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Abstract. Silver birch (Betula pendula) and three South-

east Asian tropical plant species (Ficus cyathistipula, Ficus

benjamina and Caryota millis) from the pantropical fig and

palm genera were grown in a purpose-built and environment-

controlled whole-tree chamber. The volatile organic com-

pounds emitted from these trees were characterised and fed

into a linked photochemical reaction chamber where they un-

derwent photo-oxidation under a range of controlled condi-

tions (relative humidity or RH ∼65–89 %, volatile organic

compound-to-NOx or VOC /NOx ∼3–9 and NOx ∼2 ppbV).

Both the gas phase and the aerosol phase of the reaction

chamber were monitored in detail using a comprehensive

suite of on-line and off-line chemical and physical measure-

ment techniques.

Silver birch was found to be a high monoterpene and

sesquiterpene but low isoprene emitter, and its emissions

were observed to produce measurable amounts of secondary

organic aerosol (SOA) via both nucleation and condensa-

tion onto pre-existing seed aerosol (YSOA 26–39 %). In con-

trast, all three tropical species were found to be high isoprene

emitters with trace emissions of monoterpenes and sesquiter-

penes. In tropical plant experiments without seed aerosol

there was no measurable SOA nucleation, but aerosol mass

was shown to increase when seed aerosol was present. Al-

though principally isoprene emitting, the aerosol mass pro-

duced from tropical fig was mostly consistent (i.e. in 78 out

of 120 aerosol mass calculations using plausible parameter

sets of various precursor specific yields) with condensation

of photo-oxidation products of the minor volatile organic

compounds (VOCs) co-emitted; no significant aerosol yield

from condensation of isoprene oxidation products was re-

quired in the interpretations of the experimental results. This

finding is in line with previous reports of organic aerosol

loadings consistent with production from minor biogenic

VOCs co-emitted with isoprene in principally isoprene-

emitting landscapes in Southeast Asia. Moreover, in general

the amount of aerosol mass produced from the emissions of

the principally isoprene-emitting plants was less than would

be expected from published single-VOC experiments, if co-

emitted species were solely responsible for the final SOA

mass. Interpretation of the results obtained from the fig data

sets leaves room for a potential role for isoprene in inhibit-

ing SOA formation under certain ambient atmospheric con-
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ditions, although instrumental and experimental constraints

impose a level of caution in the interpretation of the results.

Concomitant gas- and aerosol-phase composition mea-

surements also provide a detailed overview of numerous key

oxidation mechanisms at work within the systems studied,

and their combined analysis provides insight into the nature

of the SOA formed.

1 Introduction

Atmospheric aerosols change the radiative balance of the

Earth through scattering and absorbing incident solar radi-

ation (Kim and Ramanathan, 2008); they directly and indi-

rectly affect the properties and formation of clouds, thus al-

tering the hydrological cycle (Gunthe et al., 2009; Junker-

mann et al., 2009; Stevens and Feingold, 2009); and they

may have an impact on the efficiency of plant photosynthesis

(Mercado et al., 2009), thereby modifying the uptake of at-

mospheric carbon. Hence, aerosol particles affect the Earth’s

climate in several ways (as reviewed in Hallquist et al., 2009;

IPCC, 2007; Isaksen et al., 2009; Carslaw et al., 2010) as

well as having a detrimental impact on human health (e.g.

Baltensperger et al., 2008).

A large fraction of the observed atmospheric aerosol com-

position is organic (Zhang et al., 2007). A primary organic

component is emitted directly into the atmosphere from an-

thropogenic activities, such as biomass burning and fossil

fuel combustion, or is emitted from natural sources, such as

plant abrasion and the sea surface. Secondary aerosol par-

ticles are formed within the atmosphere by gas-to-particle

conversion; those formed from gas-phase organic precursors

are known as secondary organic aerosol (SOA; e.g. Riipinen

et al., 2012). There is considerable uncertainty surrounding

the chemical transformation of anthropogenic and biogenic

volatile organic compounds (AVOCs and BVOCs, respec-

tively) from the gas phase to the aerosol phase and hence,

considerable uncertainty about the global source of SOA

(Hallquist et al., 2009; Donahue et al., 2009; Ng et al., 2006;

Virtanen et al., 2010).

On a global scale, approximately 90 % of all volatile or-

ganic compound (VOC) emissions originate from biogenic

sources (Guenther et al., 2012), with almost half of this be-

ing emitted from tropical and subtropical forests. The abil-

ity of BVOCs to form SOA is therefore of particular interest

and potential importance. Globally, isoprene (2-methyl-1,3-

butadiene, C5H8) is the BVOC with the largest mass emis-

sion rate. It is estimated to account for about 50 % of BVOC

emissions by mass (Guenther et al., 2012), but it is still un-

certain how much it contributes to SOA formation (Karl et

al., 2009; Carlton et al., 2009).

Modelling, laboratory chamber experiments and field

studies provide a range of possible yields of SOA from

isoprene, typically of the order of 0.1–3 % by mass, with

some values reported as high as 5.5 % (van Donkelaar et al.,

2007; Kleindienst et al., 2007, 2009; Kroll et al., 2005, 2006;

Claeys et al., 2004a; Edney et al., 2005; Brégonzio-Rozier

et al., 2014). SOA yields from the further oxidation of first-

and subsequent-generation isoprene oxidation products, such

as methacrolein, are estimated to be as much as 15 % (Rollins

et al., 2009; Carlton et al., 2009; Claeys et al., 2004b; Robin-

son et al., 2009). Recent work has highlighted that under

low NOx conditions, SOA mass formed from isoprene ox-

idation could be influenced by the acidity of pre-existing

aerosol via the reactive uptake of certain key isoprene oxi-

dation products, namely isoprene epoxydiols (IEPOX; Sur-

ratt et al., 2010; P. Lin et al., 2012). More recently, Nguyen

et al. (2014) found that the “pH dependence for OA [or-

ganic aerosol] formation from IEPOX was weak for AS [am-

monium sulfate] particles”. There is further evidence from

chamber studies using temperate tree species such as birch,

spruce and pine that isoprene may in fact suppress SOA for-

mation from other VOC precursors, when present (Kiendler-

Scharr et al., 2009a; Kanawade et al., 2011). It should be

noted at this point that it is unclear in most cases how wall

effects have been considered in the production of such SOA

yield values and whether the treatments employed are ade-

quate to ensure that the yields are comparable between cham-

bers, or indeed between experiments.

Here, we characterised the BVOC emissions from three

Southeast Asian tropical plant species (Ficus cyathistipula,

Ficus benjamina and Caryota millis) and, in a series of cou-

pled plant growth chamber–atmospheric reaction chamber

experiments, examined the ability of their oxidation prod-

ucts to contribute to SOA formation under atmospherically

relevant conditions. In order to provide a geographically

and chemically contrasting study, we replicated these exper-

iments using common silver birch (Betula pendula). Silver

birch has previously been shown to contribute to the forma-

tion of SOA via the emissions of mono- and sesquiterpenes

(e.g. Kiendler-Scharr et al., 2009a, b; Mentel et al., 2009).

Seeded (ammonium sulfate) and unseeded experiments were

carried out to allow studies of both fresh nucleation and con-

densation onto pre-existing aerosol.

2 Methods and materials

2.1 Plant selection and pre-screening

Three nonclonal specimens of common silver birch (Be-

tula pendula), a monoterpene- and isoprene-emitting tree

species; two species of fig (Ficus benjamina and Ficus cy-

athistipula), and one species of palm (Caryota millis), each

approximately 1.5 m in height were used. Figs and palms

are abundant in all tropical rainforests. We chose three

species found in abundance throughout South and South-

east Asia to be consistent with our field work (Hewitt et al.,

2010; MacKenzie et al., 2011). Ficus benjamina (Moraceae)
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is native to Malaysia and has previously been found to

be a high isoprene emitter (0.03–8.7 µg C g−1 h−1, potted

and in soil) with emissions of the monoterpenes limonene

(0.02 µg C g−1 h−1) and β-ocimene (1.8–2.5 µg C g−1 h−1)

and the sesquiterpenes β-caryophyllene and α-copaene (Car-

valho et al., 2005; Geron et al., 2006). In addition, emis-

sions of benzaldehyde (0.53 µg C g−1 h−1) and acetaldehyde

(69 µg C g−1 h−1) from potted specimens have been detected

(Carvalho et al., 2005). No previous data are available on the

BVOC emissions from Ficus cyathistipula or Caryota millis.

Proton-transfer-reaction mass spectrometry (PTR-MS) and

gas-chromatography mass spectrometry (GC-MS) screening,

prior to the start of the coupled chamber experiments, con-

firmed that both species were high isoprene emitters, with

Ficus cyathistipula also emitting limonene, β-phellandrene,

α-damascone and acetaldehyde. Analytical methods are de-

scribed in detail in Sect. 2.4.

2.2 Plant chamber design

A 4.7 m3 plant chamber was constructed out of two rectan-

gular Teflon bag sections and a 0.05 mm fluorinated ethy-

lene propylene (FEP) Teflon lid (Adtech Polymer Engineer-

ing, UK), which were each supported by frames built us-

ing 25 mm2 box aluminium (Speed Frame, RS Components,

UK). The framework stood on a raised foil- and Teflon-

covered marine plywood base. PVC foam strips (RS Com-

ponents, UK) ensured an airtight seal between chamber sec-

tions. Heavy-duty double-sided tape (RS components, UK)

was used to secure the Teflon bags to the frame. The interior

of the plant chamber was only exposed to Teflon surfaces.

Compressed air was constantly supplied to the plant cham-

ber via a mass-flow controller and regulator (ALICAT MCR-

500 SLPM-D, Premier Control Technologies Ltd, UK) at

780 L min−1 and 7.5 bar via a 12.7 mm outer diameter (OD)

reinforced tube. This was reduced to∼1 bar and between 250

to 300 L min−1 (±0.8 %) dependent on the photosynthetic

and transpiration rates of each plant species (equivalent to

one complete air change every 15–20 min). The airstream

was passed through a 12.7 mm (OD) polytetrafluoroethy-

lene (PTFE) tube to three in-series filters to remove any

pre-existing VOCs (activated carbon filter P3KFA14ASMN,

Parker Pneumatic, UK), and submicrometer particles (high-

efficiency particulate air or HEPA CAP 75 filter capsule;

FDP-780-050K, Fisher Scientific, UK) and NOx (Purafil and

activated charcoal, Purafil, Inc., USA). Finally, the air was re-

humidified by passing it through a 2 L Teflon barrel (Jencons,

UK) filled with warmed distilled water. The plant chamber

outlet air was either vented into the laboratory via a 50 mm

(OD) stainless steel pipe and valve, or used to fill an 18 m3

Teflon reaction chamber.

