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Abstract. Despite the potential influence of iodine chemistry

on the oxidizing capacity of the troposphere, reactive iodine

distributions and their impact on tropospheric ozone remain

almost unexplored aspects of the global atmosphere. Here

we present a comprehensive global modelling experiment

aimed at estimating lower and upper limits of the inorganic

iodine burden and its impact on tropospheric ozone. Two sets

of simulations without and with the photolysis of IxOy ox-

ides (i.e. I2O2, I2O3 and I2O4) were conducted to define the

range of inorganic iodine loading, partitioning and impact

in the troposphere. Our results show that the most abundant

daytime iodine species throughout the middle to upper tro-

posphere is atomic iodine, with an annual average tropical

abundance of (0.15–0.55) pptv. We propose the existence of

a “tropical ring of atomic iodine” that peaks in the tropical

upper troposphere (∼11–14 km) at the equator and extends to

the sub-tropics (30◦ N–30◦ S). Annual average daytime I / IO

ratios larger than 3 are modelled within the tropics, reaching

ratios up to ∼20 during vigorous uplift events within strong

convective regions. We calculate that the integrated contri-

bution of catalytic iodine reactions to the total rate of tro-

pospheric ozone loss (IOx Loss) is 2–5 times larger than the

combined bromine and chlorine cycles. When IxOy photoly-

sis is included, IOx Loss represents an upper limit of approxi-

mately 27, 14 and 27 % of the tropical annual ozone loss for

the marine boundary layer (MBL), free troposphere (FT) and

upper troposphere (UT), respectively, while the lower limit

throughout the tropical troposphere is∼9 %. Our results indi-

cate that iodine is the second strongest ozone-depleting fam-

ily throughout the global marine UT and in the tropical MBL.

We suggest that (i) iodine sources and its chemistry need to

be included in global tropospheric chemistry models, (ii) ex-

perimental programs designed to quantify the iodine budget

in the troposphere should include a strategy for the measure-

ment of atomic I, and (iii) laboratory programs are needed

to characterize the photochemistry of higher iodine oxides to

determine their atmospheric fate since they can potentially

dominate halogen-catalysed ozone destruction in the tropo-

sphere.

1 Introduction

The oceans provide the main source of iodine to the at-

mosphere. Methyl iodide (CH3I) and other very short-lived

(VSL) iodocarbons (e.g. CH2I2, C2H5I, C3H7I, CH2ICl,

CH2IBr) are produced by biotic and photochemical pro-

cesses, and released to the atmosphere from supersaturated

ocean waters (Carpenter et al., 2012; Saiz-Lopez et al.,

2012a). Laboratory studies have also established the gaseous

emission of molecular iodine (I2) following the reaction of

aqueous iodide with atmospheric ozone at the sea surface

(Garland and Curtis, 1981; Sakamoto et al., 2009; Hayase

et al., 2010). More recently, it has been shown that HOI is

the major species emitted as a result of this oxidative reac-

tion (Carpenter et al., 2013; MacDonald et al., 2014). Sev-

eral modelling studies and analysis of experimental data have

suggested that the HOI / I2 additional inorganic source must

surpass the emission strength of organic VSL iodocarbons in

order to reproduce observed iodine monoxide (IO) measure-
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Table 1. Iodine chemistry scheme in CAM-Chem: Bimolecular, thermal decomposition and termolecular reactions.

Reaction k cm−3 molecule−1 s−1 Notes

I + O3→ IO + O2 2.1× 10−11 e(−830 /T ) 1

IO + O3→ OIO + O2 3.6× 10−16 2

I + HO2→ HI +O2 1.5× 10−11 e(−1090 /T ) 3

IO + NO→ I + NO2 7.15× 10−12 e(300 /T ) 1

IO + HO2→ HOI + O2 1.4× 10−11 e(540 /T ) 1

IO + IO→ OIO + I 2.13× 10−11 e(180 /T )
× [1 + e(−p / 191.42)] 1, 4

IO + IO→ I2O2 3.27× 10−11 e(180 /T )
× [1 − 0.65 e(−p / 191.42)] 1, 4

IO + OIO→ I2O3 w1 · exp (w2 · T )a 4, 5, 6g

OIO + OIO→ I2O4 w1 · exp (w2 · T )b 4, 5, 6g

I2+O→ IO + I 1.25× 10−10 1

IO + O→ I + O2 1.4× 10−10 1

IO + OH→ HO2+ I 1.0× 10−10 7

I2O2→ OIO + I w1 · exp (w2 / T )c 5, 6, 8g

I2O2→ IO + IO w1 · exp (w2 / T )d 5, 6, 8g

I2O4→ 2 OIO w1 · exp (w2 / T )e 5, 8g

I2+OH→ HOI + I 1.8× 10−10 3

I2+NO3→ I + IONO2 1.5× 10−12 9

I + NO3→ IO + NO2 1.0× 10−10 1

OH + HI→ I + H2O 1.6× 10−11 e(440 /T ) 1

I + IONO2→ I2+NO3 9.1× 10−11 e(−146 /T ) 5

HOI + OH→ IO + H2O 2.0× 10−13 10

IO + DMS→ DMSO + I 3.2× 10−13 e(−925 /T ) 11

INO2→ I + NO2 1008× 1015 e(−13670 /T ) 12, 13, 14

IONO2→ IO + NO2 w1 · exp ( w2 / T )f 5, 15

INO + INO→ I2+ 2NO 8.4× 10−11 e(−2620 /T ) 3

INO2+ INO2→ I2+ 2NO2 4.7× 10−13 e(−1670 /T ) 1

OIO + NO→ IO + NO2 1.1× 10−12e(542 /T ) 14

HI + NO3→ I + HNO3 1.3× 10−12e(−1830 /T ) 16

IO + BrO→ Br + I + O2 0.30× 10−11e(510 /T ) 1

IO + BrO→ Br + OIO 1.20× 10−11e(510 /T ) 1

I + BrO→ IO + Br 1.44× 10−11 17, 18, 19

IO + ClO→ I + OClO 2.585× 10−12 e(280 /T ) 1

IO + ClO→ I + Cl + O2 1.175× 10−12 e(280 /T ) 1

IO + ClO→ ICl + O2 0.940× 10−12 e(280 /T ) 1

IO + Br→ I + BrO 2.49× 10−11 18, 19

IO + NO3→ OIO + NO2 9.0× 10−12 20

IO + CH3O2→ CH2O + I + HO2 2.0× 10−12 2h

ments over the open ocean environment (Jones et al., 2010;

Mahajan et al., 2010, 2012; Gómez Martín et al., 2013b;

Großmann et al., 2013; Lawler et al., 2014).

Early pioneering work by Chameides and Davis (1980)

and Solomon et al. (1994) showed that both organic and inor-

ganic iodine compounds photo-dissociate rapidly in the tro-

posphere to release iodine atoms, which then react mainly

with ozone to generate IO. A steady state is then estab-

lished between I and IO as a result of the fast photolysis

of the oxide, and therefore the two species are termed col-

lectively as reactive iodine, or IOx= I+ IO. The IOx react

further with other species to generate different forms of inor-

ganic iodine (Saiz-Lopez et al., 2012a, see Table 1). The at-

mospheric chemical processing of iodine species influences

the oxidizing capacity of the troposphere through catalytic

ozone-depleting cycles (IOx Loss, i.e. Chameides and Davis,

1980; Solomon et al., 1994; Davis et al., 1996; Vogt et al.,

1999; McFiggans et al., 2000; Brasseur and Solomon, 2005)

and changes to the HOx (i.e. [HO2] / [OH]) and NOx (i.e.

[NO2] / [NO]) ratios (Bloss et al., 2005). It also makes a neg-

ative contribution to the radiative flux in the tropical tropo-

sphere (Saiz-Lopez et al., 2012b), and produces higher-order

iodine oxides (IxOy) which have been proposed to partici-

pate in the formation of ultrafine aerosol particles in coastal

environments (Hoffmann et al., 2001; O’Dowd et al., 2002;

Jimenez et al., 2003; McFiggans et al., 2004, 2010; Pechtl et
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Table 1.

Reaction k cm−3 molecule−1 s−1 Notes

CH3I + OH→ I + H2O + HO2 2.90× 10−12 e(−1100 /T ) 3

I + NO2 (+M)→ INO2 (+M) k0= 3× 10−31
× (T / 300)−1

k∞= 6.6× 10−11
3i

IO + NO2 (+M)→ IONO2 (+M) k0= 6.5× 10−31
× (T / 300)−3.5

k∞= 7.6× 10−12
× (T / 300)−1.5

3i

I + NO (+M)→ INO (+M) k0= 1.8× 10−32
× (T / 300)−1

k∞= 1.7× 10−11
3i

OIO + OH (+M)→ HOIO2 (+M) k0= 1.5× 10−27
× (T / 300)−3.93

k∞= 7.76× 10−10
× (T / 300)−0.8

14j

1 IUPAC-2008 (Atkinson et al., 2007); 2 Dillon et al., 2006b; 3 JPL-2010 (Sander et al., 2011); 4 Gómez Martín et al., 2007;
5 Kaltsoyannis and Plane, 2008; 6 Gálvez et al., 2013; 7 Bösch et al., 2003; 8 Gómez Martín and Plane, 2009; 9 Chambers et al.,

1992; 10 Chameides and Davis, 1980; 11 Dillon et al., 2006a; 12 McFiggans et al., 2000; 13 Jenkin et al., 1985; 14 Plane et al.,

2006; 15 Allan and Plane, 2002; 16 Lancar et al., 1991; 17 Laszlo et al., 1997; 18 Bedjanian et al., 1997; 19 Gilles et al., 1997;
20 Dillon et al., 2008.
a w1 = 4.687× 10−10

− 1.3855× 10−5
× e(−0.75p / 1.62265)

+ 5.51868× 10−10
× e(−0.75p / 199.328)

w2 = −0.00331 − 0.00514 × e(−0.75p / 325.68711)
− 0.00444 × e(−0.75p / 40.81609)

b w1 = 1.1659× 10−9
− 7.79644× 10−10 e(−0.75p / 22.09281)

