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Abstract. Fires are important emitters of aerosol and trace

gases and as such need to be taken into account in any at-

mospheric composition modelling enterprise. One method to

estimate these emissions is to convert fire radiative power

(FRP) analysis into dry matter burnt and emissions of smoke

constituents using land-cover-dependent conversion factors.

Inventories like the Global Fire Assimilation System (GFAS)

follow this approach by calculating daily global smoke emis-

sions from FRP observed by the MODIS instruments on-

board the Terra and Aqua satellites. Observations with dif-

ferent overpass times systematically sample fires at different

stages in the strong diurnal fire cycle. For some time periods,

observations are available from only one instrument, which

leads to a bias in the observed average FRP.

We develop a method to correct this bias in daily FRP ob-

servations from any low Earth orbit (LEO) satellite, so that

the budget of daily smoke emissions remains independent of

the number of satellites from which FRP observations are

taken into account. This ensures the possibility of running,

for example, GFAS in case of failure of one of the MODIS in-

struments. It also enables the extension GFAS to 2000–2002

and the inclusion of FRP observations from upcoming satel-

lite missions. The correction combines linear and non-linear

regressions and uses an adaptive regionalization algorithm. It

decreases the bias in daily average FRP from Terra and Aqua

by more than 95 %, and RMSE by 75 % for Aqua and 55 %

for Terra. The correction algorithm is applied to Terra obser-

vations from 25 February 2000 to 31 December 2002, when

Aqua observations were not available. The database of fire

emissions GFASv1.0 is extended correspondingly.

1 Introduction

1.1 Importance of biomass burning emissions in

atmospheric composition modelling

Vegetation fires are a frequent occurrence in all vegetated en-

vironments. They are ignited naturally (i.e. by lightning) or

by anthropogenic activity. They can be the cause of serious

public health issues such as the extreme particulate matter

(PM) concentrations recorded in Singapore at the end of June

2013, caused by fires in the neighbouring island of Suma-

tra1. Depending on the vegetation cover, fires emit various

aerosols, reactive gases and greenhouse gases. More specif-

ically, fires are a major source of black carbon in the atmo-

sphere: they are responsible for around 40 % of the emissions

of carbon monoxide (CO), a precursor gas for ozone (O3).

They are also an important source of nitrogen oxides(NOx).

As such, biomass burning emissions play an important role

in chemical composition and air quality forecasts.

Fires also affect the radiative balance of the atmosphere by

emitting greenhouse gases such as carbon dioxide (CO2) and

methane (CH4). They also release large quantities of aerosol

particles such as black carbon (BC) and organic carbon (OC),

which in turn impact the atmosphere through the aerosol–

radiation and aerosol–cloud interactions. Diehl et al. (2012)

estimate the global OC emissions from biomass burning as

14–57 Tg yr−1, while BC ranges from 1.8 to 7 Tg yr−1. Bond

et al. (2013) cite ranges of 2–11 Tg (BC) and 18–77 Tg (or-

ganic carbon) for the global annual estimates of emissions

from open biomass burning. Out of 13 identified radiative

1See http://www.gmes-atmosphere.eu/news/singapore_smoke
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forcing agents (Bowman et al., 2009), 8 are impacted by fires.

Therefore, taking into account the contribution of fires in the

emissions of aerosols, reactive gases and greenhouses gases

is a necessary step in any atmospheric composition mod-

elling enterprise.

Fires occur mostly in locations where in situ observations

are not available and are characterized by a large temporal

and spatial variability; assessing their size and intensity re-

quires the use of remote observations. Most fires are charac-

terized by a strong diurnal cycle (e.g. Giglio, 2007; Roberts

et al., 2009), often with a maximum in the early afternoon.

Satellite observations of the currently active fires are the only

source that can provide a global estimation of fire activity.

Several systems that calculate the biomass burning emissions

from satellite observations of burnt area or active fire areas

have been developed over the recent years (van der Werf et

al., 2006, 2010; Freitas et al., 2005; Reid et al., 2009; Sofiev

et al., 2009; Kaiser et al., 2009, 2012).

The Moderate Resolution Imaging Spectroradiometer

(MODIS) instrument observes thermal radiation around 3.9

and 11 µm wavelengths. Thermal radiation includes signals

not only from fires but also from volcanoes and gas flares

that will need to be masked. From this source of information,

NASA produces the MOD14 product (Justice et al. (2002)

and Giglio, 2005), which contains a quantitative observation

of fire radiative power (FRP). FRP represents the amount

of power that is released by the fire into the atmosphere,

in W m−2. The Spinning Enhanced Visible and Infrared Im-

ager (SEVIRI) onboard the Meteosat-8 satellite also provides

estimates of FRP using the middle infrared (MIR) radiance

method (Wooster et al., 2003).

The European Union-funded project “Monitoring Atmo-

spheric Composition and Climate-Interim Implementation”

(MACC-II) provides global analysis and forecasts of atmo-

spheric composition, alongside European air quality fore-

casts (Hollingsworth et al., 2008). In order to provide this

forecasting system with accurate estimates of aerosol, reac-

tive gases and greenhouse gas emissions from biomass burn-

ing, the Global Fire assimilation System (GFAS; Kaiser et

al., 2009), based on satellite-based FRP observations, was

developed. GFAS grids and averages FRP observations from

the MODIS instrument onboard NASA’s Terra and Aqua

satellites. FRP observations from sensors onboard geosta-

tionary satellites such as Meteosat-8 and GOES East and

West are currently not used in GFAS, as their values are very

different from MODIS. This gridded data from the two satel-

lites are then merged to produce global daily averaged FRP

fields with 0.5◦ and 0.1◦ resolutions. An analysis of daily av-

eraged FRP is then built by assimilating this merged daily av-

eraged FRP observation. The assimilation step consists of a

simple Kalman filter used with a persistence model; its objec-

tive is to fill the observational gaps, caused mainly by cloudy

conditions.

