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Abstract. We have developed a novel framework (“Tan-

Tracker”) for assimilating observations of atmospheric CO2

concentrations, based on the POD-based (proper orthogonal

decomposition) ensemble four-dimensional variational data

assimilation method (PODEn4DVar). The high flexibility

and the high computational efficiency of the PODEn4DVar

approach allow us to include both the atmospheric CO2 con-

centrations and the surface CO2 fluxes as part of the large

state vector to be simultaneously estimated from assimilation

of atmospheric CO2 observations. Compared to most mod-

ern top-down flux inversion approaches, where only surface

fluxes are considered as control variables, one major advan-

tage of our joint data assimilation system is that, in princi-

ple, no assumption on perfect transport models is needed.

In addition, the possibility for Tan-Tracker to use a com-

plete dynamic model to consistently describe the time evo-

lution of CO2 surface fluxes (CFs) and the atmospheric CO2

concentrations represents a better use of observation infor-

mation for recycling the analyses at each assimilation step

in order to improve the forecasts for the following assimi-

lations. An experimental Tan-Tracker system has been built

based on a complete augmented dynamical model, where

(1) the surface atmosphere CO2 exchanges are prescribed

by using a persistent forecasting model for the scaling fac-

tors of the first-guess net CO2 surface fluxes and (2) the at-

mospheric CO2 transport is simulated by using the GEOS-

Chem three-dimensional global chemistry transport model.

Observing system simulation experiments (OSSEs) for as-

similating synthetic in situ observations of surface CO2 con-

centrations are carefully designed to evaluate the effective-

ness of the Tan-Tracker system. In particular, detailed com-

parisons are made with its simplified version (referred to as

TT-S) with only CFs taken as the prognostic variables. It is

found that our Tan-Tracker system is capable of outperform-

ing TT-S with higher assimilation precision for both CO2

concentrations and CO2 fluxes, mainly due to the simulta-

neous estimation of CO2 concentrations and CFs in our Tan-

Tracker data assimilation system. A experiment for assimilat-

ing the real dry-air column CO2 retrievals (XCO2) from the

Japanese Greenhouse Gases Observation Satellite (GOSAT)

further demonstrates its potential wide applications.

1 Introduction

Carbon cycle data assimilation systems offer a promising

new tool for CO2 surface flux (CF) inversion (e.g., Peters

et al., 2005; Feng et al., 2009), which tends to yield CO2

surface flux estimates by optimally combining information
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from both chemistry transport model (CTM) simulations and

atmospheric CO2 observations. Previous studies have helped

to improve our understanding of the contemporary carbon

cycle (e.g., David et al., 2006; Peters et al., 2007; Feng et al.,

2011; Kang et al., 2012). The ensemble Kalman filter (re-

ferred to as EnKF) has been widely adopted in carbon cy-

cle data assimilation (e.g., Peters et al., 2007; Feng et al.,

2009, 2011; Kang et al., 2012; Liu et al., 2012), largely due

to its simple conceptual formulation and relative ease of im-

plementation (Evesen, 2003). Peters et al. (2005) coupled

the state-of-the-art atmospheric transport TM5 model (http:

//www.projects.science.uu.nl/tm5/) to the ensemble square

root filter (EnSRF), which forms the “CarbonTracker” data

assimilation system, and its CF inversion results are fairly

consistent with the majority of carbon inventories reported

by the first North American State of the Carbon Cycle Re-

port (SOCCR) (Peters et al., 2007). In CarbonTracker, a sim-

ple persistence forecasting operator is taken as the forecast

model to represent the surface CO2 flux propagation. This

implies that the CFs (actually the scaling factors) are essen-

tially treated as the model (i.e., the simple persistence fore-

casting operator) prognostic variables. Inclusion of a CF dy-

namical model in CarbonTracker meant that any useful infor-

mation for CFs’ improvement achieved by the current data

assimilation procedure could be used in the next assimilation

cycle, so that the observed information would not be wasted.

However, the uncertainty of the initial CO2 concentration

fields has been ignored in CarbonTracker. In fact, this uncer-

tainty has such a large effect on CF estimates that neglect-

ing this effect might result in unpredictable consequences

(Bousquet et al., 2000; McKinley et al., 2004; Peylin et al.,

2005). Recently, Kang et al. (2011, 2012) also presented a si-

multaneous data assimilation system of surface CO2 fluxes

and atmospheric CO2 concentrations by means of the lo-

cal ensemble transform Kalman filter (LETKF-CDAS). Here

”LETKF-CDAS” means the LETKF (i.e., the local ensemble

transform Kalman filter)-based carbon cycle data assimila-

tion system (referred to as CDAS). In LETKF-CDAS, the

CFs were also treated as part of the model states (as in Peters

et al., 2005) and essentially a simple persistence dynamical

model is adopted to describe the CFs’ integration. Similarly,

Feng et al. (2009) also developed an ensemble Kalman fil-

ter to estimate 8-day CO2 surface fluxes over geographical

regions globally from satellite measurements of CO2.

