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Abstract. Organic aerosol particles play a key role in cli-
mate by serving as nuclei for clouds and precipitation. Their
sources and composition are highly variable, and their phase
state ranges from liquid to solid under atmospheric condi-
tions, affecting the pathway of activation to cloud droplets
and ice crystals. Due to slow diffusion of water in the particle
phase, organic particles may deviate in phase and morphol-
ogy from their thermodynamic equilibrium state, hamper-
ing the prediction of their influence on cloud formation. We
overcome this problem by combining a novel semi-empirical
method for estimation of water diffusivity with a kinetic
flux model that explicitly treats water diffusion. We esti-
mate timescales for particle deliquescence as well as vari-
ous ice nucleation pathways for a wide variety of organic
substances, including secondary organic aerosol (SOA) from
the oxidation of isoprene,α-pinene, naphthalene, and do-
decane. The simulations show that, in typical atmospheric
updrafts, glassy states and solid/liquid core-shell morpholo-
gies can persist for long enough that heterogeneous ice nu-
cleation in the deposition and immersion mode can dom-
inate over homogeneous ice nucleation. Such competition
depends strongly on ambient temperature and relative hu-
midity as well as humidification rate and particle size. Due
to differences in glass transition temperature, hygroscopic-
ity and atomic O/ C ratio of the different SOA, naphthalene
SOA particles have the highest potential to act as heteroge-
neous ice nuclei. Our findings demonstrate that kinetic lim-
itations of water diffusion into organic aerosol particles are
likely to be encountered under atmospheric conditions and
can strongly affect ice nucleation pathways. For the incor-
poration of ice nucleation by organic aerosol particles into
atmospheric models, our results demonstrate a demand for

model formalisms that account for the effects of molecu-
lar diffusion and not only describe ice nucleation onsets as
a function of temperature and relative humidity but also in-
clude updraft velocity, particle size and composition.

1 Introduction

Atmospheric aerosol particles influence climate through af-
fecting the earth’s radiation budget directly by scattering
and absorbing light, and indirectly by acting as nuclei for
cloud droplets and ice crystals (Yu et al., 2006; Andreae and
Rosenfeld, 2008; IPCC, 2013). Ice nucleation is an impor-
tant pathway for high-altitude cirrus cloud formation, and it
occurs either homogeneously in liquid aerosol particles or
heterogeneously in the presence of active ice nuclei (IN),
which are solid particles that facilitate nucleation. Homoge-
neous ice nucleation generally requires high supersaturations
in aqueous aerosol droplets, occurring at ice saturation ra-
tios of Sice ≥ 1.4 (Koop et al., 2000). Only a small fraction
of atmospheric aerosol particles act as IN below this homo-
geneous ice nucleation threshold (DeMott et al., 2003; Cz-
iczo et al., 2013). Heterogeneous ice nucleation can occur via
several pathways such as deposition nucleation, i.e. deposi-
tion of gaseous water molecules to form crystalline ice on a
solid IN, or immersion freezing, which describes nucleation
induced by IN immersed in supercooled aqueous droplets
(Pruppacher and Klett, 1997; Hoose and Möhler, 2012).

Organic aerosol particles are ubiquitous and abundant in
the atmosphere, but traditionally they are not referred to as
effective IN when compared to dust or biological particles
(see Hoose and Möhler (2012) and references therein). More

Published by Copernicus Publications on behalf of the European Geosciences Union.



12514 T. Berkemeier et al.: Water uptake and ice nucleation by glassy organic aerosols

recently, however, several laboratory studies have shown that
glassy organic particles can act as IN at low-temperature cir-
rus conditions in the deposition mode or at slightly elevated
temperatures in the immersion mode (Murray et al., 2010;
Wagner et al., 2012; Wang et al., 2012; Wilson et al., 2012;
Baustian et al., 2013; Schill et al., 2014), in agreement with
inferences from field data (Froyd et al., 2010; Knopf et al.,
2010, 2014). This IN ability has been observed for a num-
ber of different types of particles composed of pure organic
substances such as simple sugars and acids (Murray et al.,
2010; Wagner et al., 2012; Wilson et al., 2012; Baustian et
al., 2013) and biomass burning marker compounds (Wag-
ner et al., 2012; Wilson et al., 2012), for (phase-separated)
organic–inorganic mixtures (Wagner et al., 2012; Wilson et
al., 2012; Baustian et al., 2013; Schill and Tolbert, 2013), as
well as for secondary organic aerosol (SOA) particles derived
from aromatic volatile organic compounds (VOCs, Wang et
al., 2012) or emerging from aqueous phase reactions (Schill
et al., 2014). It has also been proposed recently that forma-
tion of highly porous structures upon atmospheric freeze-
drying could enhance the IN ability of organic aerosol par-
ticles (Adler et al., 2013).

These observations suggest a connection between parti-
cle phase state and the resulting predominant ice nucleation
pathway (Murray et al., 2010). Organic aerosol particles can
adopt liquid, semisolid or solid states, or may even exhibit
mixed phases, depending on composition and ambient con-
ditions (Mikhailov et al., 2009; Koop et al., 2011; Vaden et
al., 2011; Kuwata and Martin, 2012; Perraud et al., 2012;
Song et al., 2012; You et al., 2012; Renbaum-Wolff et al.,
2013; Kidd et al., 2014). SOA particles are expected to be liq-
uid at high temperature and high humidity, but they are very
likely to exhibit a highly viscous semisolid or even glassy
state at low temperature and low humidity (Virtanen et al.,
2010; Saukko et al., 2012; Renbaum-Wolff et al., 2013; Shi-
raiwa et al., 2013a). For example, typicalα-pinene-derived
secondary organic aerosol particles are expected to be in a
glassy state below about 260 K at 30 % relative humidity,
whereas at a higher humidity of 80 % such a glass transi-
tion is expected at approximately 215 K (Koop et al., 2011).
Glassy states are characterized by viscosities greater than
1012 Pa s, corresponding to diffusion timescales within these
particles that can exceed days or even years (Shiraiwa et al.,
2011; Koop et al., 2011; Zhou et al., 2013). Water uptake into
glassy aerosols has been shown to occur slowly and to pro-
ceed gradually with increasing relative humidity (Mikhailov
et al., 2009; Tong et al., 2011; Zobrist et al., 2011; Bones et
al., 2012; Price et al., 2014).