+ 1.03779× 10−9
× e(−0.75p / 568.15381)

w2 = −0.00813 − 0.00382 × e(−0.75p / 45.57591)
− 0.00643 × e(−0.75p / 417.95061)

c w1 = 3.54288× 1010
+ 1.8523× 1011

× 0.75p −1.45435× 108
× (0.75p) 2

+ 60799.4344 × (0.75p) 3

w2 = −9681.65989 + 346.95538 × e(−0.75p / 343.25322)
+ 251.78032 × e(−0.75p / 44.1466)

d w1 = 255 335 000 000–4 418 880 000 × 0.75p + 85 618 600 × (0.75p)2
+ 14218.81 × (0.75p)3

w2 = −11466.82304 + 597.01334 × e(−0.75p / 1382.62325)
− 167.3391 × e(−0.75p / 43.75089)

e w1= −1.92626× 1014
+ 4.67414× 1013

× 0.75p − 3.68651× 108
× (0.75p)2

− 3.09109× 106
× (0.75p)3

w2 = −12302.15294 + 252.78367 × e(−0.75p / 46.12733)
+ 437.62868 × e(−0.75p / 428.4413)

f w1 = −2.63544× 1013
+ 4.32845× 1012

× (0.75p) + 3.73758× 108
× (0.75p) 2

− 628468.76313 × (0.75 p) 3

w2 = −13847.85015 + 240.34465 × e(−0.75p / 49.27141)
+ 451.35864 × e(−0.75p / 436.87605)

g The empirical expressions of the form w1 · exp (w2 · T ) were obtained by non-linear least squares fitting of

Rice–Ramsperger–Kassel–Marcus (RRKM) theoretical results for the indicated reaction rate constants and thermal dissociation

rates in the (27–1013) hPa pressure range. RRKM calculations were carried out using the MESMER algorithm (Glowacki et al.,

2012) as indicated in the corresponding references (e.g. Gálvez et al., 2013). Expression a produces negative values outside the

range of modelled rate constants (p < 20 hPa), and therefore a fixed rate constant of 3× 10−11 cm3 molecule−1 s−1 was assumed.

Expressions e and f generate negligible dissociation rates below ∼500 hPa which become negative at ∼8 hPa – in this case they are

set to zero below that pressure. Note that the parametrized pressure range of rate constants spans the atmospheric layer relevant for

this work and beyond (see Figs. 3 and 4).
h Updated heats of formation for IO, OIO, and CH3O2 (Dooley et al., 2008; Gómez Martín and Plane, 2009; Knyazev and Slagle,

1998) show that the only accessible exothermic product channel of CH3O2 + IO (Drougas and Kosmas, 2007) is CH3O + I + O2

(1Hr =−5± 6 kJ mol−1), consistent with the high yield of I and low yield of OIO found experimentally (Bale et al., 2005; Enami

et al., 2006). Sensitivity studies have been carried out using the preferred rate constant for this reaction of

2× 10−12 cm3 molecule−1 s−1 (Dillon et al., 2006b), resulting in an enhancement of the ozone loss of 0.5% in the MBL and of

less than 0.1% integrated throughout the troposphere in the JIxOy scenario, and similarly negligible enhancements in the Base

scenario. Impacts in the Iy partitioning are also very minor.
i The temperature and pressure dependent rate constant (k) is computed based on the low pressure (k0) and the high-pressure (k∞)

rate coefficients following JPL-2010 (Sander et al., 2011).
j The fast rate constants and a thermally stable product HOIO2 have been predicted theoretically (Plane et al., 2006), but no

experimental studies reporting observation of HOIO2 and its photochemical properties in the gas phase are available. Since the level

of uncertainty is even larger than for the IxOy, it has not been included in the mechanism.

al., 2006; Saiz-Lopez et al., 2006; Huang et al., 2010; Maha-

jan et al., 2011; Atkinson et al., 2012).

Different techniques have enabled measurements of tro-

pospheric iodine species in geographical locations ranging

from the tropical troposphere to the polar boundary layer

(Saiz-Lopez and von Glasow, 2012). Comprehensive reports

and inventories of organic VSL iodocarbons across the world

oceans have been published in the last decades (Saiz-Lopez

et al., 2012a, and references therein). Inorganic reactive io-

dine species have been observed in the marine boundary

layer (MBL) well above their detection limits, including IO

(Alicke et al., 1999), OIO (Allan et al., 2000), I2 (Saiz-Lopez

and Plane, 2004), and I (Bale et al., 2008). More recently,

the detection of IO in the sub-tropical (Puentedura et al.,

2012) and tropical (Dix et al., 2013) free troposphere shows a

widespread presence of active iodine species throughout the

marine troposphere.

Based on iodine’s faster catalytic ozone-depletion kinet-

ics compared to that of bromine and chlorine, box- and one-

/two-dimensional (Solomon et al., 1994; Davis et al., 1996;

Vogt et al., 1999; Calvert and Lindberg, 2004; Saiz-Lopez et

al., 2007; Sommariva and von Glasow, 2012; Sommariva et

al., 2012) and global (Saiz-Lopez et al., 2012b) modelling

studies have suggested the potential important role of iodine

in the destruction of tropospheric ozone. Additionally, re-

cent studies have pointed out differences between observed

and modelled O3 abundances in the tropical upper tropo-

sphere (Young et al., 2013) and northern mid-latitude lower

www.atmos-chem-phys.net/14/13119/2014/ Atmos. Chem. Phys., 14, 13119–13143, 2014
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troposphere (Parrish et al., 2014), and highlighted the im-

portance of performing a rigorous investigation of additional

factors driving the budget of tropospheric ozone. Following

the evidence of the ubiquitous presence of reactive iodine

in the troposphere, we present simulations with a chemistry-

climate model that includes geographically distributed VSL

iodocarbon sources (CH3I, CH2I2, CH2ICl and CH2IBr) as

well as global inorganic iodine emissions (HOI / I2) from the

oceans. The model includes a state-of-the-art iodine chem-

istry scheme considering IxOy and their photolytic and ther-

mal decomposition, individualized wet-removal processes

and ice-uptake, as well as heterogeneous recycling reactions

over sea-salt aerosol and ice particles. Here we highlight, for

the first time in a global model, some of the unique aspects of

iodine chemistry that drive the partitioning of organic and in-

organic iodine species throughout the troposphere. The IxOy

represent a substantial mass of atmospheric iodine currently

unaccounted for and subject to a large degree of uncertainty.

The upper and lower limits of the tropospheric iodine bur-

den are shown to be strongly dependent on the uncertainties

related to the chemical fate of IxOy species, whose photo-

chemistry and reactivity represent a fundamental problem in

our current knowledge of iodine chemistry and its effects in

the atmosphere. Based on our results, we discuss implica-

tions for the transport and partitioning of iodine species to

the free troposphere (FT) and upper troposphere (UT), and

assess its relevance on the tropospheric ozone budget.

2 Model description: CAM-Chem setup

The global 3-D chemistry climate model CAM-Chem (Com-

munity Atmospheric Model with Chemistry, version 4.0), in-

cluded into the CESM framework (Community Earth Sys-

tem Model, version 1.1.1) was used for this study (Lamar-

que et al., 2012). CAM-Chem can be configured at differ-

ent grid resolutions and dynamical configurations. The setup

used here considers a horizontal grid resolution of 1.9◦ (lat-

itude)× 2.5◦ (longitude) and 26 hybrid vertical levels from

the surface to approximately 40 km. CAM-Chem has the

capability to perform simulations using specified dynamics

(SD), where offline meteorological fields are used to com-

pute the atmospheric transport. In order to eliminate dynami-

cal alterations between simulations with dissimilar chemical

mechanisms, we performed all simulations in SD mode, con-

sidering the same high-frequency meteorological input from

a previous CAM-Chem 15-year simulation without halogen

chemistry. In this way, our CAM-Chem setup implies that we

force the system to evolve as if it was a CTM (chemical trans-

port model), in a manner that the chemical changes existent

at different locations and altitudes between a set of indepen-

dent simulations can be directly addressed. See Lamarque et

al. (2012) for a complete description of the SD setup.

The development of the benchmark CAM-Chem mecha-

nism is based on MOZART-4 (Emmons et al., 2010). For

Figure 1. Absorption cross-sections of the higher iodine oxides

IxOy (x=2, y ≥ 2). Gas phase experimental spectra tentatively as-

signed to I2O2 and I2O3 (Gómez Martín et al., 2005, 2007; Spietz

et al., 2005) are plotted in blue and black respectively. The I2O2

spectrum has been smoothed by fitting a polynomial through it. The

red line corresponds to the absorption spectrum of I2O4 in water

(Russell Saunders, personal communication).

this configuration, an improved representation of strato-

spheric chemistry, considering heterogeneous processes in

polar clouds from MOZART-3 (Kinnison et al., 2007; Weg-

ner et al., 2013), has also been used. The chemical solver is

initialized with identical chemical boundary conditions for

any given species in all simulations presented here, and all

the atmospheric oxidants are computed online at all times

(i.e. without considering prescribed monthly OH fields as

done in previous studies). Our current setup includes an or-

ganic and inorganic halogen (chlorine, bromine and iodine)

photochemistry mechanism, considering both natural and an-

thropogenic sources, heterogeneous recycling, dry and wet

deposition – both in the troposphere and lower stratosphere

(Ordóñez et al., 2012; Fernandez et al., 2014). For iodine

species we have compiled a state-of-the-art chemical scheme

as described below.

2.1 Atmospheric chemistry of iodine

The chemistry of chlorine and bromine VSL species in

CAM-Chem has been described in detail previously (Or-

dóñez et al., 2012; Fernandez et al., 2014). In this work we

have used the same emissions inventory of bromo- (CHBr3,

CH2Br2, CH2BrCl, CHBr2Cl and CHBrCl2) and iodocar-

bons presented there, extending the iodine inorganic chem-

istry mechanism. VSL oceanic sources of CH2I2, CH2ICl

and CH2IBr are based on parametrizations of chlorophyll-

a satellite maps, including latitudinal variations between

50◦ N–50◦ S, a time-dependent ice-mask for polar oceans

and a monthly seasonality (see Ordóñez et al. (2012) for

details). The global CH2IX (with X = Cl, Br or I) flux in

the model is ∼437 Gg yr−1. CH3I emissions are taken from

Atmos. Chem. Phys., 14, 13119–13143, 2014 www.atmos-chem-phys.net/14/13119/2014/
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an existing top-down inventory (Bell et al., 2002), which in-

cluded major oceanic sources (213 Gg yr−1) as well as some

land-based fluxes from rice paddies, wetlands, biofuel and

biomass burning (91 Gg yr−1), yielding a global CH3I flux

of 304 Gg yr−1. For the emissions of most VSL iodocarbons

we follow a solar diurnal profile, with emissions peak in the

early afternoon and null emissions at night. The exception

is CH2I2 which showed an improved agreement with mea-

surements when ∼1/4 of the total emissions occurs during

the night (Ordóñez et al., 2012). In addition, inorganic iodine

oceanic sources have been included in the lowest layer of

the model (∼150 m depth), based on recent laboratory stud-

ies that determined the abiotic gaseous emission of HOI and

I2 following the oxidation of aqueous iodide by atmospheric

ozone on the ocean surface (Carpenter et al., 2013; MacDon-

ald et al., 2014). The global modelled emissions of HOI / I2

account for∼1.9 Tg (I) yr−1 and depend on the deposition of

tropospheric ozone to the ocean surface, the sea surface tem-

perature and the wind speed (see Prados-Roman et al. (2014)

for further details on the implementation of the inorganic

iodine source). This additional inorganic source is some-

what larger than the ∼1.2 Tg (I) yr−1 value of Saiz-Lopez et

al. (2012b) and within the range of values required to rec-

oncile IO measurements in the MBL at coastal sites (i.e. in

the range of (10–70)× 107 atoms (I) cm−2 s−1; see Mahajan

et al. (2010); Großmann et al. (2013) and references therein).