To enhance mixing, air entered the plant chamber via a

perforated 12.7 mm (OD) PTFE tube that circled the base

of the chamber. One 12.7 mm stainless steel bulkhead fitting

(Swagelok, UK) was inserted through the frame to secure the

PTFE tube to the base of the plant chamber. A 50 mm (OD)

stainless steel pipe was inserted into the upper corner of the

chamber and supported by a Teflon (inner surface) and nylon

(outer surface) manifold (Plastics Direct, UK). The manifold

also supported an environmental gas monitor (EGM) probe

(EGM-4, PP Systems, UK), which recorded relative humid-

ity (RH), temperature, CO2 and photosynthetically active ra-

diation (PAR).

Plants were kept in 255–330 mm (height) pots depending

on species, watered to pot dripping point and sprayed twice

weekly. Plant chamber conditions were maintained at 31–

33.5 ◦C/22–24 ◦C (day/night), 29–40 %/33–44 % (day/night)

RH and 335–385 ppmV/390–404 ppmV (day/night) CO2.

Owing to structural restrictions, PAR could not be measured

directly under the growth lamps in the centre of the canopy.

At the top edge of the canopy it was 500 µmol m−2 s−1 with

a 12 h day/night cycle.

2.3 Reaction chamber description

The aerosol photochemical reaction chamber at the Univer-

sity of Manchester is composed of an 18 m3 FEP Teflon bag

mounted on three rectangular extruded aluminium frames

(Alfarra et al., 2012). A bank of halogen lamps and a 6 kW

xenon arc lamp are mounted on the enclosure housing the

bag, which is coated with reflective “space blanket” to pro-

vide an integrating sphere, maximising the irradiance in the

bag and ensuring even illumination for the production of pho-

tochemical species such as the hydroxyl radical (OH). The air

introduced into the bag is dried and filtered for gaseous impu-

rities and particles, prior to humidification with high-purity

deionised water. A high-capacity O3 generator provides con-

trolled ambient levels of O3 (used as an oxidant) and high O3

concentrations (serving as a cleaning agent between experi-

ments).

Size-dependent (diffusional and gravitational) wall loss

rate constants were calculated based on particle mobility and

the surface-to-volume ratio of the chamber (Verheggen and

Mozurkewich, 2006). The diffusional loss rate relies on a

constant of proportionality, which can only be determined

empirically. A time period was selected near the end of each

experiment when the wall losses were deemed to be the dom-

inant process affecting the size distribution. The volume size

distribution at the beginning of this period had the calculated

wall loss rate applied to simulate the evolution of the size dis-

tribution over the selected time period. If the calculated loss

rate loss rate did not reproduce the measured volume evo-

lution within the specified tolerance (1–2 % in this study),

the constant of proportionality for diffusional losses was ad-

justed such that the simulated volume at the end of the se-

lected period matched the measured volume within the spec-

ified tolerance. The time-integrated gravitational and (opti-

mised) diffusional loss rate constants were then applied to the

volume size distribution throughout the experiment in order

to reconstruct a wall loss-corrected size distribution, which
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was then used to calculate the wall loss-corrected particle

mass.

Both the plant chamber and reaction chamber were tested

for contaminants separately and when joined together by run-

ning the system with an empty plant chamber and by carrying

out a “blank” run prior to each set of experiments.

2.4 Analytical techniques

2.4.1 Gas-phase measurements

The volatile and semivolatile organic compounds (SVOC)

and oxygenated volatile organic compounds (OVOC) in both

the plant chamber and the reaction chamber were measured

by soft-ionisation mass spectrometry (specifically, PTR-MS

and CIR-ToF-MS, described below) and by GC-MS.

The PTR-MS instrument employed (Ionicon, Austria)

comprises two turbomolecular pumps, a heated silica steel

inlet system and a 9.6 cm long stainless steel drift tube. The

nominal response time is approximately 1 s. The operating

parameters of the PTR-MS were held constant during mea-

surements, except for the secondary electron multiplier volt-

age, which was optimised each day. The drift tube pres-

sure, temperature and voltage were 2.2 hPa, 50 ◦C and 600 V,

respectively. The central reaction chamber of the drift cell

was operated at an E/N (i.e. electric field/gas number den-

sity) ratio of 125 Td. The count rate of hydrated hydronium

(H3O+·H2O) ions was 1–2 % of the count rate of H3O+ ions.

The PTR-MS sampled continuously with a flow rate of 100–

150 mL min−1 through 3.2 mm PTFE tubing.

The chemical-ionisation-reaction time-of-flight mass

spectrometer (CIR-ToF-MS) comprises a temperature-

controlled (40 (±1) ◦C) ion-source drift cell assembly

coupled to an orthogonal time-of-flight mass spectrometer

equipped with a reflectron array (Kore Technology Ltd, Ely,

UK). The ion source deployed was a hollow cathode dis-

charge type (Blake et al., 2009) and the chemical ionisation

technique used was proton transfer reaction from hydrated

hyrdonium (Jenkin et al., 2012). Sample air was delivered in

a continuous stream directly to the drift cell via a 0.5 m long,

6.35 mm internal diameter (ID) Teflon sample line, heated

to 40 (±1) ◦C, at a constant flow rate of 80 mL min−1. The

central reaction chamber of the drift cell was operated at an

E/N ratio of ∼90–100 Td, with a tuned energy ramp at the

base of the cell to remove potential water-cluster ions (e.g.

RH+·H2O). Further information regarding the CIR-ToF-MS

design and a detailed discussion regarding its operation can

be found in Blake et al. (2003) and Wyche et al. (2007).

The PTR-MS and CIR-ToF-MS were calibrated using

three different methods: (1) step-wise dilution of a gravimet-

rically prepared gas standard (BOC Special Gases, UK) con-

taining a variety of VOCs and OVOCs; (2) using calibration

material produced in house via the injection of liquid samples

into 10 L Tedlar bags (SKC, Inc., USA) containing either hu-

midified or dry, pure nitrogen; and (3) using gas standards

derived from permeation tubes (Vici, Inc., USA; Ecoscien-

tific, UK), diluted, humidified and delivered by a commercial

calibration unit (KIN-TEK Laboratories, Inc., USA; model:

491). Where experimental calibration was not possible for

a specific compound, either the calibration sensitivity for a

structurally similar surrogate was used or calculated concen-

trations were employed (Jenkin et al., 2012). For the quan-

tification of isobaric signals, a single sensitivity value was

used, for example α-pinene sensitivity for 6(monoterpenes)

and β-caryophyllene sensitivity for6(sesquiterpenes); again

working on the principle that structurally similar compounds

possess similar PTR and CIR sensitivities.

CIR-ToF-MS and PTR-MS detection limits are reagent-

, reaction-, analyte- and sample matrix-specific. However,

typical CIR-ToF-MS detection limits, using PTR ionisation

from hydronium, are of the order of 0.4 ppbV (10 min)−1 for

more polar compounds, such as OVOCs (e.g. 2-hexanone)

and as much as 10 ppbV min−1 for certain less polar com-

pounds, such as smaller hydrocarbons (e.g. 1-pentene). For

further details see Wyche et al. (2007).

The GC-MS system (GC-MS Turbomass Gold,

PerkinElmer, USA) comprised a thermal desorption

autosampler (PerkinElmer ATD 400) connected via a heated

(200 ◦C) transfer line to a Hewlett-Packard 5890 GC with

a 5970 mass-selective detector. Compounds were desorbed

at 280 ◦C for 5 min at 25 mL min−1 onto a Tenax-TA cold

trap maintained at −30 ◦C. The cold trap was then heated

to 300 ◦C for 6 min to desorb compounds onto the GC

column. Chromatographic separation was achieved using

an Ultra-2 column (Agilent Technologies: 50 m× 0.2 mm

ID× 0.11 µm film, 5 % phenylmethyl silica). Oven temper-

ature was initially set at 35 ◦C, maintained for 2 min and

then increased at 4 ◦C min−1 to 160 ◦C, followed by an

increase of 45 ◦C min−1 to 300 ◦C, which was maintained

for 10 min. The carrier gas was helium supplied at a rate of

1 mL min−1, with an injector temperature of 250 ◦C. The

limit of detection was approximately 0.25 ng on column

for isoprene and monoterpenes and 2 ng on column for

sesquiterpenes, corresponding to 100 pptV of isoprene,

50 pptV of monoterpenes and 400 pptV of sesquiterpenes

in a 1 L sample. Sampling was conducted by drawing 8 L

of the analyte air through 6.35 mm PTFE tubing onto the

GC-MS sample tubes using a handheld pocket pump (SKC

Ltd, UK) at a flow rate of 150 mL min−1 (total sample time

∼43 min). Sample tubes were stored at 4 ◦C until analysed.

VOC quantification was by comparison with commercially

available liquid standards (Aldrich, Fluka and Sigma) diluted

in methanol. Isoprene quantification was by comparison

with a 700 ppbV in N2 certified gas standard (BOC, UK).

NO and NO2 mixing ratios were measured using a chemi-

luminescence gas analyser (Model 42i, Thermo Scientific,

USA). Ozone was measured using a UV photometric gas de-

tector (Model 49C, Thermo Scientific).
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2.4.2 Particle phase measurements

Within the main reaction chamber, a scanning mobility par-

ticle sizer (SMPS) system was used to measure the par-

ticle size distribution and total aerosol mass concentration

(without sample drying). A particle density of 1.3 g cm−3

was assumed for calculating the mass of SOA particles in

unseeded experiments (Alfarra et al., 2006; Bahreini et al.,

2005). For seeded experiments, a density of 1.77 g cm−3 was

assumed for calculating the ammonium sulfate seed mass and

1.3 g cm−3 for calculating the additional SOA mass. A water-

based condensation particle counter (wCPC, TSI 3786) was

used to count the total particle number concentration between

2.5 nm and ∼3 µm. Further instrument details can be found

in Alfarra et al. (2012) and references therein.

Real-time broad chemical characterisation of the SOA was

made using a compact time-of-flight aerosol mass spectrom-

eter (cToF-AMS; Aerodyne Research, Inc., USA). A detailed

description of the instrument, its operation and calibrations

can be found elsewhere (e.g. Drewnick et al., 2005; Cana-

garatna et al., 2007). The instrument was operated in the stan-

dard configuration, taking both mass spectrum (MS) and par-

ticle time-of-flight (PToF) data, and was calibrated for ioni-

sation efficiency using 350 nm monodisperse ammonium ni-

trate particles. The vaporiser was set at approximately 600 ◦C

and data were collected at a time resolution of 2 min. A col-

lection efficiency value of unity was applied to these data,

based on evidence from a previous chamber study (Alfarra et

al., 2006).