Hence, several competing processes can occur in glassy
organic aerosol particles during updraft of an air parcel: het-
erogeneous ice nucleation in the deposition mode onto the
glassy solid aerosol surface; diffusion of water into the par-
ticle, inducing a gradual phase transition towards the liquid
state; and immersion freezing during the transition between
both states. In order to determine those atmospheric condi-

tions at which each of these processes dominates, we em-
ploy a numerical aerosol diffusion model based on the kinetic
multi-layer model for gas–particle interactions in aerosols
and clouds (KM-GAP), which explicitly treats mass trans-
port of water molecules in the gas and particle phases (Shi-
raiwa et al., 2012). Due to experimental constraints associ-
ated with very long observation times, parameterizations for
water diffusivity in glassy organic material are sparse and
hence are only known for a few model compounds. There-
fore, water diffusivity in SOA materials from various bio-
genic and anthropogenic precursors are deduced from wa-
ter diffusivity parameterizations of model compounds using
a semi-empirical physico-chemical model of water diffusion
in glass-forming aqueous organics.

2 Modelling approach

2.1 Numerical diffusion model

The numerical diffusion model employed in this study is
based on the kinetic multi-layer model for gas–particle in-
teractions in aerosols and clouds, KM-GAP (Shiraiwa et
al., 2012). KM-GAP consists of multiple model compart-
ments and layers, respectively: gas phase, near-surface gas
phase, sorption layer, surface layer, near-surface bulk, and
a number ofn bulk layers (cf. Fig. S1). The following pro-
cesses are considered in KM-GAP: gas-phase diffusion, gas-
surface transport, surface-bulk transport, and bulk diffusion.
The bulk layers can either grow or shrink in response to mass
transport. The initial bulk layer sizes are chosen to be small
enough to ensure numerical convergence (usually 100–750
layers), but are not allowed to fall below the molecular length
scale (∼ 0.3 nm).

The model was complemented by modules predicting ho-
mogeneous ice nucleation as a function of water activity ac-
cording to Koop et al. (2000), heterogeneous ice nucleation
at a pre-defined ice supersaturation level, and it considers
Kelvin effects. Moreover, a few further conceptual changes
have been introduced to the original KM-GAP, including a
more explicit treatment of gas diffusion, composition-based
bulk diffusion and a mechanism of surface-to-bulk trans-
port facilitated by surface-adsorbed water, as detailed in
the following sections. Parameterizations of composition-
dependent density, water activity and bulk diffusivity for
the sucrose/water system have been adopted from Zobrist et
al. (2011). A detailed description of the gas diffusion scheme
and a list of all employed parameterizations are provided as
supplementary material.

In this study, the model is used to simulate an atmospheric
updraft situation by following a preselected trajectory in tem-
perature and relative humidity. It tracks the chemical com-
position of an amorphous aerosol particle as a function of
time and depth below the particle surface in discretized lay-
ers, providing concentration profiles of water and organics
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at any given time. The equilibrium composition is calculated
through a water activity parameterization that translates am-
bient relative humidity into equilibrium mass fractions of the
bulk constituents. Mass fluxes from the far-surface into the
near-surface gas phase, onto the particle surface, into as well
as between bulk layers are coupled in flux-based differen-
tial equations, which are solved with an ordinary differential
equation solver using Matlab software (ode23tb).

2.1.1 Ice nucleation modules

Besides water diffusion, the model is able to simulate ice
nucleation and growth. However, the initial numerical so-
lution of the differential equations only treats water uptake
into the particle. The model registers an ice nucleation event
when all necessary conditions in ambient relative humidity
and water activity are satisfied. From this point onwards, the
model simulates ice crystal growth by deposition of water
molecules from the gas phase.

For homogeneous ice nucleation, a stochastic approach
based on classical nucleation theory has been chosen. An ice
nucleation event is triggered when the probability of the par-
ticle being liquid (Pliq) falls below 50 %.Pliq is the product
of the individual probabilities in alln layers, using the ho-
mogeneous nucleation rate coefficient for each layerJhom,k
as parameterized by Koop et al. (2000). The nucleation rate
then translates intoPliq by multiplication with layer volume
Vk and (numerical) integration with time step dt :

Pliq,tot(t) =

t∫
t0

n∏
k=1

(
1− Jhom,k(t) · Vk(t)

)
dt. (1)

Heterogeneous nucleation is assumed to occur once a certain
freezing threshold is exceeded. In this work, we distinguish
between heterogeneous ice nucleation thresholds for sucrose
and SOA, which have been shown to occur at different ice
supersaturations, as summarized by Schill et al. (2014). For
sucrose, we apply a linear fit to nucleation data from Baus-
tian et al. (2013), whereas for SOA we fit the nucleation data
of naphthalene SOA from Wang et al. (2012) and those of
aqueous SOA (aqSOA) from Schill et al. (2014). The fit re-
sults are shown in Fig. A1 in Appendix A.

To distinguish between deposition and immersion freez-
ing, additional criteria are employed. For deposition nucle-
ation, the necessary condition is solidness of the outermost
layer of the particle, requiring the water activity to be be-
low the quasi-equilibrium glass transition point. In the case
of immersion mode nucleation, a 1 nm thick region in the
near-surface bulk is required to be entirely liquefied before
nucleation can occur in the immersion mode. For this pur-
pose, a 2 nm thick region below the particle surface is finely
resolved by multiple bulk layers (cf. Fig. S1).

2.1.2 Bulk diffusion and bulk layer mixing

Bulk diffusion of water is treated as kinetic flux,Jbk,bk±1,
from one bulk layer (bk) to the next (bk ± 1). Because layer
thickness is not allowed to fall below the molecular resolu-
tion, concentrations in adjacent layers can differ significantly.
As in Zobrist et al. (2011), this heterogeneity is accounted for
with a virtual mixing scheme for the determination of bulk
diffusivities between layers. In this scheme, the composition
of a mixture of two subsequent bulk layers is determined and
the bulk diffusion coefficient calculated according to the ef-
fective composition along the diffusion path. Scenarios with
very low diffusivities and hence steep concentration gradi-
ents thus lead to situations in which a liquefied layer (high
bulk diffusivity of water, DH2O) “softens” the subsequent
glassy layer (lowDH2O), facilitating further diffusion. Such
a process can be seen as analogous to a dissolution process,
in which the glassy matrix dissolves into nearby water-rich
regions.