The computed lifetimes of CH2ICl, CH2IBr and CH2I2 range

from minutes to hours in agreement with previous studies

(Rattigan et al., 1997; Roehl et al., 1997; Mössinger et al.,

1998), while for CH3I it is in the order of 5–8 days (Rattigan

et al., 1997; Roehl et al., 1997).

Table 1 presents the bimolecular, thermal decomposition

and termolecular reactions of iodine species included in the

chemical mechanism. Updates with respect to previous anal-

yses (Ordóñez et al., 2012; Saiz-Lopez et al., 2012b) are

mainly based on theoretical studies on the formation, pho-

tochemistry and thermal decomposition of higher iodine ox-

ides, collectively called IxOy (Gómez Martín et al., 2007;

Kaltsoyannis and Plane, 2008; Gómez Martín and Plane,

2009). A distinct feature of iodine chemistry, with respect

to the other halogens, is the formation of IxOy (where usu-

ally x = 2 and y = 2, 3, or 4) from recombination reactions

of IO with itself (y = 2) and with OIO (y = 3), or OIO

with itself (y = 4). Unambiguous discriminated observation

of IxOy has been achieved only recently by means of photo-

ionization time-of-flight mass spectrometry (Gómez Martín

et al., 2013a). This recent work also confirmed the minor role

played by ozone in the formation of iodine aerosol (Saun-

ders et al., 2010), which rules out I2O5 as nucleating species

(Saunders and Plane, 2005). Some other iodine oxides with

different I /O stoichiometry (x 6= 2) have been suggested

to participate in complex mechanisms of particle formation

(Gálvez et al., 2013; Gómez Martín et al., 2013a), albeit

considerable uncertainty still exists about the chemistry and

spectroscopy of these higher iodine oxides.

Table 2. Iodine chemistry scheme in CAM-Chem: photochemical

reactions.

Reaction

CH3I + hν→ CH3O2+ I

CH2I2 + hν→ 2Ia

CH2IBr + hν→ Br + Ia

CH2ICl + hν→ Cl + Ia

I2 + hν→ 2I

IO + hν→ I + O

OIO + hν→ I + O2

INO + hν→ I + NO

INO2 + hν→ I + NOb
2

IONO2 + hν→ I + NO3

HOI + hν→ I + OH

IBr + hν→ I + Br

ICl + hν→ I + Cl

I2O2 + hν→ I + OIOc

I2O3 + hν→ IO + OIOc

I2O4 + hν→ OIO + OIOc

Photolysis rates are computed online

considering the actinic flux calculation

in CAM-Chem. The absorption

cross-sections and quantum yields for

all species besides the IxOy have been

taken from IUPAC-2008 (Atkinson et

al., 2007, 2008) and JPL-2010 (Sander

et al., 2011).
a Radical organic products are not

considered.
b Only the reaction channel reported in

JPL 06-02 (Sander et al., 2006) is

considered.
c Photolysis reactions only considered

in the JIxOy scheme. The absorption

cross-sections reported in Sect. 2.2 (see

Fig. 1) have been used.

Table 3. Iodine chemistry scheme in CAM-Chem: heterogeneous

reactions.

Sea-salt aerosol reactions Reactive uptake

IONO2→ 0.5 IBr + 0.5 ICl γ = 0.01

INO2→ 0.5 IBr + 0.5 ICl γ = 0.02

HOI→ 0.5 IBr + 0.5 ICl γ = 0.06

I2O2→ γ = 0.01∗

I2O3→ γ = 0.01∗

I2O4→ γ = 0.01∗

Values based on the THAMO model (Saiz-Lopez et al., 2008) and

implemented in CAM-Chem following Ordóñez et al. (2012).
∗ Deposition of IxOy species on sea-salt aerosols has been

included following the free regime approximation.

Table 2 presents the photochemical iodine reactions in-

cluded in CAM-Chem. Absorption cross-sections and quan-

tum yields were compiled from JPL-2010 (Sander et al.,

2011) and IUPAC-2008 (Atkinson et al., 2007, 2008), and J -

values are computed online considering both a look-up table

and CAM-Chem actinic flux calculations (Lamarque et al.,

2012). Sea-salt heterogeneous recycling reactions for HOI,
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Table 4. Iodine chemistry scheme in CAM-Chem: Henry’s Law constants and dry deposition velocities.

Species k0 (M atm−1) Deposition velocity∗ (cm s−1) Reference

IBr ice 2.4× 101
− 1

ICl ice 1.1× 102
− 1

HI 7.8× 10−1 1.0 1a

HOI – (JIxOy
/Base) 1.9× 103 / 4.5× 103 0.75 1b

IONOice
2

1.0× 106 0.75 2c

INOice
2

3.0× 10−1 0.75 1d

IO 4.5× 102
− 2

OIO 1.0× 104
− 2

I2O2 1.0× 104 1.0 2

I2O3 1.0× 104 1.0 2

I2O4 1.0× 104 1.0 2

∗ Dry deposition velocities are based on the THAMO model (Saiz-Lopez et al., 2008).
1 Values reported in Sander (1999).
2 Values based on the THAMO model (Saiz-Lopez et al., 2008).
a Considering a dissociation constant Ka = 3.2× 109 and a temperature dependent coefficient c= 9800 K
b Within the range of values given in the corresponding reference.
c Virtually infinite solubility is represented by using a very large arbitrary number.
d Value assumed to be equal to those of BrNO2.
ice Species for which ice-uptake is considered following Neu and Prather (2012).

INO2 and IONO2 are also included in the chemical mecha-

nism (Table 3) following the free regime approximation (Mc-

Figgans et al., 2000). Here we consider that the rate-limiting

step of the recycling process is the uptake of the gaseous

iodine species on the surface of a halogen-enriched (bro-

mide and chloride) aerosol. Note that these recycling reac-

tions constitute a net source of bromine and chlorine to the

atmosphere, but represent only a change in partitioning for

the case of iodine species. The non-reactive uptake of the

higher iodine oxides is also proposed to proceed efficiently

on sea-salt aerosols following the free regime approximation,

although this additional sink of atmospheric iodine is a minor

contributor compared to scavenging of IxOy in water clouds.

Table 4 presents the Henry Law coefficients (kH) and depo-

sition velocities used to compute the removal of inorganic

iodine from the gaseous phase via washout, scavenging in

water and ice clouds, and dry deposition (Neu and Prather,

2012; Ordóñez et al., 2012). The vertical variation of the sur-

face area density (SA) of sea-salt aerosols (SASSLT) and liq-

uid droplets (SALIQ) used to compute the heterogeneous re-

cycling reactions and the wet removal of inorganic iodine,

respectively, is described and shown in Fig. 10a of Fernan-

dez et al. (2014).

2.2 Absorption cross-sections of IxOy

Prominent featureless absorption bands of IxOy species have

been experimentally observed in the UV region (Bloss et

al., 2001; Gómez Martín et al., 2005; Spietz et al., 2005).

The photolysis thresholds of the iodine oxides are mostly

in the near-infrared region (Gálvez et al., 2013). Therefore,

it is plausible that in the atmosphere photochemical decom-

position of IxOy back to IOx will compete with thermal de-

composition and uptake by aerosol, reducing the atmospheric

losses by washout and/or scavenging. Based on the kinetic

behaviour of the absorption spectra observed in the labo-

ratory, tentative spectral assignments and estimation of the

corresponding absorption cross-section have been reported.

While Bloss et al. (2001) assigned the broadband absorption

appearing under the IO spectrum to a single species (I2O2),

Gómez Martín et al. (2005, 2007) obtained evidence of the

same band resulting from an overlap of at least two differ-

ent iodine oxides (I2O2 and I2O3). Here, in order to cal-

culate atmospheric photolysis rates, we adopt for these two

species the spectra extracted and scaled to absolute absorp-

tion cross-section by Gómez Martín et al. (2005) (Fig. 1).

Extraction of the I2O4 absorption spectrum from the ob-

served IxOy broadband absorption was unfeasible, and there-

fore, in the present work, a solution spectrum measured at the

University of Leeds has been used. The I2O4 spectrum was

measured at 1 nm resolution using a Perkin-Elmer Lambda

900 UV-Vis spectrometer in a 1 cm quartz cuvette (R. Saun-

ders, personal communication, 2012). I2O4 was synthesized

from commercial I2O5 / I2 and H2SO4 (Sigma Aldrich). This

made iodosyl sulfate, which then, washed, converted to I2O4

(Daehlie and Kjekshus, 1964). Note that the gas phase ab-

sorption spectrum of I2O4 is likely to be blue-shifted with

respect to its spectrum in solution and therefore this may re-

sult in overestimation of the atmospheric photolysis rates.