Filter samples for off-line analysis were collected (with-

out denuders) in a specially constructed holder, positioned

in the chamber vent line. Aerosol samples were collected

onto 47 mm quartz fibre filters (Whatman) at a rapid flow

rate of 3 m3 min−1 (sample time ∼6 min). After sampling,

filters were immediately placed in pre-cleaned glass vials

and stored below −20 ◦C until analysis. The filter collection

procedure employed here is much faster than traditional fil-

ter collection methods, which should minimise any potential

negative or positive artefacts.

The filters were extracted into high purity water, fil-

tered, evaporated to dryness and redissolved in 1 mL

50 % MeOH : 50 % H2O. The water-soluble compounds were

analysed using liquid-chromatography ion-trap mass spec-

trometry (LC-MS/MS). Reverse-phase LC separation was

achieved using an HP 1100 LC system equipped with an

Eclipse ODS-C18 column with 5 µm particle size (Agi-

lent; 4.6 mm× 150 mm). Samples (60 µL) were injected then

eluted by gradient elution with solvents A: 0.1 % v/v formic

acid water and B: methanol (both Optima grade, Fisher Sci-

entific, UK) and a gradient program of 3 % B at time 0 min

to 100 % B at 60 min with a flow rate of 0.6 mL min−1. Mass

spectrometry analysis was performed in negative ionisation

mode using an HCT-Plus ion-trap mass spectrometer with

electrospray ionisation (Bruker Daltonics GmbH). Electro-

spray ionisation (ESI) was carried out at 350 ◦C with a neb-

uliser pressure of 4.82 bar and a nitrogen drying gas flow of

12 L min−1. Further details can be found in Hamilton et al.

(2013).

2.5 Experimental protocol

Three plants were placed in the plant chamber a minimum of

48 h prior to the start of each experiment. Both the pots and

soil were isolated by enclosing them in PTFE sheeting; this

acted to prevent VOC emissions from the plastic pots and soil

NOx emissions from entering the chamber air. Three experi-

ments were carried out on each species over a one-week pe-

riod, after which the plants were removed and replaced with

three plants of the next species and the experiment cycle re-

peated.

Prior to each experiment, ozone was added to the chamber

to give a mixing ratio of approximately 2 ppmV and was left

overnight. The chamber was then filled and flushed several

times using clean air from the facility’s main inlet system

(including Purafil, charcoal and HEPA filters as described

above), until the total particle count (as measured by a wa-

ter based condensation particle counter) was below 10 cm−3

and the O3 and NOx levels were less than 1 and 2 ppbV, re-

spectively. At this point, the reaction chamber was flushed

and then connected to the plant chamber for filling with the

plant VOC emissions, a process carried out in the dark over

a period of 1–1.5 h. Aerosol- and gas-phase composition and

concentrations were continuously monitored throughout. At

the end of the filling process, the plant chamber was dis-

connected from the reaction chamber, and within ∼1 min,

the lamps in both chambers were turned on and pure O3

was injected to provide an initial concentration of around

20 or 70 ppbV (experiment dependent). The switching on

of the chamber lamps marked the start of each experiment,

which typically lasted 6 h from this point. For experiments

using pre-existing seed, polydisperse ammonium sulfate par-

ticles (diameter 40–60 nm) were generated from an aque-

ous solution using an aerosol nebuliser (ATM 230, Topas

GmbH, Germany) and injected without drying into the reac-

tion chamber at the end of the filling process from the plant

chamber.

In our experiments, we chose to use ammonium sulfate

for the aerosol seeds, rather than acidic particles that could

otherwise promote isoprenoid particulate mass formation.

Whilst it is recognised that isoprenoid SOA mass can be

enhanced by the presence of acidic aerosol seed as origi-

nally reported by Jang et al., 2002 and subsequently by Lim-

beck et al., 2003, Edney et al., 2005, Kleindienst et al., 2007

and Surratt et al., 2007, we have limited our study to SOA

formation in the mixed precursor systems without deliber-

ate enhancement of particle mass by condensed phase re-

action. There is clear evidence that isoprene oxidation can

contribute to atmospheric SOA formation (e.g. Claeys et al.,

2004a; Edney et al., 2005) and we have previously found

that enhancement in SOA from isoprene oxidation above the
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Table 1. List of experiments conducted and their general parameters.

Date Tree species Initial NOx VOC / Relative Pre-existing

(ppbV) NOx humidity (%) seed

22/06/09 Ficus benjamina 3 4.2 79 None

23/06/09 Ficus benjamina 6 2.7 75 None

25/06/09 Ficus benjamina 2 6.3 65 Sulfate

29/06/09 Ficus cyathistipula 2 9.4 71 None

30/06/09 Ficus cyathistipula 2 7.8 75 Sulfate

02/07/09 Ficus cyathistipula 3 5.6 78 Sulfate

06/07/09 Betula pendula 3 5.6 84 None

07/07/09 Betula pendula 3 5.5 73 Sulfate

09/07/09 Betula pendula 2 1.5 70 Sulfate

10/07/09 Betula pendula+ 36 ppbV isoprene 2 5.5 70 Sulfate

13/07/09 Ficus benjamina 2 –∗ 87 Sulfate

15/07/09 Ficus benjamina 3 –∗ 89 Sulfate

16/07/09 Ficus benjamina+ 4.5 ppbV limonene 2 –∗ 85 None

∗ No quantified VOC data available

Bornean rainforest compared with the Amazon, may result

from an enhanced marine acidic sulfate contribution to sub-

micron aerosol (Robinson et al., 2011). Intermediates in SOA

formation from isoprene have been identified (e.g. P. Lin et

al., 2012; Y. H. Lin et al., 2012) and mechanisms for the acid-

catalysed formation have been proposed (Surratt et al., 2010).

Whilst outside the scope of the current study, this should be

the focus of future work.

Air samples were taken from three separate locations

along the airflow path: (1) immediately before the plant

chamber (pre-PC) for blank subtraction, (2) immediately af-

ter the plant chamber (post-PC) during the reaction chamber

filling period for directly emitted BVOCs and (3) from the

reaction chamber (RC) during the experiment. RC air was

monitored continuously using PTR-MS and CIR-ToF-MS for

VOC decay and formation of reaction products. Air samples

from the pre-PC and post-PC positions, as well as RC air

samples immediately at the start of each experiment and 1, 2,

4 and 6 h after the lights were switched on, were collected on

Tenax TA and Carbotrap filled stainless steel tubes (Supelco,

Inc., USA) for GC-MS analysis.

RH (%), CO2 (ppmV), PAR (µmol m−2 s−1) and tem-

perature (◦C) in the plant chamber were recorded every 5

or 10 min during reaction chamber filling, and every 15 or

20 min overnight. System blanks were taken at the start and

end of the experimental period. The reaction chamber back-

ground was checked and characterised through the perfor-

mance of regular blank experiments (one in every five exper-

iments). NOx (NO, NO2 and NO3) and O3 were continuously

monitored in the reaction chamber. A list of all experiments

and their general parameters are given in Table 1.

2.6 Calculated OH concentrations

Since isoprene losses are controlled by reaction with ozone

and the hydroxyl radical (OH), the concentration of OH

available to react with isoprene in the reaction chamber for

each experiment was calculated based on the measured con-

centrations of O3 and isoprene in each experiment, the rate

of change in isoprene concentration, and the rate constants

for the reactions of isoprene with OH and O3, using Eq. (1):

d[isoprene]
dt

+ kO3
[O3][isoprene]

−kOH[isoprene]
= [OH]. (1)

Hourly averaged concentrations of O3 and isoprene were cal-

culated for five of the experiments using the tropical fig. Us-

ing these data along with Eq. (1), a range of OH concentra-

tions were obtained. For the first hour after lights on, [OH]

was estimated to be 1.9× 105–9.5× 105 molecules cm−3,

whereas towards the end of the experiment after ∼5 h, val-

ues of 8.1× 105–1.9× 106 molecules cm−3 were obtained.

In general, during the tropical fig experiments, [OH] esti-

mated from isoprene and ozone was observed to increase

steadily over the duration of the experiment from 0 to 5 h

after lights on.

2.7 VOC / NOx conditions

Figure 1 shows the time-dependent mixing ratios of ozone

and oxides of nitrogen for each experiment set. Although ev-

ery effort was made to keep the concentrations of oxides of

nitrogen low, measurable amounts were present, giving ini-

tial VOC /NOx ratios of the order of 2–6 and 3–9 (see Ta-

ble 1) for the birch and fig experiments, respectively (where

the VOC concentration is equal to the sum of all potential

precursor concentrations). In terms of a “Sillman plot” (Sill-
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Table 2. GC-MS identification of BVOCs present in the plant chamber air immediately before RC filling began. Quantification of isoprene,

total monoterpenes and total sesquiterpenes was carried out using PTR-MS and CIR-ToF-MS (see Figs. 2 and 5).

Experiment Compounds detected by GC-MS (abundance ppbV) (“trace” means < 0.1 ppbV)

Isoprene Monoterpenes

(and related)

Sesquiterpenes Other

B. pendula Yes

(0.25–1.19)

α-pinene (0.31–1.08)

β-pinene (0.74–7.19)

ocimene (trace–1.22)

13-carene (1.89–4.94)

γ -terpinene (trace)

2,4,6-octatriene,2,6-dimethyl

(trace)

4,7-methano-1H-indene, octahy-

dro (trace)

β-caryophyllene (0.15–0.22)

α-farnesene (0.14)

α-caryophyllene (0.59–0.92)

α-copaene (trace)

aromadendrene (0.45–0.51)

α-cedrene (trace)

α-pyronene (trace)

acetaldehyde (trace)

caryophyllene-epoxide

(trace)

nerolidol (trace)

linalool (trace)

F. benjamina Yes

(38.49)

α-pinene (trace)

limonene (trace)

sabinene (trace)

linalool (trace)

α-cubebene (trace) acetaldehyde (trace)

benzoquinone (trace)

pyridine (trace)

methyl salicyclate

(trace)

decanal (trace)

F. cyathistipula Yes (75.08) α-pinene (trace)

β-pinene (trace)

limonene (trace)

β-caryophyllene (trace) acetic acid (trace)

Mixed canopy

F. benjamina

F. cyathistipula

C. millis

Yes α-pinene (0.37)

camphene (0.11)

limonene (0.42)

ocimene (trace)

None detected p-dichlorobenzene

methyl salicyclate

Figure 1. Temporal evolution of NO, NO2, NOx and O3 during typical Ficus cyathistipula (a) and Betula pendula (b) experiments (25 June

and 7 July 2009, respectively).

man, 1999), the experiments were carried out in the “VOC-

sensitive regime.”