Diffusion of the organic matrix has been neglected for
this study, because the organic molecules investigated here
can be expected to diffuse much more slowly than water
molecules. Also, in the glassy state, the organic molecules
diffuse on a much longer timescale compared to the exper-
imental timescale of minutes to hours (cf. Shiraiwa et al.,
2011; Koop et al., 2011).

2.1.3 Surface monolayers and surface softening

The original KM-GAP uses a double monolayer approach
to describe the particle surface, comprising a sorption layer
and a quasi-static surface layer. In this study the quasi-static
surface layer was replaced by a near-surface volume layer
similar to that used in Shiraiwa et al. (2013a), which is more
suitable for low diffusivity systems.

Surface-adsorbed water can lead to softening of the solid
surface (Koop et al., 2011), thereby facilitating exchange
between surface and first near-surface bulk layer. In the
model, this is accounted for by introducing a surface soften-
ing scheme that estimates the surface-to-bulk transport rate
by mixing a hypothetical water monolayer with a hypotheti-
cal bulk monolayer containing water and bulk material. Us-
ing the momentary molar fractions of water (xb1,H2O) and
organics (xb1,org) of the near-surface bulk layer, the effective
surface coverages of water (θss,H2O) and organics (θss,org) at
the surface bulk layer can be described as

θss,i =
xb1,i · σi

xb1,org · σorg+ xb1,H2O · σH2O
, (2)
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whereσi is the molecular cross section of speciesi (i.e. water
(H2O) or organics (org)). The weight fraction of organics in
the “softened” surface is then given by

wss,org,mix=

θss,org
σorg

· Morg

θss,org
σorg

· Morg+

(
θss,H2O+1

σH2O

)
· MH2O

, (3)

whereMorg andMH2O are the molar mass of organics and
water. This process facilitates the initial water uptake into
a glassy particle and leads (in most cases) to a sub-surface
layer that is in equilibrium with the surrounding gas phase.
In the temperature range relevant for immersion freezing, liq-
uefaction of the surface was always obtained at the quasi-
equilibrium glass transition point due to the surface soft-
ening mechanism. At lower temperatures however (deposi-
tion regime), the particle surface was not always in quasi-
equilibrium with ambient humidity.

2.2 Estimation of water diffusivity in SOA

For model systems other than sucrose/water, no direct pa-
rameterization of water diffusivity in the full atmospherically
relevant temperature and composition range is available to
date. For compounds chemically similar to sucrose (i.e. or-
ganic polyols and acids), we present a scheme that enables
estimation of bulk diffusivity data from glass transition and
hygroscopicity data. Bulk diffusivity of water is parameter-
ized using a Vogel–Fulcher–Tammann (VFT) approach (Vo-
gel, 1921; Fulcher, 1925; Tammann and Hesse, 1926). The
estimation scheme utilizes the structure of the VFT equation,
Eq. (S9), and the physical interpretation of its parameters.
The method can be described by the following set of assump-
tions.

1. Two similar organic substances act similarly in the way
they approach the glass transition and thus have a simi-
lar fragility: Borg1 ≈ Borg2.

2. The same two substances have a similar diffusion coef-
ficient in the high temperature limit:Aorg1 ≈ Aorg2.

3. A difference in glass transition temperatures (Tg,org) be-
tween the two substances indicates a difference in Vogel
temperatures (T0,org) of the same direction and (relative)
magnitude:

T0,org1

T0,org2
≈

Tg,org1

Tg,org2
. (4)

Thus, diffusivities within an organic substance can be esti-
mated by knowledge of its glass transition curve relative to a
known standard with similar chemical functionality. This ap-
proach requires knowledge of three parameters for inferring
water diffusivity over the full temperature and composition
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Figure 1. Schematic temporal evolution of particle morphology
along a trajectory of an atmospheric updraft (grey arrow). Humid-
ification of ambient air upon adiabatic expansion leads to lique-
faction of initially glassy particles (dark blue colour, 1) via core-
shell morphologies (2, 3) to liquid particles (light blue colour, 4).
Whereas partial deliquescence (PDRH) coincides with RHg, full
deliquescence (FDRH) is delayed to much higher RH, indicating
that diffusion processes occur on much longer timescales than hu-
midification. The speed at which particles are humidified along the
displayed trajectory corresponds to that typical of cloud chamber
or environmental cell experiments (0.1–1.5 K min−1, 1–15 % RH
min−1).

range: the hygroscopicity coefficient,κorg, the glass transi-
tion temperature of the pure organic,Tg,org, and the Gordon–
Taylor coefficient (kGT) of the aqueous organic mixture. For
justification, more information on this procedure and a de-
scription of how the required input parameters were obtained,
see Appendix A. For validation of the estimation scheme, we
provide applications to literature ice nucleation experiments
in Appendix B.

