can be done for multiple EESC terms.

higher altitudes, the mean of the data is expected to be some-

where in the middle of the sunrise and sunset mean. However,

later in the period, there is a significant decrease in sunrise

events in this region, which results in the mean of the data

skewing more towards the sunset mean. With the beginning

of the potential recovery period starting at the overall mean,

and the end of the calculable recovery period residing at the

sunset mean, the computed trend is artificially biased high.

Proper treatment of the differences between sunrise and sun-

set events accounts for this effect and results in smaller re-

covery trends in the STS method.

It is clear that the differences caused by the SAGE II

nonuniform sampling are important, and that the STS method

is preferable to the MZM method regardless of which pair of

long-term trend terms is used. However, there are still some

differences in trends between the two pairs of trend terms as

shown in Figs. 14 and 15. To understand this, one needs to

look at the time evolution of the long-term trend for the use of

each pair of trend terms. Figure 16 illustrates the difference

between the two pairs of trend terms at 50◦ N. The piecewise

linear trend terms force any turnaround in ozone to occur at

1997, while the use of the two orthogonal EESC terms allows

this turnaround point to move in time. As shown in Fig. 16

(top right), the turnaround time is earlier at lower altitudes.

This is consistent with the fact that stratospheric ozone is in-

versely related to stratospheric chlorine, and the EESC prox-

ies from Newman et al. (2007) show that the EESC peaks

earlier for smaller mean ages of air. Figure 16 would thus

suggest that the mean age of air in the Northern Hemisphere

decreases with decreasing altitude, which is consistent with

results shown in Waugh and Hall (2002).

The study outlined in Waugh and Hall (2002) is performed

only for the Northern Hemisphere and the assumption is

made that the hemispheres are symmetric. However, the time

evolution of the long-term trend at high southern latitudes

(Fig. 16, bottom right) shows no clear change in turnaround

time with altitude, and in some cases never turns around (i.e.,

is always decreasing). It is, at present, unclear whether this

hemispheric asymmetry is geophysical or a result of correla-

tion between the long-term trend and other terms (e.g., solar

or volcanic).

8 Conclusions and future work

A new method for performing time-series analysis of

sparsely sampled data, in particular SAGE II, has been pre-

sented. The differences between the MZM method and the

STS method have been discussed and the impacts on the

long-term trends in ozone detailed. It has been shown that the

nonuniform sampling in SAGE II data will produce biased

long-term trend values in ozone if not properly accounted for.

Atmos. Chem. Phys., 14, 13455–13470, 2014 www.atmos-chem-phys.net/14/13455/2014/
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Figure 15. Mean trend between 1998 and 2005 for four analysis scenarios computed as (Tr(2005)−Tr(1998))/Tr(1998)·100, where Tr(t)

represents the value of the long-term trend term at time t . The analysis was run for both the MZM and STS regression methods, each using

either a piecewise linear term joined at 1997.0 or two orthogonal EESC terms. Stippling shows regions where the linear slope is not significant

at the 2σ level. No similar calculation can be done for multiple EESC terms.
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Figure 16. Some examples of the long-term trend term computed

using the STS regression. The term in the top left comes from the

use of a piecewise linear term, while the other three come from the

use of two orthogonal EESC terms. Contour intervals are 1 %.

The STS method shows declines in ozone that are similar to

those from other studies in the upper stratosphere at middle

to high latitudes but very different results for the presumed

recovery period, namely a noticeable reduction in the mag-

nitude of ozone increase in the Southern Hemisphere. The

use of two orthogonal EESC predictor variables instead of a

piecewise linear trend allows for a variable turnaround time

in ozone due to differing mean ages of air. Results show a

hemispheric asymmetry in the middle to upper stratosphere,

with an earlier turnaround time with lower altitude and lati-

tude in the Northern Hemisphere but no coherent pattern in

the Southern Hemisphere. It has also been shown that the

STS method can be used to assess the quality of a data set’s

measurements independent of other data sets. In addition to

ozone, the STS method was applied to SAGE II aerosol opti-

cal depth data to create a new volcanic proxy that covers the

SAGE II mission period.