The absolute concentration of VOCs in the reaction cham-

ber was roughly ten times greater than those measured over

the rainforest during our field experiments (MacKenzie et

al., 2011) and the VOC /NOx ratios employed here were as

much as ten times lower (i.e. typical isoprene : NOx ratio of

20 : 1 over the rainforest; see Hewitt et al., 2010). The source
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respectively).  1542	  

 1543	  

70	  

	  

	  

	  

	  

 1544	  

Figure 2: Temporal evolution of a series of isoprenoid “precursor” compounds and 1545	  

their oxidation products, as observed in the main reaction chamber during an example 1546	  

Betula pendula experiment (07/0709).  The top panel (a) shows the entire experiment 1547	  

process in terms of monoterpene evolution, from background (BG) and plant chamber 1548	  

(PC) measurements, to reaction chamber (RC) fill and the main photooxidation 1549	  

experiment within the reaction chamber. Figure (b) shows monoterpene evolution, (c) 1550	  

shows sequiterpenes (red circles and lines) and camphore (black triangles and lines), 1551	  

(d) Σ(I111, I93) and (e) the primary ketone (m/z 139) (red circles and lines), primary 1552	  

keto-aldehyde (m/z 107 + 151 + 169) (black triangles and lines) and MVK + MACR 1553	  

(m/z 71) (grey diamonds and dashed line). 1554	  

Figure 2. Temporal evolution of a series of precursor compounds

and their oxidation products, as observed in the main reaction cham-

ber during a typical Betula pendula experiment (7 July 2009). Plot

(a) shows the entire experiment process in terms of monoterpene

evolution, from background (BG) and plant chamber (PC) measure-

ments, to reaction chamber (RC) fill and the main photo-oxidation

experiment within the reaction chamber. (b) shows monoterpene

evolution, (c) shows sesquiterpenes (red circles and lines) and cam-

phor (black triangles and lines), (d) 6(I111,I93) and (e) the pri-

mary ketone (m/z 139) (red circles and lines), primary ketoalde-

hyde (m/z 107+ 151+ 169) (black triangles and lines) and methyl

vinyl ketone (MVK) + methacrolein (MACR) (m/z 71) (grey dia-

monds and dashed line).

of the NOx in the reaction chamber (initially ∼2–6 ppbV

NOx, but increasing to ∼5–9 ppbV after ∼5 h) is attributed

to a small amount of diffusion of outside ambient air across

the porous Teflon membrane into the reaction chamber. The

production of certain reactive intermediates in the oxidation

of VOCs (e.g. hydroxyl hydroperoxides from isoprene oxida-

tion) is very sensitive to NOx concentrations in the reaction

mixture.

3 Results

3.1 Experiments with Betula pendula

3.1.1 Gas phase

Continuous gas-phase monitoring with CIR-ToF-MS and

PTR-MS throughout the experiments indicated successful
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Figure 3: Evolution of measured mass through the Betula pendula system (7 July 1558	  

2009), showing the relative contribution of precursor compounds, oxidation products 1559	  

and SOA mass to total measured mass, with time (coloured bars, left axis) and total 1560	  

measured mass (i.e. ΣVOCs + SOA) with time (black line, right axis).  Note: 1561	  

ammonium sulphate seed mass removed from the SOA mass concentration.  1562	  

 1563	  

Figure 3. Evolution of measured mass through the Betula pendula

system (7 July 2009), showing the relative contribution of precursor

compounds, oxidation products and SOA mass to total measured

mass, with time (coloured bars, left axis) and total measured mass

with time (black line, right axis). Note: ammonium sulfate seed

mass removed from the SOA mass concentration.

transfer of VOC precursor material from the plant chamber

to the reaction chamber prior to lights on. The data indicated

that there was negligible loss of precursor compounds during

the chamber transfer process (Fig. 2a).

Immediately after initiation of the photochemistry, the

VOC precursor concentrations were observed to decay and

product ions began to appear in the CIR-ToF and PTR mass

spectra. Approximately 60 product-ion peaks were observed

by CIR-ToF-MS and PTR-MS in the organic gas phase dur-

ing a typical Betula pendula experiment. The temporal pro-

files of a number of the most abundant OVOCs measured are

shown in Fig. 2. From a combination of the CIR-ToF-MS,

PTR-MS and GC-MS observations (and from those obser-

vations discussed below for the tropical plant experiments),

over 50 different hemi-, mono- and sesquiterpene oxidation

products were tentatively identified (Fig. 3 and Tables S1–S5

in the Supplement).

From initial inspection of the data, it is clear that monoter-

penes dominate during the Betula pendula experiments

(Fig. 2a and b), with strong signals observed in the CIR-ToF

and PTR mass spectra atm/z 137 (protonated parent ion) and

81 (hydrocarbon fragment). A small amount of isoprene was

also detected during Betula pendula experiments; however,

this was always significantly lower in magnitude than the

sum of monoterpenes; for example, during the experiment

on 7 July 2009, 12.6 (±3.8) ppbV monoterpenes were mea-

sured in the reaction chamber prior to lights on (cf. 11.4 ppbV

total monoterpenes measured at the post-PC position by GC-

MS), whereas only 2.0 (±1.0) ppbV isoprene was detected.

Speciation of the monoterpenes by GC-MS indicated that the

most dominantly emitted C10 compounds from Betula pen-

dula were α- and β-pinene (Table 2).

C15 sesquiterpenes (parent ion m/z 205) were detected

in the plant and reaction chambers during each Betula pen-

dula experiment, with the most abundant species identified

by GC-MS being β-caryophyllene (Table 2). Sesquiterpenes
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were also measured in the reaction chamber by CIR-ToF-MS

(Fig. 2c); however, for the majority of the experiments they

were present at concentrations either close to or below the de-

tection limit, hence they could not always be monitored as a

function of reaction time. For the experiment on 7 July 2009,

1.7 (±0.9) ppbV sesquiterpenes were measured by CIR-ToF-

MS prior to lights on (cf. 2.2 ppbV total sesquiterpenes mea-

sured at the post-PC position by GC-MS). An ion ofm/z 153

was also observed in the PTR and CIR-ToF mass spectra of

the plant chamber emissions and subsequently in the reaction

chamber air, tentatively assigned (and hereafter referred to)

as camphor.

During the reaction phase of the Betula pendula experi-

ments the CIR-ToF mass spectra were dominated by ions of

relatively high mass (m/z> 100) pertaining to products of

both monoterpene and sesquiterpene oxidation. The ions of

highest mass (m/z 170–290) are characteristic of sesquiter-

pene oxidation, and have been observed recently during a

similar chamber study investigating β-caryophyllene photo-

oxidation (Jenkin et al., 2012). Drawing a comparison be-

tween these data and the detailed β-caryophyllene study con-

ducted by Jenkin et al. (2012), a number of tentative assign-

ments have been made for β-caryophyllene products, with

the assumption that other precursor-specific structural iso-

mers may also occupy the same mass channels. A full list

of example tentative assignments is given in the supplemen-

tary information (Table S2 in the Supplement). The sum of

all sesquiterpene products measured in the chamber was esti-

mated to be∼1.5 ppbV (assuming an average PTR sensitivity

for such high-mass, oxygenated compounds).

In contrast to the small amounts of sesquiterpene prod-

ucts observed in the reaction chamber, the products observed

in greatest abundance were those derived from monoterpene

decay. The largest (combined) product signal measured by

the CIR-ToF-MS was that of 6(I111,I93), where Ix is the

intensity of the mass spectrum at m/z= x (Fig. 2d). Previ-

ously, the m/z 111 and 93 signals have been shown to corre-

spond to various primary C7 unsaturated aldehydes formed

during the oxidation of unsaturated acyclic monoterpenes,

such as myrcene, ocimene and linalool (Lee et al., 2006a, b;

Ng et al., 2006; Wyche et al., 2014). In the case of myrcene

and ocimene, the m/z 111 and 93 signals correspond to

the parent ion (MH+) and the dehydrated daughter frag-

ment (MH+·H2O) respectively, while in the case of linalool,

m/z 111 corresponds to the dehydrated daughter ion and

m/z 93 is a further fragment. The concomitant m/z 111

and 93 signals have also been reported to result from a C7

cyclic ketone formed during the oxidation of terpinolene (not

found in the Ficus emission profile and <1 ppbV found in

the Betula profile). Them/z 111 and 93 ions have previously

been observed to be significant contributors to total ion sig-

nal in the PTR mass spectra during single-precursor cham-

ber experiments with concomitant SOA formation (Lee et

al., 2006a, b; Ng et al., 2006; Wyche et al., 2014), and the

m/z 111 ion has also been observed in ambient air measure-

ments over a forested region (Holtzinger et al., 2005).

As can be seen from Fig. 2d, the 6(I111,I93) sig-

nal rises rapidly during the initial stages of the exper-

iment, much more so than other monoterpene oxidation

products (cf. Fig. 2e), suggesting that the precursor has

a much shorter lifetime with respect to OH and O3. Of

those monoterpenes speciated by GC-MS, ocimene and

linalool have the shortest lifetimes, with kOH = 3.04 and

1.6× 10−10 cm3 molecule−1 s−1 (average lifetimes with re-

spect to OH ∼44 and ∼55 min), respectively, compared to

kOH= 7.4× 10−11 cm3 molecule−1 s−1 for β-pinene (aver-

age lifetime with respect to OH ∼1458 min) (Atkinson and

Arey, 2003; Kim et al., 2011). The 6(I111,I93) signal peaks

at around 60–100 min at 3.0 (±0.7) ppbV (concentration es-

timated using pinonaldehyde sensitivity), before decaying at

a greater rate than that of the precursor monoterpenes and

the other monoterpene products. This relatively short lifetime

gives further insight into the potential identity of them/z 111

and 93 signals, perhaps indicating the presence of multiple

C=C bonds in the hydrocarbon structure, as would be found

in the primary C7 aldehydes obtained from the oxidation of

ocimene or myrcene for example. Other short-lived biogenic

oxidation products that could exist in such mesocosm sys-

tems include α-hydroxy carbonyls, similarly formed follow-

ing OH addition to a C=C bond.

Other dominant signals observed by PTR-MS and CIR-

ToF-MS during oxidation of the Betula pendula air ma-

trix include the sum of m/z 169, 151 and 107, which re-

spectively correspond to the parent ion and two daughter

fragments of a number of primary monoterpene ketoalde-

hydes (which, from the speciated monoterpene plant cham-

ber data, are most likely to be pinonaldehyde, caronaldehyde

and α / γ -terpinaldehyde); and m/z 139, corresponding to

the parent ion of a number of primary monoterpene ketones

(most likely to be nopinone and 13-carene primary ketone,

again when considering the monoterpenes speciated by GC-

MS). As shown in Fig. 2e the primary ketoaldehyde and ke-

tone signals had similar temporal profiles to one another,

growing at a slower rate than that of 6(I111,I93), to peak

concentrations of around 0.9 (±0.3) and 1.2 (±0.3) ppbV, re-

spectively, as the monoterpene trace tended towards zero.

