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Abstract. Wetlands are a major emission source of methane

(CH4) globally. In this study, we evaluate wetland emis-

sion estimates derived using the UK community land surface

model (JULES, the Joint UK Land Earth Simulator) against

atmospheric observations of methane, including, for the first

time, total methane columns derived from the SCIAMACHY

instrument on board the ENVISAT satellite.

Two JULES wetland emission estimates are investi-

gated: (a) from an offline run driven with Climatic Re-

search Unit–National Centers for Environmental Prediction

(CRU-NCEP) meteorological data and (b) from the same

offline run in which the modelled wetland fractions are re-

placed with those derived from the Global Inundation Ex-

tent from Multi-Satellites (GIEMS) remote sensing prod-

uct. The mean annual emission assumed for each inven-

tory (181 TgCH4 per annum over the period 1999–2007)

is in line with other recently published estimates. There

are regional differences as the unconstrained JULES inven-

tory gives significantly higher emissions in the Amazon (by

∼ 36 TgCH4 yr−1) and lower emissions in other regions (by

up to 10 TgCH4 yr−1) compared to the JULES estimates con-

strained with the GIEMS product.

Using the UK Hadley Centre’s Earth System model

with atmospheric chemistry (HadGEM2), we evaluate these

JULES wetland emissions against atmospheric observations

of methane. We obtain improved agreement with the sur-

face concentration measurements, especially at high north-

ern latitudes, compared to previous HadGEM2 runs using

the wetland emission data set of Fung et al. (1991). Although

the modelled monthly atmospheric methane columns repro-

duce the large-scale patterns in the SCIAMACHY obser-

vations, they are biased low by 50 part per billion by vol-

ume (ppb). Replacing the HadGEM2 modelled concentra-

tions above 300 hPa with HALOE–ACE assimilated TOM-

CAT output results in a significantly better agreement with

the SCIAMACHY observations. The use of the GIEMS

product to constrain the JULES-derived wetland fraction im-

proves the representation of the wetland emissions in JULES

and gives a good description of the seasonality observed at

surface sites influenced by wetlands, especially at high lati-

tudes. We find that the annual cycles observed in the SCIA-

MACHY measurements and at many of the surface sites in-

fluenced by non-wetland sources cannot be reproduced in

these HadGEM2 runs. This suggests that the emissions over

certain regions (e.g. India and China) are possibly too high

and/or the monthly emission patterns for specific sectors are

incorrect.

The comparisons presented in this paper show that the per-

formance of the JULES wetland scheme is comparable to

that of other process-based land surface models. We identify
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areas for improvement in this and the atmospheric chemistry

components of the HadGEM Earth System model. The Earth

Observation data sets used here will be of continued value

in future evaluations of JULES and the HadGEM family of

models.

1 Introduction

The global mean atmospheric concentration of methane

(CH4) has increased from ∼ 700 parts per billion by vol-

ume (ppb) at the start of the industrial era to ∼ 1808 ppb

in 2012 (Blunden and Arndt, 2013) and constitutes ∼ 20 %

of the anthropogenic radiative forcing by greenhouse gases

(Forster et al., 2007). Increases in atmospheric CH4 concen-

trations potentially have a large impact on the global climate,

through its direct radiative forcing effect (the radiative effi-

ciency of CH4 is about 10 times greater than that of carbon

dioxide per tonne emitted: Ramaswamy et al., 2001) and,

indirectly, through the formation of tropospheric ozone and

aerosols (Shindell et al., 2009). In consequence, control of

CH4 emissions is potentially an important lever for interna-

tional climate change policy and possible (short-term) mit-

igation actions (e.g. Shindell et al., 2012; Bowerman et al.,

2013). An accurate knowledge of its contemporary sources

and sinks is therefore essential.

CH4 is emitted to the atmosphere from a number of

sources (Denman et al., 2007): (a) biogenic sources, cov-

ering wetlands, agriculture (livestock and rice production),

landfills, forests, oceans and termites, and (b) non-biogenic

sources, comprising fossil-fuel mining and burning, biomass

burning, waste treatment and geological sources. The major

removal process for CH4 in the atmosphere is reaction with

hydroxyl (OH) radicals. Minor sinks are reactions with chlo-

rine (Cl) atoms in the boundary layer, reactions with OH, Cl

and excited oxygen atoms (O(1D)) in the stratosphere, and

uptake by soils. The overall atmospheric lifetime of CH4 is

estimated to be 9.1± 1.9 years (Prather et al., 2012).

In situ measurements of CH4 concentrations have been

made from global networks of surface atmospheric sites

since the 1980s (Steele et al., 1987, 1992; Blake and Row-

land, 1988; Dlugokencky et al., 1994b, 1998, 2001, 2003,

2009, 2011; Rigby et al., 2008). The globally averaged CH4

growth rate, derived from the surface measurements, has

fallen from a high of 16 ppbyr−1 in the late 1970s/early

1980s (Blake and Rowland, 1988; Steele et al., 1992; Dlu-

gokencky et al., 1998) to almost zero between 1999 and

2006 (Dlugokencky et al., 2011). This period of declining

or low growth was however interspersed with years of pos-

itive growth-rate anomalies (e.g. in 1991–1992, 1998–1999

and 2002–2003). Since 2007, renewed growth has been ev-

ident (Rigby et al., 2008; Dlugokencky et al., 2009), with

the largest increases observed to originate over polar north-

ern latitudes and the Southern Hemisphere (SH) in 2007 and

in the tropics in 2008. There is significant concern that this

might be the restart of an ongoing upward trend in atmo-

spheric CH4 concentrations.

The observed interannual variability in atmospheric CH4

concentrations and the associated changes in growth rates

have variously been ascribed to changes in the different CH4

sources and sinks: (a) CH4 sources directly influenced by hu-

man activities, such as fossil fuel production (Dlugokencky

et al., 1994b, 2011; Bousquet et al., 2006; Bergamaschi et al.,

2013; Kirschke et al., 2013), (b) wetland emissions (Bous-

quet et al., 2006, 2011; Ringeval et al., 2010; Kirschke et al.,

2013; Pison et al., 2013) and (c) biomass burning, especially

during the intense El Niño years in 1997 and 1998 (Dlugo-

kencky et al., 2001; Kirschke et al., 2013). The most likely

causes of the CH4 anomalies observed during 2007 and 2008

were the anomalously high temperatures in the Arctic (Dlu-

gokencky et al., 2009) or larger CH4 emissions from natu-

ral wetlands in tropical South America and boreal Eurasia

(Bousquet et al., 2011).

Atmospheric column CH4 measurements with sensitiv-

ity to the surface and lower troposphere are now avail-

able from satellite instruments: SCIAMACHY on ENVISAT

from 2003 (Buchwitz et al., 2005; Frankenberg et al.,

2005; Schneising et al., 2009, 2011) and, since 2009, the

Greenhouse Gas Observing Satellite (GOSAT, Kuze et al.,

2009). The satellite measurements complement the obser-

vations from the sparse network of surface sites. Franken-

berg et al. (2006) concluded that the SCIAMACHY measure-

ments could be used in inverse modelling and were an impor-

tant step in reducing the uncertainties in the global methane

budget. Bergamaschi et al. (2007) extended the inverse mod-

elling analysis to include both surface and satellite observa-

tions. Their results indicated significantly greater CH4 emis-

sions in the tropics compared to either the a priori estimates

or the inversion based on the surface measurements alone.

The discrepancy was partially reduced after taking account

of spectroscopic changes to interfering water vapour absorp-

tion lines (Frankenberg et al., 2008; Meirink et al., 2008).

More recently, Fraser et al. (2013) have used column CH4

measurements from the Thermal and Near-infrared Sensor

for Carbon Observation (TANSO) on the GOSAT to estimate

global and regional monthly CH4 fluxes.

The surface and satellite atmospheric measurements have

been used to constrain the total global annual source

strength of CH4 (in Tg CH4 yr−1): 550± 50 (Franken-

berg et al., 2005); 582 (Denman et al., 2007); 515± 3

(1999–2006), 536 (2007) and 533 (2008) (Bousquet et al.,

2011); 513± 9 (1990s) and 514± 14 (2000s) (TRANSCOM

Methane Model Intercomparison, Patra et al., 2011), 510–

516 (2009–2010) (Fraser et al., 2013) and 551(500–592)

(1980s), 554(529–596) (1990s) and 548(526–569) (2000s)

(Kirschke et al., 2013). However, there remain considerable

uncertainties in the partitioning of sources and their spatial

and temporal distribution (Kirschke et al., 2013).
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Wetlands are generally accepted as being the largest,

but least well quantified, single natural source of CH4,

with global emission estimates ranging from 100 to

231 TgCH4 yr−1 (Denman et al., 2007; USEPA, 2010). The

modelling of wetlands and their associated emissions of CH4

has become the subject of much current interest. The re-

view by Melton et al. (2013) provides a summary of the

current state of knowledge on wetlands and the outcome of

the WETland and Wetland CH4 Inter-comparison of Mod-

els project (WETCHIMP). Melton et al. (2013) found a large

variation in the wetland areas and associated CH4 emissions

from the participating models and varying responses to cli-

mate change (as represented by increases in the driving CO2

concentrations, temperature and precipitation).

Wetland emissions are particularly sensitive to climate

change (O’Connor et al., 2010; Melton et al., 2013). Ged-

ney et al. (2004) concluded that the wetlands model used in

the Joint UK Land Earth Simulator (JULES, the UK com-

munity land surface model) would lead to a doubling of CH4

emissions from wetlands by 2100 for the IPCC IS92a sce-

nario considered. As a major emission source of CH4 which

responds strongly to climate change, it is vital that the de-

scription of wetlands and the associated emissions of CH4

used in land surface and climate models reflects current un-

derstanding and the implications of emerging data sets.

In this paper, we use atmospheric observations of CH4

(surface concentrations and total columns derived from the

SCIAMACHY instrument) to evaluate simulations of the

Hadley Centre’s Global Environmental Model (HadGEM2,

Collins et al., 2011) and hence to assess the wetland methane

emission parameterization used in JULES. The paper is

structured as follows. Sect. 2 provides a brief description

of the models, the experimental set-up and the key data sets

used in the model runs and subsequent analysis. Sect. 3 com-

pares the modelled CH4 concentrations with atmospheric

methane measurements and includes discussion of the re-

sults. Finally, conclusions can be found in Sect. 4.

2 Approach and methodology

2.1 HadGEM2

2.1.1 Model configuration and nudging

HadGEM is a family of models which have been de-

signed to simulate and understand the centennial-scale evo-

lution of climate, including biogeochemical feedbacks, in

response to anthropogenic and natural greenhouse gas and

aerosol-precursor emissions. In this study, we used ver-

sion 2 of HadGEM (HadGEM2: Collins et al., 2011) in an

atmosphere-only configuration. The model was driven with

sea-surface temperature and sea ice fields taken from the

second Atmosphere Model Intercomparison Project (www-

pcmdi.llnl.gov/projects/amip). The dynamics and tempera-

tures of the climate model were “nudged” (Telford et al.,

2008) towards the European Centre for Medium-Range

Weather Forecasts (ECMWF) ERA-40 reanalyses (Uppala

et al., 2005) of the atmospheric state of temperature, sur-

face pressure and the horizontal wind components. Hence,

the synoptic variability would be similar to that observed,

improving the comparison with observations of atmospheric

trace constituents.

2.1.2 Atmospheric chemistry

For the runs reported here, we use the standard tropo-

spheric chemistry scheme (O’Connor et al., 2014) from the

UK Chemistry and Aerosol (UKCA; http://www.ukca.ac.uk)

model, which has been implemented into HadGEM2. This

chemistry scheme comprises 46 chemical species (of which

26 are advected tracers), 129 reactions (102 gas-phase and

27 photolysis reactions) and interactive deposition schemes.

The chemistry scheme simulates the chemical cycles of odd

oxygen (Ox), odd hydrogen (HOx) and oxides of nitrogen

(NOx) and the oxidation of carbon monoxide (CO), CH4,

ethane (C2H6) and propane (C3H8). There are eight emit-

ted species: CO, NOx, CH4, C2H6, C3H8, HCHO (formalde-

hyde), CH3CHO (acetaldehyde) and CH3CHOCH3 (ace-

tone). In relation to CH4, although the dominant loss of CH4

in the troposphere is through oxidation by the hydroxyl rad-

ical (OH), oxidation in the stratosphere is solely represented

by reactions with OH and O(1D); there is no oxidation by

Cl. However, because the upper model boundary is at 39 km,

oxidation by O(1D) does not provide a sufficiently large sink

for CH4. Hence, an explicit loss term is applied at the top

of the model domain to compensate for the lack of strato-

spheric CH4 oxidation. Further details on the standard tropo-

spheric chemistry scheme and its evaluation can be found in

O’Connor et al. (2014).

2.1.3 Land surface module

JULES is a physically based model that describes the water,

energy and carbon balances and includes temperature, mois-

ture and carbon stores (Best et al., 2011; Clark et al., 2011).