Heil et al. (2010) found strong correlations between FRP

and the dry matter combustion rate of the Global Fire Emis-

sion Database (GFED; van der Werf et al., 2010) v3.1. This

allowed for the derivation of conversion factors for eight land

cover classes that link GFAS FRP to GFED dry matter com-

bustion rate, which allows for GFAS to provide a global anal-

ysis of dry matter burnt. Emission factors following Andreae

and Merlet (2001) are then used to estimate the emissions

of 41 species from the dry matter burnt estimate. As GFAS

translates a daily averaged FRP into a daily average emission

rate of species (Kaiser et al., 2012), it contains no informa-

tion about the diurnal cycle of biomass burning emissions.

Our aim here is to try to reproduce this daily average FRP

and biomass burning emissions using one source of observa-

tions instead of two.

The MACC-II project also produced an 8-year reanalysis

(Inness et al., 2013) of global atmospheric composition, us-

ing biomass burning emissions estimates from GFED and

GFAS. The biomass burning emissions database was then

extended from 1 January 2003 to the current day. Besides

its everyday use in the MACC-II global atmospheric compo-

sition forecasts, this database is attracting a growing number

of users worldwide.

1.2 Satellite observations used in real-time emission

calculation

Only low Earth orbit (LEO) satellites provide full global ob-

servational coverage, and the MODIS instruments onboard

NASA’s polar-orbiting satellites Aqua and Terra are the only

instruments for which fire products are currently provided

in real time (Giglio et al., 2003, 2006). The FINN (Wiedin-

myer et al., 2011) and FLAMBE emission inventories (Reid

et al., 2009) use hotspot observations from MODIS. Other

real-time inventories, e.g. GFAS, QFED (Darmenov and da

Silva, 2013) and IS4FIRES (Sofiev et al., 2009), use the ad-

ditional quantitative information of the FRP products from

the MODIS satellites. Both observations are only available

for clear-sky conditions, and show a decreasing accuracy as

the viewing angle increases (Freeborn et al., 2011). The Terra

overpass time is around 10:30 local solar time in its descend-

ing mode and 22:30 local solar time in its ascending mode.

The Aqua overpass times are around 13:30 (01:30) local so-

lar time in ascending (descending) mode.

The diurnal fire cycle is reflected in a significant bias in the

FRP observations from the two MODIS instruments (Giglio,

2007; Roberts et al., 2009). This bias has a strong geographic

dependency because the diurnal cycle of fire intensity de-

pends on the land cover type: for example, peat fire inten-

sity hardly varies between day and night, while savannah

fires nearly extinguish at night. Accurate emission invento-

ries need to combine as much information as possible. For

example, GFAS currently merges observations from Aqua

and Terra, weighted by the observed area product, which de-

pends on the cloud cover. That means that the relative signal

from both satellites in the final GFAS FRP analysis is vary-

ing from day to day. To summarize, the difference between
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Terra and Aqua FRP can be caused by the diurnal cycle of

fires and by a change in cloudiness between their overpass

times.

While running GFAS with FRP observations from only

Aqua or Terra is technically feasible with the current con-

figuration, the above shows that if we want to ensure that the

daily averaged FRP and biomass burning emissions are co-

herent with the classical configuration (i.e. assimilating data

from both satellites), a correction step is required. This also

applies to other emission inventories that use MODIS obser-

vations with a temporal resolution of 1 day or more. Avail-

ability of only one MODIS instrument occurs in three sit-

uations: before the launch and start of product generation

from Aqua (02/2000–12/2002); during short breaks in the

real-time availability of either MODIS instrument; and, in the

future, after the lifetime of whichever instrument fails first.

1.3 Objectives of this work

The objective of this work is to develop a method that can ad-

equately correct the FRP products from LEO satellites such

that daily averaged FRP, and thus biomass burning emission,

estimates remain unbiased between time periods with all

satellites available. The method will be derived for MODIS

observations from the Terra and Aqua satellites, but it will

also be applicable for VIIRS and Sentinel-3 observations. It

will be used to extend the GFAS emission inventory back to

2000. It will also provide resilience of GFAS against failure

of one of the MODIS instruments, and prepare for the inges-

tion of FRP products of NPP VIIRS and Sentinel-3 SLSTR

in as soon as they become available in real time.

Ellicott et al. (2009) succeeded in using observations from

Terra only to estimate monthly averaged FRE (Fire Radiative

Energy), with only a small bias from using observations from

Aqua and Terra. The system used in their work was rather

different from GFAS, as it estimated a diurnal cycle based on

geostationary satellites and did not include a data assimila-

tion step to fill observational gaps. Our aim, however, is to

reach the same results with daily averaged FRP and biomass

burning emissions.

Section 2 describes the statistical methods used to correct

the daily observations from Aqua or Terra; the results from

these methods are shown in Sect. 3. Section 4 shows how

the GFAS database was extended back to 2000 by using cor-

rected observations from Terra only. Finally, Sect. 5 summa-

rizes the results of this paper, and Sect. 6 offers some conclu-

sions.

2 Methods

2.1 Overall approach

Since fires vary so much both spatially and temporally and

the relative contribution of Aqua and Terra FRP observations

to the final product varies from day to day, it is not realistic to

aim to reproduce the local and temporal variability of fires as

sampled by two sources of observations when running with

only one source. Also, cloudiness changes and the diurnal

cycle of fires introduce differences between Aqua and Terra.