3 Results and discussion

3.1 Particle morphology

We investigate ice nucleation in glassy organic aerosols in-
duced by changing ambient conditions during the updraft of
an air parcel. In updraft events, adiabatic cooling leads to
a decrease in temperature and a corresponding increase of
relative humidity (RH). Humidification of air leads to water
uptake into the particle phase, causing a humidity-induced
phase transition that for glassy aerosol particles has been
termedamorphous deliquescence(Mikhailov et al., 2009).
This process is often kinetically limited by diffusion of water
in the particle phase (Zobrist et al., 2011), so that a particle
can be out of equilibrium when the timescale of humidifica-
tion is shorter than that of diffusion.
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Amorphous deliquescence is a self-accelerating process
since water acts as a plasticizer in the organic matrix
(Mikhailov et al., 2009; Zobrist et al., 2011): water molecules
taken up by the particle reduce the particle’s viscosity and,
hence, increase bulk diffusivity locally, thus accelerating
the uptake of further molecules. The microphysical conse-
quences of this mechanism are illustrated in Fig. 1, which
shows the temporal evolution of particle morphology of
a glassy organic aerosol particle exposed to a gradual in-
crease in relative humidity (simulated atmospheric updraft,
see also Movie S1). The quasi-equilibrium glass transition
of the aqueous organic, RHg, is shown in grey. With “quasi-
equilibrium glass transition”, we denote the conditions under
which a binary organic–water system would undergo amor-
phous deliquescence when humidification occurs sufficiently
slowly so that equilibrium between ambient RH and water
activity is always maintained. Humidification may be fast
enough to cause a difference in phase state from equilibrium:
water activity, colour-coded from dark blue (low water activ-
ity) to light blue (high water activity), trails behind ambient
RH due to kinetic limitations in water diffusivity (Koop et
al., 2011). Note that when using a constantDH2O, diffusion
gradients appear less pronounced (cf. Fig. S2 and Movie S2).
Hence, self-accelerating water diffusion leads to a sharpen-
ing of the diffusion gradient that can be close to the molecular
length scale (Zobrist et al., 2011).

Several morphological stages can be distinguished during
the humidification process in Fig. 1. Starting from a homoge-
neous, glassy particle (1), an increase in RH first leads to liq-
uefaction of a thin outer layer and emergence of a core-shell
morphology (2). This liquid outer layer grows in equilibrium
with ambient relative humidity and also extends towards the
particle centre by diffusion of water into the glassy organic
matrix (3), leading to shrinkage of the residual glassy core
until the particle is fully deliquesced (4). Thus, during the
continuous amorphous deliquescence process two character-
istic instants can be distinguished, each occurring at a differ-
ent humidity: we define thepartial deliquescence relative hu-
midity (PDRH) as the point where a thin aqueous outer shell
of the particle is homogeneously mixed and the shell’s water
activity is larger than that of the quasi-equilibrium glass tran-
sition. In this study we set the thickness of this surface shell
to 1 nm, corresponding to about five monolayers of water.
We define thefull deliquescence relative humidity(FDRH)
as the point where the entire particle’s water activity corre-
sponds to that of a liquid (i.e. it is larger than that of the quasi-
equilibrium glass transition) and the water activity gradient
from the surface to the particle core is less than 5 %. Note
that, in the case of a sufficiently slow updraft, both PDRH
and FDRH would occur at RHg. In fact, the KM-GAP simu-
lations suggest that, with updraft velocities typical of atmo-
spheric conditions (e.g. 0.01–10 m s−1), PDRH often coin-
cides with RHg. In contrast, FDRH often extends far into the
liquid region of the phase diagram, indicating the importance
of kinetic limitations and implying that particles can contain

glassy cores even at relative humidities above RHg due to
slow water diffusion.

3.2 Ice nucleation regimes

Next, we investigate by kinetic model simulations the com-
petition between amorphous deliquescence and ice nucle-
ation during an atmospheric updraft. For our initial calcula-
tions we use sucrose as a proxy for organic aerosols since
detailed physico-chemical parameterizations for water dif-
fusivity, the RH-dependent equilibrium composition as well
as glass transition data are available (Zobrist et al., 2011).
The heterogeneous ice nucleation onset (RHhet) for sucrose
was obtained from ice nucleation experiments by Baustian
et al. (2013) and is shown as brown dashed lines in Fig. 2.
Here we use the ice saturation ratioSice as an indicator
of humidity because it scales with RH according toSice =

pliq,0(T )/pice(T ) · RH, but is also a more direct indicator of
the supersaturation of ice.pliq,0 and pice indicate here the
vapour pressures over pure supercooled water and over ice,
respectively.

Figure 2a shows results obtained with KM-GAP simulat-
ing the updraft of 100 nm sucrose particles for a wide range
of temperatures. Each simulated trajectory started at ice sat-
uration (Sice = 1), as is often the case for cloud chamber or
environmental cell experiments (Murray et al., 2010; Wang
et al., 2012). Temperature was decreased so that the resulting
humidification rate was constant at 1 % RH min−1, corre-
sponding to an atmospheric updraft of about 0.2 m s−1, typ-
ical of atmospheric gravity waves (Jensen et al., 2005). As
expected the FDRH of sucrose particles, indicated by the red
solid line, occurs significantly above RHg at all temperatures.
The intersection of RHhetwith RHg defines the upper temper-
ature limit for deposition nucleation. Below this temperature,
a sucrose particle is a glassy solid when RHhet is reached,
and hence deposition ice nucleation may occur. Above this
temperature, the particle is partially deliquesced when ap-
proaching RHhet and the glassy core of the particle may act
as an IN for immersion freezing. The upper limit of the im-
mersion freezing regime is given by the intersection of RHhet
with the FDRH line. Above this temperature, particles are al-
ready fully deliquesced once RHhet is reached. Hence, these
particles do not nucleate ice heterogeneously and freeze only
at the homogeneous ice nucleation limit (green dashed line;
Koop et al., 2000). Finally at∼ 232 K, the homogeneous ice
nucleation limit coincides with water saturation (solid black
line), and above this temperature the aerosol particles activate
into cloud droplets consisting of supercooled water, thus rep-
resenting the upper limit of the homogeneous ice nucleation
regime.