JULES can be run as a stand-alone model using appropriate

driving meteorological data or as the land surface component

in UK climate or earth system models (note that HadGEM2

strictly uses the Met Office Surface Exchange System, an ear-

lier version of JULES, as the land surface component).

JULES uses a tiled approach to describe subgrid-scale het-

erogeneity. Nine surface types are used, of which five are

vegetation-related. The fractions of surface types within each

land-surface grid box can either be modelled or prescribed.

Air temperature, humidity, wind speed and incident radiation

above the surface and soil temperatures and moisture con-

tents below the surface are treated as homogeneous across

a grid cell; other parameters are calculated for each surface

type.
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The current version of JULES uses a methane wetland

emission parameterization, developed and tested by Ged-

ney et al. (2004) for use at large spatial scales. The wet-

land parameterization is coupled to the large-scale hydrol-

ogy scheme of Gedney and Cox (2003), which predicts the

distribution of subgrid-scale water table depth and wetland

fraction (fw) from the overall soil moisture content and the

subgrid-scale topography. The methane flux from wetlands

Fw(CH4 in kgCm−2 s−1) is given in terms of the main con-

trols of temperature, water table and substrate availability:

Fw(CH4)= fw k(CH4) Cs Q10(Tsoil)
(Tsoil−T0)/10, (1)

where Tsoil is the soil temperature (in K) averaged over the

top 10 cm and k(CH4) is a global constant which is cali-

brated to give the required global methane flux. Soil car-

bon content (Cs in kgCm−2) was used as there is a lack

of global data on substrate availability. The default parame-

ter values are k(CH4)= 7.4×10−12 s−1, T0 = 273.15 K and

Q10(T0)= 3.7 (Clark et al., 2011).

2.2 Earth Observation data sets

We have used a number of key Earth Observation data sets,

either to constrain the land surface and chemistry–climate

models or to evaluate the models. These are briefly described

in the following sections.

2.2.1 Wetland and inundation dynamics

A globally applicable remote-sensing technique, employing

a suite of complementary satellite observations, has been

developed to derive wetland inundation extents: the Global

Inundation Extent from Multi-Satellites (GIEMS) (Prigent

et al., 2001b, 2007; Papa et al., 2010; Prigent et al., 2012).

The method estimates inundation and its seasonal and spa-

tial dynamics at the global scale using three sensors. De-

tection of inundation primarily relies on the passive mi-

crowave land-surface signal between 19 and 85 GHz from

the Special Sensor Microwave/Imager (SSM/I). Relative to

non-flooded lands, inundated regions are characterized by

low microwave emissivities and high-emissivity polariza-

tion difference, even under dense canopies. In semi-arid re-

gions where bare surfaces and inundation can produce sim-

ilar SSM/I signatures, the Normalized Difference Vegeta-

tion Index (NDVI), derived from visible and near-infrared

reflectances from the Advanced Very High Resolution Ra-

diometer (AVHRR), is used to resolve ambiguities. Active

microwave backscattering at 5.25 GHz from the ASCAT

scatterometer (the original method used the scatterometer on

board the European Remote Sensing (ERS) satellite) is very

sensitive to vegetation density (Prigent et al., 2001a). These

measurements are used to assess vegetation contributions and

to quantify the fraction of inundation within the pixel. The

GIEMS data set is now available on a monthly basis from

1993 to 2007 globally, and mapped on an equal area grid

of 773 km2 (equivalent to 0.25◦× 0.25◦ at the equator) (Pri-

gent et al., 2012). This and the earlier data sets have been

thoroughly evaluated by comparison with other static esti-

mates of wetland extent. This product is the only dynamic

estimate available. It has also been compared with related hy-

drological variables such as rain rate, river gauges and river

heights (Prigent et al., 2001b, 2007; Papa et al., 2006a, b,

2007, 2008a, b).

2.2.2 SCIAMACHY atmospheric column methane

Atmospheric column-averaged CH4 dry-air mixing ratios

(XCH4 in ppb) are available from the SCIAMACHY in-

strument on the ENVISAT satellite (Schneising et al.,

2009, 2011). The SCIAMACHY data product used in this

study was retrieved from nadir measurements using the

Weighting Function Modified Differential Optical Absorp-

tion Spectroscopy (WFM-DOAS) processing algorithm (ver-

sion 2.3, WFMDv2.3). WFMDv2.3 is an improved version

of WFMDv2.0.2 (Schneising et al., 2011, 2012), using a cor-

rection factor depending on simultaneously retrieved water

vapour abundance (from the same fitting window as CO2,

which is used as a proxy for the light path) to account for

spectroscopic interferences. The WFM-DOAS algorithm is

one of the algorithms currently being compared in the Eu-

ropean Space Agency (ESA) project: Greenhouse Gases Cli-

mate Change Initiative (GHG-CCI; Buchwitz et al., 2013).

The SCIAMACHY data set has been validated and its rela-

tive accuracy, a quality measure quantifying regional biases,

is 7.8 ppb (Dils et al., 2014). The SCIAMACHY XCH4 data

set was provided on a 0.5◦× 0.5◦ grid at monthly intervals

for the time period 2003–2009. It was regridded to the spatial

resolution of the HadGEM2 model to enable direct compari-

son with the model.

2.2.3 HALOE–ACE assimilated TOMCAT

The Halogen Occultation Experiment (HALOE, Russell

et al., 1993) provides solar occultation observations of a

range of trace gases including CH4 (Park et al., 1996) from

September 1991 until November 2005. Observations were

obtained at about 15 sunrise and sunset locations per day. The

Atmospheric Chemistry Experiment (ACE, Bernath et al.,

2005) was launched onboard SCISAT-1 in August 2003 and

since then has been providing solar occultation observations

of trace gases including CH4 (De Mazière et al., 2008). De-

spite the geographical sparseness of these data sets, the long

atmospheric lifetime of CH4 means that these solar occul-

tation data are sufficient to constrain a stratospheric chem-

ical transport model (CTM) through data assimilation (see

Chipperfield et al., 2002). In this study, we use the TOMCAT

offline 3-D CTM (Chipperfield, 2006; Breider et al., 2010;

Monks et al., 2012), with data assimilation of the HALOE

and ACE measurements, to provide monthly CH4 concentra-
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tion fields for the upper troposphere and stratosphere for the

years 2000 through to 2007 (see Sect. 3.2.1).

2.3 Model runs and emission inventories

2.3.1 Wetland methane emissions

For their CH4 wetland emissions, O’Connor et al. (2014)

aggregate the wetlands, bogs, swamps and tundra compo-

nents in the data set of Fung et al. (1991), available from

http://data.giss.nasa.gov/ch4_fung/. This aggregated wetland

emission data set (totally 181 TgCH4 yr−1), together with the

other CH4 emission sources used, was found to give very rea-

sonable atmospheric CH4 lifetimes and burdens and global

mean concentrations, and reasonably good comparisons with

in situ surface atmospheric observations. One of the runs un-

dertaken in this study made use of this inventory (denoted

FUNG below). We now believe our use of the data set to be

incorrect. The components in the data set represent two dif-

ferent emission scenarios with different assumptions on sea-

sonality (Fung et al., 1991). We also use the version of the

Fung inventory produced for the TRANSCOM–CH4 study

(Patra et al., 2009, 2011), denoted TRANSCOM-FUNG be-

low. This was rescaled to give a global annual emission flux

of 181 TgCH4 yr−1, as this was the nominal total wetland

emission used in previous work.

The other runs reported here use methane wetland emis-

sions derived from an offline global run of the JULES land

surface model (see Sect. 2.1.3), driven with CRU-NCEP me-

teorological data (Viovy and Ciais, 2009), for 0.5◦×0.5◦ ter-

restrial grid squares (denoted JULES). A second emission

estimate is derived from this offline JULES run by replac-

ing the modelled wetland fraction in Eq. (1) with the wetland

fraction derived from the regridded GIEMS product (denoted

JULES-GIEMS). As the GIEMS inundation product does not

discriminate between natural wetlands and managed water

areas such as rice paddy fields, the GIEMS product is cor-

rected for such rice paddy fields, using information on the

area of cultivation of rice from both irrigated and rain-fed

cultivation (Portmann et al., 2010). The two JULES emission

estimates are separately scaled so that the average global an-

nual emission flux over the period of the model runs (1999–

2007) is 181 TgCH4 yr−1, for the reason given in the previ-

ous paragraph.

The most noticeable differences between the JULES emis-

sion data sets and those of Fung et al. (1991) are the

significantly higher emissions in the boreal region (> 50◦

N) in both the FUNG data set as used by O’Connor

et al. (2014) and the TRANSCOM-FUNG inventory com-

pared to the JULES-based inventories (FUNG: ∼ 90;

TRANSCOM-FUNG: ∼ 52; JULES: ∼ 5 and JULES-

GIEMS:∼ 15 TgCH4 yr−1), and conversely the higher emis-

sions in the tropics (30◦ S–30◦ N) in the JULES-based

inventories (FUNG: ∼ 67; TRANSCOM-FUNG: ∼ 100;

JULES: ∼ 167 and JULES-GIEMS: ∼ 127 TgCH4 yr−1).

This can be seen in Fig. 1 (see discussion in Sect. 3.3.2) and

also Fig. 3 of the Supplement.

Additional information on the wetlands and their associ-

ated emissions of methane is provided in Sect. 1.1 of the

Supplement.

2.3.2 Other emissions

We generate year- and month-specific emission data sets

for the period from 1997 to 2009 for the emitted species

in the UKCA standard tropospheric chemistry scheme (see

Sect. 2.1.2). The approach adopted varies depending on the

source sector:

– Anthropogenic: year- and month-specific emission data

sets are derived from the decadal-averaged emission in-

ventories compiled by Lamarque et al. (2010), by scal-

ing the emission totals for the different years and source

sectors using sector and species-specific scaling factors

based on the annual trends given in various EDGAR

time series.

– Biomass burning: year-specific emission inventories are

available from the Global Fire Emissions Database

(GFED, v3.1) for the years 1997 to 2009 (van der Werf

et al., 2010), on a monthly time step. The CH4 emissions

are rescaled to give the same period mean (25 TgCH4

per annum) as used in the UKCA runs of O’Connor

et al. (2014).

– Other: data on sources such as termites and hydrates for

CH4 and oceanic emissions of CH4 and other volatile

organic compounds are taken from various sources, as

described in O’Connor et al. (2014). These data sets

contain a single annual cycle, which is assumed to apply

for all years.

A number of studies (e.g. Monteil et al., 2011; Patra et al.,

2011) find that the anthropogenic trend in the 2000s as given

in the EDGAR v4.2 emission time series is not consistent

with surface atmospheric measurements of methane and its
13C isotope for the period from 2000 to 2006. For this rea-

son, we prefer to use the earlier EDGAR v3.2 emission time

series. The recently published papers by Bergamaschi et al.

(2013) and Kirschke et al. (2013) provide justification for this

choice.

Additional information on the emission data sets used for

the other emitted species in the model runs is provided in

Sect. 1.2 of the Supplement.

3 Results and discussion

Four HadGEM2 runs were undertaken for the period 1999–

2007, which differed only in the wetland emission inventory

used (FUNG, TRANSCOM-FUNG, JULES and JULES-

GIEMS). Figure 2 shows the spatial distribution of the global

www.atmos-chem-phys.net/14/13257/2014/ Atmos. Chem. Phys., 14, 13257–13280, 2014
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(a) (b) 

Figure 1. Time series of the area-weighted annual wetland emissions for all land surface points and for the 11 terrestrial TRANSCOM

regions (left-hand panel) for the Fung et al. (1991) wetland data sets (red: as used by O’Connor et al. (2014); black: TRANSCOM-FUNG)

and for the JULES wetland estimates (blue: JULES; green: JULES-GIEMS). The right-hand panel shows the corresponding mean annual

cycles.

annual methane emissions for the year 2000 for the four runs.

The model runs all used the same previously derived initial

conditions, which represented a spun-up atmosphere for the

early 2000s.

3.1 Comparison with surface measurements

We use the surface measurements of atmospheric CH4 dry air

mole fractions made at sites in the National Oceanic & Atmo-

spheric Administration’s Earth System Research Laboratory

(NOAA ESRL) Carbon Cycle Cooperative Global Air Sam-

pling Network (Dlugokencky et al., 2012). Section 2.1 in the

Supplement includes a map of the monitoring sites and has

time series of the observed and modelled atmospheric CH4

concentrations between the years 2000 and 2010 at 16 of

the 64 sites, covering both Northern Hemisphere (NH) and

SH locations, for the different model runs. Figure 3 shows

a comparison of the latitudinal distribution of the observed

monthly surface atmospheric methane mixing ratios from all

the sites for the months of January, April, July and October

(as a mean of the available measurements between 2000 and

2010) with the corresponding values derived from the four

HadGEM2 runs. All four model runs reproduce the increase

in methane mixing ratio between the SH and NH. The model

runs also capture the variability (or lack thereof) in the NH

(in the SH). The runs also reproduce the annual cycles ob-

served at many of the SH sites.