We will focus here on trying to compensate for the effect of

the diurnal cycle on observed FRP. A statistical regression fit

from a learning data set will be used, the quality of its output

will be assessed using an independent verifying data set.

2.2 Choice of variables

GFAS assimilates merged FRP observations in a 24 h win-

dow to produce a best estimate of the daily average FRP,

from which emissions of various gases and aerosols are de-

rived. We will work on these daily FRP observations instead

of FRP analysis from GFAS or directly on the emissions. As

global observations from Aqua or Terra are collected within

a 12 h span, it makes sense to use a longer period for our

explanatory variable: a 24 h period is the best choice as it

allows us to directly apply the correction to the merged ob-

servations that are assimilated in GFAS. For the same reason,

it was preferred to scale daily observations of Terra (Aqua)

toward merged FRP from both satellites instead of towards

observations from the other satellite.

2.3 Learning and verification data sets

The learning data set is composed of daily averages of FRP

from Aqua and Terra, averaged over a 0.5◦ grid by the GFAS

algorithm. It extends from 1 January 2003 to 31 December

2011. To prevent taking into account situations where Aqua

and Terra observations are very different, for example be-

cause of a change in cloudiness, fires for which the ratio of

Terra- or Aqua-GFAS over Full-GFAS was above the ninth

decile of the whole data set for the considered day were not

included in the data set. The effect of this exclusion was

shown to increase the correlation coefficient between the data

sets by up to 20 %, especially over Africa.

The diurnal cycle, and thus the physics underlying the sta-

tistical link between FRP observations from Aqua and Terra,

depends on the land cover; therefore an application of a re-

gression algorithm to global FRP needs to take this depen-

dency into account. Also, fire typology varies a lot from re-

gion to region. Tropical regions dominated by large forests

and savannah exhibit large seasonal fire activity that is long-

lasting and relatively regular. These regions contribute a lot

to global FRP. Boreal regions with forests mostly composed

of coniferous trees are, on the other hand, subject to fire

events that are much more irregular in size and intensity. A

few large events such as the Rim fire of August 2013 in Cal-

ifornia or the Quebec fires of June and July 20132 that sent a

plume crossing the Atlantic and affecting Europe can have a

2See http://www.copernicus-atmosphere.eu/news/canada_

smoke/ and http://www.wunderground.com/blog/JeffMasters/

canadas-2nd-largest-fire-on-record-spreading-smoke-to-europe

www.atmos-chem-phys.net/14/13377/2014/ Atmos. Chem. Phys., 14, 13377–13390, 2014
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Figure 1. Width in multiples of 2◦ of every region with more than 400 positive 0.5◦ FRP grid cells from Terra and Aqua, in the period from

1 January 2003 to 31 December 2011. Fixed regions are on the left, and adaptive regionalization algorithm on the right.

significant impact on global FRP (see also Dahlkötter et al.,

2014). To be able to take into account this geographical vari-

ability in fire activity patterns and the impact of different land

covers, regression needs to be applied to regional subsets of

the learning data set instead of a global one.

The verification data set extends from 1 January 2012 to

31 December of the same year.

2.4 Two different regionalization strategies

The sample size for every considered local data sets needs

to be large enough for a regression algorithm to be applied

safely. A minimal sample size of 400 positive gridded obser-

vations of FRP for both Aqua and Terra was chosen. Larger

values for this threshold were tested, without much impact

on the quality of the regression.

2.4.1 Fixed regions

The regression was applied to 2◦× 2◦ regions across the

globe that contained more than 400 fires (as observed by both

Aqua and Terra) in the learning data set. Tests with smaller

regions showed that the statistical link between the data sets

did not vary much from one region to another, while many

more regions did not contain enough fires to be considered

for regression.

2.4.2 Adaptive regions

In order not to exclude too many regions, an adaptive region-

alization algorithm was also tested. If the sample does not

meet the size criterion for a given 2◦× 2◦ tile, then all fires

in a 4◦× 4◦ degrees regions centred on the original tile are

considered. If there are still not enough fires in the 4◦× 4◦ re-

gion, then fires are considered in a 6◦× 6◦ region, and so on,

up to a maximum area of 12◦× 12◦. Figure 1 shows the com-

parative areas that meet the sample size criterion for the two

regionalization methods. It is clear from this figure that the

“adaptive regionalization” algorithm allows us to apply re-

gression to nearly the whole globe instead of a much smaller

domain when using only 2◦× 2◦ domains. The regions where

fires are very common, and especially the tropical forests and

savannahs, are prominent in Fig. 1 when using fixed regions.

A few regions that meet the sample size criterion lie in desert

areas, such as at the border between Tunisia and Algeria or in

southwestern Iran. These could be due to fires coming from

gas extraction facilities that were not masked in GFAS. The

comparative advantage of this regionalization strategy will

be assessed in Sect. 3.

2.5 Regression approaches

2.5.1 Linear regression

The linear regression algorithm was applied to the two sets

of regions described above and to the learning data set that

extends from 2003 to 2011. The algorithm consists of com-

puting for every region, the linear regression coefficient a,

and a coefficient b, such that

‖Y − (a ·X+ b)‖2 (1)

is minimal. X is the sample of 0.5◦ daily FRP from Aqua or

Terra contained in the considered region (i.e. the explanatory

variable), and Y is the sample of 0.5◦ FRP merged from both

Aqua and Terra (i.e. the dependent variable). The correlation

of the two variables will be evaluated on the learning data set

using the square of the correlation coefficient r2. The skill of

the regression will be assessed on the verification data set by

comparing the output of GFAS when assimilating corrected

and uncorrected daily FRP from either Aqua or Terra. This

comparison will be carried out by means of checking the bias

and the root-mean-square error (RMSE) against GFAS used

in the classical configuration, i.e. assimilating merged obser-

vations from both Terra and Aqua.