The temporal profile for the sum of all other “monoterpene-

like” product ions (i.e. ions of m/z> 90) was very similar

to those of the primary ketoaldehyde(s) and ketone(s), peak-

ing at a combined mixing ratio of approximately 3.5 ppbV

(assuming an average PTR sensitivity for such high-mass,

oxygenated compounds).

During the oxidation of compounds emitted by Betula

pendula, the primary isoprene products methyl vinyl ke-

tone (MVK) and methacrolein (MACR) (measured together

at m/z 71) were observed to evolve in the same manner

as the primary monoterpene ketoaldehyde(s) and ketone(s),

peaking at an approximate mixing ratio of 0.4 (±0.1) ppbV

(Fig. 2e). A series of lower-m/z ions were also observed
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Figure 4: Particle number and mass concentrations measured during nucleation 1566	  

(06/07/09) and ammonium sulphate seeded (07/07/09) Betula pendula experiments 1567	  

(a). In the bottom panel (b), both the measured (dashed lines) and the wall loss 1568	  

corrected (solid lines) mass concentrations are shown. 1569	  

 1570	  

Figure 4. Particle numbers and mass concentrations measured dur-

ing nucleation (6 July 2009) and ammonium sulfate-seeded (7 July

2009) Betula pendula experiments (a). In (b), both the measured

(dashed lines) and wall loss-corrected (solid lines) mass concentra-

tions are shown.

to evolve within the reaction chamber, including m/z 61

(acetic acid), 59 (acetone), 47 (formic acid), 45 (acetalde-

hyde), 33 (methanol) and 31 (formaldehyde). Each of these

compounds has previously been associated with monoter-

pene oxidation and/or off-gassing from illuminated cham-

ber walls. Methanol, acetone and m/z 99 (potentially cis-

3-hexenal) were also observed within the reaction chamber

prior to lights on, with a combined mixing ratio of approxi-

mately 20 ppbV.

3.1.2 Particle phase

From inspection of the wCPC and SMPS data we see that

SOA mass formed during oxidation of the Betula pendula

air matrix. As can be seen from Fig. 4, during unseeded ex-

periments nucleation occurred immediately after lights on,

with no induction period prior to mass formation. After nu-

cleation, SOA mass increased rapidly to ∼11 µg m−3 by

∼40 min (experiment 6 July 2009), followed by a relatively

stable plateau (after the application of wall loss corrections)

and a slight increase towards the end of the experiment. In

order to suppress nucleation, seed particles were introduced

in some experiments, as has been used previously (Dommen

et al., 2009; Meyer et al., 2009; Surratt et al., 2007; Klein-

dienst et al., 2006; Carlton et al., 2009). This more closely

represents the conditions encountered in the ambient atmo-

sphere where there is pre-existing aerosol. Consistent with

the nucleation experiments described above, SOA mass was

observed to increase as soon as the photochemistry was ini-

tiated when an ammonium sulfate seed was present (Fig. 4,

experiment 7 July 2009).

Using the wall loss-corrected mass data, along with the

corresponding quantity of the sum of precursor species re-

acted and Eq. (2), SOA yields were obtained for the Betula

pendula oxidation system:

YSOA =
Mp

1(
∑

VOC)
. (2)

In this instance, YSOA=SOA mass yield, Mp= peak SOA

mass (µg m−3) and 1(6VOC)= the sum of gas-phase pre-

cursors reacted by the time Mp is reached (µg m−3) (Odum

et al., 1997). In order to determine 1(6VOC), the time-

dependent VOC mixing ratios for total sesquiterpenes, to-

tal monoterpenes, camphor and isoprene were indepen-

dently converted to their corresponding mass concentrations

(µg m−3) and the four data sets were combined to give a “to-

tal” VOC precursor decay profile. From the total VOC profile

1(6VOC) was calculated, using the starting mass of 6VOC

at time= 0 and the mass of 6VOC at the time of Mp. The

uncertainty in 1(6VOC) is estimated to be ±41 %. Using

Eq. (2) for the two Betula pendula experiments for which

both gas-phase mixing ratio and wall loss-corrected aerosol

data were available, SOA yield values of 39 and 26 % were

obtained (Fig. 4). It should also be noted that along with pre-

vious caveats made regarding the role of the chamber walls

and other measurement uncertainties, these yield values also

do not take into account the potential loss of particularly

“sticky” low-volatility compounds (e.g. Ehn et al., 2014) to

internal surfaces of the chamber.

It should be noted that the partitioning of material between

the vapour phase and chamber walls has not been taken into

account in the above yield calculations. Matsunaga and Zie-

mann (2010) showed that semivolatile organic compounds

move towards equilibrium between the walls and the vapour

phase and that the equilibration timescale and equivalent ab-

sorptive mass of the walls was dependent on the molecular

properties of the partitioning species. Kokkola et al. (2013)

demonstrated in their model study that OVOC wall losses

will have significant implications on their partitioning be-

tween the gas and particle phase, such that the mass com-

ponents of very low volatility will be almost completely de-

pleted to the chamber walls during the experiment while the

depletion of OVOCs of higher volatilities is less efficient.

The implications of such partitioning to chamber walls are

such that comparison between any yields determined exper-

imentally in different chambers should be conducted with

caution. Even when calculated from experiments in the same

chamber, yields should be interpreted qualitatively and rela-

tively and not extrapolated to the atmosphere.
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Figure 5: Temporal evolution of a series of isoprenoid “precursor” compounds and 1573	  

their oxidation products, as observed in the main reaction chamber during an example 1574	  

Ficus benjamina experiment (23/06/09).  Panel (a) shows isoprene (red circles and 1575	  

lines) and camphore (black triangles and lines) evolution, (b) shows monoterpenes 1576	  

(red circles and lines) and sesquiterpenes (black triangles and lines), (c) MVK + 1577	  

MACR (m/z 71) and (d) Σ(monoterpene products) (black triangles and lines) and 1578	  

Σ(non MVK+MACR isoprene products) (red circles and lines) 1579	  
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Figure 5. Temporal evolution of a series of precursor compounds

and their oxidation products, as observed in the main reaction

chamber during a typical Ficus benjamina experiment (23 June

2009). Plot (a) shows isoprene (red circles and lines) and cam-

phor (black triangles and lines) evolution, (b) shows monoter-

penes (red circles and lines) and sesquiterpenes (black triangles and

lines), (c) MVK+MACR (m/z 71) and (d) 6(monoterpene prod-

ucts) (black triangles and lines) and 6(non-MVK+MACR iso-

prene products) (red circles and lines).

3.2 Experiments with tropical species

3.2.1 Gas phase

In order to study the contrast between species that primar-

ily emit monoterpenes and those that primarily emit iso-

prene, and hence to better understand the isoprene-SOA sys-

tem, the coupled plant chamber-reaction chamber system

was employed to study several tropical species. Two species

of fig and one species of palm were selected during the pre-

experiment screening process. Those experiments using the

figs, Ficus cyathistipula and Ficus benjamina gave the most

complete data set; hence their results are used as a focus for

discussion.

Figure 5 shows the temporal evolution of a number of iso-

prenoids detected in both the plant and reaction chambers

(a and b) and the concomitant evolution of a selection of

isoprenoid oxidation products (c and d) during a typical Fi-

cus benjamina experiment (23 June 2009). Approximately 30

precursor and product-ion peaks were observed during a typi-

cal Ficus benjamina experiments by CIR-ToF-MS and PTR-

MS in the gas phase. Tentative product identification is re-

ported in the supplementary information (Fig. 6, Tables S1–

S5). A similar set of ions was observed during a typical Ficus

cyathistipula experiment.

From inspection of Fig. 5a and b, the dominance of

isoprene in the Ficus benjamina system is clear, with

12.3 (±4.1) ppbV isoprene detected in the reaction cham-
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Figure 6: Evolution of measured mass through the Ficus benjamina system (23 June 1583	  

2009), showing the relative contribution of precursor compounds and oxidation 1584	  
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Figure 6. Evolution of measured mass through the Ficus benjamina

system (23 June 2009), showing the relative contribution of pre-

cursor compounds and oxidation products to total measured mass,

with time (coloured bars, left axis) and total measured mass (i.e.

6VOCs+SOA) with time (black line, right axis).

ber at lights on, compared to 0.8 (±0.4) ppbV monoter-

penes, 0.5 (±0.9) ppbV sesquiterpenes and an estimated

2.7 (±0.6) ppbV camphor. Speciation of the monoterpenes

by GC-MS indicated that the most dominantly emitted C10

compounds for Ficus benjamina were α-pinene, limonene,

sabinene and linalool and for Ficus cyathistipula were α-

pinene, β-pinene and limonene (Table 2). The sesquiterpenes

β-caryophyllene and α-cubebene were also identified.

Products of isoprene were observed to dominate the

evolving Ficus benjamina and Ficus cyathistipula oxida-

tion systems, with the isobaric primary species MACR and

MVK comprising the strongest signals (measured together

at m/z 71). For example, during the Ficus benjamina experi-

ment of 23 June 2009, a combined peak MACR+MVK mix-

ing ratio of 2.9 (±0.7) ppbV was observed (Fig. 5c).

Along with MACR and MVK, a series of other ions

also associated with isoprene oxidation were detected dur-

ing Ficus benjamina oxidation, including m/z 117 and 99

(4-hydroxy-2-methyl-but-2-enoic acid), 103 (C5-alkene di-

ols, C4-hydroxydialdehydes and peroxy methacryloyl ni-

trate or MPAN: peroxymethacrylic nitric anhydride), 87

(C4-hydroxycarbonyls and methacrylic acid), 83 (e.g. 3-

methyl furan), 75 (hydroxy acetone) and 31 (formalde-

hyde). Additionally, a signal of m/z 101 was also mea-

sured, possibly corresponding to the sum of a series of C5-

hydroxycarbonyls and C5-hydroxy hydroperoxides (Tuazon

and Atkinson, 1990; Paulson and Seinfeld, 1992; Jenkin et

al., 1997; Benkelberg et al., 2000; Sprengnether et al., 2002;

Zhao et al., 2004; Surratt et al., 2006; http://mcm.leeds.ac.

uk/MCM, v3.1). Of the signals observed, those of m/z 83

and 87 (tentatively assigned to be 3-methyl furan and C4-

hydroxycarbonyls/methacrylic acid respectively), were the

greatest in magnitude after MACR+MVK (Fig. 6). The

temporal evolution of the sum of all of these products sug-

gests that they are predominantly secondary in nature, form-

ing in the chamber after MACR and MVK. They continued to

www.atmos-chem-phys.net/14/12781/2014/ Atmos. Chem. Phys., 14, 12781–12801, 2014
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Figure 7: Observed and wall loss corrected particle mass concentrations during un-1590	  
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immediately prior to lights on. Time begins at the point at which the reaction chamber 1594	  

was illuminated, then increments in hours after lights on. 1595	  

 1596	  

Figure 7. Observed and wall loss-corrected particle mass concen-

trations during unseeded Ficus benjamina (22 and 23 June 2009)

and chamber background (26 June 2009) experiments. The reaction

chamber was filled with plant chamber air over a period of 1–1.5 h.