The four-dimensional variational data assimilation (4D-

Var) method has also been introduced in this field (e.g., Baker

et al., 2006a; Engelen et al., 2009). Compared with EnKF,

4D-Var has its own attractive features: for example, it has the

ability to simultaneously assimilate the observations at mul-

tiple times to the analysis fields (Tian and Xie, 2012). Never-

theless, the needs of the adjoint model and the linearization

of the forecast model limit the wider applications of 4D-Var.

Tian et al. (2008b, 2011) proposed the POD-based (proper

orthogonal decomposition) ensemble four-dimensional vari-

ational data assimilation method (PODEn4DVar) based on

the POD and ensemble forecasting techniques, which aims

to exploit the strengths of the two forms (i.e., EnKF and

4D-Var) of data assimilation while simultaneously offsetting

their respective weaknesses. In PODEn4DVar, the control

(state) variables in the 4D-Var cost function appear explic-

itly so that the adjoint model is no longer needed and the

data assimilation process is significantly simplified (Tian et

al., 2008). Furthermore, PODEn4DVar largely retains the ba-

sic advantages of the traditional 4D-Var. Its feasibility and

effectiveness are demonstrated in an idealized model with

simulated observations (Tian et al., 2011; Tian and Xie,

2012). It is found that the PODEn4DVar performs better than

both 4D-Var and EnKF, and with lower computational costs

than the EnKF (Tian et al., 2011). This method has been

successfully applied to land data assimilation (Tian et al.,

2009, 2010). Furthermore, we have built a PODEn3DVar (the

three-dimensional version of PODEn4DVar)-based radar as-

similation system on the atmospheric transport WRF model

platform (Pan et al., 2012). This WRF-based data assimila-

tion system indicates its (PODEn4DVar) potential in the at-

mospheric transport data assimilation.

In this study, we report on a new development of a CF data

assimilation system based on the PODEn4DVar approach,

named Tan-Tracker (in Chinese, “Tan” means carbon). This

system is developed by incorporating a joint PODEn4DVar

assimilation framework into the GEOS-Chem model (V9-01-

03, http://acmg.seas.harvard.edu/geos/). We choose an iden-

tity operator as the CF dynamical model to describe the CFs’

evolution and then utilize such a CF dynamical model to

constitute an augmented dynamical model together with the

GEOS-Chem atmospheric transport model. Therefore in this

case, the large-scale state vector made up of both the CFs and

CO2 concentrations is assumed to be the prognostic variable,

which will be simultaneously constrained by assimilation of

atmospheric CO2 concentration observations.

In Sect. 2, we describe our Tan-Tracker data assimilation

system, including the Tan-Tracker joint assimilation frame-

work, a simple review of the PODEn4DVar assimilation ap-

proach and its coupling with the joint assimilation frame-

work, and its covariance localization scheme. The following

section (Sect. 3) shows observing system simulation experi-

ments (OSSEs) for the evaluations of the Tan-Tracker system

in comparison to its simplified version only taking CFs as

the prognostic variables. Furthermore, another assimilation

experiment for assimilation of real spaceborne CO2 dry-air

mole fraction observations (XCO2) indicates potential wider

applications of this new proposed Tan-Tracker system (Sect.

4). Finally, a summary and concluding remarks are provided

in Sect. 5.

2 The Tan-Tracker joint data assimilation system

Joint or dual-pass assimilation schemes have been utilized to

optimize model states and parameters simultaneously from
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Figure 1. Flowchart of the Tan-Tracker joint data assimilation sys-

tem.

noisy measurements through classical filters (e.g., the dual

UKF or EnKF) (Tian et al., 2008; Tian and Xie, 2008). Tian

et al. (2009) expanded the dual-pass assimilation strategy to

the PODEn4DVar approach and built a PODEn4DVar-based

dual-pass microwave land data assimilation system (Tian et

al., 2010). Similar to the usual joint assimilation schemes,

the augmented vector used in LETKF-CDAS is also a state-

parameter-augmented one and the CFs are treated as the

model parameters. However it should be noted that the prog-

nostic variable used in Tan-Tracker is the large-scale vector

made up of CFs and CO2 concentrations, whose evolutions,

according to the augmented dynamical model, consist of an

identity operator and the CTM.

2.1 The Tan-Tracker joint assimilation framework

An ordinary ensemble-based assimilation system (for exam-

ple, CarbonTracker) usually begins with the preparation of

an ensemble of NCFs Fi,g(i = 1, . . .,N) based on the first-

guess net CO2 surface exchange F ∗(t) at the rth assimilation

cycle:

Fi,g(t)= λi,g,rF
∗
g (t), (1)

Figure 2. The 4-D moving sampling strategy.

where λg,r represents a set of linear scaling factors (Peters et

al., 2005) for each day and each grid (g) to be estimated and

the subscript “r” denotes the rth assimilation cycle. Usually,

the CTM would integrate and produce the 3-D CO2 concen-

tration ensemble Um,i (i = 1, . . .,N) N times derived by the

ensemble of CFs Fi,g(t) from the same initial background

CO2 concentration field. However, for Tan-Tracker, we seek

a more innovative way to accomplish its implementation.

Figure 1 shows the flowchart of the Tan-Tracker joint assim-

ilation system: Tan-Tracker is initiated by two CTM runs –

one is the background run (the blue part in Fig. 1) and the

other is the sampling run (the red part in Fig. 1).