For future work, we would like to extend this technique

to other ozone data sets and also include multiple data sets

to better constrain the long-term trends in the presumed re-

covery period. The benefit of this technique for the creation

of a single time series derived from multiple data sets is that

it does not require the homogenization of the different data

sets prior to regression. Instead, instrument-dependent condi-

tional terms representing mean offsets, different diurnal vari-

ation, time-dependent drifts, or other terms could be included

as necessary. Another consideration is to expand upon the

creation of a volcanic proxy term to one that is altitude de-

pendent, so that the response of ozone to both local (i.e., at

the same altitude) and total aerosol can be assessed. Lastly, it
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could be beneficial to experiment with other coordinate sys-

tems in order to reduce uncertainties in regions of larger vari-

ance. For example, regression could be done on the data at

their native resolution, using models for diurnal and longitu-

dinal variation, as this would reduce some of the variance in

the tropics, where each daily mean spans ∼ 10◦ in latitude,

as opposed to ∼ 3◦ in latitude at high latitudes. Another co-

ordinate transformation would be to perform this regression

methodology on equivalent latitude instead of latitude, as it

would remove much of the variance at high latitudes, where

observations constantly dip into and out of the polar vortex.
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Appendix A

The creation of a volcanic proxy term is achieved via the

simultaneous temporal and spatial regression to SAGE II

aerosol data. This is done using the same STS regression

technique as is done for ozone. The process begins by ex-

tracting 1020 nm aerosol extinction coefficient profiles. Dur-

ing periods of high aerosol loading, SAGE II profile re-

trievals stopped at altitudes well within the stratosphere. To

compensate, data below retrieval termination are filled in via

the process outlined in SPARC (2006, Chapter 4.3.1). Each

profile is then integrated from the top (40 km) down to 3 km

above the reported tropopause. These event-specific strato-

spheric aerosol optical depth values are then compiled into

daily means, except that no distinction is made between lo-

cal event types as no significant diurnal cycle in aerosol is

seen. The regression uses the same latitudinal dependence

(albeit with 11 terms) and a temporal dependence that in-

cludes annual, QBO, and eruptive terms for each significant

volcano during the SAGE II mission. The iterative regres-

sion technique outlined in this paper is applied, though the

data that is regressed is the logarithm of optical depth. The

logarithm is used instead of the raw data because many phys-

ical effects, such as the annual cycle or QBO, are inherently

multiplicative effects (i.e., their magnitudes are related to the

magnitude of the instantaneous mean). The same is also true

of ozone, but ozone does not vary by several orders of mag-

nitude over time at a particular altitude. The primary reason

for this appendix, however, is the difficulty regarding the cre-

ation of the eruptive terms for each volcano used as predictor

variables in the regression.

The creation of a model term for use with linear regression

that accurately represents changes in aerosol as a result of a

volcanic eruption is not trivial. At any given location after a

major volcanic eruption, changes in aerosol are characterized

by a delay after the eruption (i.e., time it takes for aerosol

to reach that location from the eruption), followed by an in-

crease in aerosol up to some peak value over time, followed

lastly by a long decay back to background levels (unless

another eruption occurs). It makes sense to create a piece-

wise function to model this rise and fall, but the choice of

these functions is important. Previous attempts (e.g., SPARC,

2006, Chapter 5.4.2) use a simple polynomial from eruption

to peak values followed by an exponential decay with some

characteristic decay constant. However, a simple exponential

decay model would assume that the data, when plotted in log

space, are linear, which they clearly are not (see Fig. A1).

While analyzing the logarithm of the aerosol data, we

choose a piecewise pair of second-order polynomials in or-

der to fit the eruptive effects on aerosol. However, the two

functions are restricted to maintain continuity of both the

functions and their derivatives where they join, as well as

to assume the eruptive term returns to zero (i.e., background)

after some amount of time has elapsed. In this way, a pair

of piecewise second-order polynomials can be defined by the
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Figure 17. Some examples of the non-linear fit to aerosol at three different center latitudes (35◦N,
5◦N, and 45◦S). Data within each band are shown in blue while fits are shown in red. The vertical
lines denote the times of the seven eruptions used for the fit (El Chichon is off scale). Note the
difference in rates of rise and peak times at different latitudes, most easily visible for Pinatubo.

46

Figure A1. Some examples of the nonlinear fit to aerosol at three

different center latitudes (35◦ N, 5◦ N, and 45◦ S). Data within each

band are shown in blue, while fits are shown in red. The vertical

lines denote the times of the seven eruptions used for the fit (El

Chichón is off scale). Note the difference in rates of rise and peak

times at different latitudes, most easily visible for Pinatubo.

declaration of three parameters: time of injection (tI or time

aerosol first arrives at a location after an eruption), peak time

(tP or time after injection at which aerosol values are at their

peak), and return time (tR or time after injection at which the

eruptive term and its derivative return to zero). The time at

which these two functions join is also constrained by these

three parameters.