The delay between the nominal quasi-equilibrium glass
transition RHg and the actual full deliquescence at FDRH is
governed by the competition between the humidification rate
(synonymous to updraft velocity) and timescale for water
diffusion within the particle bulk. FDRH will shift towards
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Figure 2. (a) Simulated regimes of heterogeneous and homoge-
neous ice nucleation in the humidification of sucrose particles.
The red solid line indicates full deliquescence relative humidities
(FDRH) for 100 nm particles exposed to a humidification rate of
1 % RH min−1 (≈ 0.2 m s−1 atmospheric updraft). Example trajec-
tories start at ice saturation, follow a constant dew point line and
end at expected ice nucleation (hexagonal markers) with deposi-
tion (red), immersion (orange), and homogeneous (green) freezing.
(b) Effects of different particles sizes and humidification rates on
FDRH. The upper boundary for immersion freezing is extended to
high temperatures for large particle radii and high humidification
rates and is expected to occur up to 238 K for the most extreme sce-
nario (1 µm, 10 % RH min−1, purple solid line).(c) Application to
the experimental conditions in Baustian et al. (2013), i.e. 4 µm par-
ticles humidified at a rate of 1 % RH min−1, leads to FDRH that
is able to explain all observed experimental ice onsets (brown cir-
cles). The thermodynamic glass transition divides the experimental
data in events of deposition ice nucleation (closed circles) and im-
mersion freezing (open circles).

higher relative humidities when higher humidification rates
are employed, as shown in Fig. 2b. For example, increasing
the rate of humidification to 10 % RH min−1, a value corre-
sponding to an updraft velocity of about 2 m s−1 and com-
monly reached in convective updrafts (Jensen et al., 2005),
shifts the FDRH line upwards (solid dark blue line) and
thus its intersection with the RHhet line towards higher tem-
peratures. Accordingly, decreasing the updraft velocity to
0.02 m s−1, a value found in large-scale, synoptic updrafts
(Jensen et al., 2005), leads to an FDRH (solid light blue line)
much closer to the quasi-equilibrium glass transition RHg.
Moreover, an increase in particle size delays the deliques-
cence process (indicated by the solid purple line), since it
increases the timescale of diffusion. The range of the immer-
sion freezing regime thus strongly depends on ambient con-
ditions and is extended towards higher temperatures in fast
updrafts and for large particles.

Laboratory ice nucleation measurements with sucrose par-
ticles (Baustian et al., 2013) are used to validate our model
calculations of ice nucleation regimes in Fig. 2c. Baustian
et al. (2013) used optical microscopy in conjunction with a
cold stage to detect ice nucleation on glassy sucrose parti-
cles (4 µm diameter) during humidification (1 % RH min−1),
leading to the nucleation onsets shown in Fig. 2c (brown
markers). A range of simulations mimicking the experimen-
tal conditions at different starting temperatures leads to a
continuous FDRH curve (solid blue line) over the entire tem-
perature range. For details on the calculations see Appendix
B. The modelled FDRH curve correctly confines the region
below which heterogeneous ice nucleation is observed in
the experiments. Based on our calculations, the experimen-
tal data points below RHg (full brown circles) can be as-
signed to the deposition nucleation regime, whereas points
between RHg and FDRH (open brown circles) can be as-
signed to immersion freezing. Additional analyses for valida-
tion have been performed for other types of organic particles
(Appendix B, Figs. B1 and B2).

3.3 Biogenic and anthropogenic SOA

In order to apply our kinetic model to ice nucleation in SOA,
estimates ofDH2O in SOA material have been inferred. Four
major SOA precursors were chosen to represent biogenic and
anthropogenic origin, respectively:α-pinene and isoprene, as
well as naphthalene and dodecane. Each of these SOA is rep-
resented by a choice of marker compounds taken from the
literature (cf. Table S1). Water diffusivities are estimated us-
ing the scheme described in Sect. 2.2. The heterogeneous ice
nucleation onset (RHhet, brown dashed line) for SOA was ob-
tained from laboratory measurements by Wang et al. (2012)
and Schill et al. (2014) as derived in Fig. A1. Hygroscopici-
ties of the various SOA were taken from Lambe et al. (2011),
who suggested thatκorg can be parameterized independently
of SOA type as function of O/ C ratio. In all simulations,

Atmos. Chem. Phys., 14, 12513–12531, 2014 www.atmos-chem-phys.net/14/12513/2014/



T. Berkemeier et al.: Water uptake and ice nucleation by glassy organic aerosols 12519

gd9

gd8

gd7

gd6

gd5

gd4

gd3

gdB

gdg

gd=

Ic
eF

sa
tu

ra
tio

nF
ra

tio
FS

ic
e

F

TemperatureF,K%

WaterFsaturation

FullFDeliquescenceF,FDRH%
SOAFparticlesFestimate
,g==FnmhFgFHFRHCmin%

NaphthaleneFSOA
PineneFSOA
IsopreneFSOA
DodecaneFSOA

HomdFiceFnucleation

HetdFiceFnucleation

B5=B45B4=B35B3=BB5BB=Bg5Bg=B=5B==

do
de

ca
n

e

pi
ne

neis
op

re
ne

g

gdg

gdB

gd3

gd4

gd5

gd6

gd7

gd8

S
ic

e

B4=B3=BB=Bg=B==

TemperatureF,K%

g

gdg

gdB

gd3

gd4

gd5

gd6

gd7

gd8

S
ic

e

B4=B3=BB=Bg=B==

TemperatureF,K%

PineneFSOA DodecaneFSOA

O
CC

==d3

O
CC==d5

OCC==d7

O
CC

==d5

O
CC

==dg

O
CC

==d3

hetdFice
hetdFice

homdFice
homdFice

ageing ageing

B

A

C

na
ph

th
al

en
e

Figure 3. (a) Simulated humidification of SOA particles from the
four different precursorsα-pinene, isoprene, dodecane and naphtha-
lene. Naphthalene SOA (dark red) shows the latest deliquescence,
whereas dodecane SOA (light red) liquefied rather early in the simu-
lations. The two biogenic SOA estimates lie between both extremes
with pinene SOA (dark green) showing slightly later deliquescence
than isoprene SOA. Intercepts (square markers) with a heteroge-
neous nucleation onset typical of SOA (brown dashed line) indicate
upper temperature limits for immersion freezing (arrows onx axis).
The effect of particle ageing also depends on precursor type: pinene
SOA (b) shows hardening upon increase in O/ C (indicated by
higher FDRH), whereas dodecane SOA(c) exhibits softening (in-
dicated by lower FDRH). Similarly, isoprene and naphthalene SOA
show only moderate hardening and softening, respectively (Fig. S5).

particles of 100 nm diameter were humidified at a rate of 1 %
RH min−1.