2.5.2 Non-linear regression

Three different kinds of non-linear regression formulae were

tried: the polynomial
∑

iaix
i , the hyperbolic

∑
i
ai

xi and the

exponential aebx or axb, where a, ai and b are parameters

that are adjusted to find the best fit. Combinations of the three

families were also tried, and it was shown that the approach

that minimized the distance between the corrected daily FRP

Atmos. Chem. Phys., 14, 13377–13390, 2014 www.atmos-chem-phys.net/14/13377/2014/
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Table 1. RMSE and bias of mean global FRP in mW m−2 for the year 2012 for Aqua- and Terra-GFAS with linear regression applied, as

compared to Full-GFAS, fixed and adaptive regions.

Satellite data assimilated RMSE Bias Average FRP

Aqua and GFAS 0 0 2.238× 10−4

Aqua (not corrected) 1.059× 10−4
−8.7611× 10−5 3.112× 10−4

Terra (not corrected) 8.769× 10−5 7.541× 10−5 1.486× 10−4

Aqua (fixed regions) 4.349× 10−5
−2.952× 10−5 2.536× 10−4

Terra (fixed regions) 5.138× 10−5 3.304× 10−5 1.910× 10−4

Aqua (adaptive regions) 2.599× 10−5
−1.876× 10−6 2.260× 10−4

Terra (adaptive regions) 4.515× 10−5 2.503× 10−5 1.991× 10−4

and the merged FRP was to combine a polynomial and the

hyperbolic function:

F(X)= aX4
+ bX3

+ cX2
+ dX+

e

X
, (2)

where the five parameters a, b, c, d and e are determined

for each region by minimizing the least-squares distance be-

tween Y and F (X) using the Levenberg–Marquardt algo-

rithm (Marquardt, 1963).

2.5.3 Combined regression

It is also possible to combine the linear and non-linear ap-

proaches when correcting the verification data set. As the

non-linear algorithm is less stable, for larger values of FRP

the linear regression is preferred, while for smaller values

non-linear regression is applied. The threshold between the

two needs to be adaptive as outlying values are very time-

and space-dependent. It was chosen to make this threshold

depend on a given percentile of the whole daily FRP dataset.

A sensitivity study was carried out with regard to what per-

centile gives the best results depending on which satellite

observations are being corrected; its results are shown in

Sect. 3.

2.5.4 Distance metrics

In order to compare the results from linear, non-linear regres-

sions and combined approaches, a common distance metric

needs to be defined to be able to measure the efficiency of

each algorithm. The classical regression coefficient is only

applicable to linear regression algorithm. The approach cho-

sen here is to compare, for each regional data set, the norms

of the vector composed of the difference between the regres-

sion and the dependent variable, i.e.

‖Y −F(X)‖2 =

√
(
∑

i

(Y i −F(Xi))2), (3)

where Y is the dependent variable vector, i.e. Full-GFAS

here, composed of a sample of Y i scalars; X is the explana-

tory variable vector, i.e. Aqua- or Terra-GFAS; and F is the

linear or non-linear regression algorithm applied to every

component Xi of this vector. This distance is not normal-

ized by the size of the dependent variable vector; that means

that its value also depends on the size of this vector. As we

used this distance only to compare the various algorithms that

were tried, this is not an issue here.

3 Results with the verification data set

In this section daily FRP from the verification data set are

corrected by the different regressions shown above and then

assimilated in Terra- and Aqua-GFAS. Table 1 shows the

global daily FRP averaged over the verification data set, as

computed by GFAS using observations from both Terra and

Aqua, from Aqua only and from Terra only. The important

bias of GFAS when running it with observations from only

one satellite without any correction is very apparent in this

table and gives an indication of the importance of the correc-

tion that needs to be made.

3.1 Linear regression

The linear regression was applied to regional data sets corre-

sponding to fixed 2× 2 regions with more than 400 fires, and

to regional data sets provided by the adaptive regionalization

algorithm.

3.1.1 Results with the fixed regionalization

Figure 2 shows the square of the correlation coefficient for

the daily Aqua or Terra FRP against merged FRP. The square

of the correlation coefficient is much higher for Aqua (val-

ues lie between 0.85 and 1) than for Terra (values generally

lie between 0.5 and 0.8). This is not really surprising, con-

sidering that the overpass time of Aqua is generally closer

to the fire activity peak. As such, Aqua FRP observations are

usually larger than Terra’s and correlation of Aqua daily FRP

with the merged FRP is also larger.

For the same reason, the regression coefficient (not shown)

is generally below 1 for Terra and above 1 for Aqua. How-

ever, the values are very different from one region to the other

www.atmos-chem-phys.net/14/13377/2014/ Atmos. Chem. Phys., 14, 13377–13390, 2014
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Figure 2. Square of the correlation coefficient between Aqua daily

FRP (top), Terra daily FRP (bottom) and merged FRP. Fixed

2◦× 2◦ regions were used.

in both cases. The differences between the main groups of

regions can be explained in terms of land cover, using the

MODIS-based MCD12 land cover map version 5.1, shown in

Fig. 3 for the year 2005 (Olofsson et al. (2012) and Stehman

et al., 2012). Regions with relatively higher regression coef-

ficients, such as northern Australia and South America, are

predominantly savannah regions, while regions with woody

savannah display lower regression coefficients (Africa, south

of the Equator). Grasslands, like the ones that can be found

in Africa north of the Equator, are in an intermediate po-

sition. An explanation for this different behaviour could lie

in the different diurnal cycles associated with each of these

land cover type, which could be a cause of the difference be-

tween fire intensity as observed by Terra in the morning and

by Aqua at midday (e.g. Giglio, 2007; Roberts et al., 2009).