Figure 2 shows the makeup of the assimilation window

(i.e., the optimized window+ the lag window+ the observa-

tional window; see Fig. 2) in Tan-Tracker. F ab (F
s
b ) denotes

the prior CF series over the assimilation (sampling) window,

and F ∗a (F
∗
s ) represents the first-guess CF series over the as-

similation (sampling) window. In the background run, we in-

tegrate the CTM (GEOS-Chem) to produce the background

CO2 concentration fields Ub forced by the prior CF series F ab
at the rth assimilation cycle over the assimilation window

F a
b (t)= λb(t)F

∗
a (t), (t = 1, · · ·,La), (2)

which is used to prepare the background joint state vector

(λb,Ub)
T. Here La is the length of the assimilation window

and λb,r is the prior scaling factor at the rth assimilation cy-

cle. As mentioned, the assimilation window consists of an

optimized window (1 week), a lag window (5 weeks) and an

observational window (1 week). In each assimilation cycle,

the observations in the observational window will be used to

update the joint prognostic variables (λ,U)T in the optimized

window.

Correspondingly, in the sampling run, we run the CTM

from the background CO2 concentration field U s
b at the be-

ginning of the sampling window (i.e., the Pre-Assim win-

dow + the Assimilation window + the Post-Assim window)

(Fig. 2) driven by the prior CF series in the same (rth) assim-
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ilation cycle

F sb (t)= λb,rF
∗
s (t), (3)

where t = 1, . . .,Ls; Ls (=LPre +La +LPos) is the length of

the sampling window; and LPre and LPos are the lengths of

the Pre-Assim and Post-Assim windows, respectively (see

Fig. 2), over the sampling window to yield the sampling

CO2 concentration series U s
i (i = 1, · · ·,Ls, and U s

1 = U
s
b).

Next, a 4-D moving sampling strategy (Fig. 2; Wang et al.,

2010) is adopted to create the large-scale vector ensemble(
λm,i,Um,i

)T
(i = 1, . . .,N , N = Ls−La+ 1) as follows:

(
λm,i,Um,i

)T
= Xs

i =



F s
b (i)

F ∗a (1)

...
F s

b (i+La−1)

F ∗a (La)

U s
i
...

U s
i+La−1


. (4)

As a result the large-scale joint state vector (λ,U)T is viewed

as the prognostic variable in Tan-Tracker, with the identity

operator (4) chosen to be the CF dynamical sub-model to

describe the CFs’ evolution:

MCF = I, (5)

where I is the identity matrix. This CF persistence forecast-

ing model (4) follows Peters et al. (2005) and assumes that

the prior (or background) scaling factors λb,r+1 for the next

assimilation cycle [(r+1)th] are equal to the optimized scal-

ing factors λa,r of the current (rth) assimilation cycle. In the

actual implementations, the following dynamical model (5)

is applied to the linear scaling factors, λ

λb,r+1 =
1

Lo

Lo∑
j=1

λ
j
a,r , (6)

where Lo is the length of the optimized window (Fig. 2)

and λ
j
a,r are the daily optimized scaling factors λa,j (j =

1, . . ..,Lo). The CF dynamical sub-model MCF is thus uti-

lized to constitute the augmented dynamical model

M =

(
I

CTM

)
(7)

for Tan-Tracker together with the CTM (GEOS-Chem)

model. By applying the observation operator H to the mod-

eled CO2 concentrations Um,i and the background CO2 con-

centrations Ub, we can obtain the ensemble simulated obser-

vations Uo
m and the background simulated observations Uo

b

as follows:

Uo
m,i =H

(
Um,i

)
(8)

and

Uo
b =H (Ub) . (9)

So far, the background joint vector (λb,Ub)
T, the joint vec-

tor ensemble
(
λm,i,Um,i

)T
, Eqs. (8) and (9) and the real CO2

measurements Uo
b would be input to the PODEn4DVar as-

similation processor, which yields the assimilated (λa,Ua)
T

and the optimized CFs Fa = λa F
∗ as a result.

In conclusion, Tan-Tracker works as follows: two CTM

runs forced by the background CFs’ series are firstly

achieved over the assimilation window and the sampling

window, respectively: the background run is used to pre-

pare the background joint vector, and the sampling run is

used to produce the joint vector ensemble by applying a 4-

D moving strategy (Wang et al., 2010) to the sampling sim-

ulations throughout the sampling window. The background

joint vector and the joint vector ensemble are then input into

the PODEn4DVar processor, in which the usual observation

operator (e.g., the interpolation function to interpolate the

model gridded variables to the in situ observations) compares

the simulated CO2 concentrations with the observed accord-

ing to the 4D-Var cost function: the CO2 concentrations are

assimilated to initialize the next assimilation cycle. Mean-

while, the scaling factors λ in the optimized window are also

optimized and used for the next assimilation cycle through

Eq. (5).

2.2 The PODEn4DVar and its coupling with the joint

assimilation framework

The PODEn4DVar approach is born out of the incremental

format of the 4D-Var cost function

J (x′)=
1

2

(
x′
)

B−1
(
x′
)

(10)

+
1

2

[
y′(x′)− y′obs

]T
R−1

[
y′(x′)− y′obs

]
,

where x′ = x−xb is the perturbation of the background field

xb at the initial time t0,

y′obs =


y′obs,1

y′obs,2
...

y′obs,S

 , (11)

y′ = y′(x′)=


(y1)

′

(y2)
′

...