2.3 Model simulations

Total inorganic iodine (Iy) has been defined as

Iy =I + IO + HOI + IONO2+ IxOy+ Iminor+ Idihal, (1)
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Figure 2. Vertical distributions of annually averaged organic and inorganic iodine species within the tropics (20◦ N–20◦ S): (a) organic VSL

iodocarbons; (b) iodine atom released from different sources as a function of altitude; (c) main Iy species for the Base scheme. The abundance

of IxOy is shown by empty symbols. The horizontal line represents the approximate location of the tropical tropopause. 24 h average profiles

are shown in all cases.

where for simplicity

IxOy = 2× (I2O2+ I2O3+ I2O4) (2)

Iminor = HI + OIO + INO2+ INO (3)

Idihal = 2× I2+ IBr + ICl. (4)

Two independent simulations were performed in order to es-

timate the range of Iy loading and impact in the troposphere:

the Base scheme and the JIxOy scheme. The Base scheme

does not consider the photolysis of IxOy oxides (i.e. I2O2,

I2O3 and I2O4) and represents the lower Iy loading limit. In

this simulation IxOy are decomposed back to IOx only by

thermal decomposition, being removed from the gas phase

via washout, uptake on sea-salt aerosols and dry deposition

processes. The JIxOy scheme includes, in addition, the pho-

tolysis of IxOy, allowing for an efficient recycling of IOx

in the gas phase within the troposphere. Therefore this sec-

ond simulation represents the upper limit of tropospheric Iy

loading. Hereafter we use these two simulations to provide

a range of reactive iodine loading, partitioning and distribu-

tions throughout the troposphere consistent with our current

knowledge of iodine chemistry (within its uncertainties).

3 Results and discussions

The upper and lower limits of total inorganic iodine loading

in the troposphere have been estimated by conducting simu-

lations where the photolysis of IxOy was allowed (JIxOy ) or

neglected (Base), respectively. The last of a 3-year simulation

was used to compute the iodine atmospheric burden for both

cases. As the model is configured with prescribed sea surface

temperatures and ice coverage for the 2000 decade (Rayner,

2003), results are not representative of the meteorology of

any specific year, and annual averages are presented unless

specifically mentioned. Three different vertical regions on

consecutive non-overlapping altitude intervals were defined

within the tropics (20◦ N–20◦ S) and mid-latitudes (50–20◦ N

and 20–50◦ S): MBL, expanding from the ocean surface up

to ∼900 m a.s.l (∼900 hPa); the FT, from ∼900 m (900 hPa)

to ∼8.5 km (350 hPa); and the UT from ∼8.5 km (350 hPa)

up to the model tropopause. Besides the standard 24 h aver-

aged streaming, time-dependent output for day and night has

been generated considering the noon (11:30–12:30) and mid-

night (23:30–00:30) local time (LT), respectively, for all lati-

tudes and longitudes. Additionally, the Western Pacific (WP)

warm pool area was defined by the equator (0◦) and the 20◦ N

parallels, and the 120 and 165◦ E meridians (see black rect-

angle in Fig. 7). Gas phase mole fractions for all species are

given in ppbv or pptv, which are equivalent to the IUPAC rec-

ommended units nmol mol−1 and pmol mol−1, respectively

(Schwartz and Warneck, 1995).

3.1 The partitioning of VSL iodine source gases

Figure 2 shows the vertical profiles of the four major VSL

iodocarbons together with their photochemical decomposi-

tion rates within the tropics. On an annual average, the total

organic iodine abundance results in ∼0.8 pptv in the MBL

and ∼0.1 pptv in the FT (Fig. 2a). The percentage contribu-

tion of each individual VSL species to total organic iodine is

approximately 82 % (96 %), 12 % (2.7 %), 5 % (0.8) and 1 %

(0.1 %) for CH3I, CH2ICl, CH2I2 and CH2IBr in the MBL

and (FT), respectively. Iodine-containing di-halocarbons are

photolysed almost entirely within the MBL, and the predom-

inant organic species in the free troposphere is methyl iodide.

As a consequence, CH3I is the only iodocarbon reaching the

lower tropical tropopause layer (TTL) by efficient convec-

tion; although integrated in the tropics it represents a neg-

ligible (∼10−3 pptv) carbon-bonded residual at the coldest

point tropopause (θcpt ≈ 380 K, approx. at 17 km) in agree-

ment with previous studies that determined an inconsiderable
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injection of VSL iodocarbons into the stratosphere (Montzka

et al., 2011; Tegtmeier et al., 2013).

Even when the added photodecomposition of CH2I2,

CH2IBr and CH2ICl within the MBL represents an ad-

ditional source of inorganic iodine comparable to that of

CH3I (Fig. 2b), several studies have suggested that an ad-

ditional source of active iodine must exist at the sea sur-

face in order to reconcile open ocean measurements of

IO with current knowledge of iodine sources and chem-

istry (Jones et al., 2010; Mahajan et al., 2010; Gómez

Martín et al., 2013b; Großmann et al., 2013). Within

CAM-Chem, the inorganic iodine (HOI / I2) released from

the tropical oceans following the work of Carpenter et

al. (2013) and MacDonald et al. (2014) (see red dot in

Fig. 2b, ∼6.3× 103 atoms cm−3 s−1) is an order of magni-

tude higher than that from all organo-iodine species com-

bined (5.7× 102 atoms cm−3 s−1 at the surface level and to-

talling ∼1.0× 103 atoms cm−3 s−1 in the MBL), and is the

dominant source of iodine within the MBL. Another impor-

tant source of reactive iodine in the lower troposphere is the

photolysis of the diatomic ICl and IBr species recycled by

heterogeneous reactions over sea-salt aerosols (red line in

Fig. 2b), which we calculate to be the most important process

releasing atomic iodine when integrating the first 5 km in the

marine atmosphere. Note that the implementation of sea-salt

recycling in CAM-Chem for iodine species does not consti-

tute a net source of iodine to the troposphere (see Table 3)

but represents only a change in iodine partitioning that slows

down the conversion of reactive iodine into reservoir species

with greater washout efficiencies (i.e. HOI or IONO2). The

photolysis of CH3I represents 10, 60 and 83 % of the to-

tal iodine sources from VSL photodecomposition within the

MBL, FT and UT respectively, whereas in the lower TTL the

source of iodine becomes almost solely CH3I. The other VSL

iodocarbon with a non-negligible contribution to Iy in the FT

and UT is CH2ICl – its I atom release can reach 22 % (FT),

10 % (UT) and 5 % (TTL) of the total iodine source. Note that

from all the VSL species represented in the model CH2ICl is

the di-halogen iodocarbon with the longest lifetime (∼8 h)

and it represents the strongest oceanic VSL source on an io-

dine atom basis.

The very rapid photolysis of iodocarbons, compared to

transport times, makes the relative contribution from each

VSL species to the inorganic iodine release to be almost in-

dependent of the spatial scale considered. For example, on

an annual average, from the total tropical release of atomic

iodine at 12 km 90 % arise from CH3I and 7 % from CH2ICl,

while their respective percentage contributions are 85 and

10 % within the convective WP warm pool during February.

This is in contrast to the longer-lived VSL bromocarbons,

where the total amount of atomic bromine released from

each independent species at a given altitude, within the TTL,

strongly depends on the strength of convection (Fernandez et

al., 2014). For VSL iodocarbons, the Iy loading in the FT and

UT depends mainly on the geographical distribution and in-

tensity of CH3I oceanic emissions, which presents localized

areas with stronger fluxes, such as the Indian Ocean and the

WP region. Ordóñez et al. (2012) also found that using an

emission cycle with non-zero emissions during the night, the

monthly average concentrations of CH2IX species increase –

e.g. the iodocarbons, which are the VSL species with short-

est lifetimes, can temporally accumulate in the MBL at night

and be transported to higher altitudes. This highlights the im-

portance of experimentally determining the shape of the di-

urnal emission profile to estimate the overall impact of VSL

iodocarbons at different heights.

3.2 Iodine burden in the troposphere and the

role of IxOy

The fast reactions IO+ IO, IO+OIO and OIO+OIO lead to

the formation of significant levels of I2O2, I2O3 and I2O4, re-

spectively. As within the Base scheme only thermal decom-

position and deposition onto background aerosol of iodine

oxides are allowed, the levels of IxOy build up in the atmo-

sphere, and become the most abundant species in the FT and

UT (Fig. 2c). If IxOy were not photolabile, they would rep-

resent 30 % of the total Iy abundance in the MBL and more

than 70 % in the FT and UT. This large mass of iodine in

the atmosphere is currently unaccounted for and subject to

a large degree of uncertainty about the photochemistry of

higher iodine oxides. This presents a fundamental problem

in the quantification of iodine chemistry and its effect in the

atmosphere, as the particle nucleating IxOy species do not

release active iodine back to the gaseous phase (especially

in the FT and UT where temperatures are too low for ther-

mal decomposition to be efficient), representing an effective

sink of atmospheric iodine. As many uncertainties still exist

on which are the dominant photochemical processes affect-

ing IxOy species, hereafter, we present our best estimate of

the upper and lower range of tropospheric iodine loading and

its partitioning for the Base and JIxOy schemes defined in

Sect. 2.3. Most likely, an intermediate mechanism between

these two scenarios controls the iodine recycling in the real

atmosphere, with a portion of the IxOy being removed by

wet/dry deposition, another one forming larger iodine aggre-

gates which will likely be lost to aerosol, and the rest being

recycled to IOx in the gas phase by photolysis.

Figure 3a shows the range of vertical distribution of the

main annually averaged daytime iodine species within the

tropics (20◦ N–20◦ S) for the Base and JIxOy schemes. From

the surface to about 7–8 km HOI is the main daytime io-

dine reservoir. Above that height, atomic iodine becomes

the dominant iodine species during the day from the mid-

to upper troposphere, resulting in an averaged 19 % (58 %)

of the total daytime Iy in the UT for the Base and (JIxOy )

schemes, respectively. On an annual average, surface day-

time IO mixing ratios over the tropical oceans range from

0.45 to 0.7 pptv in agreement with recent ship-borne mea-

surements performed over remote open oceans (Mahajan et
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Figure 3. Lower and upper limits of Iy abundances within the

tropical troposphere (20◦ N–20◦ S): (a) main inorganic species at

noon (11:30–12:30 LT); (b) major Iy species at midnight (23:30–

00:30 LT). The lower limit corresponds to the Base scheme, while

the upper limit is for the JIxOy
scheme.

al., 2012; Großmann et al., 2013). Above the MBL, IO ver-

tical profiles remain in the range (0.1–0.25) pptv between 2

and 8 km, in agreement with recent measurements in the FT

performed over the tropical Atlantic (Puentedura et al., 2012)

and Pacific (Dix et al., 2013) oceans. The tropospheric IO

vertical profiles show two distinct vertical shapes depend-

ing on the inclusion or not of the IxOy photolysis: within

the Base scheme there is an evident reduction of IO concen-

trations with altitude (IO12 km
= 0.04 pptv) due to the large

conversion of IOx to un-reactive IxOy in the UT; while for

the JIxOy scheme high levels of IO are maintained throughout

the FT and up to the UT (IO12 km
= 0.16 pptv) (see Sect. 3.4).