For easier reading, GFAS FRP obtained from assimilat-

ing only Aqua (Terra) FRP data from the verification data

set will be called “Aqua-(Terra-)GFAS”, while the reference

GFAS FRP, obtained from assimilating FRP data from both

satellites, will be called “Full-GFAS”.

Table 1 shows the globally averaged RMSE and bias of

the linear regression correction for Aqua- and Terra-GFAS

as compared to Full-GFAS. The global average FRP is also

indicated and can be compared to the global average FRP

from GFAS when running with uncorrected daily FRP ob-

servations from Terra or Aqua. When the correction was not

available, for example because the sample was too small, un-

corrected values of daily FRP were used.

Comparison of the results from Table 1 shows that, for

both Aqua- and Terra-GFAS, using daily FRP corrected by

linear regression is rather efficient in bringing the average

FRP closer to our reference. Using the corrected daily FRP

reduced the bias by a factor of 3 for both Aqua- and Terra-

GFAS. The RMSE is quite high for both cases, with values

that are 20 to 25 % of the average FRP for Aqua- and Terra-

GFAS, respectively. This relatively high level of error can be

partially explained by the bias, which represents more than

half of the RMSE in both cases.

This first result is encouraging though not entirely satis-

fying because of the remaining bias and the relatively high

level of RMSE.

3.1.2 Results with the adaptive regionalization

algorithm and comparison with fixed regions

Figure 4 shows the square of the correlation coefficient of

Aqua or Terra daily FRP with merged FRP, using the adap-

tive regionalization algorithm. In the regions where fires are

common, the same features as with the fixed regions are dis-

played. In other regions, the impact of the land cover type

is clearly shown: savannah and grassland regions in particu-

lar (United States, Australia outside the northern rim, Africa

around the northern tropics) have very similar values. Bo-

real forests display regression coefficient (not shown) values

close to 1 for both Aqua and Terra. This can be explained by

the fact that fires in these regions do not occur as frequently

as in the tropical forests but usually with a higher intensity.

Intense fires tend to also burn during the nights and to limit

the amplitude of the diurnal cycle. The correlation coeffi-

cients display larger values for Aqua daily FRP as compared

to Terra daily FRP, for reasons already explained. The values

are very close to 1 in most of the regions where fires were

considered in a larger area than the original 2◦× 2◦ region.

This means that enlarging the sample was not detrimental to

how much the explanatory and the dependent variables are

correlated in these regions.

Comparing the results with fixed and adaptive regions in

Table 1 shows that the RMSE of the scaled Aqua-GFAS is re-

duced by nearly a factor of 2 when using the adaptive region-

alization algorithm, and by more than 10 % for Terra-GFAS.

The bias is nearly entirely eliminated for Aqua-GFAS and

reduced by a fourth for Terra-GFAS. These results show that

including regions where fires are not as common as in the

fixed regions helps a lot in improving the quality of the re-

gression. The global average of FRP show that the regression

nearly entirely eliminates the bias that was caused by using

observations from only one satellite.
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Figure 3. Left: map of MCD12 (v5.1) land cover of the year 2005 (UMD classification) remapped to 0.1◦ using largest area fraction approach.

Right: area in millions of square kilometres of the UMD land cover classes.

Figure 4. Square of the correlation coefficient between Aqua daily

FRP (top), Terra daily FRP (bottom) and merged FRP with the adap-

tive regionalization algorithm.

3.2 Non-linear regression and combined approach

Non-linear regression was applied only to data sets provided

by the adaptive regionalization algorithm, as it was shown

that this algorithm improves significantly the quality of the

regression. Using only the non-linear regression to correct

observations brought a marked degradation when using these

observations in GFAS. This degradation is caused by the fact

that non-linear regression gave extreme results for a few fires

with large FRP: this algorithm is much less stable as com-

pared to linear regression. These values were non-physical

above 100 and reached 5000 W m−2 over a 0.5◦ grid cell.

Figure 5. Reduction in per cent of the distance between daily FRP

from Aqua (top), Terra (bottom) and merged FRP by the non-linear

regression as compared to the linear regression.

Only a few grid cells were concerned, so the relative propor-

tion of non-physical values being produced by the non-linear

regression was negligible. However, as these values were so

large, they significantly impacted the average FRP.

3.2.1 Reasons for using the combined approach

As we are dealing with data sets that are very varied, with

weaker or stronger statistical links between them, a non-

linear regression will be more efficient in capturing the statis-

tical link between Aqua and Terra daily FRP on the one hand

and merged daily FRP on the other hand. This is shown by
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Figure 6. Scatter plot of Terra-(left) and Aqua(right) daily FRP to-

gether with merged FRP. The linear regression between the two data

sets is shown as a red line while the best fit non-linear regression is

shown in black. Regions considered are the square that extends from

24 to 26◦ east and from 16 to 18◦ south (left) and from 36 to 38◦

east and 58 to 60◦ north (right).

Figure 5, which presents the relative improvement brought

by the non-linear regression relative to the linear regression

as applied to the learning data set, in terms of distance to

merged daily FRP. In many areas, the improvement is of the

order of 10 to 20 %. The relative improvement brought by the

non-linear approach as compared to the linear one is mostly

evident in regions where fires are less common and as a con-

sequence where the adaptive regionalization algorithm pro-

vides larger domains, as shown in Fig. 1. Also, the non-linear

approach seems to have a larger impact for Terra as compared

to Aqua as shown by Fig. 5.