There are differences in the modelled annual cycles at the

NH sites for the four runs, which is more clearly seen in

Fig. 4. The model run using the FUNG wetland emissions

gives very high surface CH4 concentrations and an incorrect

seasonality at all the high- and mid-latitude NH sites (illus-

trated here by the Barrow, Pallas-Sammaltunturi and Mace

Head sites). This has been seen by other authors (e.g. Patra
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(a) (b) 

(c) (d) 

Figure 2. Maps of the global annual emissions of methane from all sources for the year 2000 using wetland emissions based on (a, b) the

data set of Fung et al. (1991) (FUNG and TRANSCOM FUNG), (c) an offline JULES run (JULES) and (d) the same JULES run in which

the modelled wetland fraction is replaced by that in the GIEMS product, corrected for rice paddy fields (JULES-GIEMS).

et al., 2011) and is also seen to a lesser extent in the run using

the TRANSCOM-FUNG wetland inventory. The runs using

the JULES wetland emission inventories are generally bet-

ter in terms of amplitude and seasonality for these sites. We

subsequently evaluate the model outputs using various met-

rics (see below). There is further evidence of the different

spatial and temporal patterns between the wetland emission

inventories at other mid-latitude NH sites (Hegyhatsal, Hun-

gary; Ulaan Uul, Mongolia; Southern Great Plains, USA; and

Plateau Assy, Kazakhstan). The modelled concentrations at

the Arembepe site in Brazil provide evidence of the over-

prediction of the CH4 emissions from the JULES wetland

inventories. At many of the sites (e.g. Ulaan Uul, Mongo-

lia; Southern Great Plains, USA; Tae-ahn Peninsula, Korea;

Mount Waliguan, China; Mahe Island, Seychelles), the con-

centrations in the winter months are significantly overesti-

mated, suggesting that the annual pattern of the non-wetland

methane emissions may not be correct. The remote SH sites

(illustrated here by the Tierra del Fuego and South Pole

sites) are located a long distance from the large CH4 sources

(which are mainly in the NH) and are representative of the

remote and well-mixed SH, although there is evidence of

the higher SH wetland emissions in the JULES and JULES-

GIEMS runs.

The HadGEM2 configuration used for these runs does not

provide “tagged” or “coloured” outputs (i.e. the contribu-

tion of the different methane source sectors cannot be de-

rived). Instead, we estimate the contribution from the various

source sectors (anthropogenic, rice paddy fields, shipping,

wetlands, biomass burning, termites and oceanic/hydrates)

using the sector emissions local to that region. In Table 4

of the Supplement, we present the relative contribution of

the emissions sectors for a 20◦× 20◦ box centred on the

Barrow and Plateau Assy sites. At Barrow, the emissions

in the TRANSCOM-FUNG run are mainly from wetlands

(>62 %), whereas the wetland emissions are smaller in the

JULES and JULES-GIEMS runs and the emissions from an-

thropogenic sources make the largest contribution. A similar
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Figure 3. Comparison of the latitudinal distribution of the surface atmospheric methane mixing ratio (in ppb) as observed (black) and from

the HadGEM2 runs using the following wetland emission inventories, (1) FUNG (red), (2) TRANSCOM-FUNG (magenta), (3) JULES

(blue), and (4) JULES-GIEMS (green) between the years 2000 and 2010 for the months January, April, October and December. The index

of agreement (IOA) is shown for each run (see Sect. 3 of the Supplement for the definition of the IOA).

pattern is also observed at the Pallas-Sammaltunturi site. At

the Plateau Assy site, anthropogenic emissions are the largest

contributing sector with wetlands at 25–29 % (TRANSCOM-

FUNG), 0.3–6.0 % (JULES) and 11–13 % (JULES-GIEMS).

A wide variety of methods have been developed within

the atmospheric composition and air pollution community

to assess model performance (e.g. Yu et al., 2006; Dennis

et al., 2010). For each of the HadGEM2 runs, we derived

these different metrics (linear regression, bias, normalized

mean bias, IOA, hit rate – see Sect. 3 in the Supplement)

for each site where there were at least 20 pairs of monthly

observed and modelled concentrations. The valid data from

all sites for a given run were then aggregated and the same

set of metrics derived for this “global” data set. Table 1 pro-

vides the output of this analysis. There are some remarkably

good fits with slopes close to unity and high correlation coef-

ficients (R2
= 0.82 for the JULES-GIEMS inventory). That

said, there are specific sites where the performance appears

superficially good but is less robust on closer inspection (see

Table 6 in Sect. 2.1 of the Supplement). This can also be

seen in Fig. 5, which shows a Taylor plot (Taylor, 2001)

for the four runs (FUNG, TRANSCOM-FUNG, JULES and

JULES-GIEMS). The JULES-based inventories represent an

improvement over the FUNG and, to a lesser extent, the

TRANSCOM-FUNG wetland inventories, where a negative

correlation between the observed and modelled concentra-

tions at high-latitude NH sites is evident for the latter. The

index of agreement (and, to a lesser extent, the hit rate) did

show some discrimination between the model runs. The IOA

varies between 0.76 (FUNG) and 0.94 (JULES-GIEMS), the

run in which the JULES-modelled wetland fraction is re-

placed with the EO-derived value. The run using the JULES-

modelled wetland fraction gave an IOA of 0.91, showing that

the JULES-based emission inventories are, in general, a con-
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Figure 4. Comparison of the annual cycle in the surface atmospheric methane mixing ratio (in ppb) at selected sites between the years

2000 and 2010, as observed (black) and from the HadGEM2 runs using the following wetland emission inventories, (1) FUNG (red), (2)

TRANSCOM-FUNG (magenta), (3) JULES (blue), and (4) JULES-GIEMS (green). The IOA is shown for each run.

siderable improvement over the run using the FUNG inven-

tory (but not the run using TRANSCOM-FUNG inventory,

for which an IOA of 0.91 is derived).

Of more relevance is whether the model can reproduce the

observed growth rates and hence explain the origin of the

positive anomalies. Following Dlugokencky et al. (1994a)

and references therein, the average trend and seasonal cy-

cle in the modelled or observed concentrations were approx-

imated by a second-order polynomial and four harmonics. A

low-pass filter was then applied to the residuals of the fit to

remove variations occurring on timescales less than∼ 1 year.

The smoothed residuals were added to the quadratic portion

to give a deseasonalized trend. The growth rate was derived

as the derivative of the monthly concentrations of this de-

seasonalized trend. Figure 6 shows the growth rates derived

from the observed and calculated surface concentrations at

six sites (Alert, Niwot Ridge, Mauna Loa, Ascension Island,

Bukit Kototabang and South Pole) for all the runs. The mod-

elled growth rates are similar to each other and generally

larger than those observed, reflecting the generally larger

modelled annual cycles (see figures in Sect. 2.1 of the Sup-

plement). It is less clear that the JULES-based inventories are

generally better. The correspondence at many sites is vari-

able and there is some indication that the modelled changes

are more rapid than those observed.

3.2 Comparison with SCIAMACHY measurements

3.2.1 Initial comparison

We convert the modelled 4-D methane mass mixing ratio

fields (longitude, latitude, altitude, time) into 3-D fields (lon-

gitude, latitude, time) of the mean dry-air atmospheric col-

umn methane mixing ratio, using the SCIAMACHY averag-
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Table 1. Statistical outputs from the “global” analysis of the observed and modelled surface methane concentrations for the HadGEM2 runs

(FUNG, TRANSCOM-FUNG, JULES and JULES-GIEMS) using valid co-located data from all monitoring sites.

Statistic/Metric FUNG TRANSCOM-FUNG JULES JULES-GIEMS

Number of valid data pairs 5591 5591 5591 5591

Linear regression – slope 1.33 1.09 0.79 0.99

Linear regression – intercept −563.3 −130.8 391.6 30.8

Coefficient of determination (R2) 0.58 0.81 0.71 0.82

Mean of observations (in ppb) 1816.4 1816.4 1816.4 1816.4

Mean of modelled conc. (in ppb) 1849.8 1839.1 1820.9 1828.9

Mean normalized bias 0.02 0.01 0.003 0.01

Number of modelled results within a factor of 2 1.0 1.0 1.0 1.0

Index of agreement 0.76 0.91 0.91 0.94

Hit rate 0.93 0.97 0.99 0.98

Root mean square error (RMSE, in ppb) 78.4 38.7 33.0 30.8

Coefficient of variation in RMSE 0.04 0.02 0.02 0.02

Figure 5. Taylor plot derived from the observed surface atmo-

spheric methane mixing ratio (in ppb) and the HadGEM2 runs

using the following wetland emission inventories, FUNG (red),

TRANSCOM FUNG (magenta), JULES (blue) and JULES-GIEMS

(green), for all valid data pairs from all sites.

ing kernels (Schneising et al., 2009). We then derive con-

tour maps of the mean atmospheric mixing ratios of methane

from the HadGEM2 model runs and the regridded version

of the SCIAMACHY product (v2.3, Sect. 2.2.2) for the pe-

riod 2003 to 2007. The model outputs are only sampled at

the valid space and time points present in the SCIAMACHY

product and a land–sea mask is applied to remove all data

over the oceans as the SCIAMACHY data set only includes

measurements over the oceans for the period between 2003

and 2005. As shown in Fig. 19 in the Supplement, there is

a clear underprediction in the modelled atmospheric column

methane mixing ratios by ∼ 50 ppb (i.e. ∼ 3 % of a typically

observed mean column mixing ratio).

We attribute the underprediction to a faster fall-off in

modelled methane concentrations with altitude than that ob-

served. To test this, we initially replaced the HadGEM2

model outputs above 400 hPa with methane mixing ratios

derived from the thermal infrared (TIR) channel of the

Tropospheric Emission Spectrometer (TES, AURA, 2004–

2011: Beer, 2006), because of its availability and ease

of use. As discussed by Worden et al. (2012), the CH4

in the upper troposphere is biased high relative to the

lower troposphere by 4 % on average. Given this and the

poor temporal overlap with the SCIAMACHY data set,

we subsequently constrained the HadGEM2 output above

300 hPa with data from HALOE/ACE-assimilated TOM-

CAT output (see Sect. 2.2.3), which covered the entire pe-

riod of the HadGEM2 runs (2000–2007) and the SCIA-

MACHY measurements. Figure 7 shows a typical compar-

ison of the HadGEM2 modelled vertical concentration pro-

file of CH4 with the corresponding profiles from TES and

the HALOE/ACE-assimilated TOMCAT model for the grid

square centred on the location (10◦ N, 1◦ E) in July 2005. The

figure also shows the revised profiles derived by replacing the

HadGEM2 modelled concentrations with interpolated TES

measurements (above 400 hPa) and the HALOE-assimilated

TOMCAT output (above 300 hPa). The derived mean atmo-

spheric methane column mixing ratios (in ppb) were: 1725.9

(HadGEM2, original), 1780.2 (HadGEM2+TES) and 1766.4

(HadGEM2+HALOE-TOMCAT), compared to the SCIA-

MACHY measurement of 1760.9 ppb.

O’Connor et al. (2014) introduce an explicit loss term

in the standard tropospheric chemistry scheme to compen-

sate for the lack of CH4 oxidation in the stratosphere. How-

ever, the faster fall-off with height cannot be attributed to

this additional explicit loss term (see Sect. 2.1.2). In the

model runs carried out here, although the global annual

loss rate of stratospheric CH4 is higher than previous es-

timates (53± 4 Tg CH4 yr−1 compared to 40 Tg CH4 yr−1

from Prather et al. (2001)), similar behaviour has been seen

in the stratospheric configuration of UKCA (Morgenstern

et al., 2009). Given the different treatment of stratospheric

CH4 removal in the two UKCA configurations and that

stratospheric chemical removal rates are much slower than

transport timescales (Zahn et al., 2006), it is likely that the

faster fall-off of modelled stratospheric CH4 with height than
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Figure 6. Comparison of the growth rates in the surface atmospheric methane mixing ratio (in ppb) as observed (black) and from the

HadGEM2 runs using the following wetland emission inventories, FUNG (red), TRANSCOM FUNG (magenta), JULES (blue) and JULES-

GIEMS (green) at selected sites between the years 1998 and 2010.

Figure 7. Comparison of the HadGEM2 modelled vertical concen-

tration profile of CH4 with the corresponding profiles from the TES

(red) and the HALOE-assimilated TOMCAT model for the grid

point (10◦ N, 1◦ E) in July 2005. The red and green lines show

the results from replacing the HadGEM2 modelled concentrations

above 200 hPa with TES and the HALOE-assimilated TOMCAT

output, respectively.

that observed is an indication that stratospheric transport

timescales are too long.