Dix et al. (2013) reported IO vertical profiles over the Pacific

Ocean and suggested the existence of an additional process

(which they proposed to be heterogeneous sea-salt recycling)

in order to sustain the elevated IO levels observed through-

out the mid- and upper FT. Our modelling results indicate

that heterogeneous recycling on sea-salt can contribute to the

IO profile up to about 5 km (Fig. 2b), however it is very un-

likely that reactions on sea-salt can be a source of iodine to-

wards the upper FT, except within convective regions, due

to its negligible number concentration at those heights. In-

stead, we suggest that the combined release of I atoms from

CH3I photolysis and the photolytic recycling of gaseous IxOy

within the JIxOy scheme can account for the increase in IOx

lifetime required to reconcile our current understanding of io-

dine chemistry to recent field measurements throughout the

mid- to upper troposphere (Fig. 3a, see also Sect. 3.4).

The comparative release of reactive iodine species due to

CH3I photolysis (defined as d[I] / dt) and that arising from

the thermal and photolytic breakdown of IxOy (defined as

d[IOx] / dt =−d[IxOy] / dt) is shown in Fig. 4. Note that

the losses of higher oxides are equivalent to the produc-

tion of reactive iodine and do not represent a net sink of io-

dine in the atmosphere, but a change in partitioning between

different Iy species. Photochemical decomposition of CH3I

Figure 4. Annual distribution of reactive iodine (IOx= I+ IO)

sources as a function of latitude and altitude: (a) atomic iodine re-

lease from photolysis of CH3I; (b) IOx production from thermal de-

composition of IxOy for the Base scheme; (c) photodecomposition

of higher oxides within the JIxOy
scheme. Note that for (b) and (c),

the photolysis of OIO to I+O2 (Gómez Martín and Plane, 2009) is

so efficient that the formation of OIO from IxOy (Table 1) is com-

puted here as IOx. 24 h averages are shown in all cases.

accounts for up to 50 I atoms cm−3 s−1, within the MBL,

and between 2 and 8 I atoms cm−3 s−1 in the tropical FT

(Fig. 4a). As Base and JIxOy schemes consider identical VSL

sources, the latitudinal distributions are equivalent for both

schemes. Within the Base scheme the release of inorganic

iodine from VSL sources in the FT is up to three orders of

magnitude larger than the contribution from IxOy thermal

decomposition (Fig. 4b), and controls the tropospheric inor-

ganic iodine burden. Due to the slow thermal breakdown of

higher oxides, IxOy accumulate in the FT (Fig. 2c, see also

Sect. 3.4). When the photolysis of IxOy is allowed, this pro-
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cess constitutes the most important source of reactive iodine

in the tropical free troposphere, recycling back more than 500

IOx molecules cm−3 s−1, and avoiding a large IxOy accumu-

lation. As a consequence, larger amounts of IOx are main-

tained at higher altitudes (Fig. 3a). It is worth noting that

the photodecomposition of CH3I is the first step providing

iodine atoms in the FT, and without the contribution from

this organic precursor the inorganic iodine loading in the FT

and UT would be significantly reduced. Additionally, direct

transportation of Iy species from the MBL, sustained by sto-

ichiometric heterogeneous recycling on sea-salt aerosol, in-

crease the impact of iodine chemistry on the ozone budget as

described in Sect. 3.5.

It is worth noting how the crossing-point height for the

I–IO (∼7 km), I–HOI (∼9 km) and IO–HOI (∼11 km) verti-

cal noontime profiles occurs at the same altitude, regardless

of the consideration or not of the photolysis of the IxOy (see

Fig. 3a). This confirms that the steady state reached is nearly

independent of the total amount of Iy as expected due to

the rapid photochemical time constants of the gaseous iodine

system. The importance of constraining the absolute Iy load-

ing in the mid- and upper troposphere is more evident if we

consider that the relative oxidative potential of iodine chem-

istry is greater in the upper troposphere, and that ∼80 % of

the halogen-mediated tropospheric ozone loss occurs above

800 hPa (Saiz-Lopez et al., 2012b, see Sect. 3.5).

During the night, the main reservoir species in the mid-

and upper troposphere is HOI (Fig. 3b), which accounts for

70 % of the total nighttime Iy in the FT for the JIxOy scheme.

Therefore, HOI is the most abundant iodine species in the

lower troposphere both during the day and at night, and its

washout efficiency controls the total atmospheric iodine bur-

den. Indeed, the Henry law constant for HOI (KHOI
H ) has

been adjusted between a more (Base) and less (JIxOy ) ef-

ficient value within the range of measurements and uncer-

tainties reported in the literature (Sander, 1999; see also Ta-

ble 4). This results in a total washout rate within the tropics

in the range of ∼6–7× 107 atoms (I) cm−2 s−1. For the JIxOy

scheme, ∼95 % of the wet-removal occurs in the MBL and

FT and is controlled by the uptake on liquid droplets of HOI,

IONO2 and IxOy (42 %, 21 % and 16 % respectively). The

Base scheme presents a comparatively larger contribution

from IxOy scavenging (30 % compared to 12 % for IONO2)

due to the higher oxide accumulation. Note that from the

overall IxOy sinks, only∼15 % occurs due to irreversible de-

position on sea-salt aerosols.

Within the JIxOy scheme, the IONO2 abundance

increases significantly above 10 km, representing the

most abundant nighttime inorganic reservoir in the TTL

(IONO15 km
2 = 0.4 pptv) and the main sink of iodine at these

heights. In the case of the Base scheme, since less IO is

available (i.e. due to the irreversible conversion of IO to I2O2

in the cold UT) for reaction with NO2, the IONO2 levels in

the UT are considerably lower (Fig. 3b), and most of the

iodine remains in the form of IxOy. This implies that once

IxOy are formed within the Base scheme, they do not further

release active iodine back to the gas phase, and then behave

as an unreactive sink of iodine that accumulates in the gas

phase. As during daytime, the nocturnal crossing altitude of

the HOI and IONO2 vertical profiles is equivalent for both

schemes (∼15 km), indicating that the relative partitioning

of the main Iy species does not depend on the overall IxOy

or total Iy abundances.

3.3 The tropical ring of atomic iodine

Levels of daytime atomic I increase significantly in the mid-

dle and upper troposphere due to the low ozone concentra-

tions and temperatures prevailing in these regions, which

slow down the formation of IO by the I+O3 Arrhenius type

reaction (Sander et al., 2011). Under these conditions, we

simulate a daytime “tropical ring of atomic iodine” with a

latitudinal extent from 30◦ N to 30◦ S (Fig. 5). Within this

inhomogeneous tropical ring, annual zonal average atomic I

peaks at 0.2 and 0.65 pptv for the Base and JIxOy schemes,

respectively, accounting for up to 70 % of the total annu-

ally averaged Iy in the tropics (black contour lines in Fig. 5).

The altitude at which the maximum modelled I atom levels

are observed depends on the photochemical scheme consid-

ered: for the Base scheme the atomic ring extends from 7 to

15 km, peaking at ∼11 km (Fig. 5a–c, top panels), while for

the JIxOy scheme it expands from 8 to 17 km, with maximum

abundances located at ∼14 km (Fig. 5d–f, bottom). The lon-

gitudinal (Fig. 5b, e) and temporal (Fig. 5c, f) variation of

the atomic iodine tropical ring suggests that atomic I is glob-

ally and annually the most abundant daytime iodine species

within the tropics from about 9 km up to the tropopause. The

highest I atom concentrations within the tropical ring are

modelled to exist within regions of strong oceanic sources

and during periods of strong convection, when large amounts

of inorganic iodine are rapidly transported from the MBL

to the FT and UT. For example, within the WP region, the

monthly I atom abundance peaks at 0.30 and 0.90 pptv for

the Base and JIxOy schemes, respectively.

In both simulated schemes the atomic tropical ring and

the relative I / Iy distributions are coincident in altitude. Note

however that the ultimate fate of the higher iodine oxides in

the atmosphere is very uncertain, and within the Base scheme

there is an increasing accumulation of IxOy with altitude. As

a consequence, the percentage contribution of atomic iodine

to Iy for the Base scheme is at least halved with respect to

the JIxOy scheme. If IxOy species are not considered for the

Base scheme, then the I / Iy contour lines for both simula-

tions present equivalent values (see Sect. 3.4).

The tropical ring of atomic iodine is a photochemical

phenomenon defined by the low abundance of ozone and

cold conditions of the upper troposphere. While the abso-

lute ambient levels of iodine species depend on the total inor-

ganic loading of the tropical troposphere (i.e. washout rates,

ice-uptake), the unusual feature of the halogen atom being
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Figure 5. The “tropical ring of atomic iodine” for the Base (top) and JIxOy
(bottom) schemes: (a, d) annual zonal average; (b, e) annual

meridional average abundance of atomic I within the tropics (20◦ N–20◦ S); and (c, f) seasonal evolution of the zonally averaged atomic I

ring within the tropics. The colour scale represents noontime volume mixing ratios (pptv) while black contour lines show the percentage

contribution of atomic I to Iy.

the predominant species is an implicit consequence of the

fast thermal/photochemical interplay within the main iodine

chemistry cycling scheme (see Tables 1 and 2) and the natu-

ral state of the tropical upper troposphere (i.e. high photoly-

sis rates, lower O3 than in the stratosphere and low temper-

atures). As the I atom ring is photochemically driven, it is

present only in the illuminated portion of the Earth and it cir-

cles the tropics with the sun. Fernandez et al. (2014) have

suggested a co-existent “tropical ring of atomic bromine”

within the TTL. The driving mechanisms of these atomic

halogen rings are identical. The distinct features between

their relative peak altitude or abundances are due to the dif-

ferent photodissociation rates for JIO and JBrO, and the dif-

ferent lifetimes of the organic VSL halocarbons that consti-

tute the main source of reactive iodine (CH3I) and bromine

(mostly CHBr3) in the upper tropical troposphere.

3.3.1 The I / IO ratio in the troposphere

As described above, atomic iodine levels surpass IO abun-

dances above ∼5–6 km, therefore a ratio I / IO > 1 must ex-

ist in the middle and upper troposphere. Figure 6a shows

the vertical variation of the I / IO ratio for the Base and

JIxOy schemes, averaged over different regions and periods

within the tropics. A ratio of I / IO > 1 is calculated from the

mid-troposphere through the tropical cold point tropopause.