The downside to this methodology is that the functional

form of the eruptive term is not linearly dependent upon the

parameter times (tI, tP, and tR). Additionally, the times them-

selves are functions of latitude and different for each erup-

tion. Since we have no intrinsic knowledge of the value of

these times, or their spatial dependence, a nonlinear least-

squares fitting technique is applied to binned data. The pro-

cess begins with data taken in a 10◦ wide bin in latitude

centered at a particular latitude. Initial guesses are made for

the three parameters for each of seven volcanic eruptions:

El Chichón (1982), Nevado del Ruiz (1985), Kelut (1990),

Pinatubo (1991), Cerro Hudson (1991), Ruang (2002), and

Manam (2004). The MPFIT algorithm (Markwardt, 2009) is

used, as it allows for restrictions on solvable parameters to

be placed, which greatly aids in convergence. Too few data

are available to constrain tI or tP for El Chichón, so these pa-

rameters are tied to Pinatubo. Likewise, tR for Manam was

set constant at 5 years. Some examples of the nonlinear re-

gressions can be seen in Fig. A1.

This nonlinear regression was performed for each latitude

between 70◦ S and 70◦ N in increments of 1◦. The parame-

ters (tI, tP, and tR) were then smoothed, and any iterations

that did not converge properly were ignored. To create the

eruptive terms for the STS regression, the parameters were
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Figure A2. The volcanic term resulting from the STS regression to

stratospheric aerosol optical depth in the 1020 nm channel. This is

the term used as a volcanic proxy term for the regression to ozone

data. Relative optical depth means relative to background values.

interpolated (or held constant at last value for extrapolation)

to all latitudes to create functional forms for each volcano

for the entire record. These eruptive terms are then easily lin-

early regressed to, where the STS regression is allowed to

determine spatial dependence but not temporal variation for

each volcano as a function of latitude. The final product to be

fed into the regression for ozone is a single volcanic term that

represents the eruptive changes in aerosol at all times during

the record for all latitudes (Fig. A2).

Ultimately the creation of a volcanic proxy is an empirical

result. Theoretically, one could look at the parameters from

the nonlinear least-squares regression individually, but most

of the terms would have no real meaning. For example, there

are a large number of volcanic eruptions around the time of

the eruption of Nevado del Ruiz. While the parameters near

the eruption make sense, the parameters at higher latitudes

merely represent the algorithm’s attempt to fit the overall in-

crease in aerosol from a multitude of eruptions in that time

period (e.g., tP∼ 2 years and tR∼ 8 years). The regression

fits the overall data well, but each individual term is not nec-

essarily representative of that eruption alone.

Appendix B

The principle of multiple linear regression is predicated upon

the simple assumption that a dependent variable (Y ) is lin-

early dependent upon a set of predictor variables (X) that

produce a simple equation of the following form:

Y = Xβ +R, (B1)

where Y is a vector of N data points (index i), β is a vector

of coefficients for M predictor variables that include a con-

stant (index j ), X is an N by M matrix of each predictor

variable corresponding to each data point, and R is a vec-

tor of N residual differences between the data and the fit. It

should be noted that generally Xi,j=0 is identically 1 for all

i from 1 to N and βj=0 is simply the overall constant of the

fit. These coefficients can be solved for using a simple ordi-

nary least-squares (OLS) regression technique, which can be

found in any of a number of textbooks related to statistics. In

fact, the methods outlined in this appendix derive from Kut-

ner et al. (2005). The uncertainties in the coefficients (σβ )

can also easily be solved for provided the following assump-

tion holds:

var(Y )= σ 2
0 I, (B2)

where var(Y ) denotes the variance–covariance matrix of Y ,

σ0 is a constant, and I is the identity matrix. If this assump-

tion holds, then the residuals have the property of being

Gaussian with a constant conditional variance of σ 2
0 .

If the assumption of Eq. (B2) does not hold, then Eq. (B2)

reverts to a general form:

var(Y )=60. (B3)

This produces coefficients that are still unbiased, but the esti-

mates of their uncertainties are biased small. To overcome

this problem, we turn to generalized least squares (GLS),

which applies a transformation matrix G to Eq. (B1) to ob-

tain

Y ∗ = X∗β +R∗. (B4)

If G= σ060
−1
2 (where 60

−1
2 60

−1
2

′

=60
−1), then R∗ has

the property of being Gaussian with conditional variance

σ 2
0 . The coefficients and their respective uncertainties can be

computed in the following way:

β = (X′60
−1X)−1X′60

−1Y = (X∗
′
X∗)−1X∗

′
Y ∗, (B5)

var(β)= (X′60
−1X)−1

= σ 2
0 (X
∗′X∗)−1. (B6)

It follows that σβj is the square root of the j th diagonal ele-

ment of Eq. (B6). It is worth noting that, when solved explic-

itly using 60, the values of the coefficients and their uncer-

tainties are invariant to the value of σ0, but when a transfor-

mation of variables is used, the equations revert to the form

of solutions from OLS regression.