Constraining the modelled CH4 concentrations at model

levels above 300 hPa improved the agreement with the SCIA-

MACHY SWIR CH4 product (Fig. 19 in the Supplement).

All subsequent comparisons with the SCIAMACHY prod-

uct are based on the merged HadGEM2 and HALOE/ACE-

assimilated TOMCAT outputs. As our emphasis is on test-

ing different wetland CH4 emission configurations, this extra

constraint being applied to HadGEM2 output is appropriate.

3.2.2 Comparisons in space and time

Figure 8 compares the mean atmospheric column measure-

ments of methane derived from the regridded SCIAMACHY

product for the period 2003–2007 and the HadGEM2 runs

using the FUNG, TRANSCOM-FUNG, JULES and JULES-

GIEMS methane wetland emission inventories, constrained

as described in the previous section. We note that (i) the

model reproduces the latitudinal gradient in the atmospheric

methane column, with higher methane columns in the NH;

(ii) the model captures the high emission areas over south

and south-east Asia, although the modelled concentrations

are much higher than those observed; (iii) the different spatial

patterns of the wetland methane emissions used are evident

in the maps. We see enhanced atmospheric columns over the

boreal Eurasia region in the run using the FUNG wetland in-
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(a) 

(b) (c) 

(d) (e) 

Figure 8. Contour maps of the average atmospheric column methane mixing ratio between the years 2003 and 2007, as derived from

monthly regridded SCIAMACHY data (a) and from the HadGEM2 runs using the FUNG (b), TRANSCOM-FUNG (c), JULES (d) and

JULES-GIEMS (e) wetland emission inventories and the EDGAR v3.2 (E3.2) anthropogenic methane emission time series, sampled at

co-located space and time points.

ventory and over the Amazon in the run using the JULES

wetland inventory.

We compare the latitudinal distributions in Fig. 9. The run

using the TRANSCOM-FUNG wetland inventory gives a re-

markably good description. The larger emissions present at

temperate and higher NH latitudes in the FUNG wetland in-

ventory result in higher zonal averages at these latitudes com-

pared to both TRANSCOM-FUNG and the JULES-based in-

ventories. The JULES-based inventories give better agree-

ment in the tropics and SH compared to the FUNG inven-

tory but underestimate the atmospheric column at boreal and

higher northern latitudes. The high modelled mixing ratios

over the Ganges Valley in India are evident in the peaks in

the modelled profiles between 20 and 30◦ N in all four runs.

Figure 10 shows time series and annual cycles of the

area-weighted mean atmospheric column methane mix-

ing ratios between January 2003 and December 2007

from the SCIAMACHY data and the four HadGEM2

runs for all land surface points and for the 11 terrestrial

TRANSCOM regions (see map at http://transcom.project.

asu.edu/transcom03_protocol_basisMap.php). In Fig. 20 in

the Supplement, we include similar time series and annual

cycle plots using the unconstrained HadGEM2 model out-

puts. We know that the FUNG wetland emission inventory
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(a) (b) 

(c) (d) 

Figure 9. Comparisons of the latitudinal distribution of the average atmospheric column methane mixing ratio between the years 2003 and

2007, as derived from monthly regridded SCIAMACHY data and from the HadGEM2 runs using the FUNG (a), TRANSCOM-FUNG (b),

JULES (c) and JULES-GIEMS (d) wetland emission inventories and the EDGAR v3.2 (E3.2) anthropogenic methane emission time series,

sampled at co-located space and time points. Note that the SCIAMACHY data between 60 and 90◦ S have been removed because of their

sparsity and quality.

used here gives too much emission at boreal and higher lat-

itudes. This is apparent from the very strong annual cycles

with summer maxima (30–50 ppb enhancements) for Europe

and the two boreal zones in North America and Eurasia. The

run using TRANSCOM-FUNG wetland inventory also has

annual cycles with summer maxima for Europe and the two

boreal zones in North America and Eurasia. The JULES-

based inventories, on the other hand, show summer minima,

similar to the behaviour seen in the surface measurement

sites (see Fig. 4). It is also evident that the monthly emission

profiles of some source sectors appear incorrect. In the Trop-

ical Asia region, the annual cycle shows a minimum in July

for all four runs whereas the SCIAMACHY data show a max-

imum in the late summer/early autumn. Also included in each

panel of Fig. 10 are the IOAs derived for the four HadGEM2

runs. As presented, the values generally show that the model

run using the FUNG wetland emission inventory performed

the best when all land surface points are considered together

(IOA = 0.86) and for some of the TRANSCOM regions in

the Northern Hemisphere. However, the JULES-based inven-

tories were better in the SH (e.g. IOA for JULES-GIEMS

= 0.59 for South American Temperate, Southern Africa and

Australia). The high modelled mixing ratios over the Ganges

Valley in India, evident in Figs. 8 and 9 in all four runs,

occur in the winter months. This suggests that the stronger

summer emissions in the FUNG wetland emission inven-

tory compensate for the lack of or opposite seasonality in

the emissions from other source sectors (see Figs. 4–7 in the

Supplement).

3.3 Discussion

3.3.1 Comparison against measurements

The comparison of the model outputs against the in situ sur-

face atmospheric and atmospheric column measurements of
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(a) (b) 

Figure 10. Time series of the area-weighted average atmospheric column methane mixing ratio from January 2003 to December 2007, as

derived from monthly regridded SCIAMACHY data (v2.3) and from the HadGEM2 runs using (1) the FUNG (red), (2) the TRANSCOM

FUNG (magenta), (3) the JULES (blue), and (4) the JULES-GIEMS (green) wetland emission inventories and the EDGAR v3.2 (E3.2)

anthropogenic methane emission time series, sampled at co-located space and time points for all land surface points and for the 11 terrestrial

TRANSCOM regions (a). (b) shows the corresponding annual cycles. The IOA is shown for each run (see Sect.3 of the Supplement for the

definition of the IOA).

methane has indicated varying levels of agreement. The run

using the JULES-GIEMS wetland emission inventory gives

the best description of the surface observations and the de-

rived growth rates. The observed growth rates clearly show

the positive anomalies in 1997/1998 and 2002/2003 and the

increase in methane after 2007 (see Fig. 6). The model cap-

tures these events with varying degrees of success. There is

also evidence from the high-latitude SH sites that the mod-

elled atmospheric burden is increasing too quickly.

We expect the in situ surface atmospheric measurements

to be more sensitive to the methane emissions, whereas the

atmospheric column measurements integrate the effects of

emissions, chemistry and atmospheric transport. The large

amplitudes seen in the annual cycles of the in situ surface

atmospheric observations (Fig. 4), especially at the high NH

latitude sites, are less apparent in the modelled atmospheric

columns, possibly because of the limited number of SCIA-

MACHY observations at these latitudes, and the model out-

puts were only sampled if there was a valid SCIAMACHY

measurement. Figure 10 and Fig. 20 in the Supplement show

comparisons of the observed SCIAMACHY and modelled

time series and annual cycles for the constrained and uncon-

strained HadGEM2 model outputs, respectively. The ampli-

tudes of the annual cycles appear larger in the unconstrained

model outputs, especially the FUNG and TRANSCOM-

FUNG runs, as these effectively have larger contributions

from the model levels close to the surface and these lev-

els are more affected by the surface emissions. Generally,

we see similar trends and patterns between the constrained

and unconstrained model outputs, suggesting that the differ-

ent emission distributions largely account for the differences

in the modelled atmospheric concentrations and columns be-

tween the model runs.
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(a) (b) 

Figure 11. Comparison of the deseasonalized emission fluxes between 1997 and 2009 from the HadGEM2 runs (using the wetland emission

inventories: FUNG – red, JULES – blue and JULES-GIEMS – green) and the two inverse flux estimates of Bousquet et al. (2011) (black and

purple). (a) and (b) show the anomalies in the global methane emissions and in the wetland emissions, respectively.

Compared to the SCIAMACHY observations, the con-

strained model run using the Fung-derived inventory appears

better in terms of the annual cycle (Fig. 10), although its an-

nual cycle in the boreal zone is larger. The JULES-based in-

ventories on the other hand exhibit a smaller seasonal cycle

(for the JULES inventory, this is because the wetland emis-

sions are dominated by those from the Amazon and these

are modelled to have little seasonality). The high concentra-

tions modelled over the Ganges in India in all four runs indi-

cate that the magnitude of the non-wetland emissions in this

region and their monthly variability may be too large (see

Fig. 9) or that the boundary layer mixing in this region, close

to the Himalayan mountains, is not well represented. There

is evidence in the comparison with the inverse emission es-

timates that part of the explanation is that the emissions are

overstated in this region (and these are largely CH4 emissions

from non-wetland sources). Further support for this interpre-

tation is provided by Patra et al. (2009), who found that the

methane emissions from India were lower by 13 TgCH4 yr−1

in their optimized emission scenario.

3.3.2 Comparison with other wetland estimates

Wetlands are generally accepted as being the largest, but

least well quantified, single natural source of CH4 (Den-

man et al., 2007; USEPA, 2010). In this work, the mean an-

nual global emission between 1999 and 2007 was effectively

fixed at 181 TgCH4 yr−1, the value used by O’Connor et al.

(2014) in earlier HadGEM2 model runs. The total is how-

ever consistent with other recent estimates. Bousquet et al.

(2011) derived a value of 165 TgCH4 yr−1 from their inverse

modelling study. Melton et al. (2013) reported an ensem-

ble mean of the annual global emissions of 190 TgCH4 yr−1

with a spread of ± 40 % from the wetland models partici-
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Table 2. Comparison of global and regional estimates of methane emissions from wetlands.

Domain Model/Observation-based JULES JULES-GIEMS FUNG TRANSCOM/

estimate (Ref.) (1997–2009) (1997–2009) (as used here) FUNG

Global (TD: 2000s)

175 (142–208) (1)

(BU: 2000s) 181 181 181 149

217 (177–284) (1) (178–184) (167–194)

Global – WETCHIMP 190 (141–264) (2)

Boreal (> 30◦ N) 37.7–157.3 (3) 12.6 35.1 109 58.5

(12.2–13.2) (32.8–37.4)

Hudson Bay Lowlands 2.3± 1.3 (4) 0.4 2.2 10.2 3.5

(0.3–0.6) (1.8–2.6)

West Siberian Lowlands 2.93± 0.97 (5) 0.5 1.6 19.1 8.0

(0.4–0.6) (1.3–2.2)

Tropics (23◦ S–23◦ N) 111.1 (6) 159 123 57.3 69.4

(157–162) (112–134)

Amazon 26.6 (6) 89 53 17 25

(85–91) (46–59)

Amazon (Nov 2008) 3.3 (1.5–4.8) (7) 5.7 2.2 1.2 1.4

Amazon (May 2009) 3.3 (1.3–5.5) (7) 6.5 3.9 0.6 1.4

Notes: For the JULES and JULES-GIEMS wetland inventories, we show the mean (minimum–maximum) annual emission of the years 1999–2007. The

JULES-GIEMS wetland inventory was corrected for the area of rice paddy fields, as described in Sect. 2.3.1.

References: (1) top–down (TD) and bottom–up (BU) wetland emission estimates for the 2000s taken from Kirschke et al. (2013); (2) taken from the WETCHIMP

wetland model intercomparison of Melton et al. (2013); (3) range of emission estimates from Petrescu et al. (2010) using the PEATLAND-VU wetland CH4
emission and PCR-GLOBWB hydrological models, driven with different wetland data sets; (4) Pickett-Heaps et al. (2011), domain taken to be 96–75◦W and

50–60◦ N; (5) version (Bc8) of the “standard model” in Glagolev et al. (2011), domain taken to be 65–85◦ E and 54–70◦ N; (6) Bloom et al. (2012), the wetland

emissions from the Amazon are 24 % of the total wetland emissions from the tropics; (7) mean (range of) emission estimates for Amazon Lowlands for November

2008 and May 2009 from Beck et al. (2013).
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Figure 12. Mean annual methane emissions for the period 2000–

2009 from the JULES (blue) and JULES-GIEMS (red) used in this

work and the bottom–up (green) and top–down (grey) estimates of

Kirschke et al. (2013). The “all wetlands” components have been

offset by 80 TgCH4 yr−1 for greater clarity. The error bars give the

range of values.

pating in the WETCHIMP wetland model intercomparison.

Fraser et al. (2013) obtained wetland emissions between

184 and 195 TgCH4 yr−1 from inversions of surface and/or

GOSAT measurements between 2009 and 2010. In a syn-

thesis paper, Kirschke et al. (2013) estimated methane emis-

sions from natural wetlands for the period 2000–2009 to be

in the range from 142 to 208 TgCH4 yr−1 with a mean value

of 175 TgCH4 yr−1 using inverse modelling methods and in

the range from 177 to 284 TgCH4 yr−1 with a mean value

of 217 TgCH4 yr−1 from process-based approaches (see Ta-

ble ).