(yS)
′

 , (12)

(yk)
′
= yk(xb+ x′)− yk(xb), (13)

y′obs,k = yobs,k − yk(xb), (14)

yk =Hk
(
Mt0→tk (x)

)
, (15)
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and

R=


R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · RS

 . (16)

Here index k denotes the observation time; the superscript

T stands for a transpose; b represents background values;

S is the total observational time steps in the observational

window; Hk acts as the observation operator; and matrices

Rk and B are the observational and background error covari-

ances, respectively.

With the prepared background field xb, the initial model

perturbations (MPs) x′(x′1,x
′

2, · · ·,x
′

N ), the simulated obser-

vation perturbations y′(y′1,y
′

2, · · ·,y
′

N ), the observational in-

crements y′obs,k , and the background and observational error

covariances B and Rk , the final PODEn4DVar analysis solu-

tion xa without localization of its analysis error covariance

P a is formulated through some necessary calculations (see

Tian et al., 2010, 2011, for more details) as

xa = (17a)

xb+ x′V
[
(N − 1)I+PT

yR−1Py

]−1

PT
yR−1y′obs

and

P a
= PxP

∗
a P

T
x , (17b)

where P ∗a =
[
(N − 1)I +P Ty R

−1Py

]−1

and V is derivable

from
(
y′
)T

y′ = V32VT and Py = y′V. To clarify, the back-

ground covariance B is approximately estimated by B=
PxPT

x

N−1
(Px = x′V) in formulating PODEn4DVar.

In particular, in Tan-Tracker,

y′obs,k = Uo,k −U
o
b (18)

and

y′ = Uo
m−U

o
b , (19)

where Uo
b =H (Ub). Here we mark

H =


H1 0 · · · 0

0 H2 · · · 0
...

...
. . .

...

0 0 · · · HS

 . (20)

As mentioned, the model state to be optimized is the joint

vector (λ,U)T, which indicates

xb = (λb,Ub)
T (21)

and

x′ = (λm,Um)
T
− (λb,Ub)

T (22)

in Tan-Tracker.

We have realized the coupling between the joint assimila-

tion framework with the PODEn4DVar assimilation proces-

sor through Eqs. (18–22) (see the green part of Fig. 1).

2.3 Covariance localization

As an ensemble-based assimilation system, Tan-Tracker also

utilizes the covariance localization techniques to ameliorate

the contaminations resulting from the spurious long-range

correlations (Houtekamer and Mitchell, 2001). It uses the

following exponential decay of the covariance structure with

distance between state and observational variables (Gaspari

and Cohn, 1999),

ρh[i,j ] = e
−di,j /d0 , (23)

to calculate the elements ρh[i,j ] of the matrix ρh[Lx ×Ly],

where Lx and Ly are the lengths of the state vector x and

the observational vector y, respectively; di,j is the distance

between the ith state and the j th observation locations and

d0 is the horizontal covariance localization Schur radius.

Consequently, the covariance localization in Tan-Tracker

can be implemented by calculating the Schur product ◦ (i.e.,

piecewise multiplication) as follows (Greybush et al., 2011):

xa = (24)

xb+ ρh ◦

{
x′V

[
(N − 1)I+PT

yR−1Py

]−1

PT
yR−1

}
y′obs.

3 OSSEs for the evaluations of Tan-Tracker

In this section, Tan-Tracker will be comprehensively evalu-

ated through a group of well-designed global observing sys-

tem simulation experiments (OSSEs) over a given assimila-

tion period.

3.1 Experimental setup

We simulate atmospheric CO2 concentrations using the

global three-dimensional chemical transport model GEOS-

Chem (version 9-01-03, http://acmg.seas.harvard.edu/geos/)

driven by the assimilated meteorological data from the God-

dard Earth Observing System (GEOS) of the NASA Global

Modeling and Assimilation Office. The version of the model

we use is driven by the GEOS-5 meteorological fields with a

horizontal resolution of 2◦ latitude by 2.5◦ longitude and 47

vertical layers up to 0.01hPa. The original GEOS-Chem CO2

simulation was described in Suntharalingam et al. (2004) and

updated by Nassar et al. (2010). Our simulations include CO2

fluxes from monthly fossil fuel burning and cement produc-

tion CO2 emissions from the Carbon Dioxide Information

Analysis Center (CDIAC) inventory for year 2009 (Andres

et al., 2010), monthly biomass burning from the third ver-

sion of the Global Fire Emission Database (GFEDv3) for

2010 (van der Werf et al., 2010; Mu et al., 2011), climato-

logical biofuel burning (Yevich and Logan, 2003), monthly

ocean exchange (Takahashi et al., 2009), 3-hourly biospheric

fluxes from the Carnegie–Ames–Stanford Approach (CASA)

model for 2000 (Olsen and Randerson, 2004), annual cli-

matology terrestrial biosphere exchange based on TransCom

www.atmos-chem-phys.net/14/13281/2014/ Atmos. Chem. Phys., 14, 13281–13293, 2014
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Figure 3. The observational sites used in this study.