Chamber filling was carried out in the dark. Ozone was added im-

mediately prior to lights on. Time begins at the point at which the

reaction chamber was illuminated, then increments in hours after

lights on.

increase in magnitude as the isoprene signal decreased and as

the MACR+MVK signal began to fall (Figs. 5 and 6). Dur-

ing a typical Ficus benjamina experiment, the sum of these

isoprene products was estimated to reach a peak mixing ratio

of ∼1.7 ppbV.

A series of lower molecular weight ions were also ob-

served to evolve within the reaction chamber, including

m/z 61 (acetic acid), 47 (formic acid), 45 (acetaldehyde),

33 (methanol) and 31 (formaldehyde). Each of these com-

pounds has previously been associated with isoprene oxida-

tion and/or with off-gassing from illuminated chamber walls.

The m/z 43 and 46 signals, indicative of carbonyls and ni-

trates respectively, were also observed to increase signifi-

cantly during photo-oxidation, indicating the formation and

evolution of such species over time during the experiment.

Besides ions pertaining to the oxidation products of iso-

prene, a number of spectral features typically derived from

monoterpene oxidation products were also observed to form

and evolve in the reaction chamber, including,m/z 151, 125,

109, 107, 93 and 91. To a first-order approximation, the to-

tal peak quantity of oxidation products not believed to re-

sult from isoprene decay was estimated to be of the order of

2 ppbV. However, it should be noted that the isobaric inter-

ference present in such a complex system, uncharacterised

fragmentation, detection limits and the use of pseudo and av-

eraged calibration sensitivities impose a certain level of un-

known uncertainty upon this final value.

3.2.2 Particle phase

Contrary to the immediate and abundant formation of new

particles in the unseeded Betula pendula experiments, the

total number of particles and total aerosol mass did not in-
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 1603	  

Figure 8. Observed and wall loss-corrected particle mass concen-

trations during ammonium sulfate-seeded Ficus benjamina (15 July

2009) and Ficus cyathistipula (30 June and 2 July 2009) as well as

chamber background (3 July 2009) experiments. Ozone and ammo-

nium sulfate seed were added immediately prior to lights on.

crease above background levels after lights were turned on

in the unseeded tropical Ficus benjamina experiments. Fig-

ure 7 shows the observed and wall loss-corrected particle

mass concentration during two typical Ficus benjamina ex-

periments (22 and 23 June 2009) along with a chamber back-

ground experiment. Owing to a lack of particle nucleation

in these experiments, the total particle number concentra-

tion was too low for the wall loss correction (described in

Sect. 2.3) to be implemented. Instead, the average of the wall

loss constants determined for the seeded experiments was

used to calculate the wall loss corrected mass concentrations

reported in Fig. 7.

Figure 8 shows the observed and wall loss-corrected parti-

cle mass concentration for ammonium sulfate-seeded exper-

iments using VOC emissions of Ficus benjamina and Ficus

cyathistipula, as well as a seeded background experiment.

The mass at the start of the experiment represents the initial

ammonium sulfate mass. In order to quantify the formation

of SOA mass during these experiments, the mass increase

relative to the starting seed mass was determined in Fig. 9

by subtracting the initial ammonium sulfate seed mass from

the total wall loss-corrected mass. The same calculation was

also performed for the Betula pendula seeded experiment (7

July 2009). In contrast to the unseeded Ficus benjamina and

Ficus cyathistipula experiments, SOA mass was observed to

form when a seed was present in the reaction chamber. The

calculated SOA traces in Fig. 9 illustrate a slower build-up

of mass during the isoprene-dominated Ficus benjamina (15

July 2009) and Ficus cyathistipula (30 June 2009 and 2 July

2009) experiments compared to the much faster SOA mass

formation in the monoterpene-dominated Betula pendula ex-

periment. Peak masses of the order of 1.3–5.5 µg m−3 were

observed, which when employed with the methodology de-

scribed in Sect. 3.1.2, produce SOA yields of 10 and 14 %

for each of the two Ficus cyathistipula experiments for which

Atmos. Chem. Phys., 14, 12781–12801, 2014 www.atmos-chem-phys.net/14/12781/2014/
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Figure 9: Calculated SOA mass concentrations during ammonium sulphate seeded 1606	  

experiments for Betula pendula (07/07/09), Ficus benjamina (15/07/09) and Ficus 1607	  
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 1609	  

Figure 9. Calculated SOA mass concentrations during ammonium

sulfate-seeded experiments for Betula pendula (7 July 2009), Ficus

benjamina (15 July 2009) and Ficus cyathistipula (30 June and 2

July 2009). See text for details.

both gas and wall loss-corrected aerosol data were available,

30 June 2009 and 2 July 2009, respectively (Fig. 9). Un-

certainty in 1(6VOC) is estimated to be ±47 % and in the

size distribution measurements used in the wall loss calcula-

tions, of the order of±2 %. The uncertainties in the wall loss

correction will likely be substantially greater, but remain un-

quantified at present.

4 Discussion and conclusions

4.1 Betula pendula

In this study, we coupled a plant chamber to a photochemi-

cal reaction chamber in order to investigate SOA production

from a biogenically consistent mixture of biogenic volatile

organic compounds. We studied silver birch (Betula pen-

dula), which emits predominantly monoterpenes, with some

sesquiterpenes and oxygenated VOCs but only trace isoprene

(Table 2, Fig. 3).

Our Betula pendula experiments showed significant SOA

formation (Fig. 4) in both the presence and the absence of

an ammonium sulfate seed, and reproduced the rate of pro-

duction and growth of SOA observed in earlier published

studies (Mentel et al., 2009; Carlton et al., 2009; e.g. Van-

Reken et al., 2006; Hallquist et al., 2009; Kiendler-Scharr et

al., 2009a, b).

The SOA yield values of 39 % and 26 % obtained here

for Betula pendula compare reasonably well with those re-

ported within the literature for single-precursor work con-

ducted under similar conditions. For instance, for the two

most abundant monoterpenes emitted by Betula pendula,

α-pinene and β-pinene, single-precursor yields of the or-

der 1–43 (16) % and 3–30 %, respectively, have been ob-

served (values given in parenthesis were obtained from the

Manchester aerosol chamber). Similarly, for other common

monoterpenes such as limonene, myrcene,13-carene and α-
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Figure 10: Time dependent growth curves for two typical Betula pendula experiments 1612	  

(red circles- nucleation experiment on 06/07/09 and black triangles- ammonium 1613	  

sulphate seeded experiment on 07/07/09), showing SOA growth behaviour with 1614	  

respect to consumption of the VOC precursors. 1615	  
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Figure 10. Time-dependent growth curves for two typical Betula

pendula experiments: the nucleation experiment on 6 July 2009

(red circles) and the ammonium sulfate-seeded experiment on 7 July

2009 (black triangles), showing SOA growth behaviour with respect

to consumption of the VOC precursors.

terpinene, SOA yields of 9–34 %, 6–43 (15) %, 2–38 % and

8–25 %, respectively, and for β-caryophyllene, 37–79 (50) %

have been reported (Lee at al., 2006a and references therein;

Alfarra at al., 2012). In a comparable study to ours, Mentel

et al. (2009) reported a fractional mass yield of 11 % for their

Betula pendula experiments, slightly lower than those given

here, but within the bounds of quantified experimental errors.

The yield values obtained here for the Betula pendula meso-

cosm system lie roughly in the middle of the single-precursor

yield range.

As can be seen from Fig. 3, the transfer of mass through

the Betula pendula experiment appeared roughly conserva-

tive, with a small and steady loss of measured mass from the

reaction matrix after ∼220 min. With the addition of oxygen

to the starting body of hydrocarbon material during such an

experiment, the total measured mass (i.e. 6VOCs+SOA)

within the system would be expected to increase with time.

The absence of such a total measured mass gain (and indeed

the mass deficit observed towards the end of the experiment)

can most likely be accounted for by considering the various

measurement uncertainties involved in producing these data

(e.g. assumptions in PTR sensitivity, uncharacterised frag-

mentation following ionisation, instrument detection limits)

and influences imposed by the chamber walls (including po-

tential loss of more highly oxidised material from the gas

phase and greater than expected loss of SOA). Indeed, there

is potential for a system mass increase by the end of the

experiment to lie within the uncertainty bounds of the CIR-

ToF-MS and PTR-MS measurements alone; for example the

average single-compound PTR measurement uncertainty is

∼±30 %, allowing the final measured value of 130 µg m−3

to have an upper limit of 170 µg m−3, greater than the start-

ing value. Considering these results it seems that the system

studied is reasonably well characterised, given the complica-

tions involved in such a task.

www.atmos-chem-phys.net/14/12781/2014/ Atmos. Chem. Phys., 14, 12781–12801, 2014
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Figure 11: Temporal evolution of the m/z 44/43 ratio (red circles) during a typical 1619	  

Betula pendula experiment (06/07/09) and wall loss corrected SOA mass (black line); 1620	  

demonstrating the increase in oxygenated content of the SOA as the air matrix begins 1621	  

to age. 1622	  

 1623	  

Figure 11. Temporal evolution of the m/z 44/43 ratio (red circles)

and wall loss-corrected SOA mass (black line) during a typical Be-

tula pendula experiment (6 July 2009), demonstrating the increase

in oxygenated content of the SOA as the air matrix begins to age.

Certain insights into the mechanisms of SOA formation

and growth during the Betula pendula experiments can be

obtained through a combined examination of the VOC data,

the time-dependent growth curves (Fig. 10) and the aerosol

composition data. The data in Fig. 10 demonstrates that dur-

ing oxidation of the Betula pendula emissions and in absence

of a seed, SOA mass evolution can be roughly split into two

phases. In the early stages of the experiment after nucleation,

SOA mass growth increased somewhat rapidly with respect

to the amount of precursors reacted; however, after roughly

30 % of the initial precursor mass had been consumed, the

rate of mass growth with respect to VOC precursor con-

sumption was observed to reach an approximate steady state.