As the long-term mean annual emissions were fixed, the

emphasis here has been on the spatial patterns and intra-

annual and interannual variability. As shown in Fig. 2 in

the Supplement, the JULES wetland emissions are concen-

trated in the tropics and especially the Amazon. The JULES-

GIEMS still has more emissions in the tropics but these are

located more in India and SE Asia (and a smaller increase in

the Boreal emissions). In Table , we compare wetland emis-

sion estimates from JULES and JULES-GIEMS with other

recent global and regional literature estimates. Petrescu et al.

(2010) found a wide variation in methane emission fluxes

from wetlands and floodplains above 30◦ N for the years

2001 to 2006 for different estimates of wetland extents (37.7

Atmos. Chem. Phys., 14, 13257–13280, 2014 www.atmos-chem-phys.net/14/13257/2014/
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(a) (d) 

(b) (e) 

(c) (f) 

Figure 13. Annual methane emissions for 2000 from all sources (left-hand panels) and wetlands (right-hand panels). The upper panels (a, d)

show the emission maps from the inverse modelling of Bousquet et al. (2011) using the data set of Fung et al. (1991) for the prior wetland

emissions. Panels (b) and (e) show difference maps between the emission estimates shown in Panels (a) and (d) and the corresponding

inventories using the JULES-GIEMS wetland emission inventory. Panels (c) and (f) are the same as Panels (b) and (e) but replacing the prior

wetland emissions with those of Kaplan (as described in Bergamaschi et al., 2007).

to 157.3 TgCH4 yr−1). The corresponding JULES-GIEMS

estimate for the same period is 35.1 TgCH4 yr−1, although

we believe that this is an underestimate from the comparison

against the atmospheric measurements. For the West Siberian

Lowlands, Glagolev et al. (2011), using more measurement

sites, revised the mapping-based estimate given by Kim

et al. (2011) to 2.93± 0.97 TgCH4 yr−1. The corresponding

JULES estimates are lower, which we believe arises from the

absence of peatland soils in JULES. There is better agree-

ment for the JULES-GIEMS inventory with the estimate of

Pickett-Heaps et al. (2011) for the Hudson Bay Lowlands.

Bloom et al. (2010, 2012) report a 7 % rise in global wet-

land CH4 emissions over 2003–2007, due to warming of

mid-latitude and Arctic wetland regions. Following the in-

troduction of a time decay of the substrate carbon to account

for the observed seasonal lag between CH4 concentrations

and the peak in the equivalent water height, used as a proxy

for a wetland, Bloom et al. (2012) derive revised global

CH4 emissions for 2003–2009. Tropical emissions amount to

111.1 TgCH4 yr−1, of which 24 % is emitted from Amazon

wetlands. As expected, the emissions in the tropics for 1999–

2007 from the JULES and JULES-GIEMS inventories are

higher, at 159 TgCH4 yr−1 (for the tropics with the Amazon

accounting for 89 TgCH4 yr−1) and 123 TgCH4 yr−1 (with

the Amazon contributing 53 TgCH4 yr−1), respectively. We

see that the JULES-GIEMS inventory is in reasonable agree-

ment with these regional estimates. The JULES–GIEMS in-

ventory is also in good agreement with the emission esti-

www.atmos-chem-phys.net/14/13257/2014/ Atmos. Chem. Phys., 14, 13257–13280, 2014
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mates obtained by Beck et al. (2013) for the Amazon Low-

lands for November 2008 and May 2009. The JULES inven-

tory again overestimates the emissions. In Fig. 12, we com-

pare the regional emission totals given by the two JULES-

based inventories with the corresponding information given

in Kirschke et al. (2013) from their top–down and bottom–up

approaches for the period 2000–2009. The comparison again

indicates that the wetland emissions are too high in the Ama-

zon for the JULES emission inventory and too low at boreal

and higher latitudes. The JULES-GIEMS emission estimates

are an improvement in that respect.

3.3.3 Comparison with inverse emission estimates

In Fig. 11 we compare the anomalies in the deseasonalized

global and wetland methane emissions used in the HadGEM2

runs and from two inverse flux estimates derived by Bous-

quet et al. (2011) from surface atmospheric methane mea-

surements, specifically, using prior wetland emission esti-

mates based on Fung et al. (1991) and Kaplan (as described

in Bergamaschi et al., 2007). The FUNG data set as used here

shows no change in the anomaly of the wetland emissions as

a single annual data set is used for all years; this is also the

case for other methane sources, apart from biomass burning.

Any anomalies in the emissions therefore largely result from

biomass burning. The variability shown in the JULES model

run is largely from the biomass burning – the wetlands show

a steady increase. On the other hand, there is more interan-

nual variability in the model run using the JULES-GIEMS

wetland emission inventory. The inventories used here con-

firm other studies that link the 1997/1998 and the 2002/2003

positive growth anomalies in surface atmospheric methane

concentrations to biomass burning (see Introduction, Dlugo-

kencky et al., 2001; Simmonds et al., 2005). There is some

suggestion from the JULES-GIEMS runs that wetland emis-

sions contributed to the 2002/2003 anomaly (see Fig. 11).

The JULES inventory shows an upward trend over time

while there is more interannual variability in the JULES

emission data set driven with the EO inundation product (see

Fig. 1). We compare the annual methane emission totals de-

rived from the JULES-based estimates used here with two

optimized inverse estimates of Bousquet et al. (2011). The

mean (minimum–maximum) annual emissions between 1999

and 2007 are: JULES, 181 (178–184) TgCH4 yr−1; JULES-

GIEMS, 181 (165–192) TgCH4 yr−1; Bousquet–Fung, 161

(143–180) TgCH4 yr−1; and Bousquet–Kaplan, 174 (156–

198) TgCH4 yr−1. There is some agreement between the

JULES-GIEMS and the inverse Bousquet–Kaplan emission

inventories but also differences in the annual emission trends.

Figure 13 shows maps of the global annual emissions for

the year 2000 for the inverse emission inventory estimates

derived by Bousquet et al. (2011) using the wetland emis-

sion prior based on Fung for all methane sources and for wet-

lands. The figure also includes difference maps between the

JULES-GIEMS emission estimates and the inverse emission

inventory estimates derived by Bousquet et al. (2011) using

emission priors based on the Fung (panels b and e) and Ka-

plan (panels c and f) wetland data sets. There is some agree-

ment, which is not surprising as similar data sets were used,

but that there are also differences, most noticeably in the wet-

lands. The JULES-GIEMS inventory has some similarities

with the inverse inventory using the Kaplan wetland data set

(see material and figures in Sect. 1.3 of the Supplement). The

monthly GIEMS data set of Prigent et al. (2012) has been

used in this work as it provides a long-term global data set

derived using a consistent methodology. As part of the wet-

land model intercomparison, Melton et al. (2013) noted that

there were significant differences between this data set and

the wetland maps derived by Kaplan (as described in Berga-

maschi et al., 2007). The inundation product showed more

wetlands in Europe and the Canadian Arctic but fewer in

the Hudson Bay Lowlands. Melton et al. (2013) identified

a number of reasons for these differences: (i) classification

of water bodies and wetlands; (ii) distinguishing agricultural

(i.e. man-made) and natural wetlands; (iii) the ability of the

inundation product to resolve saturated areas with high water

tables close to the surface. Many of these differences can be

seen in the difference maps.

4 Conclusions

In this paper, we have evaluated wetland emission esti-

mates derived using the UK community land surface model

(JULES) against atmospheric observations of methane, in-

cluding, for the first time, total methane columns derived

from the SCIAMACHY instrument on board the ENVISAT

satellite. The modelled atmospheric methane columns were

biased low (by 50 ppb) compared to those derived from the

SCIAMACHY instrument, a consequence of the faster fall-

off in the modelled methane concentrations with altitude

than that observed. Constraining the modelled concentrations

above 300 hPa with vertically resolved methane data from the

HALOE-ACE assimilated TOMCAT output resulted in a sig-

nificantly better agreement with the SCIAMACHY observa-

tions. The model performed significantly better against mea-

surements of surface atmospheric methane concentrations.

The wetland emission totals used in this work were con-

sistent with other recently published estimates, although con-

siderable differences remain between wetlands models, as

highlighted in the recent WETCHIMP model intercompar-

ison study (Melton et al., 2013). While progress has been

made, the JULES methane emission parameterization over-

estimates the methane emissions in the tropics and underes-

timates them at mid-NH and higher-NH latitudes. The use

of the GIEMS product to constrain JULES-derived wetland

fraction improved the representation of the wetland emis-

sions in JULES and gave a good description of the season-

ality observed at surface sites influenced by wetlands, espe-

cially at high latitudes. We found that the annual cycles ob-

Atmos. Chem. Phys., 14, 13257–13280, 2014 www.atmos-chem-phys.net/14/13257/2014/
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served in the SCIAMACHY measurements and at many of

the surface sites influenced by non-wetland sources could not

be reproduced in these HadGEM2 runs. This suggests that

the emissions over certain regions (e.g. India and China) are

possibly too high and/or the monthly emission patterns for

specific sectors are incorrect.

The comparisons presented in this paper have identified

areas for improvements in aspects of two components in

the HadGEM family of models – the land surface and at-

mospheric chemistry modules. Current and future work will

look to improve (a) the description of wetlands and the as-

sociated emissions of methane in JULES through the inclu-

sion of an organic soil type related more closely to peatlands,

and (b) understanding and addressing the cause(s) of the

faster fall-off, with potentially a particular emphasis on the

model’s stratospheric transport timescale. The inclusion of

whole-domain methane chemistry in UKCA by implement-

ing a combined troposphere–stratosphere chemistry scheme

(Telford et al., 2014) may help in this regard. The EO data

sets used here (and to be extended in the future) are es-

sential for the future evaluations of JULES, UKCA and the

HadGEM family of models.

The Supplement related to this article is available online

at doi:10.5194/acp-14-13257-2014-supplement.

Acknowledgements. This work was supported from a number of

sources: (a) the European Space Agency through its Support to Sci-

ence Element initiative (ALANIS Methane), Climate Change Ini-

tiative on Greenhouse Gases (GHG-CCI) and CARBONGASES;

(b) the Centre for Ecology and Hydrology’s Science Budget Pro-

gramme; (c) the UK National Centre for Earth Observation; and

(d) the Joint DECC/Defra Met Office Hadley Centre Climate Pro-

gramme (GA01101). We gratefully acknowledge the support of

these funding bodies.

We are grateful to N. Viovy and P. Ciais for providing the CRU-

NCEP meteorological data set used to drive the JULES model. We

are also grateful to P. Bousquet for providing the inverse emission

estimates. G. D. Hayman acknowledges the assistance provided by

L. Abraham from the UKCA team at the University of Cambridge

with the HadGEM model and ancillary data sets.

We acknowledge the use of the MONSooN supercomputer

facility for the HadGEM2 runs reported here. The MONSooN

system is a collaborative facility supplied under the Joint Weather

and Climate Research Programme, which is a strategic partnership

between the Met Office and the Natural Environment Research

Council.

Edited by: S. M. Noe

References

Beck, V., Gerbig, C., Koch, T., Bela, M. M., Longo, K. M., Freitas,

S. R., Kaplan, J. O., Prigent, C., Bergamaschi, P. and Heimann,

M.: WRF-Chem simulations in the Amazon region during wet

and dry season transitions: evaluation of methane models and

wetland inundation maps, Atmos. Chem. Phys., 13, 7961–7982,

doi:10.5194/acp-13-7961-2013, 2013.

Beer, R.: TES on the aura mission: scientific objectives, measure-

ments, and analysis overview, IEEE T. Geosci. Remote, 44,

1102–1105, doi:10.1109/TGRS.2005.863716, 2006.

Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M.,

Dentener, F., Wagner, T., Platt, U., Kaplan, J. O., Körner, S.,

Heimann, M., Dlugokencky, E. J., and Goede, A.: Satel-

lite chartography of atmospheric methane from SCIA-

MACHY on board ENVISAT: 2. Evaluation based on inverse

model simulations, J. Geophys. Res.-Atmos., 112, D02304,

doi:10.1029/2006JD007268, 2007.

Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Franken-

berg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C.,

Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C.,

Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in

the first decade of the 21st century: inverse modeling anal-

ysis using SCIAMACHY satellite retrievals and NOAA sur-

face measurements, J. Geophys. Res.-Atmos., 118, 7350–7369,

doi:10.1002/jgrd.50480, 2013.

Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., But-

ler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-

F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Du-

four, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jen-

nings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., Mc-

Connell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Mid-

winter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P.,

Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skel-

ton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turn-

bull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V.,

Zander, R., and Zou, J.: Atmospheric Chemistry Experiment

(ACE): mission overview, Geophys. Res. Lett., 32, L15S01,

doi:10.1029/2005GL022386, 2005.

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H.,

Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A.,

Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O.,

Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint

UK Land Environment Simulator (JULES), model description –

Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699,

doi:10.5194/gmd-4-677-2011, 2011.

Blake, D. R. and Rowland, F. S.: Continuing worldwide increase in

tropospheric methane, 1978 to 1987, Science, 239, 1129–1131,

doi:10.1126/science.239.4844.1129, 1988.

Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Franken-

berg, C.: Large-scale controls of methanogenesis inferred from

methane and gravity spaceborne data, Science, 327, 322–325,

doi:10.1126/science.1175176, 2010.

Bloom, A. A., Palmer, P. I., Fraser, A., and Reay, D. S.: Sea-

sonal variability of tropical wetland CH4 emissions: the role of

the methanogen-available carbon pool, Biogeosciences, 9, 2821–

2830, doi:10.5194/bg-9-2821-2012, 2012.

Blunden, J. and Arndt, D. S.: State of the Climate

in 2012, B. Am. Meteorol. Soc., 94, S1–S258,

doi:10.1175/2013BAMSStateoftheClimate.1, 2013.

www.atmos-chem-phys.net/14/13257/2014/ Atmos. Chem. Phys., 14, 13257–13280, 2014

http://dx.doi.org/10.5194/acp-14-13257-2014-supplement
http://dx.doi.org/10.5194/acp-13-7961-2013
http://dx.doi.org/10.1109/TGRS.2005.863716
http://dx.doi.org/10.1029/2006JD007268
http://dx.doi.org/10.1002/jgrd.50480
http://dx.doi.org/10.1029/2005GL022386
http://dx.doi.org/10.5194/gmd-4-677-2011
http://dx.doi.org/10.1126/science.239.4844.1129
http://dx.doi.org/10.1126/science.1175176
http://dx.doi.org/10.5194/bg-9-2821-2012
http://dx.doi.org/10.1175/2013BAMSStateoftheClimate.1


13276 G. D. Hayman et al.: HadGEM2 and SCIAMACHY

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglus-

taine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P.,

Brunke, E.-G., Carouge, C., Langenfelds, R. L., Lathiere, J.,

Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C.,

and White, J.: Contribution of anthropogenic and natural sources

to atmospheric methane variability, Nature, 443, 439–443,

doi:10.1038/nature05132, 2006.

Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-

G., Carouge, C., Chevallier, F., Fortems-Cheiney, A., Franken-

berg, C., Hauglustaine, D. A., Krummel, P. B., Langen-

felds, R. L., Ramonet, M., Schmidt, M., Steele, L. P., Szopa, S.,

Yver, C., Viovy, N., and Ciais, P.: Source attribution of the

changes in atmospheric methane for 2006–2008, Atmos. Chem.

Phys., 11, 3689–3700, doi:10.5194/acp-11-3689-2011, 2011.

Bowerman, N. H. A., Frame, D. J., Huntingford, C., Lowe, J. A.,

Smith, S. M., and Allen, M. R.: The role of short-lived climate

pollutants in meeting temperature goals, Nature Climate Change,

3, 1021–1024, doi:10.1038/nclimate2034, 2013.

Breider, T. J., Chipperfield, M. P., Richards, N. A. D.,

Carslaw, K. S., Mann, G. W., and Spracklen, D. V.: Impact of

BrO on dimethylsulfide in the remote marine boundary layer,

Geophys. Res. Lett., 37, L02807, doi:10.1029/2009GL040868,

2010.

Buchwitz, M., de Beek, R., Burrows, J. P., Bovensmann, H.,

Warneke, T., Notholt, J., Meirink, J. F., Goede, A. P. H., Bergam-

aschi, P., Körner, S., Heimann, M., and Schulz, A.: Atmospheric

methane and carbon dioxide from SCIAMACHY satellite data:

initial comparison with chemistry and transport models, Atmos.

Chem. Phys., 5, 941–962, doi:10.5194/acp-5-941-2005, 2005.

Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Guer-

let, S., Dils, B., Aben, I., Armante, R., Bergamaschi, P., Blu-

menstock, T., Bovensmann, H., Brunner, D., Buchmann, B., Bur-

rows, J., Butz, A., Chédin, A., Chevallier, F., Crevoisier, C.,

Deutscher, N., Frankenberg, C., Hase, F., Hasekamp, O., Hey-

mann, J., Kaminski, T., Laeng, A., Lichtenberg, G., Maz-

ière, M. D., Noël, S., Notholt, J., Orphal, J., Popp, C., Parker, R.,

Scholze, M., Sussmann, R., Stiller, G., Warneke, T., Zehner, C.,

Bril, A., Crisp, D., Griffith, D., Kuze, A., O’Dell, C., Os-

hchepkov, S., Sherlock, V., Suto, H., Wennberg, P., Wunch, D.,

Yokota, T., and Yoshida, Y.: The Greenhouse Gas Climate

Change Initiative (GHG-CCI): comparison and quality as-

sessment of near-surface-sensitive satellite-derived CO2 and

CH4 global data sets, Remote Sens. Environ., in press,

doi:10.1016/j.rse.2013.04.024, 2013.

Chipperfield, M. P.: New version of the TOMCAT/SLIMCAT off-

line chemical transport model: Intercomparison of stratospheric

tracer experiments, Q. J. Roy. Meteor. Soc., 132, 1179–1203,

doi:10.1256/qj.05.51, 2006.

Chipperfield, M. P., Khattatov, B. V., and Lary, D. J.: Sequential

assimilation of stratospheric chemical observations in a three-

dimensional model, J. Geophys. Res.-Atmos., 107, ACH 8–1–

ACH 8–14, doi:10.1029/2002JD002110, 2002.

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N.,

Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E.,

Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The

Joint UK Land Environment Simulator (JULES), model descrip-

tion – Part 2: Carbon fluxes and vegetation dynamics, Geosci.

Model Dev., 4, 701–722, doi:10.5194/gmd-4-701-2011, 2011.

Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N.,

Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M.,

Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C.,

Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Devel-

opment and evaluation of an Earth-System model – HadGEM2,

Geosci. Model Dev., 4, 1051–1075, doi:10.5194/gmd-4-1051-

2011, 2011.

De Mazière, M., Vigouroux, C., Bernath, P. F., Baron, P., Blu-

menstock, T., Boone, C., Brogniez, C., Catoire, V., Coffey, M.,

Duchatelet, P., Griffith, D., Hannigan, J., Kasai, Y., Kramer, I.,

Jones, N., Mahieu, E., Manney, G. L., Piccolo, C., Randall, C.,

Robert, C., Senten, C., Strong, K., Taylor, J., Tétard, C.,

Walker, K. A., and Wood, S.: Validation of ACE-FTS v2.2

methane profiles from the upper troposphere to the lower meso-

sphere, Atmos. Chem. Phys., 8, 2421–2435, doi:10.5194/acp-8-

2421-2008, 2008.

Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.,

Dickinson, R., Hauglustaine, D., Heinze, C., Holland, E., Ja-

cob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P.,

Wofsy, S., and Zhang, X.: Couplings between changes in the

climate system and biogeochemistry, in: Climate Change 2007:

The Physical Science Basis, Contribution of Working Group I

to the Fourth Assessment Report of the Intergovernmental Panel

on Climate Change, edited by: Solomon, S., Qin, D., Man-

ning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and

Miller, H. L., Cambridge University Press, Cambridge, UK and

New York, NY, USA, 2007.

Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S.,

Hogrefe, C., Irwin, J., Rao, S., Scheffe, R., Schere, K., Steyn, D.,

and Venkatram, A.: A framework for evaluating regional–scale

numerical photochemical modeling systems, Environ. Fluid

Mech., 10, 471–489, doi:10.1007/s10652-009-9163-2, 2010.

Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H.,

Parker, R., Guerlet, S., Aben, I., Blumenstock, T., Bur-

rows, J. P., Butz, A., Deutscher, N. M., Frankenberg, C., Hase, F.,

Hasekamp, O. P., Heymann, J., De Mazière, M., Notholt, J., Suss-

mann, R., Warneke, T., Griffith, D., Sherlock, V., Wunch, D.: The

Greenhouse Gas Climate Change Initiative (GHG-CCI): com-

parative validation of GHG-CCI SCIAMACHY/ENVISAT and

TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm prod-

ucts with measurements from the TCCON, Atmos. Meas. Tech.,

7, 1723–1744, doi:10.5194/amt-7-1723-2014, 2014.

Dlugokencky, E. J., Masaire, K. A., Lang, P. M., Tans, P. P.,

Steele, L. P., and Nisbet, E. G.: A dramatic decrease in the growth

rate of atmospheric methane in the Northern Hemisphere during

1992, Geophys. Res. Lett., 21, 45–48, doi:10.1029/93GL03070,

1994a.

Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.:

The growth rate and distribution of atmospheric methane, J. Geo-

phys. Res.-Atmos., 99, 17021–17043, doi:10.1029/94JD01245,

1994b.

Dlugokencky, E. J., Masarie, K. A., Lang, P. M., and Tans, P. P.:

Continuing decline in the growth rate of the atmospheric methane

burden, Nature, 393, 447–450, doi:10.1038/30934, 1998.

Dlugokencky, E. J., Walter, B. P., Masarie, K. A., Lang, P. M.,

and Kasischke, E. S.: Measurements of an anomalous global

methane increase during 1998, Geophys. Res. Lett., 28, 499–502,

doi:10.1029/2000GL012119, 2001.

Atmos. Chem. Phys., 14, 13257–13280, 2014 www.atmos-chem-phys.net/14/13257/2014/

http://dx.doi.org/10.1038/nature05132
http://dx.doi.org/10.5194/acp-11-3689-2011
http://dx.doi.org/10.1038/nclimate2034
http://dx.doi.org/10.1029/2009GL040868
http://dx.doi.org/10.5194/acp-5-941-2005
http://dx.doi.org/10.1016/j.rse.2013.04.024
http://dx.doi.org/10.1256/qj.05.51
http://dx.doi.org/10.1029/2002JD002110
http://dx.doi.org/10.5194/gmd-4-701-2011
http://dx.doi.org/10.5194/gmd-4-1051-2011
http://dx.doi.org/10.5194/gmd-4-1051-2011
http://dx.doi.org/10.5194/acp-8-2421-2008
http://dx.doi.org/10.5194/acp-8-2421-2008
http://dx.doi.org/10.1007/s10652-009-9163-2
http://dx.doi.org/10.5194/amt-7-1723-2014
http://dx.doi.org/10.1029/93GL03070
http://dx.doi.org/10.1029/94JD01245
http://dx.doi.org/10.1038/30934
http://dx.doi.org/10.1029/2000GL012119


G. D. Hayman et al.: HadGEM2 and SCIAMACHY 13277

Dlugokencky, E. J., Houweling, S., Bruhwiler, L., Masarie, K. A.,

Lang, P. M., Miller, J. B., and Tans, P. P.: Atmospheric methane

levels off: temporary pause or a new steady-state?, Geophys. Res.

Lett., 30, 1992, doi:10.1029/2003GL018126, 2003.

Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K.,

Novelli, P. C., Montzka, S. A., Masarie, K. A., Lang, P. M.,

Crotwell, A. M., Miller, J. B., and Gatti, L. V.: Observational

constraints on recent increases in the atmospheric CH4 burden,

Geophys. Res. Lett., 36, L18803, doi:10.1029/2009GL039780,

2009.

Dlugokencky, E. J., Nisbet, E. G., Fisher, R., and Lowry, D.: Global

atmospheric methane: budget, changes and dangers, Philos. T. R.

Soc. A, 369, 2058–2072, doi:10.1098/rsta.2010.0341, 2011.

Dlugokencky, E. J., Lang, P. M., Crotwell, A. M., and

Masarie, K. A.: Atmospheric Methane Dry Air Mole Fractions

from the NOAA ESRL Carbon Cycle Co-operative Global Air

Sampling Network, 1983–2011, Version: 24 September 2012,

ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/ (last

access date of updated and extended dataset: 9 May 2014), 2012.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fa-

hey, D., Haywood, J., Lean, J., Lowe, D., Myhre, G., Nganga, J.,

Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes

in atmospheric constituents and in radiative forcing, in: Cli-

mate Change 2007: The Physical Science Basis, Contribution of

Working Group I to the Fourth Assessment Report of the Inter-

governmental Panel on Climate Change, edited by: Solomon, S.,

Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tig-

nor, M., and Miller, H. L., Cambridge University Press, Cam-

bridge, UK and New York, NY, USA, 2007.

Frankenberg, C., Meirink, J. F., van Weele, M., Platt, U.,

and Wagner, T.: Assessing methane emissions from

global space-borne observations, Science, 308, 1010–1014,

doi:10.1126/science.1106644, 2005.

Frankenberg, C., Meirink, J. F., Bergamaschi, P., Goede, A. P. H.,

Heimann, M., Körner, S., Platt, U., van Weele, M., and

Wagner, T.: Satellite chartography of atmospheric methane

from SCIAMACHY on board ENVISAT: analysis of the

years 2003 and 2004, J. Geophys. Res.-Atmos., 111, D07303,

doi:10.1029/2005JD006235, 2006.