However, the non-linear formulae cannot be applied to

the verification data set without removing the outlying data.

The non-linear algorithm is generally more efficient in min-

imizing the error between the corrected FRP and the depen-

dent variable. However, for very large daily FRP from Terra

or GFAS, or if the difference between Aqua and Terra is

too large because of difference cloud cover conditions, non-

linear regression can bring very large errors. In particular, ap-

plying the non-linear approach to daily FRP values that lies

outside of the learning data set will give very poor results,

while the linear approach is safer in this case. This is clearly

shown by Fig. 6: if the non-linear approach is applied to large

values, then the result will be extremely large (for the region

considered in the right part of the figure) or even negative for

the region considered on the left.

A way to exploit both the robustness of the linear algo-

rithm and the added skill of the non-linear approach was

found by designing and applying the combined algorithm

that is explained in the Methods section. Several values for

the daily threshold between the use of linear and non-linear

approaches were tested on the verifying data set. The results

of this sensitivity study are summed up in Table 2 for Aqua

and Table 3 for Terra. The 100th percentile corresponds to

the linear regression being applied only. These tables show

a marked difference between Terra and Aqua. For Aqua, the

RMSE decreases very fast with increasing percentiles, but

quickly reaches a floor. Bias, however, decreases more reg-

ularly, reaches a minimum and then increases slightly again.

Table 2. RMSE and bias of mean global FRP in mW m−2 for the

year 2012 for Aqua-GFAS as a function of the percentile of gridded

FRP above which linear regression is applied instead of non-linear

regression.

Percentile RMSE Bias Average FRP

5 1.411× 10−4
−3.683× 10−5 2.609× 10−4

10 7.098× 10−5
−1.574× 10−5 2.398× 10−4

15 6.312× 10−5
−1.017× 10−5 2.343× 10−4

20 2.969× 10−5
−5.898× 10−6 2.300× 10−4

25 2.8385× 10−5
−4.105× 10−6 2.282× 10−4

30 2.693× 10−5
−2.722× 10−6 2.268× 10−4

35 2.635× 10−5
−2.076× 10−6 2.262× 10−4

40 2.609× 10−5
−1.639× 10−6 2.257× 10−4

45 2.610× 10−5
−1.425× 10−6 2.255× 10−4

50 2.608× 10−5
−1.259× 10−6 2.254× 10−4

60 2.605× 10−5
−1.180× 10−6 2.253× 10−4

100 2.599× 10−5
−1.876× 10−6 2.260× 10−4

Figure 7. Daily global FRP from Aqua- and Terra-GFAS (in red)

(Aqua, top; Terra, bottom) and from Full-GFAS (in black). The lin-

ear regression applied to Aqua- and Terra-GFAS is shown in green,

while the mix of linear and non-linear approaches is displayed in

blue. Data from 01/01/2012 to 31/12/2012.

Overall, the non-linear approach does not improve the scores

much compared to the linear regression: the RMSE is the

same and the bias is only slightly decreased. For Terra, both

RMSE and bias decrease and then increase with the thresh-

old percentiles. RMSE is much larger than for Aqua, and the

non-linear approach is more efficient in reducing the bias. In

the end, the percentiles that minimize the errors are 60 for

Aqua and 45 for Terra; these are the values that will be used

in the final correction algorithm.
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Figure 8. Daily FRP averaged of Africa (top), Indonesia (upper

middle), North America (lower middle) and South America (bot-

tom), for 2012. GFAS is shown in black (Aqua-GFAS as a solid line

and Terra-GFAS as a dashed line), and using non-corrected obser-

vations (red) and corrected observations (blue) and corrected obser-

vations (blue) for Aqua-GFAS (solid line) and Terra-GFAS (dashed

line).

3.2.2 Comparison of the combined algorithm to linear

regression

Figure 7 shows daily globally averaged FRP from Aqua-,

Terra- and Full-GFAS using daily FRP not corrected or cor-

rected by the linear regression and the combined algorithm

applied to the verifying data sets. The high temporal vari-

ability of global FRP is very apparent in this figure, as well

Table 3. RMSE and bias of mean global FRP in mW m−2 for the

year 2012 for Terra-GFAS as a function of the percentile of gridded

FRP above which linear regression is applied instead of non-linear

regression.

Percentile RMSE Bias Average FRP

5 1.114× 10−3
−2.981× 10−4 5.223× 10−4

10 3.410× 10−4
−8.815× 10−5 3.122× 10−4

15 2.075× 10−4
−3.897× 10−5 2.631× 10−4

20 4.766× 10−5
−1.746× 10−5 2.416× 10−4

25 4.183× 10−5
−1.239× 10−5 2.365× 10−4

30 4.038× 10−5
−8.642× 10−6 2.327× 10−4

35 3.916× 10−5
−4.957× 10−6 2.290× 10−4

40 3.820× 10−5
−1.127× 10−6 2.252× 10−4

45 3.758× 10−5 2.325× 10−6 2.218× 10−4

50 3.725× 10−5 5.773× 10−6 2.183× 10−4

60 3.828× 10−5 1.122× 10−5 2.129× 10−4

100 4.515× 10−5 2.503× 10−5 1.991× 10−4

as how both the linear and combined algorithms are success-

ful overall in scaling Aqua-GFAS towards Full-GFAS, ex-

cept for a few large fire events such as in March and April

2012 and also at the end of October 2012. The differences

between the linear and combined approaches are very small.