When ammonium sulfate seed was present within the cham-

ber, there was a similarly rapid initial growth with respect to

VOC consumption; in this case, however, subsequent aerosol

evolution was characterised by a roughly linear mass increase

to a much higher final mass by the end of the experiment.

Considering the various species of precursor VOCs detected

in the Betula pendula plant chamber air, and the relative life-

times of these VOCs, it would seem possible that initially the

shorter-lived sesquiterpenes react to form a significant pro-

portion of the high-mass, nucleating/condensing species, be-

fore being removed from the system (e.g. Jenkin et al., 2012).

Subsequent aerosol mass formation, as the air in the reac-

tion chamber ages towards the central phase of the exper-

iment, is then likely to result from the partitioning of rel-

atively more volatile products formed from slower-reacting

monoterpenes, such as pinic and pinonic acid formed from α-

pinene oxidation (e.g. Jenkin, 2004; Camredon et al., 2010),

and potentially products such as the primary acyclic unsatu-

rated aldehydes, (m/z 111 + 93; and products thereof); the

temporal profile of which demonstrates gas-phase loss con-

comitant with wall loss-corrected aerosol growth reaching a

steady state.

Further understanding of the composition and evolution of

SOA typical of temperate plant environs comes from investi-

gation of Fig. 11, which shows the evolution of the fraction
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Figure 12: LC-MS2 selected ion chromatograms derived from the off-line analysis of 1625	  

SOA collected on filters at the conclusion of a typical Betula pendula experiment 1626	  

(07/07/2009). Notes: Upper; m/z 183 = MW 184, 1 = cis-pinonic acid. Middle; m/z 1627	  

253 = MW 254, 2  =  β-nocaryophyllonic acid, 3 = β-caryophyllinic acid, 4 = similar 1628	  

to sesquiterpene SOA.  Lower; m/z 257 = MW 118 [2*[M-H] + Na]-, also seen in 1629	  

myrcene SOA, with same MS2 spectra. 1630	  

Figure 12. LC-MS2 selected ion chromatograms derived from

the off-line analysis of SOA collected on filters at the con-

clusion of a typical Betula pendula experiment (7 July 2009).

Upper: m/z 183=molecular weight (MW) 184, 1= cis-pinonic

acid; middle: m/z 253=MW 254, 2=β-nocaryophyllonic acid,

3=β-caryophyllinic acid, 4= similar to sesquiterpene SOA; lower:

m/z 257=MW 118 [2 · [M-H]+Na]−, also seen in myrcene SOA,

with same MS2 spectra.

of the ratio of more/less oxygenated material present in the

aerosol during the initial stages of a typical unseeded Be-

tula pendula experiment (6 July 2009). Figure 11 was con-

structed using the ratio of m/z 44 to 43 obtained from the

AMS (i.e. f 44/43, wherem/z 44 is derived from “more” ox-

idised material andm/z 43 from “less” oxidised material, Ng

et al., 2010). In this instance, the f 44/43 ratio exhibits linear

growth with time, from a value of ∼0.8 to ∼1.1, suggesting

an increase in the oxygenated content of the aerosol as the

experiment ages. Such an increase in oxygenated content is

generally observed when precursor species contain multiple

C=C bonds (e.g. ocimene and myrcene), offering significant

potential for higher aerosol O : C composition (e.g. perhaps,

species such as acyclic unsaturated aldehydes and their sub-

sequent generations of products). Indeed, the evolution of

the f 44/43 ratio observed here is consistent with those re-

sults obtained from single-precursor experiments investigat-

ing the acyclic monoterpene, myrcene and the sesquiterpene,

β-caryophyllene (Alfarra et al., 2012, 2013).

Off-line compositional analysis of the SOA collected at

the end of the Betula pendula experiments supports the find-

ings obtained from the on-line gas-phase and bulk aerosol

composition data. The LC-MS2 analysis produced chro-

matograms with peaks matching those seen in compara-

ble single precursor BVOC experiments, with tracer com-

pounds of both sesquiterpene and monoterpene SOA de-

tected (Fig. 12). Amongst the compounds observed were

those of molecular weight (MW) 238, 242, 254 and 256, cor-

responding to 3-[2,2-dimethyl-4-(1-methylene-4-oxo-butyl)-

Atmos. Chem. Phys., 14, 12781–12801, 2014 www.atmos-chem-phys.net/14/12781/2014/
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Table 3. Yields of isoprene oxidation products compared to literature values. Yields are an average from all Ficus experiments (seeded and

unseeded) (n= 4) calculated at 4 h after lights on (HALO). Yield is based on the calculated relationship between the amount of isoprene

reacted and the oxidation product in question.

Isoprene IEPOX+ ISOPOOH MVK+MACR Hydroxyacetone Formaldehyde Source

1 0.33 0.26 0.07 Williams et al. (1999)

1 0.05 0.36 0.05 Williams et al. (2001)∗

1 0.33 0.67 Zang et al. (2002)

1 0.46–0.60 0.86–0.96 Niki et al. (1983)

Kamens et al. (1982)

1 0.18 0.25 Surratt et al. (2010)∗,∗∗

1 0.27 Kleindienst et al. (2009)

1 0.01–0.03 0.17–0.36 0–0.02 0.02–0.07 This study

∗ NOx present;
∗∗ NOx absent.

cyclobutyl]-propionic acid, 3-hydroxy-3-[4-(3-hydroxy-1-

methylene-propyl)-2,2-dimethylcyclobutyl]-propionic acid,

β-nocaryophyllonic acid/β-caryophyllinic acid and 4-(2-(2-

carboxyethyl)-3,3-dimethylcyclobutyl)-4-oxobutanoic acid,

respectively, produced during β-caryophyllene oxidation

(e.g. Alfarra et al., 2012), and MW 184, corresponding to

cis-pinonic acid, produced during α-pinene oxidation. Many

other terpene oxidation tracers were detected, including com-

pounds of molecular weight 118 and 200, which are also

prevalent in SOA obtained from single precursor myrcene

experiments. This observation is in line with findings ob-

tained from the gas-phase data, which suggest a relatively

significant presence of gaseous acyclic unsaturated aldehy-

des that would originate from acyclic unsaturated terpenes,

such as myrcene.

4.2 Tropical species

In addition to Betula pendula, we studied three tropical plant

species: two figs (Ficus benjamina and Ficus cyathistipula)

and one palm (Caryota millis); in this paper, we focus on re-

sults obtained from the fig plants. All three tropical species

were found to be strong isoprene emitters, with very much

smaller emissions of monoterpenes, sesquiterpenes and oxy-

genated VOCs (Table 2, Fig. 6).

During the tropical plant experiments, the primary gas-

phase isoprene oxidation products MACR, MVK, formalde-

hyde, isoprene hydroxy hydroperoxides and the secondary

product hydroxyacetone were all observed (e.g. Figs. 5 and 6

and Tables S4 and S5 in the Supplement). MACR, isoprene

epoxide (IEPOX), and isoprene hydroperoxide (ISOPOOH)

and hydroxyacetone are all believed to be precursors to SOA

formation (Jaoui et al., 2010; Carlton et al., 2009; Kleindi-

enst et al., 2007, 2009; Paulot et al., 2009; Lee et al., 2006a,

b; Kroll et al., 2006; Surratt et al., 2006; Claeys et al., 2004b;

Rollins et al., 2009; Robinson et al., 2010). In this study,

with the exception of MACR and MVK, these products all

formed at yields lower than those previously reported (Ta-

ble 3), with MACR+MVK, IEPOX+ ISOPOOH, hydroxy

acetone and formaldehyde being observed to form in yields

of 17–36 %, 1–3 %, 0–2 % and 2–7 %, respectively during

our work. This disagreement may result from differences in

OH concentrations and NOx concentrations in each of the ex-

perimental studies. Other isoprene products tentatively iden-

tified from the CIR-ToF-MS and PTR-MS data include C5-

alkene diols, C4-hydroxycarbonyls/methacrylic acid and 3-

methyl furan (Table S4 in the Supplement), which have also

previously been associated with SOA formation (e.g. Claeys

et al., 2004a, b; Surratt et al., 2006; Robinson et al., 2010).

For a typical Ficus benjamina experiment (23 June 2009) the

sum of these and other potential isoprene products, exclud-

ing MACR+MVK, was estimated to have a combined gas-

phase yield of the order of 18 % (Fig. 5).

As can be seen in Fig. 6 mass transfer through the Ficus

benjamina system was characterised by a slight mass de-

crease just after the start of the experiment followed by a

gradual increase in mass with time. As stated in Sect. 4.1,

a mass increase over time is expected during such an ex-

periment, owing to the addition of oxygen to the precur-

sor hydrocarbon material. Consequently, when considering

the data presented in Fig. 6 in the context of potential un-

certainties involved (including difficult-to-characterise influ-

ences imposed by the chamber walls), it appears that the sys-

tem being studied is reasonably well characterised.

By comparing Figs. 3 and 6 we see that the monoterpene-

dominated Betula pendula system, which produces larger,

lower-vapour pressure oxidation products than the isoprene

dominated Ficus system, as well as measurable SOA, is the

case which exhibits measured mass loss. From this com-

parison it is reasonable to assume a significant fraction of

any mass deficit observed during Betula pendula oxidation

could result from the loss of the heavier, lower-volatility

compounds that are present in the Betula pendula oxidation

system but not in the Ficus system.

Despite the detection of a number of first- and second-

generation gas-phase products that have previously been di-
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rectly linked with isoprene SOA composition (Claeys et al.,

2004a, b; Wang et al., 2004; Edney et al., 2005; Surratt et

al., 2006; Healy et al., 2008), there was no accompanying

evidence of SOA formation from the isoprene-emitting trop-

ical plants during unseeded, nucleation-style experiments

(Fig. 7). A lack of SOA mass formation during our unseeded

Ficus benjamina experiments could have resulted from a

number of different factors, not least of which was simply

the absence of a seed surface (acidic or otherwise) to help fa-

cilitate partitioning of the semivolatile oxidation products to

the aerosol phase and produce particles of sufficient size to

have measurable particle mass (e.g. Kroll et al., 2006; P. Lin

et al., 2012). Another potentially significant contributing fac-

tor in suppressing SOA formation during these experiments

was the relatively low VOC /NOx ratio and the resultant gas-

phase chemistry. In the presence of high (in terms of ppbV

level) NOx mixing ratios, RO2 radicals react with NO to pro-

duce mainly alkoxy (RO) radicals. For low-molecular mass

VOCs such as isoprene, these RO radicals generally frag-

ment into smaller, more volatile products that do not easily

partition from the gas phase to the aerosol phase, resulting

in a low SOA yield (Surratt et al., 2010). Conversely, un-

der low NOx conditions, RO2 radicals are known to undergo

self- and cross-reactions to produce organic peroxides and

hydroperoxides of relatively low volatility. For example, Sur-

ratt et al. (2010) showed that under high NOx conditions the

yield of the potentially SOA-forming gas-phase IEPOX was

reduced with respect to the equivalent value under low NOx

conditions, where IEPOX formed in substantial yields (up-

ward of 75 %) from the further oxidation of ISOPOOH by

OH.