CO2 inversion results adjusted with GFEDv2 fire emissions

(Baker et al., 2006b; van der Werf et al., 2006), the chemical

production of CO2 from the atmospheric oxidation of other

carbon species (Nassar et al., 2010), the monthly emissions

from shipping (Olivier and Berdowski, 2001), and aviation

CO2 emissions (Friedl, 1997; Sausen and Schuman, 2000;

Kim et al., 2005, 2007; Wilkerson et al., 2010). For this work,

our model simulation was initialized on 01 January 2008

with a globally uniform 3-D CO2 field of 383.76 ppm. Ac-

cording to the record of NOAA-ESRL Mauna Loa Observa-

tory in Hawaii (http://www.esrl.noaa.gov/gmd/ccgg/), which

is a marine surface site, the annual mean CO2 at Mauna Loa

in 2007 was 383.76 ppm, with monthly means of 383.89 ppm

in December 2007 and 385.44 ppm in January 2008. A 2-

year spin-up simulation from this initialized state allows for

model transport, sources and sinks to develop the global spa-

tial patterns of CO2; this approach was evaluated in Nassar

et al. (2010). After the spin-up run, the obtained CO2 fields

were used to drive the observing system simulation exper-

iments. In all the following OSSEs, we firstly assume the

default surface CO2 fluxes released with the GEOS-Chem

model as the true CF series FTrue.Then we run the GEOS-

Chem model, driven by the true CF series FTrue, to obtain the

true CO2 concentration results from 1 January 2010 to 31 De-

cember 2010 (i.e., the assimilation period). The artificial CO2

observations are thus generated every day by sampling the

daily true CO2 concentrations through adding small random

noise (whose error variance is 0.01 ppm2) through the 136

observational sites used in this study (Fig. 3). The first-guess

CF series F ∗ are set to 1.8FTrue, which drives the GEOS-

Chem model at the same resolution (2◦ latitude× 2.5◦ longi-

tude) to produce the background CO2 simulations from the

spun-up equilibrium state.

The performance of our Tan-Tracker system is examined

by comparison with the simplified version (referred to as

TT-S), taking only CFs as the prognostic variables. TT-S is

somewhat similar to CarbonTracker except that the ensem-

ble square root filter (EnSRF) has been replaced by the PO-

DEn4DVar approach and the GEOS-Chem model is used

instead of the TM5 model. Similar to CarbonTracker, the

Figure 4. Time series of the global mean (a) CO2 surface fluxes

and (b) CO2 concentrations from the “truth”, simulations, TT-S (the

simplified version of Tan-Tracker) and TT (Tan-Tracker) assimila-

tions from 1 January to 31 December 2010.

GEOS-Chem model in TT-S is actually the observation op-

erator linking the CFs with CO2 observations. In TT-S, since

the CO2 concentrations are not assimilated together with the

CFs, we first obtain the optimized scaling factors through as-

similating CO2 observations, and thus the CO2 concentra-

tions are also updated by the GEOS-Chem modeling forced

by the optimized CFs. All the assimilation processes are ini-

tiated by the GEOS-Chem model with first-guess CF series

F ∗ (= 1.8FTrue) and conducted continuously by assimilat-

ing the daily pseudo-observations throughout the assimila-

tion period. In all the assimilation experiments, the scaling

factors are initiated from λb,0(i,j)= 1.0 (where i and j are

the longitude and latitude indexes, respectively, and 0 de-

notes the rth (= 0) assimilation cycle). In all the OSSEs, the

default lag window is 5 weeks, and the observational win-

dow and optimized window are both 1 week. The reference

ensemble size N is 106 and the standard localization radius

d0 is 900 km. Changes in the assimilation parameters might

influence the assimilation performance. We further investi-

gate the effects of the length of the horizontal localization

Schur radius and the ensemble size in Tan-Tracker by means

of several sensitivity numerical experiments, the results of

which are presented in Sect. 3.2. In all assimilation experi-

ments, we use the adaptive inflation technique proposed by

Li et al. (2009).

3.2 Experimental results

To evaluate Tan-Tracker’s performance in a general view,

time series of the daily global mean fluxes and CO2 concen-

trations from the background simulations, the TT-S and the

TT (Tan-Tracker) assimilations are compared with the true

Atmos. Chem. Phys., 14, 13281–13293, 2014 www.atmos-chem-phys.net/14/13281/2014/
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Figure 5. Time series of the posterior uncertainties (shaded areas)

of the analyzed surface fluxes (TT) from 1 January to 31 December

2010.