For Terra-GFAS, the regression is overall less successful, in

particular up to 1 May 2012. For Aqua, the daily FRP as

provided by GFAS using observations corrected by the com-

bined algorithm is 5–30 % larger as compared to the values

obtained with the linear regression. For Terra, the difference

is generally negligible as a global average. As also shown in

Table 3, applying linear regression has a greater impact on

Terra than on Aqua.

The apparent difference between the small improvement

brought by the combined regression when applied to the ver-

ifying data set and the larger reduction of the distance result-

ing from the same method when applied to the learning data

set (see Fig. 5) can be explained by the fact that the regions

where the combined algorithm reduces this distance the most

are the regions where fires are less common. The tropical

forests and savannahs, which contribute generally the most

to the global FRP, do not show much improvement in the

combined method as compared to linear regression in Fig. 5.

This shows that non-linear regression has the most impact on

fires in regions that generally contribute much to global FRP,

and therefore this improvement is not very visible when con-

sidering daily global FRP, even though it is locally important.

Figure 8 shows daily FRP from Aqua-, Terra- and Full-

GFAS, averaged over Africa, Indonesia, and South and North

America. GFAS output using observations not corrected and

corrected with the combined algorithm is shown. This figure

clearly shows the varying ratio Aqua over Terra from region

to region: it is important in Africa, where Aqua values can

be up to 8 times larger than Terra value, and rather small in
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Figure 9. Daily FRP in mW m2 for West Africa on 03/04/2012, given by Full-GFAS (top left), Terra-GFAS (top right), Terra-GFAS using

linear regression (middle left) and non-linear regression (middle right), as well as Aqua-GFAS (bottom left) and Aqua-GFAS using non-linear

regression (bottom right).

North America, where Aqua values are usually 5–15 % larger

than Terra.

A spurious oscillation of daily FRP as estimated by Aqua

observations, with a 2-day frequency, is very prominent in

Africa. This is caused by the fact that the detection threshold

of the MODIS sensor varies across the swath. It increases

with viewing angle, towards the swath edges (e.g. Freeborn

et al., 2011); this leads to lower FRP estimates in GFAS for

grid cells that are observed nearer the MODIS swath edges

as smaller fires are not taken into account. As for both Aqua

and Terra, there are fewer overpasses around the Equator;

this results in an underestimation of FRP every 2 days. This

shows more clearly for Aqua, because it captures better the

maximum intensity of fires thanks to its overpass time. This

underestimation in the FRP analysis over Africa is compen-

sated for by the fact that the conversion factors to convert

FRP into dry matter burnt were computed using monthly av-

erage FRP from GFAS and monthly average dry matter com-

bustion rates of GFED (Andela et al., 2013). This issue will

be addressed in the next version of GFAS, which will include

a correction of FRP observations to account for the detection

threshold of MODIS as a function of the viewing angle. The

algorithm of this correction is shown in detail in Kaiser et al.

(2013).

Figure 8 also shows that the correction algorithm is very

efficient in bringing both Terra- and Aqua-GFAS towards

Full-GFAS for the four considered regions. For South Amer-

ica, the relative improvement brought by the correction ap-

pears more important for Aqua-GFAS than for Terra-GFAS.

3.2.3 Results of the combined algorithm to linear

regression in two case studies

To focus to a local scale, Fig. 9 shows the impact of both

methods on a particular fire event in West Africa on 3 April

2012. The daily FRP analysis from GFAS using the origi-

nal Terra data set shows values that are largely inferior to

merged FRP, whereas they are superior for the original Aqua

data set. The observed area (not shown) are comparable for

both satellites on that day, which means that different cloudi-
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Figure 10. Daily FRP in mW m−2 for Australia on 23/10/2012, given by Full-GFAS (top left), Aqua-GFAS (top right), Aqua-GFAS using

linear regression (middle left) and non-linear regression (middle right), as well as Terra-GFAS (bottom left) and Terra-GFAS using non-linear

regression (bottom right).

Figure 11. Daily global FRP from Terra-GFAS from 24/02/2000 to 31/12/2002 using non-corrected observations (red) and corrected ob-

servations (blue). The grey areas indicate that the MODIS/Terra observations were not available and that persistence was used instead in

Terra-GFAS.

ness between the Terra and Aqua overpass times is not the

cause of this very important difference. This fire event con-

tributed significantly to global FRP on that day, and as Fig. 7

shows, the correction of Terra values was not very successful

on that particular day on a global scale. The causes of this

relative lack of success for Terra are clear when consider-

ing the difference between the uncorrected Terra-GFAS and

Aqua-GFAS. Many fires that were detected by Aqua were

not detected by Terra; as a consequence, the correction al-

gorithm, even though it significantly reduced the difference

between Terra-GFAS and Full-GFAS, still showed important

errors. The correction algorithm was successful in producing

a maximal FRP for Terra-GFAS that was of the order of mag-

nitude of the one observed in Full-GFAS. This was accom-

plished by the non-linear part of the correction algorithm, as

shown by the differences between the linear correction and

the combined approach results in Fig. 7.