Notwithstanding the photochemical treatment of the higher

iodine oxides, both schemes present identical I / IO vertical

profiles with maximum values occurring at coincident alti-

tudes (∼14–15 km or ∼130 hPa), which indicate that the oc-

Figure 6. (a) Vertical profiles for the I / IO ratio averaged over dif-

ferent regions and periods of time: (black) annual tropical (20◦ N–

20◦ S) averages; (red) Western Pacific (WP) warm pool during

February; (blue) at the midpoint of a strong convective cell within

the WP region during a 3-day period in February. The upper and

lower limits correspond to simulations with the Base and JIxOy

schemes, respectively. (b) The vertical variation of O3 abundances

and temperature for each region and period of time.

currence of I / IO > 1 is independent of Iy. The peak magni-

tude strongly depends on the local O3 abundance and the cold

temperatures prevailing in the upper troposphere (Fig. 6b).

The ratio maximizes during periods and within regions of

strong convection, when poor-ozone air-masses are rapidly

transported from the lower troposphere to the lower TTL.
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Figure 7. Average annual noontime geographical distribution at 14 km of: (a) atomic iodine, (b) I / IO ratio, (c) ozone and (d) temperature.

The location of the WP region, also considered to compute the vertical profiles of Fig. 6, is outlined by the black rectangle.

Then, both Base and JIxOy schemes show a ratio enhance-

ment from I / IO≈ 3 for the tropical annual average to ∼8

within the Western Pacific (WP) warm pool during Febru-

ary. Within the WP region and during a vigorous convective

event transporting large amounts of inorganic iodine directly

into the lower TTL, the model I / IO ratio reached values as

high as ∼20 for both schemes (Fig. 6a). This highlights the

importance of measuring atomic iodine levels in the upper

troposphere in order to constrain our current knowledge of

the iodine burden in this region of the atmosphere.

The O3 concentration and the ambient temperature are the

dominant factors in determining the ratio. The ozone lev-

els and surrounding temperatures determining the I / IO > 1

range from 25 to 200 ppbv and from 250 to 190 K at the lower

and higher boundary limit, respectively (Fig. 6b). Following

a steady-state approximation considering the two most im-

portant reactions involving I and IO species, the ratio can be

calculated using the IO photolysis and the I reaction with O3:

[I]

[IO]
=

JIO

kI+O3
[O3]

. (5)

The contribution from other species that react with atomic I

is negligible (see Table 1). Note that even when both schemes

result in a similar ratio vertical profile, the JIxOy scheme cal-

culates slightly smaller ratios because the assumed photo-

chemical breakdown of IxOy releases IO radicals back to the

gas phase, reducing the I / IO ratio.

The geographical distributions of the tropical ring of

atomic iodine and the I / IO ratio at an altitude of 14 km

are shown in Fig. 7. Results for the JIxOy scheme are pre-

sented since the maximum values of both the iodine ring

and the ratio are coincident in altitude when the photolysis

of IxOy are considered. Both distributions clearly maximize

in the Western Pacific region and the Indian Ocean, high-

lighting the importance of convective transport and strength

of oceanic sources in the occurrence of this natural phe-

nomenon. The I / IO ratio follows the geographical distri-

bution of O3 and temperature, both of which locally mini-

mize in the same region where the ratio peaks (Fig. 7c, d).

Note also that I / IO > 1 only occurs within the tropical lati-

tudes, decreasing to values smaller than unity polewards of

30◦ N/30◦ S. Hence, we suggest that experimental programs

oriented to reduce the uncertainties of iodine chemistry in

the tropical troposphere should also include a strategy for the

direct measurements of daytime atomic iodine besides the

usually targeted IO radical.

3.4 The partitioning of inorganic iodine

Figure 8 shows the 24 h annual zonal average distribution

of the main iodine species (besides atomic iodine) for the

Base (left panels) and JIxOy (right panels) schemes. With

the exception of IONO2, which is the only species with a

strong hemispheric gradient in the MBL due to the larger an-

thropogenic NOx levels prevailing over the northern oceans,

all inorganic iodine species abundances maximize within the

tropical regions. IO abundance in the FT is reduced to ∼1/3

of its concentration in the MBL, maintaining an approxi-

mately constant abundance with height between 2 and 8 km.

In the Base scheme, noon IO levels in the tropics ≥ 0.1 pptv

between 2 and 7–8 km result from halogen recycling on sea-

salt (active up to about 4–5 km) and photolysis of CH3I.

Above 7–8 km, and up to the tropopause, noon IO levels

≥ 0.1 pptv can only be sustained by the combined release

of iodine atoms from the photodissociation of CH3I, whose

concentration is ∼0.1 pptv from 4 to 12 km, and the photoly-

sis of IxOy that increases the lifetime of IOx in the gas phase

(see Fig. 4).
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Figure 8. Annual zonal average distribution of the main Iy species in the troposphere for the Base (left) and JIxOy
(right) schemes. The

colour scale represents 24-h average volume mixing ratios (pptv) while black contour lines show the percentage contribution of each species

to Iy.
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Figure 9. Annual average tropical vertical partitioning of organic and inorganic iodine for the Base (left) and JIxOy
(right) schemes, con-

sidering both daytime and nighttime (24 h) data. Minor organic and inorganic species have been lumped together for simplicity (see text for

details).

Figure 8 shows that HOI is the dominant iodine species,

representing more than 60 % of total Iy between 1 and 8 km

for the JIxOy scheme (HOI is the dominant species both dur-

ing the day and at night, see Figs. 3 and 11). HI and IONO2

contributions represent less than 5 % of total Iy while IONO2

exceeds 10 % in the lower troposphere of the Northern Hemi-

sphere. Note how the abundance of IxOy increases signifi-

cantly with altitude for the case of the Base scheme, due to

decreasing temperatures that prevent their thermal decompo-

sition (Fig. 8i). This shows that for the Base scheme there is

a permanent conversion of the major active iodine species to

IxOy, which turns out to be a non-reactive reservoir that does

not recycle back to active IOx (see grey shading in Fig. 9a).

Up to 70 % of the total Iy is modelled to be transformed

to unreactive IxOy in the upper troposphere within the Base

scheme, representing a fundamental problem to our current

knowledge of iodine chemistry. Even when the tropospheric

washout efficiency of IxOy is assumed to be larger than that

of HOI (k
IxOy

H > kHOI
H , see Table 4), the higher oxides’ produc-

tion is so large, and their thermal decomposition so slow, that

their final fate within the Base scheme is to accumulate in

the atmosphere. Then, the modelling experiment performed

here indicates that either: (i) an unrecognized removal pro-

cess for IxOy must exist in the FT and UT, (ii) a substan-

tial accumulation of unreactive IxOy prevails in the upper

troposphere or (iii) a decomposition pathway releasing ac-

tive iodine, such as the photodecomposition proposed in the

JIxOy scheme, occurs. As to the authors’ knowledge there is

no evidence for (i) or (ii), we suggest, based on experimental

and theoretical studies (i.e. Gómez Martín et al., 2005; Saiz-

Lopez et al., 2008) that the photochemistry of IxOy should

be further investigated in order to reduce uncertainties on the

important chemical impacts of iodine chemistry. With the

assumptions made in the JIxOy scheme, the IxOy levels are

clearly reduced in favour of other inorganic iodine species

(see Fig. 9b), which strongly affect their potential impact on

tropospheric ozone destruction (see Sect. 3.5).

Figure 9 shows the vertical variation of the contribution

of organic and inorganic species to the total iodine burden

within the tropical atmosphere. The only precursor species

with a photochemical lifetime long enough to reach the UT is

CH3I, whose abundance remain at ∼0.1 pptv until the lower

TTL (∼12 km) is reached. There is a small contribution of

minor VSL iodocarbons (CH2I2, CH2IBr and CH2ICl), but

most of them are decomposed within the MBL. Note that

below 5 km, there is also a non-negligible contribution of di-

halogen molecules (ICl+IBr+I2), which on average for the

whole year, represent up to 0.25–0.30 pptv of Iy integrated

within the tropical MBL. At the ocean surface, the mod-

elled overall abundance of I2, ICl and IBr species at night-

time reaches 1.3 (1.7) pptv for the Base (JIxOy ) schemes, re-

spectively (Fig. 3b). The predominant contribution of these

diatomic species to nighttime Iy decreases rapidly with alti-

tude due to the rapid reduction in the availability of sea-salt

aerosol surface, upon which IBr and ICl are formed follow-

ing the uptake and heterogeneous recycling of IONO2, INO2

and HOI (see Table 3). Additionally, an abiotic source of I2

(as well as HOI) is introduced in the model at the ocean sur-

face following the oxidative reaction of ozone with aqueous

iodide (see Sect. 2.1). Within the tropics, approximately half

of this inorganic oceanic flux is released during the night, re-

sulting in the direct buildup of I2 in the lower atmosphere,

as well as an indirect buildup of ICl and IBr due to the

heterogeneous recycling of HOI on sea-salt aerosols. Up to

50 % of the nighttime Iy within the MBL is in the form of

I2+ IBr+ ICl. The relative contribution of I2, IBr and ICl to

the overall di-halogen contributions within the MBL are, re-

spectively, 68, 16 and 16 % for the Base scheme, and 53, 23

and 23 % for the JIxOy scheme. Note that the contribution of
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Figure 10. Zonal additive distribution of main organic and inorganic iodine species at different altitudes for the Base (left) and JIxOy
(right)

schemes. 24 h average volume mixing ratios (pptv) are presented at approximate heights of 1, 3, 6, 9, 12 and 15 km. Minor organic and

inorganic species have been lumped together for simplicity (see text for details).
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Figure 11. Diurnal variation of main inorganic iodine species at different altitudes for the Base (left) and JIxOy
(right) schemes. Tropical

averages considering locations with equivalent local times have been computed. Results are shown at approximate heights of 1, 3, 6, 9, 12

and 15 km.
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the minor iodine species (Iminor) represents less than 5 % of

Iy in both schemes.

Compared to the organic portion, the inorganic fraction is

the dominant component of the total iodine budget for both

schemes, with Iy representing more than 90 % of total iodine

through the mid- to upper troposphere (Fig. 9). This is in

clear contrast to the bromine partitioning in the troposphere

where, even if the abundant long-lived halons and CH3Br are

left aside and just VSL bromocarbons are considered, only

30–40 % of bromine is inorganic in the FT, with the dominant

component being the organic VSL portion (Fernandez et al.,

2014).