Figure 6. Time series of the averaged scaling factors from 1 January

to 31 December 2010.

simulations in Fig. 4. Not surprisingly, the background sim-

ulations (referred to as Sim) will inevitably deviate seriously

from the “true” simulations due to the predetermined back-

ground CF series Fb (= 1.8FTrue). Remarkably, since both

the CO2 concentrations and CFs are simultaneously assimi-

lated under the joint assimilation framework, it could largely

eliminate the uncertainty of the initial CO2 concentrations on

the CO2 evolution during the assimilation window and max-

imize the observations’ potential. Probably for this reason,

Fig. 4 shows that Tan-Tracker works very well throughout

the whole assimilation period, especially after the first few

months, which can be considered a spin-up period. However,

the performance of TT-S is not very robust and its assimilated

errors do not show a trend of becoming less even though its

performance seems to be substantially better than the back-

ground simulation case: obviously, the impacts of the CO2

concentration have not been taken into full consideration in

the TT-S system and there must be some non-negligible er-

rors remaining in the TT-S-optimized CO2 concentrations

(Fig. 4b). The resulting errors in the initial CO2 concentra-

tions will in turn contaminate the TT-S assimilation of CO2

fluxes for the next assimilation cycle. In the following dis-

cussions, we focus on the results only during the latter half

of the year 2010 and thus remove the spin-up period occur-

ring in the first half of the year. Figure 5 also shows that the

posterior uncertainties of the analyzed CFs are gradually de-

creased with assimilation of CO2 observations. Furthermore,

Fig. 6 shows time series of the daily globally averaged scal-

ing factor. The daily averaged scaling factor is also decreased

Figure 7. (a) Mean CO2 surface fluxes and (b) CO2 concentra-

tion from the “truth”, simulations, TT-S (the simplified version

of Tan-Tracker) and TT (Tan-Tracker) assimilations aggregated

to TransCom regions (i.e., CT-01: North America Boreal; CT-02:

North America Temperate; CT-03: South America Tropical; CT-04:

South America Temperate; CT-05: Northern Africa; CT-06: South-

ern Africa; CT-07: Eurasia Boreal; CT-08: Eurasia Temperate; CT-

09: Tropical Asia; CT-10: Australia; CT-11: Europe; CT-12: North

Pacific Temperate; CT-13: West Pacific Tropical; CT-14: East Pa-

cific Tropical; CT-15: South Pacific Temperate; CT-16: Northern

Ocean; CT-17: North Atlantic Temperate; CT-18: Atlantic Tropics;

CT-19: South Atlantic Temperate; CT-20: Southern Ocean; CT-21:

India Tropical; CT-22: South India Tropical; CT-23: Zero Flux Re-

gions; G-T: Global Total) during the period from 1 June to 31 De-

cember 2010.

and becomes close to ∼ 0.56 (i.e., 1/1.8) with small fluctua-

tions during the latter half of the year 2010.

Similar to Peters et al. (2005), we also aggregated the

daily, gridded (2◦ latitude× 2.5◦ longitude) simulation and

assimilation results to 24 “super-regions” corresponding to

the TransCom 3 regions given by Gurney et al. (2002). Fig-

ure 7 shows the 24 super-regions’ aggregated mean CO2

concentrations and fluxes during the latter half of the year

2010. Generally, Tan-Tracker is able to reproduce the true

fluxes well and its superiority dominates most of the 24

super-regions except for 3 – CT-09 (Tropical Asia), CT-

12 (North Pacific Temperate) and CT-20 (Southern Ocean)

– whose absolute values are very small (Fig. 7a). Further-

more, as far as the CO2 concentration is concerned, the su-

perior performance of Tan-Tracker beyond TT-S is increas-

ingly obvious (Fig. 7b): the differences between the “truth”

and the TT-assimilated CO2 concentrations are much less

than those between the TT-S-assimilated and the “truth” in

the overwhelming majority of cases, which illustrates once

more that the simultaneous assimilation of CO2 concentra-

tions and CFs is indispensable. The time series of daily mean
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Figure 8. Time series of the daily mean CO2 surface fluxes from the “truth”, simulations, TT-S (the simplified version of Tan-Tracker) and

TT (Tan-Tracker) assimilations aggregated to the selected four TransCom regions (i.e., CT-02, CT-07, CT-11 and CT-20) during the period

from 1 July to 31 December 2010.

Figure 9. Same as Fig. 8 but for CO2 concentrations.

fluxes and CO2 concentrations from the four selected super-

regions (Temperate North America, Europe, Boreal Eura-

sia, and Southern Ocean) are shown in Figs. 8 and 9. Sim-

ilar to the global mean case shown in Fig. 3, the ability of

our assimilation system to represent the variations of sea-

sonal peak-to-trough amplitudes of CO2 concentrations and

fluxes is expressed thoroughly and demonstrates its power to

make full use of the observations. Comparatively speaking,

the ability of the TT-S system is considerably inferior to Tan-

Tracker, especially in the Southern Ocean super-region dur-

ing October–December, 2010: here the TT-S-optimized CO2

concentrations are even worse than the background simula-

tions (Fig. 9d).