For this particular example, the combined approach scales

FRP from Terra-GFAS closer to Full-GFAS as compared to

linear regression. The different behaviour of both regression
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Table 4. RMSE and bias of mean global FRP in mW m−2 for the year 2012 for Full-GFAS (reference), uncorrected Aqua- and Terra-GFAS,

and corrected Aqua- and Terra-GFAS, against Full-GFAS FRP

Satellite data assimilated RMSE Bias Average FRP

Aqua and GFAS 0 0 2.238× 10−4

Aqua (not corrected) 1.059× 10−4
−8.7611× 10−5 3.112× 10−4

Terra (not corrected) 8.769× 10−5 7.541× 10−5 1.486× 10−4

Aqua (corrected) 2.605× 10−5
−1.180× 10−6 2.253× 10−4

Terra (corrected) 3.758× 10−5 2.325× 10−6 2.218× 10−4

Figure 12. Monthly global FRP from Terra (green), Aqua (blue)

and GFAS (red). Before 01/01/2003, GFAS uses Terra observations

corrected with a combination of linear and non-linear regression;

after 01/01/2003, GFAS uses observations from Aqua and Terra.

methods from one region to another is clear when consider-

ing that the maximum FRP does not occur in the same grid

cell once either regression method is applied.

This figure shows that, at a local scale, errors are reduced

by the regression but can still remain important. It also shows

that the differences from the linear and combined regressions

are larger when considered at a local scale.

Figure 10 shows how both regression algorithms perform

at a local scale on 23 October 2012 for fires in Australia that

were an important contribution to the peak of global FRP that

was observed that day, as shown in Fig. 7. The differences

between the FRP analysis from Full-GFAS, Terra-GFAS and

Aqua-GFAS using non-corrected data are visible but much

less important than in the other case. As a result, the regres-

sion is much more efficient in producing daily FRP that bring

Terra-GFAS and Aqua-GFAS FRP analysis closer to Full-

GFAS. The non-linear approach does not have any visible

impact in that case.

4 Extension of the GFAS emissions database

The combined linear and non-linear approach was applied

to Terra-GFAS for the period extending from 24 February

2000 to 31 December 2002. Static correction (volcanoes, gas

flares) and quality control were carried out as described in

Kaiser et al. (2012): all observations with a daily FRP value

above 20◦W (average for a 0.5◦ grid cell) per square metre

were not taken into account.

Figure 11 shows Terra-GFAS using uncorrected daily

FRP from Terra, as well as values corrected with linear re-

gression and non-linear regression. The correction brings

greater GFAS FRP analysis: the mean daily global FRP

for the 24 February 2000 to 31 December 2002 period is

1.79× 10−4 mW m−2 when using uncorrected Terra daily

FRP, and 2.31× 10−4 mW m−2 when using corrected Terra

daily FRP. These averages are comparable to the values for

the year 2012 when using merged daily FRP: 1.486× 10−4

and 2.238× 10−4 mW m−2, respectively.

Figure 12 shows monthly global FRP from Aqua, Terra

and GFASv1.0, including the extension of GFAS for the pe-

riod extending from 24 February 2000 to 31 December 2002.

While the unavailability of any independent verifying satel-

lite observations makes it impossible to quantitatively assess

the accuracy of the corrected FRP, the values for the years

2000 to 2002 show a good agreement with the values after-

wards.

The observation products (MOD14) from Terra contain no

fire detections for a few periods, especially from 6 to 17 Au-

gust 2000, from 16 June to 2 July 2001 and from 21 to 29

March 2002. This kind of data fault cannot be detected by

the implemented quality control. Therefore, we assume per-

sistence of the fire distribution for these specific dates.

FRP and biomass burning emissions for the period of

1 March 2000 to 31 December 2002 have been added to

the GFASv1.0 database, which now encompasses the years

2000–2014.

5 Summary

Several configurations for the correction of Aqua and Terra

daily FRP were tried. The adaptive regionalization improves

the result of GFAS as compared to the fixed regionalization

for both satellites, more so for Aqua as compared to Terra

(see Table 1). The combination of non-linear and linear ap-

proaches is more efficient for Terra than for Aqua (see Ta-

bles 2 and 3).

Table 4 shows the final scores for Aqua- and Terra-GFAS,

corrected with the adaptive regionalization algorithm and

the combined linear–non-linear approach. The correction im-

proves the RMSE by more than 75 % for Aqua-GFAS and
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55 % for Terra-GFAS. The bias is also improved by more

than 95 % for both Aqua and Terra. While the correction is

very efficient at reducing the bias at a global scale, errors can

be large when considered at a local scale, as on 3 April 2012

in West Africa (see Fig. 9).

6 Conclusions

This paper showed that a combination of linear and non-

linear regression manages to effectively remove the bias of

the output of GFAS when using observations from only Aqua

or Terra. These results are qualitatively similar to the results

obtained by Ellicott et al. (2009) with a different system. The

regression is overall more efficient for Aqua than for Terra,

and was designed to address the difference between Aqua

and Terra caused by the diurnal cycle of fires. This will en-

sure the coherence of the output of GFAS at a global scale,

should one of these satellites fail. As such, this work con-

solidated the whole MACC-II system. The GFAS FRP and

biomass burning emissions database was successfully ex-

tended to the period from 24 February 2000 to 1 January

2003.

As the fire typology varies a lot from one region to the

other, an adaptive regionalization algorithm was successfully

implemented to design samples that were statistically signifi-

cant. This allowed us to run the regression in nearly every re-

gion of the globe where fires occurred in the past 9 years. For

regions where fires were too scarce for the regression algo-

rithms to be run safely, which represent a very small fraction

of all fires, the correction shown here cannot be applied. The

approach that was applied here to MODIS observations on

Aqua and Terra is also applicable to FRP observations from

other sources, e.g. SEVIRI, VIIRS and SLSTR, acting as a

bias correction. That would open the possibility of assimilat-

ing more FRP observations in GFAS.

This work also documented the differences between Aqua

and Terra FRP observations. These differences are important

at a global scale, and even more so at a local scale, as shown

by the 3 April 2012 situation in West Africa.

The Supplement related to this article is available online

at doi:10.5194/acp-14-13377-2014-supplement.
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