In time-series analysis it is often the case that the assump-

tion of Eq. (B2) does not hold. The residuals are, in fact,

both heteroscedastic (have a nonconstant variance) and seri-

ally correlated (temporally autocorrelated). If we assume the

residuals have the following properties,

Ri = φRi−1+ σiεi, (B7)

where φ is the autocorrelation coefficient, Ri are the total

residuals, φRi−1 are the correlated residuals, σiεi are the un-

correlated residuals, and ε is Gaussian with unit conditional
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variance, then Eq. (B2) reverts to Eq. (B3), where 60 is an

N by N symmetric matrix with components of the following

form:

60i,j =
σiσjφ

|i−j |

1−φ2
, (B8)

where, for this case, j goes from 1 to N . Computing G leads

to the following transformation of variables:

Y ∗i =
Yi −φYi−1

σi
,

X∗i,j =
Xi,j −φXi−1,j

σi
, (B9)

R∗i =
Ri −φRi−1

σi
= εi .

This is just the Cochrane–Orcutt transformation (Cochrane

and Orcutt, 1949), which ignores the first data point. The

Prais–Winsten transformation (Prais and Winsten, 1954) can

be used to include the first data point and an additional mod-

ification outlined in Savin and White (1978) can be used to

account for data gaps. It should be noted that, when perform-

ing OLS regression to the transformed variables, it will be

necessary to force regression about the origin if using a pack-

aged algorithm that performs regression and always assumes

a constant exists in the regression.

If the heteroscedasticity and autocorrelation are known

precisely and everything about the regression is perfect, then

theoretically σ0 = 1. In reality this is never the case. A good

estimate of σ0, however, can be obtained from the weighted

mean-square error (also known as the reduced, weighted chi-

squared error statistic):

σ 2
0 =

ε′ε

N −M
. (B10)

It is important to compute σ0 so as to not underestimate the

uncertainties in the coefficients in Eq. (B6) when regressing

to transformed variables.

In theory, one would want to know a priori what the values

for φ and σ are. Instead, these parameters are solved for itera-

tively towards convergence. The value for the autocorrelation

coefficient is solved for by first performing OLS regression

and then computing φ in the usual manner:

φ =

N−1∑
i=1

(Ri −R)(Ri−1−R)

N∑
i=1

(Ri −R)2

, (B11)

which is itself a simple modification of the Pearson product-

moment correlation coefficient:

φ(X,Y )=

N∑
i=1

(Xi −X)(Yi −Y )√
N∑
i=1

(Xi −X)2

√
N∑
i=1

(Yi −Y )2

. (B12)

As can be seen, X and Y have been substituted with adjacent

values of the residuals as well as a slight modification of the

limits of summation to account for the number of pairs versus

the number of total points.

The nature of the heteroscedasticity can be slightly more

complicated. In practice, one only has an estimate for the

heteroscedasticity (δ) such that

σi = δiki . (B13)

If the initial guess of the heteroscedasticity is correct, then

k is identically 1. However, generally k is more complex,

having a dependence on the predictor variables themselves.

A practical way to solve for k is to first assume that σ = δ

and solve for ε. If k = 1, then the mean value of ε2 should

also be 1. As such, one can regress a function f = log(ε2)

to predictor variables and obtain a fit value (fi) for each εi ,

then ki =
√
efi . In this way, σ can be iteratively updated un-

til k converges towards 1. However, the choice of predictor

variable dependence of k may or may not be straightforward.

From a practical standpoint, this regression methodology

is applied by first performing the regression (Eq. B4) with

the assumption that there is no autocorrelation (φ = 0). The

resulting residuals are used to compute the autocorrelation

coefficient (Eq. B12) and the regression is repeated. The

heteroscedasticity correction (Eq. B13) can then be applied.

This process of applying the GLS regression, applying the

heteroscedasticity correction, and recomputing φ can be iter-

ated towards convergence of φ. Any residual filtering to be

performed would require iteration of everything performed

thus far. If filtering of regression coefficients is desired, it too

would require an additional level of iteration of all steps per-

formed thus far (including residual filtering).
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