Figure 3a shows the simulation results of FDRH for all
four precursor types. Naphthalene SOA is observed to fully
deliquesce last due to the high estimated glass transition tem-
perature and low hygroscopicity (cf. Table A1), followed by
α-pinene and isoprene. Dodecane SOA showed the earliest
deliquescence, reflecting the low glass transition tempera-
ture of pure dodecane SOA of∼ 210 K. By comparison of
FDRH with measured RHheton SOA, compound-specific up-
per temperature limits for heterogeneous ice nucleation on
SOA particles can be determined (arrows onx axis, values

are given in Table S2). Uncertainty estimates for FDRH and
RHg of all four precursors classes are given in Fig. S4.

For the calculations in Fig. 3a, we chose an average ox-
idation state typically observed for SOA from the respec-
tive precursor. The atomic oxygen to carbon ratio (O/ C) in-
creases upon chemical ageing, thereby affecting hygroscop-
icity (Lambe et al., 2011) and glass transition temperature
(Fig. A2). The resulting effects of chemical ageing on mod-
elled FDRH are shown forα-pinene and dodecane SOA as
examples in Fig. 3b and c, respectively. Forα-pinene SOA
(Fig. 3b), a higher O/ C results in hardening of the organic
material with ageing, leading to an FDRH increase, whereas
for dodecane SOA (Fig. 3c) a higher O/ C results in soft-
ening, thus leading to earlier deliquescence and an FDRH
decrease.

The observed effects can be explained by the competi-
tion between a simultaneous increase of hygroscopicity with
O/ C and an increasing glass transition temperature of the
pure organic matrix due to stronger molecular interactions
in the highly oxidized organic material. A higher glass tran-
sition value enhances the rigidness of the pure organic ma-
trix, whereas a higher hygroscopicity enhances the amount
of water taken up by the aqueous organic mixture at a given
humidity and thus its plasticizing effect.

Figure 4 illustrates this competition by displaying esti-
mated characteristic timescales of water diffusion in 100 nm
diameter SOA particles at 220 K as a function of hygroscop-
icity (κorg) and glass transition temperature of the pure or-
ganic matrix (Tg,org). Dotted contour lines show characteris-
tic mass transport times associated with the diffusion coeffi-
cientDH2O (Shiraiwa et al., 2011). Coloured oval shapes in-
dicate estimated ranges ofκorg andTg,org for the four SOA
precursor classes, for three different oxidation states each
(cf. Table A1). The arrows pointing from the lowest to the
highest oxidation state reveal that bothκorg and Tg,org in-
crease with O/ C. The slope of these arrows when com-
pared to the slope of the contour lines indicates whether a
compound undergoes hardening (steeper slope of arrow) or
softening (shallower slope of arrow) during the ageing pro-
cess. Apparently, both biogenic SOA types undergo harden-
ing upon ageing, whereas the two anthropogenic SOA types
undergo softening, with the strongest effects for pinene and
dodecane SOA.

The area between 1 s and 1 h represents the timescale of
atmospheric updraft processes. For SOA in this range, dif-
fusion processes occur on the same timescales as typical air
parcel updrafts, and the predominant cloud formation pro-
cess depends strongly on atmospheric conditions. All four
SOA types fall within or beneath this range, indicating the
importance of the actual updraft velocity for ice nucleation
on glassy aerosol particles. But it is also obvious that SOA
particles from naphthalene are most likely to be subject to
kinetic effects and may thus preferably act as IN.
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Figure 4. Characteristic timescales of water diffusion in SOA as a function of hygroscopicity,κorg, and glass transition temperatures of the
pure organic matrix,Tg,org. Calculations have been performed at 220 K,Sice = 1.45 and for 100 nm particles. Oval shapes confine estimated
ranges inκorg andTg,org for the four SOA types in three different oxidation states (Appendix A and Table A1). The grey area indicates the
timescale of typical atmospheric updrafts (1 s to 1 h) and thus divides the plot into areas of quasi-equilibrium and non-equilibrium water
diffusion. Within the grey area, the relative speed of both processes depends upon the actual atmospheric conditions. The ageing process is
indicated by arrows pointing from regions of low O/ C to regions of high O/ C.

3.4 Model uncertainties

The model results presented in this study are subject to vari-
ous types of uncertainty. Among these are uncertainties aris-
ing from model assumptions such as the validity of first-order
Fickian diffusion and the applied schemes for bulk mixing
and surface softening (Sects. 2.1.2 and 2.1.3). At present
there is a lack of fundamental chemical and physical knowl-
edge for describing these processes in aqueous binary or mul-
ticomponent systems. We note, however, that the approach
taken here is in agreement with the sparse data on water dif-
fusivities in aqueous organic systems (Zobrist et al., 2011;
Shiraiwa et al., 2013b; Lienhard et al., 2014; Price et al.,
2014). Model results obtained for aqueous sucrose (Fig. 2)
are expected to be reliable because the thermodynamic and
kinetic parameters of this benchmark system are well studied
and agree within the literature (e.g. Zobrist et al., 2011; Price
et al., 2014); on the other hand, model results obtained for
SOA (Fig. 3) are subject to larger uncertainties as detailed in
the following.

The model neglects liquid–liquid phase separation in the
aqueous organic phase (You et al., 2014) by assuming that
all SOA components are miscible with water over the entire
concentration and temperature range. We note that, for SOA
types that typically show only low O/ C ratios (e.g. SOA
from long-chain aliphatic precursors such as dodecane), in-

soluble fractions may become important for ice nucleation
(see discussion in Sect. B2).

Volatilization of organic material has not been included
in the calculations presented above since vapour pressures
of typical SOA marker compounds are low under the low
temperature conditions employed in this study (Huisman et
al., 2013; O’Meara et al., 2014).

Self-diffusion of SOA material has been neglected as dif-
fusion timescales of large organic molecules exceed those of
small guest molecules in the SOA matrix by orders of mag-
nitudes (Koop et al., 2011; Shiraiwa et al., 2011).

Minor model uncertainty comes from parameters deter-
mining the volume concentration of organic molecules at a
given organic mass fraction, i.e. average molar massMorg
of the organics and density of the aqueous organic mixture
(cf. Table S3). Variation by 100 g mol−1 in Morg showed no
effect on model results; varyingρorg by 0.1 g cm−3 showed
only a slight influence on aerosol deliquescence humidity on
the order of 1 % RH.