To evaluate the performance of our Tan-Tracker data

assimilations system comprehensively, we show the root-

mean-square errors (RMSEs) for the daily, gridded (2◦

latitude× 2.5◦ longitude) TT- and TT-S-assimilated fluxes

from 1 July to 31 December 2010 in Fig. 10. In

addition, their corresponding RMSEs for the assimi-

lated (optimized) CO2 concentrations are also shown in

Fig. 11. Compared with the Tan-Tracker case, larger RM-

SEs (> 300× 10−11 kg C m−2 s−1) for the TT-S-assimilated

fluxes can be found in the central parts of South America,

most of East Asia, and southern Africa (Fig. 10b). Encour-

agingly, the TT-assimilated flux RMSEs are largely kept at

a very low level (≤ 80× 10−11 kg C m−2 s−1), in which rel-

atively larger RMSEs (but still much less than the TT-S-

assimilated) appear only in a very small area in the central

parts of South America (Fig. 10a). Naturally, a parallel cir-

cumstance is also replayed in the CO2 concentration case

(Fig. 11). Evidently, a relatively definite conclusion can be

drawn that the uncertainty of the initial CO2 concentrations

cannot be ignored and the joint assimilation framework con-

tributes a lot to the final Tan-Tracker performance. Moreover,

the application of the advanced hybrid assimilation approach

(i.e., PODEn4DVar) would definitely make a positive con-
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Figure 10. Root-mean-square errors (RMSEs) (units are

10−11 kg C m−2 s−1) for the daily (a) TT- and (b) TT-S-assimilated

CO2 surface fluxes during the period from 1 July to 31 December

2010.

tribution to its excellent performance (Tian et al., 2011). Of

course, the imbalance of CFs and CO2 concentrations in TT-

S partly explains its inferior performance.

Another group of experiments using the Tan-Tracker sys-

tem with different horizontal localization radii (d0 =100,

900, 1450, 2000 and 5000 km) are also conducted to ex-

plore the sensitivity of our Tan-Tracker assimilation system

to the variations of the horizontal radius. As suggested by

Peters et al. (2005), we take 900km as the default or refer-

ence radius. Figure 12 shows time series of the daily global

CO2 concentrations and fluxes from the “truth” as well as

the TT assimilations using the three different horizontal lo-

calization radii (d0 = 900, 1450 and 2000 km). Therefore, we

can roughly judge that the Tan-Tracker system could perform

well with its horizontal localization radius around 900 km.

Nevertheless, two extremely inappropriate localization radii

(d0 = 100 and 5000 km) are also tested in our experiments

(but not shown here), whose poor performance demonstrates

that the choice of an appropriate covariance localization ra-

dius is essential to Tan-Tracker’s successful implementation.

Finally, to investigate the impacts of sample sizes on Tan-

Tracker’s assimilation results, we also conduct another group

of Tan-Tracker assimilation experiments with the ensemble

numbers N = 60, 106 and 150. Figure 13 shows that the

Figure 11. Same as Fig. 10 but for CO2 concentrations (units are

ppm).

differences between the two assimilation experiments with

N = 106 and 150 are very small. However, if we decrease

the ensemble number to 60 (not shown), the assimilation re-

sults become divergent. Synthesizing the above results, we

can conclude that giving a certain number of sample sizes

(≥ 100) could generally guarantee the robust performance of

our system.

4 Real-data assimilation experiment with spaceborne

observations

In this section, a preliminary real assimilation experiment is

conducted by using spaceborne CO2 dry-air mole fraction

observations to illustrate the potential applications of Tan-

Tracker in real-data assimilation.

4.1 Experimental setup

The basic experimental designs (such as the GEOS-Chem

model, ensemble size, assimilation window, localization ra-

dius, etc.) are exactly the same as those adopted in Sect.

3. Nevertheless, in this real-data experiment, we took the

default surface CO2 fluxes released with the GEOS-Chem

model as the first-guess CF series F ∗ and used space-

borne CO2 dry-air mole fraction observations (XCO2) in-

stead of artificial CO2 observations. The spaceborne ob-
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Figure 12. Time series of the daily global mean (a) CO2 surface

fluxes and (b) CO2 concentrations from the “truth” and the TT (Tan-

Tracker) assimilations using different covariance localization radii

(900, 1450 and 2000 km), respectively, from 1 January to 31 De-

cember 2010.

Figure 13. Time series of the daily global mean (a) CO2 surface

fluxes and (b) CO2 concentrations from the “true” and the TT (Tan-

Tracker) assimilations with ensemble numbers N = 106 and 150,

respectively, from 1 January to 31 December 2010.

servations used here are originated from the Japanese

Greenhouse Gases Observing Satellite (GOSAT), which

was launched into orbit in 2009. TANSO-FTS, onboard

GOSAT, operates in the shortwave infrared band (SWIR) be-

tween 758 and 2080 nm and thermal infrared band (TIR)

from 5.56 to 14.3 µm, providing information on CO2 and

CH4 in the atmosphere. Level 2 data or the so-called

the column-averaged CO2 dry-air mole fraction XCO2 is

Figure 14. Comparisons between the observedXCO2 and the open-

loop GEOS-Chem-simulated (Sim), Tan-Tracker-assimilated (TT)

and the TT-Sim (i.e., the GEOS-Chem model run without data as-

similation forced by the TT-optimized CF series derived from the

Tan-Tracker assimilation run with the TT-assimilated initial CO2

fields at 1 January 2010) simulated XCO2 on 15 March 2010.

taken from version 3.3 atmospheric CO2 observations from

space (ACOS) data product (O’Dell et al., 2012). Vali-

dation against ground-based TCCON data shows a mean

bias less than 1.4 ppm; these biases can be further re-

duced by applying the recommended data screening crite-

ria and bias correction technique (for more details please

refer to the document “ACOS Level 2 Standard Prod-

uct Data User’s Guide”, http://disc.sci.gsfc.nasa.gov/acdisc/

documentation/ACOS_v3.3_DataUsersGuide.pdf). Further-

more, to guarantee the high quality of the assimilated data

as much as possible, we discarded the XCO2 data with ob-

servation errors ≥ 0.75 ppm.