Figure 10 shows the annual additive zonal distribution of

iodine species. Results are presented at selected heights of

around 1, 3, 6, 9, 12 and 15 km for the Base (left panels)

and the JIxOy (right panels) schemes. The rapid conversion

of organic VSL iodocarbons (mainly CH3I) to inorganic io-

dine as the altitude increases (and across latitudes) as well

as the above-mentioned accumulation of IxOy in the Base

scheme, are clearly appreciated in Fig. 10. Note that even

when the total inorganic loading for the JIxOy scheme is only

10–20 % larger than for the Base scheme, the absolute abun-

dance of the main Iy species (HOI, I and IO) can be up to

a factor of ∼5 greater when IxOy are photolysed. Indeed, if

IxOy are not considered when computing the total inorganic

iodine (i.e. defining an equivalent magnitude I∗y= Iy− IxOy),

then the relative contributions I / I∗y, IO / I∗y and HOI / I∗y for

the Base scheme are equivalent to I / Iy, IO / Iy and HOI / Iy

for the JIxOy scheme. This confirms the rapid establishment

of the photochemical steady state for the gaseous iodine sys-

tem and the inert role of IxOy on altering the Iy partitioning

for the Base scheme, thereby indicating that IxOy production

could basically be treated as an efficient sink of inorganic

iodine, unless their photodissociation is considered.

For the same heights as Fig. 10, the average diurnal varia-

tion of the main iodine species is illustrated in Fig. 11. In the

tropics, I and IO follow a diurnal concentration profile with

a characteristic top-hat shape due to the fast photochemical

constants of the iodine system which allows the rapid occur-

rence of the I–IO steady state. Note that the diurnal top-hat

shape of IO is also influenced by the daytime loss of IO by

reaction with HO2. IO is the dominant daytime species be-

low 5 km, while atomic iodine dominates above that height,

defining the diurnal temporal evolution of the tropical I ring.

IO levels show a double peak at dawn and dusk, which is

most evident at lower altitudes. This is attributed to the re-

duced photodissociation of the IO radical during sunrise and

sunset, particularly at lower heights, which favours the dis-

placement of the steady state towards IO. During daylight

hours, both I and IO abundances remain almost constant

with time, while at nighttime they are completely converted

to the reservoir species HOI and IONO2. The balance be-

tween the nighttime reservoirs species is shifted from the

predominance of HOI in the low- to mid-troposphere to that

of IONO2 in the UT, following the increase in NO2 concen-

trations towards the upper troposphere. Overall, the diurnal

variation of inorganic iodine shown here for the tropical up-

per troposphere, with elevated levels of I and IO at daytime

and conversion to HOI and IONO2 at nighttime, is in line

with previous photochemical calculations of iodine in the

tropical UT (Butz et al., 2009). Note that in the Base scheme

IxOy shows a flat diurnal concentration profile whereas in

the JIxOy scheme the IxOy daytime concentrations are negli-

gible, due to efficient photolysis, and are only above pptv lev-

els at night although at much lower abundances than IONO2

and HOI. In both schemes the HOI photolysis dominates the

early morning release of I atoms, compared to IONO2, as

evidenced by the faster decrease of HOI throughout sunrise

(Fig. 11); this difference becomes smaller with altitude. This

is due to the absorption spectrum of HOI in the visible as op-

posed to the strong absorption cross-section of IONO2 in the

ultraviolet (below 300nm) (Saiz-Lopez et al., 2012a). During

the daytime, HOI is the main species up to about 6 km; at

higher altitudes in the troposphere the accumulation of IxOy

in the Base scheme and the very rapid interplay between I

and IO in the JIxOy scheme dominate daytime Iy.

3.5 Implications for tropospheric ozone

Figure 12 presents the annual tropospheric ozone difference

between the Base and JIxOy schemes as a function of alti-

tude and latitude. The O3 changes increase from ∼0.5 ppbv

in the tropical MBL to up to∼2.5 ppbv in the UT of the mid-

latitudes (Fig. 12b) following the increase of O3 abundances

as the latitude and altitude increase (Fig. 12a). The ozone dif-

ferences show a pronounced hemispheric dependence, with

greater percentage changes (with respect to the Base scheme)

of ∼ 5–6 % for the SH due to the reduced impact of anthro-

pogenic O3 precursors, as compared to the NH. The (JIxOy –

Base) differences shown in Fig. 12b are of the same magni-

tude as those found between a pair of non-iodine simulations

including (OnlyBr) and neglecting the bromine contributions

from VSL bromocarbons (NoVSL). This suggests that the un-

certainties on the impact of iodine chemistry on the ozone

budget (i.e. uncertainties in the photochemistry of IxOy) are

of the same magnitude as the overall impact of tropospheric

bromine chemistry from VSLs (OnlyBr – NoVSL, Fig, 12d).

Indeed, even when the lower atmospheric iodine loading is

considered (Base – OnlyBr, Fig. 12c) the impact on tropo-

spheric ozone at ∼5 km (400–500 hPa) is equivalent to that

obtained when only bromine chemistry is considered. This

all highlights the need for further experimental research on

the photochemical characterization of IxOy.

Figure 13 presents the absolute (Fig. 13a) and relative

(Fig. 13b) vertical range of ozone loss rate between the Base

and JIxOy schemes for each chemical family that partici-

pates in tropospheric odd oxygen (Ox) loss cycles. The Ox

loss rates equations for the ozone-depleting families consid-

ered in this work are presented in Table 5. The formalism

used here is based on the catalytic cycles and chemical fam-
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Table 5. Odd oxygen (Ox) loss rates reactions grouped by family cycles.

Family Reaction 1Ox Odd oxygen loss1

Ox O + O3→ 2×O2 −2 Ox Loss= 2×RO+O3
+ RO1D+H2O

O(1D) + H2O→ 2×OH −1

HOx HO2+O→ OH + O2 −22 HOx Loss= 2× (RHO2+O + RHO2+O3
)

HO2+O3→ OH + 2×O2 −22

NOx NO2+O→ NO + O2 −2 NOx Loss= 2× (RNO2+O + JNO3
)

NO3+hν→ NO + O2 −2

BrOx + ClOx ClO + O→ Cl + O2 −2 BrOx–ClOx Loss= 2×
(
RClO+O+ JCl2O2

+RClO+HO2

)
Cl2O2+hν→ 2×Cl + O2 −2

ClO + HO2→ HOCl + O2 −23

BrO + O→ Br + O2 −2 + 2× (RBrO+O+RBrO+HO2
)

BrO + HO2→ HOBr + O2 −23

BrO + ClO→ Br + Cl + O2 −2 + 2 × (Rb
BrO+ClO

+Rc
BrO+ClO

)

BrO + ClO→ BrCl + O2 −2

IOx IO + O→ I + O2 −2 IOx Loss= 2× (RIO+O + JOIO + RIO+HO2
)

OIO +hν→ I + O2 −2

IO + HO2→ HOI + O2 −23

IO + BrO→ I + Br + O2 −2 +2× (Ra
IO+BrO

+Rb
IO+ClO

+Rc
IO+ClO

)

IO + ClO→ I + Cl + O2 −2

IO + ClO→ ICl + O2 −2

Ox =O(3P) + O(1D) + O3 +NO2 + 2×NO3 +HNO3 +HO2NO2 + 2×N2O5 + ClO + 2×Cl2O2 + 2 ×OClO + 2×ClONO2 +

BrO + 2 × BrONO2 + IO + 2×OIO + 2× IONO2 + 2 × I2O2 + 3× I2O3+4× I2O4.
1 RA+B is the reaction rate for reaction A+B→products and JC is the photodissociation rate constant (i.e. photolysis × concentration) for

C+hν→ products. Units are molec.cm−3s−1.
2 HOx loss cycles represent a net change 2O3 → 3O2 (1Ox =−2) due to reactions OH + O→ H + O2 and OH + O3 → HO2 +O2. As

Ox reactions with OH are faster than with HO2, only the rate determining steps (RDS) have been considered multiplied by two.
3 Reactions XO + HO2 → HOX + O2, with X = Cl, Br and I, have been computed for each family with 1Ox =−2 because the

photolysis of HOX produces an additional Ox loss by the OH radical (i.e. OH + O3 → HO2 +O2). As these XO + HO2 reaction are the

rate limiting step, their loss rates have been multiplied by two.

ilies defined in Brasseur and Solomon (2005) with the in-

clusion of iodine-driven Ox chemical losses (IOx Loss). The

direct Ox loss rate (Ox Loss) represents the major ozone de-

pleting family within the tropical MBL and FT, while in the

upper troposphere the HOx Loss cycles become the predomi-

nant loss processes up to the tropical tropopause. Within the

MBL, and as a consequence of the increased inorganic io-

dine loading due to the direct oceanic injection of reactive

I2 /HOI species, IOx Loss cycles represent the second most

important ozone-depleting family – IOMBL
x Loss≈ 17 % (27 %)

for Base (JIxOy ), respectively – surpassing in efficiency the

contribution of HOx Loss. This additional source of inorganic

iodine depends on the deposition of ozone on the ocean’s

surface, and then acts as a natural buffer for ozone pollution

in the lower troposphere: e.g. the warming effect of anthro-

pogenic ozone in the global marine troposphere can be re-

duced by at least 3–10 % when inorganic iodine sources are

considered (see Prados-Roman et al. (2014) for details). The

negative geochemical feedback loop between anthropogenic

ozone and oceanic inorganic iodine emissions proposed by

Prados-Roman et al. (2014) exemplifies ocean biogeochemi-

cal cycles being affected by anthropogenic emissions. Com-

paratively, the overall effect of BrOx+ClOx cycles consti-

tute an ozone loss contribution smaller than 3 % in the MBL,

reaching a percentage contribution > 10 % only in the up-

per troposphere. Note that our modelled daytime BrO lev-

els averaged within the tropical MBL are ∼(0.2–0.3) pptv,

with higher values of up to a few pptv calculated within

coastal locations and regions of strong convection (Fernan-

dez et al., 2014). Notably, the iodine impact on the accelera-

tion of ozone loss cycles peaks in the UT (that is, within the

extensive tropical ring of atomic iodine), with a maximum

contribution to the total ozone loss of 0.06 (0.1) ppbv day−1

(representing 14 (35) % of total loss) reached at 11 (13) km

of altitude for the Base (JIxOy ) schemes, respectively. Our re-

sults indicate that, on average for the tropical troposphere,

iodine-mediated ozone losses are responsible for at least 70–

85 % of the total ozone depletion due to halogens.