The arguably largest source of uncertainty is insuffi-
cient knowledge of the thermodynamic input parameters re-
quired for the diffusivity estimation scheme (κorg, Tg,org, kGT,
cf. Appendix A). In addition to the general assumptions made
in that scheme and the uncertainties in the sucrose parame-
terization used within the diffusivity estimation scheme, un-
certainties in input parameters propagate into an uncertainty
in DH2O, which we assess in Figs. S4 and S6. Figure S4
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shows the uncertainty for each specific SOA precursor and
a particular O/ C ratio by propagating the maximum devi-
ation estimates inκorg andTg,org given in Table A1. Figure
S6 shows the full uncertainty towards single model input pa-
rameters irrespective of precursor or oxidation state. Among
these,κorg seems to be the largest source of uncertainty as
the model results are sensitive towardsκorg and its numerical
value is subject to a rather large variability for atmospheri-
cally relevant organic substances (Koop et al., 2011; Lambe
et al., 2011; Rickards et al., 2013). Due to a lack of consis-
tent experimental data, a constantκorg is used in this study
to parameterize hygroscopicity over the entire concentration
and temperature range.

Laboratory experiments that directly probe diffusivity
within SOA at room temperature and also at low temper-
ature are highly desirable, as have been done for sucrose
and a few other single-compound proxies (Tong et al., 2011;
Zobrist et al., 2011; Bones et al., 2012; Lienhard et al.,
2014; Price et al., 2014). Moreover, experiment-based wa-
ter activity parameterizations over a large temperature range
are needed, because at least some water-soluble organic
oligomers/polymers show a strong temperature dependence
of water activity for aqueous mixtures of constant composi-
tion (Zobrist et al., 2003). Such improvements would reduce
the model uncertainty in future modelling studies substan-
tially.

Another type of uncertainty arises from uncertainty in het-
erogeneous ice nucleation onsets. To date, little is known
about the exact microphysical mechanism by which amor-
phous organics nucleate ice heterogeneously (Wagner et al.,
2012; Marcolli, 2014; Schill et al., 2014). Reported ice nu-
cleation onsets of glassy particles span wide ranges and are
most likely substance or substance class-specific (Wilson et
al., 2012; Schill et al., 2014). Thus, further laboratory exper-
iments are needed that reveal details on the ice nucleation
mechanism and that allow predictions of ice nucleation abil-
ity for a wide variety of substances.

4 Atmospheric implications of glassy organic IN

Organic aerosols can induce cloud formation via many differ-
ent pathways depending on ambient conditions and compo-
sition. At high temperature and high humidity, liquid organic
particles can act as cloud condensation nuclei (CCN). At
lower temperatures, they facilitate formation of ice crystals.
Figure 5 summarizes how the phase state and morphology of
atmospheric organic aerosol particles may vary upon changes
in ambient relative humidity (humidity-induced phase tran-
sitions). Upon humidifying, the phase state changes from
amorphous solid (glassy) over a partially deliquesced state
with a solid core residual coated by a liquid shell to a fully
deliquesced liquid. Upon drying, the transition may occur via
an inverse core-shell morphology, i.e. a liquid coated by a
solid shell. Consequently, the particle phase state determines
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Figure 5. Overview of processes in organic aerosol particles af-
fecting atmospheric cloud formation. Particles form by oxidation
of volatile organic compounds (VOCs) originating from anthro-
pogenic and biogenic emissions. The dominating cloud formation
process depends on particle phase state, which is a function of tem-
perature and humidity. Humidity-induced phase transitions between
phase states may be kinetically limited and occur under formation of
partially deliquesced particles with core-shell morphologies. Glassy
or partially deliquesced particles are able to undergo heterogeneous
ice nucleation, occurring at lower relative humidity or higher tem-
perature than homogeneous ice nucleation of liquid particles.

the active ice nucleation pathway: glassy solids can nucle-
ate ice in the deposition mode, partially deliquesced particles
with core-shell morphologies may act as IN in the immer-
sion mode and liquid particles nucleate ice homogeneously,
at significantly higher ice supersaturation.

From the SOA types investigated in this study, aromatic
SOA or highly agedα-pinene SOA may persist in a glassy
state to the highest temperatures and humidities and may thus
facilitate heterogeneous ice nucleation at temperatures of up
to 225 K. Below 210 K, SOA particles from all precursors
are expected to be in the glassy state required for heteroge-
neous ice nucleation. Our microphysical simulations suggest
a potential anthropogenic influence of IN from emission of
aromatic VOCs and by providing high oxidative capacities
in urban areas leading to an increase of ice nucleation in and
on glassy organic particles.

Compared to typical atmospheric IN such as dust, soot
and biological particles, glassy organic particles require tem-
peratures below∼ 230 K to nucleate ice heterogeneously
(Hoose and Möhler, 2012). This restriction confines their
atmospheric activity range to the upper troposphere–lower
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stratosphere region. Our simulations confirm that the glassy
state is prevalent only up to temperatures of about 200–240 K
under typical atmospheric humidities (Sice ≈1), depending
on composition.

In this study we show a strong interplay between diffu-
sion timescales in the atmosphere and atmospheric updraft
speeds: the stronger the updraft and the larger the particle
size, the more kinetic limitations delay the liquefaction of
glassy particles. These findings also imply that an ice nu-
cleation onset determined in laboratory studies needs to be
interpreted carefully in order to apply it to realistic atmo-
spheric parameters, i.e. humidification rate, particle size and
starting humidity. Kinetic limitations are already pronounced
at the smallest atmospherically relevant updraft velocities
of 0.02 m s−1. When humidification is fast (e.g. in convec-
tive updrafts), the glassy state may persist well above its
quasi-equilibrium boundaries. Our simulations on sucrose
and SOA particles suggest a shift of the humidity-induced
glass transition to higher temperatures by about 5 K when
updraft velocities are increased by a factor of 10. Also, the
history of an organic particle has effects on its water uptake
properties: particles that were equilibrated at lower humid-
ity are expected to deliquesce at higher ice supersaturation.
In situations where particles are both equilibrated in dry air
(Sice < 0.9) and elevated quickly, upper temperature limits
for immersion freezing on glassy organics might reach much
higher values than the conservative estimates given in this
study. Thus, also ice nucleation in mid-altitude clouds may
be affected by this heterogeneous ice nucleation pathway.