In order to assimilate the spaceborne XCO2 directly, the

following observation operator (Eq. 25) needs to be incor-

porated into Tan-Tracker to provide a link between the ob-

servational variable XCO2 and the GEOS-Chem-simulated

CO2 concentrations (Feng et al., 2009):

XCO2
=XCO2,a+ hTA(um− ua) , (25)

where h is the pressure weighting function; A is the full av-

eraging kernel matrix; Ua and XCO2,a are the prior CO2

profile and the associated column amount, respectively; and

um is the GEOS-Chem-produced CO2 profile. The experi-

ment period is from 1 January 2010 to 31 March 2010. In

particular, we chose one arbitrary day’s (15 March 2010 in

this experiment)XCO2 data as the evaluation data set, which

are designedly not assimilated in the experiments to provide

an independent evaluation for the Tan-Tracker system.
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4.2 Experimental results

The lack of reliable independent CF estimates derived from

GOSAT XCO2 retrievals (Chevallier et al. 2014) forces us

to seek an indirect way to evaluate the Tan-Tracker assimila-

tions. Here, we performed a parallel free run of GEOS-Chem

forward simulation without any data assimilation. Then, to

examine Tan-Tracker’s performance quantitatively, the sim-

ulated and assimilated CO2 dry-air mole fraction observa-

tions of XCO2 on 15 March 2010 were compared with the

corresponding (independent) GOSAT observations. After the

data quality control (observation error < 0.75 ppm) imple-

mented in this experiment, there are still 163 valid foot-

prints left for system evaluation. Compared with the Sim

case, the TT-assimilated XCO2 is improved considerably

with higher correlation (0.83 vs. 0.77) and a smaller RMSE

(1.38 ppm vs. 2.95 ppm). The GEOS-Chem model gener-

ally underestimates the XCO2 values by a substantial neg-

ative bias of −2.46 ppm, where the mean bias is given by

err = 1
163

163∑
i=1

(
XCO2, i

s(a)
−XCO2, i

o
)
, withXCO2, i

s(a) and

XCO2, i
o being the simulated (assimilated) and observed

XCO2 values for each valid footprint, respectively. How-

ever, the TT-assimilated case only has a very small bias

(err =−0.45 ppm). Obviously, the above discussions could

only demonstrate that our Tan-Tracker system is capable

of yielding fairly good CO2 concentration results. It is en-

couraging to find that the performance of the TT-Sim case

is slightly inferior to the TT case (RMSE = 1.45 ppm and

r = 0.83), suggesting that Tan-Tracker does enhance the CO2

concentration and flux estimations . It provides a promising

new tool for CO2 surface flux (CF) inversion. In addition,

in Fig. 14, α (0.01) is the confidence coefficient. Certainly,

extra efforts should be made to give a more detailed assess-

ment for Tan-Tracker satellite data assimilation, which will

be provided in another study.

5 Summary and concluding remarks

In this study, a new carbon cycle data assimilation system

(i.e., Tan-Tracker) is developed based on an advanced hybrid

assimilation approach (PODEn4DVar), as a part of the prepa-

ration for the launch of the Chinese carbon dioxide observa-

tion satellite (TanSat) (Liu et al., 2012; Cai et al., 2014). Tan-

Tracker adopts a joint data assimilation framework: a simple

persistence model is chosen to describe the CFs’ evolution,

which acts as the CF dynamical sub-model and constitutes an

augmented dynamical model together with the GEOS-Chem

atmospheric transport model. In such an augmented dynam-

ical model, the large-scale state vector made up of CFs and

CO2 concentrations is actually the prognostic variable, which

is designed to be simultaneously constrained by the observa-

tions of atmospheric CO2 concentrations. As a step towards

the application of Tan-Tracker, we carefully designed several

groups of observing system simulation experiments (OSSEs)

to comprehensively evaluate Tan-Tracker’s performance in

comparison to its simplified version (TT-S), taking only CFs

as the prognostic variables. It is found that the simultaneous

estimation of CO2 concentrations and CFs plays a vital role

in enhancing the Tan-Tracker system’s performance: contam-

ination in Tan-Tracker’s performance in CF estimation from

the uncertainty in the CO2 concentration evolution has been

gradually reduced through continuously fitting model CO2

concentration simulations to the observations.

Our future work will focus on the realization of XCO2 as-

similation in the first version of Tan-Tracker, which is a key

step to extending Tan-Tracker with functions for assimilat-

ing satellite measurements. This goal could be achieved by

introducing the observation operator to link the CO2 concen-

tration profiles with XCO2. As the Chinese TanSat has not

yet been launched, we will focus our proposed Tan-Tracker

on GOSAT and OCO-2 (O’Dell et al., 2012) measurements

of CO2. Encouragingly, a preliminary real-data assimilation

experiment conducted by using spaceborne (GOSAT) obser-

vations demonstrates its potential wider applications.
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