Frankenberg, C., Bergamaschi, P., Butz, A., Houweling, S.,

Meirink, J. F., Notholt, J., Petersen, A. K., Schrijver, H.,

Warneke, T., and Aben, I.: Tropical methane emissions: a re-

vised view from SCIAMACHY onboard ENVISAT, Geophys.

Res. Lett., 35, L15811, doi:10.1029/2008GL034300, 2008.

Fraser, A., Palmer, P. I., Feng, L., Boesch, H., Cogan, A.,

Parker, R., Dlugokencky, E. J., Fraser, P. J., Krummel, P. B.,

Langenfelds, R. L., O’Doherty, S., Prinn, R. G., Steele, L. P.,

van der Schoot, M., and Weiss, R. F.: Estimating regional

methane surface fluxes: the relative importance of surface and

GOSAT mole fraction measurements, Atmos. Chem. Phys., 13,

5697–5713, doi:10.5194/acp-13-5697-2013, 2013.

Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P.,

and Fraser, P. J.: Three-dimensional model synthesis of the

global methane cycle, J. Geophys. Res.-Atmos., 96, 13033–

13065, doi:10.1029/91JD01247, 1991.

Gedney, N. and Cox, P. M.: The sensitivity of global climate

model simulations to the representation of soil moisture het-

erogeneity, J. Hydrometeorol., 4, 1265–1275, doi:10.1175/1525-

7541(2003)004<1265:TSOGCM>2.0.CO;2, 2003.

Gedney, N., Cox, P. M., and Huntingford, C.: Climate feed-

back from wetland methane emissions, Geophys. Res. Lett., 31,

L20503, doi:10.1029/2004GL020919, 2004.

Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and

Machida, T.: Regional methane emission from West Siberia mire

landscapes, Environ. Res. Lett., 6, 045214, doi:10.1088/1748-

9326/6/4/045214, 2011.

Kim, H.-S., Maksyutov, S., Glagolev, M. V., Machida, T., Pa-

tra, P. K., Sudo, K., and Inoue, G.: Evaluation of methane

emissions from West Siberian wetlands based on inverse

modeling, Environ. Res. Lett., 6, 035201, doi:10.1088/1748-

9326/6/3/035201, 2011.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,

Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R.,

Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F.,

Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S.,

Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F., Langen-

felds, R. L., Le Quere, C., Naik, V., O’Doherty, S., Palmer, P. I.,

Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M.,

Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simp-

son, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,

Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M.,

Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of

global methane sources and sinks, Nat. Geosci., 6, 813–823,

doi:10.1038/ngeo1955, 2013.

Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and

near infrared sensor for carbon observation Fourier-transform

spectrometer on the Greenhouse Gases Observing Satellite for

greenhouse gases monitoring, Appl. Optics, 48, 6716–6733,

doi:10.1364/AO.48.006716, 2009.

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A.,

Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B.,

Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aar-

denne, J., Cooper, O. R., Kainuma, M., Mahowald, N., Mc-

Connell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: His-

torical (1850–2000) gridded anthropogenic and biomass burning

emissions of reactive gases and aerosols: methodology and ap-

plication, Atmos. Chem. Phys., 10, 7017–7039, doi:10.5194/acp-

10-7017-2010, 2010.

Meirink, J. F., Bergamaschi, P., Frankenberg, C.,

d’Amelio, M. T. S., Dlugokencky, E. J., Gatti, L. V., Houwel-

ing, S., Miller, J. B., Röckmann, T., Villani, M. G., and

Krol, M. C.: Four-dimensional variational data assimilation for

inverse modeling of atmospheric methane emissions: analysis

of SCIAMACHY observations, J. Geophys. Res.-Atmos., 113,

D17301, doi:10.1029/2007JD009740, 2008.

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B.,

Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G.,

Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P.,

Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S.,

Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C.,

and Kaplan, J. O.: Present state of global wetland extent and

wetland methane modelling: conclusions from a model inter-

comparison project (WETCHIMP), Biogeosciences, 10, 753–

788, doi:10.5194/bg-10-753-2013, 2013.

Monks, S. A., Arnold, S. R., and Chipperfield, M. P.: Evidence for

El Niño–Southern Oscillation (ENSO) influence on Arctic CO

interannual variability through biomass burning emissions, Geo-

phys. Res. Lett., 39, L14804, doi:10.1029/2012GL052512, 2012.

www.atmos-chem-phys.net/14/13257/2014/ Atmos. Chem. Phys., 14, 13257–13280, 2014

http://dx.doi.org/10.1029/2003GL018126
http://dx.doi.org/10.1029/2009GL039780
http://dx.doi.org/10.1098/rsta.2010.0341
ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/
http://dx.doi.org/10.1126/science.1106644
http://dx.doi.org/10.1029/2005JD006235
http://dx.doi.org/10.1029/2008GL034300
http://dx.doi.org/10.5194/acp-13-5697-2013
http://dx.doi.org/10.1029/91JD01247
http://dx.doi.org/10.1175/1525-7541(2003)004<1265:TSOGCM>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2003)004<1265:TSOGCM>2.0.CO;2
http://dx.doi.org/10.1029/2004GL020919
http://dx.doi.org/10.1088/1748-9326/6/4/045214
http://dx.doi.org/10.1088/1748-9326/6/4/045214
http://dx.doi.org/10.1088/1748-9326/6/3/035201
http://dx.doi.org/10.1088/1748-9326/6/3/035201
http://dx.doi.org/10.1038/ngeo1955
http://dx.doi.org/10.1364/AO.48.006716
http://dx.doi.org/10.5194/acp-10-7017-2010
http://dx.doi.org/10.5194/acp-10-7017-2010
http://dx.doi.org/10.1029/2007JD009740
http://dx.doi.org/10.5194/bg-10-753-2013
http://dx.doi.org/10.1029/2012GL052512


13278 G. D. Hayman et al.: HadGEM2 and SCIAMACHY

Monteil, G., Houweling, S., Dlugockenky, E. J., Maenhout, G.,

Vaughn, B. H., White, J. W. C., and Rockmann, T.: Interpreting

methane variations in the past two decades using measurements

of CH4 mixing ratio and isotopic composition, Atmos. Chem.

Phys., 11, 9141–9153, doi:10.5194/acp-11-9141-2011, 2011.

Morgenstern, O., Braesicke, P., O’Connor, F. M., Bushell, A. C.,

Johnson, C. E., Osprey, S. M., Pyle, J. A.: Evaluation of the

new UKCA climate-composition model – Part 1: The strato-

sphere, Geosci. Model Dev., 2, 43–57, doi:10.5194/gmd-2-43-

2009, 2009.

O’Connor, F. M., Boucher, O., Gedney, N., Jones, C. D., Fol-

berth, G. A., Coppell, R., Friedlingstein, P., Collins, W. J., Chap-

pellaz, J., Ridley, J., and Johnson, C. E.: Possible role of wet-

lands, permafrost, and methane hydrates in the methane cycle un-

der future climate change: a review, Rev. Geophys., 48, RG4005,

doi:10.1029/2010RG000326, 2010.

O’Connor, F. M., Johnson, C. E., Morgenstern, O., Abra-

ham, N. L., Braesicke, P., Dalvi, M., Folberth, G. A., Sander-

son, M. G., Telford, P. J., Voulgarakis, A., Young, P. J., Zeng, G.,

Collins, W. J., and Pyle, J. A.: Evaluation of the new UKCA

climate-composition model – Part 2: The Troposphere, Geosci.

Model Dev., 7, 41–91, doi:10.5194/gmd-7-41-2014, 2014.

Papa, F., Prigent, C., Durand, F., and Rossow, W. B.: Wetland dy-

namics using a suite of satellite observations: a case study of ap-

plication and evaluation for the Indian Subcontinent, Geophys.

Res. Lett., 33, L08401, doi:10.1029/2006GL025767, 2006a.

Papa, F., Prigent, C., Rossow, W. B., Legresy, B., and Remy, F.:

Inundated wetland dynamics over boreal regions from remote

sensing: the use of Topex–Poseidon dual–frequency radar al-

timeter observations, Int. J. Remote Sens., 27, 4847–4866,

doi:10.1080/01431160600675887, 2006b.

Papa, F., Prigent, C., and Rossow, W. B.: Ob’ River flood inun-

dations from satellite observations: a relationship with winter

snow parameters and river runoff, J. Geophys. Res.-Atmos., 112,

D18103, doi:10.1029/2007JD008451, 2007.

Papa, F., Güntner, A., Frappart, F., Prigent, C., and Rossow, W. B.:

Variations of surface water extent and water storage in large river

basins: a comparison of different global data sources, Geophys.

Res. Lett., 35, L11401, doi:10.1029/2008GL033857, 2008a.

Papa, F., Prigent, C., and Rossow, W.: Monitoring flood

and discharge variations in the large Siberian rivers from

a multi-satellite technique, Surv. Geophys., 29, 297–317,

doi:10.1007/s10712-008-9036-0, 2008b.

Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., and

Matthews, E.: Interannual variability of surface water extent

at the global scale, 1993–2004, J. Geophys. Res.-Atmos., 115,

D12111, doi:10.1029/2009JD012674, 2010.

Park, J. H., Russell, J. M., Gordley, L. L., Drayson, S. R., Ben-

ner, D. C., McInerney, J. M., Gunson, M. R., Toon, G. C.,

Sen, B., Blavier, J.-F., Webster, C. R., Zipf, E. C., Erdman, P.,

Schmidt, U., and Schiller, C.: Validation of Halogen Occulta-

tion Experiment CH4 measurements from the UARS, J. Geo-

phys. Res.-Atmos., 101, 10183–10203, doi:10.1029/95JD02736,

1996.

Patra, P. K., Takigawa, M., Ishijima, K., Choi, B.-C., Cun-

nold, D., Dlugokencky, E., Fraser, P., Gomez-Pelaez, A., Goo,

T.-Y., Kim, J.-S., Krummel, P., Langenfelds, R., Meinhardt, F.,

Mukai, H., O’Doherty, S., Prinn, R., Simmonds, P., Steele, P.,

Tohjima, Y., Tsuboi, K., Uhse, K., Weiss, R., Worthy, D.,

Nakazawa, T.: Growth Rate, Seasonal, Synoptic, Diurnal Vari-

ations and Budget of Methane in the Lower Atmosphere, J. Met.

Soc. Japan. Ser. II, 87, 635–663, doi:10.2151/jmsj.87.635, 2009.

Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D.,

Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P.,

Corbin, K., Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P.,

Ito, A., Kawa, S. R., Law, R. M., Loh, Z., Maksyutov, S.,

Meng, L., Palmer, P. I., Prinn, R. G., Rigby, M., Saito, R.,

and Wilson, C.: TransCom model simulations of CH4 and re-

lated species: linking transport, surface flux and chemical loss

with CH4 variability in the troposphere and lower stratosphere,

Atmos. Chem. Phys., 11, 12813–12837, doi:10.5194/acp-11-

12813-2011, 2011.

Petrescu, A. M. R., van Beek, L. P. H., van Huissteden, J., Pri-

gent, C., Sachs, T., Corradi, C. A. R., Parmentier, F. J. W., and

Dolman, A. J.: Modeling regional to global CH4 emissions of bo-

real and arctic wetlands, Global Biogeochem. Cy., 24, GB4009,

doi:10.1029/2009GB003610, 2010.

Pickett-Heaps, C. A., Jacob, D. J., Wecht, K. J., Kort, E. A.,

Wofsy, S. C., Diskin, G. S., Worthy, D. E. J., Kaplan, J. O.,

Bey, I., and Drevet, J.: Magnitude and seasonality of wetland

methane emissions from the Hudson Bay Lowlands (Canada),

Atmos. Chem. Phys., 11, 3773–3779, doi:10.5194/acp-11-3773-

2011, 2011.

Pison, I., Ringeval, B., Bousquet, P., Prigent, C., and Papa, F.: Sta-

ble atmospheric methane in the 2000s: key-role of emissions

from natural wetlands, Atmos. Chem. Phys., 13, 11609–11623,

doi:10.5194/acp-13-11609-2013, 2013.

Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – global

monthly irrigated and rainfed crop areas around the year

2000: a new high-resolution data set for agricultural and hy-

drological modeling, Global Biogeochem. Cy., 24, GB1011,

doi:10.1029/2008GB003435, 2010.

Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E.,

Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P.,

Midgley, P., and Wang, M.: Atmospheric Chemistry and Green-

house Gases, in: Climate Change 2001: The Scientific Basis.

Contribution of Working Group I to the Third Assessment Re-

port of the Intergovernmental Panel on Climate Change, edited

by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der

Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cam-

bridge University Press, Cambridge, United Kingdom and New

York, NY, USA, 881 pp., 2001.

Prather, M. J., Holmes, C. D. and Hsu, J.: Reactive greenhouse

gas scenarios: Systematic exploration of uncertainties and the

role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803,

doi:10.1029/2012GL051440, 2012.

Prigent, C., Aires, F., Rossow, W., and Matthews, E.: Joint charac-

terization of vegetation by satellite observations from visible to

microwave wavelengths: a sensitivity analysis, J. Geophys. Res.-

Atmos., 106, 20665–20685, doi:10.1029/2000JD900801, 2001a.