In contrast to our unseeded Ficus experiments, when an

ammonium sulfate seed was present (and following wall loss

correction), SOA mass was observed to form and evolve

within the reaction chamber (Fig. 9). From estimates of the

total concentrations of precursor VOCs within the reaction

chamber matrix (primarily isoprene, see e.g. Fig. 5), an SOA

mass yield of the order of 10–14 % was obtained for the Fi-

cus cyathistipula system. If it were to be assumed that the

SOA were solely formed from oxidation products of iso-

prene, as the major emitted VOC, this yield would appear

excessive in comparison with those obtained previously from

single-precursor isoprene studies, ∼0.1–5.5 % (van Donke-

laar et al., 2007; Kleindienst et al., 2009, 2007; Kroll et al.,

2005, 2006; Claeys et al., 2004a; Edney et al., 2005; van

Brégonzio-Rozier et al., 2014). However, we must consider

that the mesocosm system is in fact an ensemble of precur-

sors, albeit an ensemble dominated by isoprene, analogous

to ambient air above a tropical forested region (Hewitt et al.,

2010; MacKenzie et al., 2011).

For the experiments of 30 June 2009 and 2 July 2009, for

which SOA yields were obtained for the Ficus cyathistipula

system, a fraction of camphor was also observed in the air en-

tering the reaction chamber (presumably, for these two par-

ticular experiments, sesquiterpenes and monoterpenes were

present at concentrations below the detection limits of the

PTR-MS and CIR-ToF-MS). The concentration of camphor

at lights on was estimated to be ∼0.5–0.9 ppbV for the Fi-

cus cyathistipula system and ∼1.4–2.7 ppbV for Ficus ben-

jamina, and the sum of all nonprecursor ions in the CIR-

ToF mass spectrum m/z> 100 (mostly indicative of non-

isoprene-like oxidation products; excluding m/z 103 and

117) was estimated to be of the order of 2 ppbV by the

end of the experiments. This calculation approximates the

m/z> 100 summation as one large, multifunctional analyte

with a PTR sensitivity similar to pinonaldehyde (a typi-

cal multifunctional, relatively high-MW molecule resulting

from terpene oxidation). Continuing this assumption and tak-

ing a range of known VOC terpene product yields (YPVOC)

obtained from previous work at the Manchester chamber

(Y P
VOC= 100 % the limiting case, 77 % from Ficus benjam-

ina oxidation, 55 % from Betula pendula oxidation, and

29 % for pinonaldehyde and 6(I111,I93)), a non-isoprene

VOCprecursor concentration may be estimated. Taking a range

of known SOA yields obtained from the same reaction cham-

ber (i.e. α-pinene, myrcene, linalool and β-caryophyllene;

Alfarra et al., 2013), the SOA yield obtained here for the

Betula pendula system and the estimate of [VOCprecursor],

Eq. (2) may be solved to provide a crude estimate of the mass

of SOA formed from non-isoprene precursors. Consequently,

an estimate of the residual SOA mass derived from isoprene

oxidation within the Ficus system can be inferred for each of

the experiments shown in Fig. 9.

For 78 of the 120 measurement-and parameter sets tested,

the estimated residual SOA mass resulting solely from iso-

prene oxidation was negative – that is, production of SOA

from isoprene oxidation was not required to close the mass

balance. Values were calculated based on the widest range

of peak masses observed during the Ficus experiments

(Mp= 1.3 µg m−3 and 5.5 µg m−3), and assume the lowest

(29 %) and highest (100 %) VOC terpene yields and low-

est (5 %) and highest (47 %) SOA yields from non-isoprene

precursors, respectively, as observed in previous experiments

conducted within this chamber. These ranges result in calcu-

lated residual SOA mass of −28.5 to +5.0 µg m−3 produced

solely from isoprene oxidation. Hence, there are combina-

tions of measurements, observations and oxidation/phase-

change parameters – omitting isoprene and its oxidation

products – that can account for ∼20 times the observed

aerosol mass production, and other combinations of mea-

surements and parameters that leave up to∼90 % of the con-

densed mass to be explained by isoprene oxidation. If, in-

stead of using the limiting cases, the closest approximation

to the Ficus cyathistipula system is used (i.e. YVOC= 77 %

and YSOA=Ya−pinene= 15 %), non-isoprene products could

have accounted for around 145 % of the SOA mass that was

produced. We have no way of assigning formal likelihoods to

each set of measurements and parameters in this exercise, but

we note that the great preponderance of parameter combina-

tions (78 out of 120 measurement and parameter sets tested)

Atmos. Chem. Phys., 14, 12781–12801, 2014 www.atmos-chem-phys.net/14/12781/2014/



K. P. Wyche et al.: Emissions of BVOCs and subsequent photochemical production of SOA 12797

do not require an isoprene contribution to the SOA mass un-

der our experimental conditions. Moreover, our experiments

produced much less SOA mass than would be expected from

published experiments using individual mono- and sesquiter-

penes.

There are three principal reasons why the estimates of

aerosol production from isoprene in the tropical plant ex-

periments span such a large range. Firstly, the plants in the

mesocosm emit a complicated mixture of biogenic VOCs,

some of which are known to oxidise much more rapidly than

isoprene and will produce condensable compounds when ox-

idised. Secondly, these minor compounds co-emitted from

principally isoprene-emitting tropical trees are imperfectly

quantified because of the sensitivity of the chemical ion-

isation (PTR and CIR) instruments. Thirdly, these minor

co-emissions are imperfectly characterised because many

higher-MW compounds, such as the mono- and sesquiter-

penes, are isobaric in the PTR and CIR instruments and so

precise chemical structures cannot easily be assigned. With-

out better instrument detection sensitivity and high time-

resolution chemical identification for the reactive compounds

co-emitted with isoprene, it is not possible to constrain the

aerosol yield from the tropical plants any further. Unfortu-

nately, insufficient SOA mass formed during Ficus experi-

ments to allow us to conduct any form of compositional anal-

ysis.

4.3 Atmospheric significance

Our results are specific to VOC /NOx ratios of 3–9 and NOx

mixing ratios of ∼2 ppbV. Note, however, that the three rea-

sons given above for the uncertainty in the aerosol produc-

tion ascribed to isoprene in our experiments, will also pertain

to field measurements, often being exacerbated by variabil-

ity and the difficulties of operating in the field. A contribu-

tion of isoprene to SOA is supported by recent observations

of isoprene-related SOA formation above the tropical forest

of Danum Valley, Borneo, a high-isoprene, low-NOx region

(typical isoprene /NOx ratio of 20 : 1) (Hewitt et al., 2010).

Robinson et al. (2010) observed that up to 15 % by mass

of atmospheric submicron organic aerosol above the tropical

forest of Danum Valley was comprised of methyl furan, the

most likely source of which is the oxidation of isoprene (i.e.

thermal decomposition of isoprene-derived SOA) (Ruppert

and Becker, 2000; Robinson et al., 2010; P. Lin et al., 2012;

Budisulistiorini et al., 2013). Although much smaller in mag-

nitude, the monoterpene emissions measured at Danum Val-

ley were more than adequate to account for the remaining

submicron organic aerosol (MacKenzie et al., 2011), just as

in the majority of aerosol mass calculations for principally

isoprene-emitting tropical trees, described above.

It has recently been proposed that isoprene can inhibit

aerosol formation when present in air containing other po-

tential SOA precursors, such as mono- and sesquiterpenes

(Kiendler-Scharr et al., 2009a). Kiendler-Scharr et al. pro-

pose that isoprene could effectively act as an OH scavenger,

suppressing new particle formation by slowing the oxidation

of available monoterpenes (and presumably sesquiterpenes).

In line with this thesis, interpretation of the results obtained

from our seeded experiments with Ficus species leaves room

for a potential role for isoprene in inhibiting SOA formation

under certain atmospheric conditions; that is, our results im-

ply that isoprene may have a negative impact on the overall

SOA-forming potential of air containing other biogenic SOA

precursors. However, owing to the constraints laid upon our

experiments by the instrumentation and apparatus employed,

it is difficult to assign a given certainty level to the role played

by isoprene in the ambient atmosphere, and caution should

be taken when interpreting such findings.

The fact that isoprene accounts for approximately 50 % of

the total global burden of non-methane VOC (Guenther et

al., 2006) would make it a significant contributor to global

SOA. It has been estimated that, even if the SOA yield from

isoprene is small (e.g. 1 %), the overall contribution to total

atmospheric aerosol could be up to 6 Tg yr−1 (Carlton et al.,

2009). Van Donkelaar et al. (2007) found that using an iso-

prene SOA yield of 2 % improved the relationship between

model simulations and organic aerosol measurements, con-

tributing 10–50 % of the total organic aerosol loading over

the United States during the summer. Understanding the ex-

act role played by isoprene in air containing many different

VOCs, and being able to account for the differing isoprene

SOA yields under contrasting NOx and acidity (P. Lin et al.,

2012; Y. H. Lin et al., 2012; Pye et al., 2013) environments,

will undoubtedly help to bring significant further improve-

ments to global modelling estimates of total SOA loading

(Couvidat and Seigneur, 2011).

Further to any such potential impacts imposed by isoprene,

it has been shown that a range of other BVOC emissions, re-

leased in response to a range of environmental stress factors,

can also have significant impacts on biogenic SOA forma-

tion and yield (Mentel et al., 2009). It has been shown that

the emissions of sesquiterpenes, methyl salicylate and C17

BVOCs, released as a result of certain environmental stress

factors have a net positive impact on SOA yield; whereas

certain stress-induced green-leaf volatiles ((Z)-3-hexenol and

(Z)-3-hexenylacetate) behave similarly to isoprene, suppress-

ing SOA formation (Mentel et al., 2009).

Given the highly differing reported yields of isoprene SOA

under various oxidant schemes, the uncertainty in the exact

role played by isoprene and its oxidation products in realis-

tic mixtures of VOCs (in particular in the context of SOA

nucleation rates; Kiendler-Scharr et al., 2009a) and the lack

of knowledge regarding stress induced BVOCs, their atmo-

spheric oxidation and their roles in biogenic SOA forma-

tion (and impact on chemical and physical properties), we

suggest that there is a pressing requirement for additional,

atmosphere-relevant laboratory and field studies to provide

the necessary insight for successful control of biogenic SOA

(Carlton et al., 2010).
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