The differences between IOx Loss and BrOx–ClOx Loss con-

tributions can be explained based on the higher reactivity
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Table 6. Integrated odd oxygen loss rates for each ozone depleting family within the troposphere.

Simulation Base JIxOy

Tropics MBL FT UT Troposphere MBL FT UT Troposphere

Ozone column (DU) 1.31 13.68 9.01 24.18 1.23 13.11 8.73 23.25

1O
OnlyBr
3

(DU) −0.10 −0.57 −0.23 −0.90 −0.19 −1.14 −0.52 −1.84

1ONoVSL
3

(DU) −0.15 −1.01 −0.51 −1.66 −0.24 −1.58 −0.79 −2.59

Ozone loss (DU yr−1) 111.39 505.94 36.38 666.29 117.98 520.75 42.32 692.51

Ox cycles (%) 59 54 20 53 52 50 17 49

HOx cycles (%) 20 35 58 34 18 32 47 31

BrOx–ClOx (%) 3 3 11 4 3 3 9 3

IOx cycles (%) 17 8 11 9 27 14 27 16

Mid-latitudes MBL FT UT Troposphere MBL FT UT Troposphere

Ozone column (DU) 1.91 17.85 10.64 30.66 1.83 17.19 10.29 29.57

1O
OnlyBr
3

(DU) −0.09 −0.56 −0.18 −0.82 −0.17 −1.22 −0.54 −1.91

1ONoVSL
3

(DU) −0.16 −1.22 −0.52 −1.90 −0.24 −1.88 −0.87 −2.98

Ozone loss (DU yr−1) 73.66 351.68 29.35 471.36 75.39 358.19 33.03 483.05

Ox cycles (%) 51 42 15 42 48 40 13 40

HOx cycles (%) 33 47 63 46 31 44 53 43

BrOx–ClOx (%) 4 5 14 5 4 5 12 5

IOx cycles (%) 11 6 7 6 17 11 21 12

MBL: from the ocean surface up to ∼900 m a.s.l. (∼900 hPa). An ocean mask discarding grid-boxes above land was applied.

FT: from ∼900 m (∼900 hPa) to ∼8.5 km (∼350 hPa).

UT: from ∼8.5 km (∼350 hPa) to the model tropopause. Values above the model tropopause were not considered.

Tropics: (20◦ N–20◦ S).

Midlats: (50–20◦ N) & (20–50◦ S).

1O
OnlyBr
3

=OIodine
3

− O
OnlyBr
3

, where Iodine is either Base or JIxOy schemes for the left and right panels of the table, respectively, and OnlyBr is an

equivalent simulation considering only bromine VSL sources. Analogously 1ONoVSL
3

=OIodine
3

− ONoVSL
3

, where NoVSL is a simulation where only

long-lived bromine sources have been used (see text for details).

and therefore shorter lifetimes of iodine species: (i) due to

the comparatively longer lifetimes of organic bromo- and

chloro-carbons, inorganic bromine and chlorine cycles rep-

resent a major ozone loss process in the lower and middle

stratosphere (Solomon et al., 1994; Salawitch et al., 2005);

and (ii) the very fast catalytic reactions of iodine species

make IOx ozone loss cycles to be up to 10 times faster

than BrOx–ClOx cycles for an identical Iy and Bry basis

(i.e. IOx Loss / Iy≈ 10× BrOx–ClOx Loss /Bry). The total Iy

abundance at the height where the relative IOx Loss max-

imizes (∼12 km) is in the range (0.66–0.81) pptv for the

(Base-JIxOy ) schemes, while for bromine, Br12 km
y ≈ 1.0 pptv

and Br17 km
y ≈ 3.0 pptv (Fernandez et al., 2014). This indi-

cates that even when Bry abundances are larger in the up-

per troposphere, the greater O3 destruction efficiency of IOx

makes iodine the dominant halogen contributing to tropo-

spheric ozone loss throughout the tropics and mid-latitudes

(see Table 6). Indeed, our results show that iodine-driven

ozone loss cycles are the second most important ozone de-

pleting family both in the tropical MBL and in the tropical

and mid-latitude upper troposphere. Therefore we suggest

that global models oriented to estimate past and future pro-

jections of tropospheric ozone burden and trends should in-

clude at least a simplified description of tropospheric iodine

sources and inorganic chemistry, in addition to bromine.

Table 6 summarizes the integrated ozone column and the

averaged ozone loss rate for different altitude intervals within

the troposphere (MBL, FT, UT and total troposphere) within

the tropical and mid-latitude regions. With the JIxOy scheme,

the total tropospheric O3 column is ∼1 DU smaller than for

the Base scheme, representing an additional 4–7 % reduc-

tion of tropospheric ozone. Adding up the contribution of

bromine and iodine from VSL sources, and gas and het-

erogeneous chemistry, the tropical tropospheric O3 column

for the JIxOy scheme is reduced by 2.6 DU relative to the

NoVSL simulation, representing more than 10 % of the to-

tal tropospheric column. The vertical distribution of tropo-

spheric ozone loss due to halogen chemistry within the trop-

ics is very similar for both schemes considered here (25 %

for the MBL, 65 % for the FT and 10 % for the UT). This

indicates that most of the ozone loss due to iodine occurs

in the free troposphere in agreement with previous estimates

(Saiz-Lopez et al., 2012b).

Table 6 also presents the relative contribution of each

of the odd oxygen families averaged at different alti-

tude intervals and latitudinal bands. The overall impact

of iodine chemistry on tropospheric ozone is larger in

www.atmos-chem-phys.net/14/13119/2014/ Atmos. Chem. Phys., 14, 13119–13143, 2014
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Figure 12. Zonal annual average distributions of tropospheric

ozone changes for different model schemes considering iodine and

bromine VSL sources: (a) O3 mixing ratios for the Base scheme

(lower iodine loading); (b) difference between the higher and lower

iodine schemes1O3(JIxOy
−Base); (c) impact of lower iodine with

respect to only bromine chemistry 1O3(Base–OnlyBr); (d) impact

of considering only bromine chemistry relative to only long-lived

sources 1O3(OnlyBr–NoVSL). The colour scale represents 24 h

mean model differences in ppbv, while the black contour lines show

the percentage change between each pair of simulations computed

as (A–B)/B× 100 %.

the tropics than within the mid-latitudes, due to greater

I / IO ratio and larger contribution of IOx to total inor-

ganic iodine within the I atom tropical ring. Even when

the change in the tropospheric ozone column between the

JIxOy and Base schemes is of similar magnitude for the

tropics and the mid-latitudes (1O3
Tropics

≈−1.0 DU and

1O3
Midlats

≈−1.1 DU), the ozone loss acceleration due to

the increase in iodine loading is∼2 times larger for the JIxOy

scheme within the tropics (1O3 LossTropics
≈ 26.2 DU yr−1

and 1O3 LossMidlats
≈ 11.7 DU yr−1). Our results indicate

that the integrated contribution of the iodine system to the

total rate of tropospheric ozone loss over the tropics is 2.2

(5.3) times larger than that of chlorine and bromine chem-

istry for the Base (JIxOy ) schemes, compared to a 1.2 (2.4)

relative enhancement over the mid-latitudes. Notably, in the

MBL iodine-mediated ozone loss rate is almost an order of

magnitude faster than the combined rates of BrOx+ClOx

cycles, even when the Base scheme is considered. Within the

lower TTL, BrOx–ClOx Loss catalytic cycles result in higher

ozone losses than IOx Loss cycles only for the Base simula-

tion. Note however that if photolysis of higher iodine oxides

is allowed in the model, the IOx catalytic ozone depleting cy-

cles continue to be more efficient than BrOx–ClOx Loss cycles

throughout most of the TTL (Fig. 13).

4 Summary and conclusions

We propose the existence of a “tropical ring of atomic io-

dine” that circles the tropics with the sun. The tropical ring

extends from 30◦ S to 30◦ N and maximizes at a height of

11–14 km, with volume mixing ratios ranging from 0.2 to

0.8 pptv. This photochemical phenomenon is driven by the

fast photolysis rate of IO and the Arrhenius behaviour of

the I+O3 reaction, and appears naturally in the upper tro-

posphere where ambient temperatures minimize and ozone

abundances are at least one order of magnitude below strato-

spheric levels. Within this tropical ring, noontime annual

average I / IO ratios of ∼3 are modelled, reaching maxi-

mum values of ∼20 during events of vigorous convection.

Inorganic iodine surpasses the contribution of organic VSL

species throughout the troposphere, being CH3I the domi-

nant source that maintains Iy levels in the FT and UT. Within

the MBL and FT, HOI is the dominant Iy species, both during

the day and at night. The other abundant nighttime reservoirs

are IONO2 in the UT and the di-halogen molecules (I2, IBr

and ICl) in the MBL.

Finally, we suggest that reducing uncertainties on the pho-

tochemistry of IxOy species constitutes the main challenge

to our current knowledge of atmospheric iodine chemistry.

We show that if the photodissociation of IxOy is neglected,

then these higher oxides accumulate in the atmosphere due

to their slow thermal decomposition and became an effective

sink of active iodine in the FT and UT. Experimental and

theoretical studies on the IxOy photochemistry are required

Atmos. Chem. Phys., 14, 13119–13143, 2014 www.atmos-chem-phys.net/14/13119/2014/
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Figure 13. Modelled range of odd oxygen destruction for each of the ozone depleting families: (a) Annual total loss rates for the Ox, HOx,

BrOx-ClOx and IOx families within the tropical troposphere (20◦ N–20◦ S); (b) Percentage contribution of each family to the total loss rate

for each scheme; (c) Vertical profiles of O3, NO2, OH and temperature within the tropics. Lower and upper limits of the range are for the

Base and JIxOy
schemes, respectively.

to improve the knowledge on the inorganic iodine burden and

its oxidative impacts in the troposphere. Based in our mod-

elled range of inorganic iodine loading (0.7–1.0) pptv in the

FT dependent on the consideration or not of IxOy photoly-

sis, we show for the first time with a global model that io-

dine is the second most important ozone-depleting family in

the tropical MBL and in the global marine UT, represent-

ing between (17–27) % and (11–27) % of the total ozone

loss within each respective region. Therefore, we suggest

global chemistry-climate models (CCMs) should include at

least a simplified representation of iodine tropospheric chem-

istry for future CCM-Validation and CCM-Intercomparison

projects concerned with tropospheric ozone over the oceans

for past, present and future scenarios.
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