Prigent, C., Matthews, E., Aires, F., and Rossow, W. B.:

Remote sensing of global wetland dynamics with multi-

ple satellite data sets, Geophys. Res. Lett., 28, 4631–4634,

doi:10.1029/2001GL013263, 2001b.

Prigent, C., Papa, F., Aires, F., Rossow, W. B., and Matthews, E.:

Global inundation dynamics inferred from multiple satellite ob-

servations, 1993–2000, J. Geophys. Res.-Atmos., 112, D12107,

doi:10.1029/2006JD007847, 2007.

Atmos. Chem. Phys., 14, 13257–13280, 2014 www.atmos-chem-phys.net/14/13257/2014/

http://dx.doi.org/10.5194/acp-11-9141-2011
http://dx.doi.org/10.5194/gmd-2-43-2009
http://dx.doi.org/10.5194/gmd-2-43-2009
http://dx.doi.org/10.1029/2010RG000326
http://dx.doi.org/10.5194/gmd-7-41-2014
http://dx.doi.org/10.1029/2006GL025767
http://dx.doi.org/10.1080/01431160600675887
http://dx.doi.org/10.1029/2007JD008451
http://dx.doi.org/10.1029/2008GL033857
http://dx.doi.org/10.1007/s10712-008-9036-0
http://dx.doi.org/10.1029/2009JD012674
http://dx.doi.org/10.1029/95JD02736
http://dx.doi.org/10.2151/jmsj.87.635
http://dx.doi.org/10.5194/acp-11-12813-2011
http://dx.doi.org/10.5194/acp-11-12813-2011
http://dx.doi.org/10.1029/2009GB003610
http://dx.doi.org/10.5194/acp-11-3773-2011
http://dx.doi.org/10.5194/acp-11-3773-2011
http://dx.doi.org/10.5194/acp-13-11609-2013
http://dx.doi.org/10.1029/2008GB003435
http://dx.doi.org/10.1029/2012GL051440
http://dx.doi.org/10.1029/2000JD900801
http://dx.doi.org/10.1029/2001GL013263
http://dx.doi.org/10.1029/2006JD007847


G. D. Hayman et al.: HadGEM2 and SCIAMACHY 13279

Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W. B., and

Matthews, E.: Changes in land surface water dynamics since the

1990s and relation to population pressure, Geophys. Res. Lett.,

39, L08403, doi:10.1029/2012GL051276, 2012.

Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Hay-

wood, J., Myhre, G., Nakajima, T., Shi, G., and Solomon, S.:

2001: radiative forcing of climate change, in: Climate Change

2001: the Scientific Basis. Contribution of Working Group I to

the Third Assessment Report of the Intergovernmental Panel on

Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D.

J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and

Johnson, C. A., Cambridge University Press, Cambridge, UK and

New York, NY, USA, 349–416, 2001.

Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Lan-

genfelds, R. L., Huang, J., Cunnold, D. M., Steele, L. P.,

Krummel, P. B., Weiss, R. F., O’Doherty, S., Salameh, P. K.,

Wang, H. J., Harth, C. M., Mühle, J., and Porter, L. W.: Re-

newed growth of atmospheric methane, Geophys. Res. Lett., 35,

L22805, doi:10.1029/2008GL036037, 2008.

Ringeval, B., de Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Pri-

gent, C., Papa, F., and Rossow, W. B.: An attempt to quantify

the impact of changes in wetland extent on methane emissions

on the seasonal and interannual time scales, Global Biogeochem.

Cy., 24, GB2003, doi:10.1029/2008GB003354, 2010.

Russell, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Hes-

keth, W. D., Cicerone, R. J., Tuck, A. F., Frederick, J. E.,

Harries, J. E., and Crutzen, P. J.: The Halogen Occulta-

tion Experiment, J. Geophys. Res.-Atmos., 98, 10777–10797,

doi:10.1029/93JD00799, 1993.

Schneising, O., Buchwitz, M., Burrows, J. P., Bovensmann, H.,

Bergamaschi, P., and Peters, W.: Three years of greenhouse gas

column-averaged dry air mole fractions retrieved from satel-

lite – Part 2: Methane, Atmos. Chem. Phys., 9, 443–465,

doi:10.5194/acp-9-443-2009, 2009.

Schneising, O., Buchwitz, M., Reuter, M., Heymann, J., Bovens-

mann, H., and Burrows, J. P.: Long-term analysis of car-

bon dioxide and methane column-averaged mole fractions re-

trieved from SCIAMACHY, Atmos. Chem. Phys., 11, 2863–

2880, doi:10.5194/acp-11-2863-2011, 2011.

Schneising, O., Bergamaschi, P., Bovensmann, H., Buchwitz, M.,

Burrows, J. P., Deutscher, N. M., Griffith, D. W. T., Heymann, J.,

Macatangay, R., Messerschmidt, J., Notholt, J., Rettinger, M.,

Reuter, M., Sussmann, R., Velazco, V. A., Warneke, T.,

Wennberg, P. O., and Wunch, D.: Atmospheric greenhouse gases

retrieved from SCIAMACHY: comparison to ground-based FTS

measurements and model results, Atmos. Chem. Phys., 12,

1527–1540, doi:10.5194/acp-12-1527-2012, 2012.

Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G.

A., Unger, N., and Bauer, S. E.: Improved Attribution

of Climate Forcing to Emissions, Science, 326, 716–718,

doi:10.1126/science.1174760, 2009.

Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R.,

Amann, M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-

Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G., Poz-

zoli, L., Kupiainen, K., Höglund-Isaksson, L., Emberson, L.,

Streets, D., Ramanathan, V., Hicks, K., Oanh, N. T. K.,

Milly, G., Williams, M., Demkine, V., and Fowler, D.: Si-

multaneously mitigating near-term climate change and improv-

ing human health and food security, Science, 335, 183–189,

doi:10.1126/science.1210026, 2012.

Simmonds, P., Manning, A., Derwent, R., Ciais, P., Ramonet, M.,

Kazan, V., and Ryall, D.: A burning question. Can recent growth

rate anomalies in the greenhouse gases be attributed to large-

scale biomass burning events?, Atmos. Environ., 39, 2513–2517,

doi:10.1016/j.atmosenv.2005.02.018, 2005.

Steele, L., Fraser, P., Rasmussen, R., Khalil, M., Conway, T., Craw-

ford, A., Gammon, R., Masarie, K., and Thoning, K.: The global

distribution of methane in the troposphere, J. Atmos. Chem., 5,

125–171, doi:10.1007/BF00048857, 1987.

Steele, L. P., Dlugokencky, E. J., Lang, P. M., Tans, P. P., Mar-

tin, R. C., and Masarie, K. A.: Slowing down of the global ac-

cumulation of atmospheric methane during the 1980s, Nature,

358, 313–316, doi:10.1038/358313a0, 1992.

Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K.,

van Noije, T. P. C., Wild, O., Zeng, G., Amann, M., Ather-

ton, C. S., Bell, N., Bergmann, D. J., Bey, I., Butler, T., Co-

fala, J., Collins, W. J., Derwent, R. G., Doherty, R. M., Drevet, J.,

Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A.,

Horowitz, L. W., Isaksen, I. S. A., Krol, M. C., Lamarque, J.-

F., Lawrence, M. G., Montanaro, V., Müller, J.-F., Pitari, G.,

Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sander-

son, M. G., Savage, N. H., Shindell, D. T., Strahan, S. E.,

Sudo, K., and Szopa, S.: Multimodel ensemble simulations of

present-day and near-future tropospheric ozone, J. Geophys.

Res.-Atmos., 111, D08301, doi:10.1029/2005JD006338, 2006.

Taylor, K. E.: Summarizing multiple aspects of model perfor-

mance in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–

7192,doi:10.1029/2000JD900719, 2001.

Telford, P. J., Archibald, A. T., Abraham, N. L., Braesicke, P., Dalvi,

M., Hommel, R., Keeble, J. M., Johnson, C. E, O’Connor, F.

M., Squire, O. J., and Pyle, J. A.: Evaluation of the UM-UKCA

model configuration for Chemistry of the Stratosphere and Tro-

posphere (CheST), Geosci. Model Dev., in preparation, 2014.

Telford, P. J., Braesicke, P., Morgenstern, O., and Pyle, J. A.: Tech-

nical Note: Description and assessment of a nudged version of

the new dynamics Unified Model, Atmos. Chem. Phys., 8, 1701–

1712, doi:10.5194/acp-8-1701-2008, 2008.

Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bech-

told, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernan-

dez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N.,

Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Bel-

jaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N.,

Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M.,

Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L.,

Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-

F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P.,

Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P.,

and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor.

Soc., 131, 2961–3012, doi:10.1256/qj.04.176, 2005.

USEPA: Methane and nitrous oxide emissions from natural

sources, Report (EPA 430-R-10-001) of the United States

Environmental Protection Agency (Office of Atmospheric

Programs), available at: http://www.epa.gov/methane/pdfs/

Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources.

pdf (last access: 9 May 2014), 2010.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J.,

Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S.,

www.atmos-chem-phys.net/14/13257/2014/ Atmos. Chem. Phys., 14, 13257–13280, 2014

http://dx.doi.org/10.1029/2012GL051276
http://dx.doi.org/10.1029/2008GL036037
http://dx.doi.org/10.1029/2008GB003354
http://dx.doi.org/10.1029/93JD00799
http://dx.doi.org/10.5194/acp-9-443-2009
http://dx.doi.org/10.5194/acp-11-2863-2011
http://dx.doi.org/10.5194/acp-12-1527-2012
http://dx.doi.org/10.1126/science.1174760
http://dx.doi.org/10.1126/science.1210026
http://dx.doi.org/10.1016/j.atmosenv.2005.02.018
http://dx.doi.org/10.1007/BF00048857
http://dx.doi.org/10.1038/358313a0
http://dx.doi.org/10.1029/2005JD006338
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.5194/acp-8-1701-2008
http://dx.doi.org/10.1256/qj.04.176
http://www.epa.gov/methane/pdfs/Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources.pdf
http://www.epa.gov/methane/pdfs/Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources.pdf
http://www.epa.gov/methane/pdfs/Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources.pdf


13280 G. D. Hayman et al.: HadGEM2 and SCIAMACHY

Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the

contribution of deforestation, savanna, forest, agricultural, and

peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735,

doi:10.5194/acp-10-11707-2010, 2010.

Viovy, N. and Ciais, P.: A combined dataset for ecosystem

modelling, available at: http://dods.extra.cea.fr/store/p529viov/

cruncep/V4_1901_2012/ (last access date of updated and ex-

tended dataset: 9 May 2014), 2009.

Worden, J., Kulawik, S., Frankenberg, C., Payne, V., Bowman, K.,

Cady-Peirara, K., Wecht, K., Lee, J.-E., and Noone, D.: Pro-

files of CH4, HDO, H2O, and N2O with improved lower tro-

pospheric vertical resolution from Aura TES radiances, Atmos.

Meas. Tech., 5, 397–411, doi:10.5194/amt-5-397-2012, 2012.

Yu, S., Eder, B., Dennis, R., Chu, S.-H., and Schwartz, S. E.: New

unbiased symmetric metrics for evaluation of air quality models,

Atmos. Sci. Lett., 7, 26–34, doi:10.1002/asl.125, 2006.

Zahn, A., Franz, P., Bechtel, C., Grooß, J.-U., and Röckmann, T.:

Modelling the budget of middle atmospheric water vapour iso-

topes, Atmos. Chem. Phys., 6, 2073–2090, doi:10.5194/acp-6-

2073-2006, 2006.

Atmos. Chem. Phys., 14, 13257–13280, 2014 www.atmos-chem-phys.net/14/13257/2014/

http://dx.doi.org/10.5194/acp-10-11707-2010
http://dods.extra.cea.fr/store/p529viov/cruncep/V4_1901_2012/
http://dods.extra.cea.fr/store/p529viov/cruncep/V4_1901_2012/
http://dx.doi.org/10.5194/amt-5-397-2012
http://dx.doi.org/10.1002/asl.125
http://dx.doi.org/10.5194/acp-6-2073-2006
http://dx.doi.org/10.5194/acp-6-2073-2006

	Abstract
	Introduction
	Approach and methodology
	HadGEM2
	Model configuration and nudging
	Atmospheric chemistry
	Land surface module

	Earth Observation data sets
	Wetland and inundation dynamics
	SCIAMACHY atmospheric column methane
	HALOE--ACE assimilated TOMCAT

	Model runs and emission inventories
	Wetland methane emissions
	Other emissions


	Results and discussion
	Comparison with surface measurements
	Comparison with SCIAMACHY measurements
	Initial comparison
	Comparisons in space and time

	Discussion
	Comparison against measurements
	Comparison with other wetland estimates
	Comparison with inverse emission estimates


	Conclusions
	Acknowledgements
	References