This study outlines the basic physico-chemical relations
and makes a first attempt in quantifying temperature lim-
its for heterogeneous ice nucleation by four generic types
of SOA, but further laboratory and modelling studies are
needed to provide a comprehensive set of parameterizations
to be used in atmospheric models. To assess the global im-
portance of ice nucleation by SOA particles and to quantify
the associated aerosol effects on climate, studies with large-
scale computational models are needed. As small-scale ki-
netic processes cannot be treated explicitly in these kinds of
models, parameterizations are required that include depen-
dencies on temperature, relative humidity, updraft velocity,
particle size and composition.
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Figure A1. Determination of heterogeneous ice nucleation onsets.
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Appendix A: Details on the estimation of bulk
diffusivities from glass transition and
hygroscopicity data

A1 Justification of the method

Even though the estimation scheme described in Sect. 2.2
represents a rather crude estimation of water diffusivities, it
builds on basic physical principals: in solutions of chemically
similar organic substances (like the mixture of highly func-
tionalized organic species in SOA), the types of molecular
interactions are mostly hydrogen bonds and dispersion inter-
actions, irrespective of the actual composition. Differences in
diffusive properties are to a substantial degree due to factors
such as molar mass and shape, both of which directly affect
the glass transition temperature (Koop et al., 2011). The way
by which the glass transition is approached is not affected
strongly by the SOA type, as all organic compounds rele-
vant for SOA arefragile glass formers (Angell, 1985). The
proposed method is consistent with the following previous
studies.

Rampp et al. (2000) used nuclear magnetic resonance
(NMR) spectroscopy to determine water diffusion coeffi-
cients in different carbohydrate matrices (sucrose, allosu-
crose, leucrose, trehalose) and fitted VFT parameters to the
temperature and concentration-dependent data sets. Overall,
similar VFT parametersA andB were found for these chem-
ically similar substances, even thoughDH2O seemed to de-
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Figure A2. Predicted glass transition values of SOA marker sub-
stances as a function of O/ C ratio. The predictedTg,org exhibits
a linear correlation with O/ C for each of the four SOA systems.
Solid lines are robust linear regressions using a bisquare weighting
function and shaded areas are confidence intervals at the 1σ level.
Anthropogenic aliphatic SOA constituents show the lowest values
of Tg,org and a weak dependence on O/ C. In contrast, aromatic
SOA shows the highest glass transition values despite a rather low
average O/ C ratio.

Table A1. Assumed physical properties of SOA classes for use in
conjunction with the diffusivity estimation scheme.

SOA Class O / C Tg,org (K) kGT κorg

0.3 228.9± 10.6 2.5 0.084± 0.012
α-Pinene 0.5 278.5± 7.0 2.5 0.120± 0.020

0.7 328.1± 12.8 2.5 0.156± 0.028

0.6 258.2± 22.2 2.5 0.138± 0.024
Isoprene 0.8 287.2± 11.9 2.5 0.174± 0.032

1.0 316.3± 19.1 2.5 0.210± 0.040

0.3 294.2± 5.7 2.5 0.084± 0.012
Naphthalene 0.5 313.1± 8.8 2.5 0.120± 0.020

0.7 332.0± 15.0 2.5 0.156± 0.028

0.1 210.3± 9.7 2.5 0.048± 0.004
Dodecane 0.3 216.8± 5.1 2.5 0.084± 0.012

0.5 223.4± 11.4 2.5 0.120± 0.020

Koop SOA – 270± 21 2.5± 1 0.1008+0.1008
−0.0504

pend strongly on organic mass fraction, thus supporting as-
sumptions 1 and 2 in Sect. 2.2. The observed concentration
dependence was described almost exclusively by a change in
T0, with only small trends inA and minor variation inB, pos-
sibly due to experimental error, thus supporting assumption
3 in Sect. 2.2.

Angell (1997) investigated the correlation of Kauzmann
temperaturesTk with Vogel temperaturesT0 and found their
ratio to be close to unity. The ratio ofTg toT0 has been shown
to be confined to a narrow range between 1.07< Tg/T0 <

1.82 for a wide variety of strongly different substances. This
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ratio seems to be correlated in magnitude to the substance’s
fragility (i.e. VFT parameterB), with high fragilities imply-
ing high Tg / T0 ratios. Conversely, the assumption of simi-
lar fragilities (assumption 2) directly points towards similar
Tg / T0 ratios (assumption 3). Accordingly, deducing Vogel
temperaturesT0 from glass transition properties seems rea-
sonable.

A2 Estimation of glass transition temperaturesTg,org

The proposed estimation scheme enables the prediction of
bulk diffusion coefficients only from knowledge of glass
transition values for the desired RH range. The glass tran-
sition curve can be described by three parameters: the glass
transition temperature of the pure molecular compound,
Tg,org; the Gordon–Taylor constant,kGT, of the aqueous or-
ganic mixture; and the hygroscopicity,κorg, for translating
composition into water activity.Tg,org exhibits a linear cor-
relation with melting point,Tm, also known as the Boyer–
Beaman rule (Koop et al., 2011).Tm can be estimated by
group contribution models with knowledge of the chemi-
cal structure. We use the melting point prediction model
of UPPER (Unified Physical Property Estimating Relation-
ships) as presented by Jain and Yalkowsky (2006) and Jain et
al. (2004).

Table S1 shows our choice of marker substances for four
different types of SOA along with molar mass, melting points
predicted with UPPER and predicted glass transition values
based on the Boyer–Beaman rule. The SOA groups were cho-
sen to include SOA from the most commonly studied pre-
cursors and are derived from one specified precursor sub-
stance each. The groups “α-pinene” and “isoprene” repre-
sent SOA from biogenic origin, whereas “naphthalene” and
“dodecane” are our choice for precursors of anthropogenic
origin.

The group “α-pinene” contains compounds characteristic
of photooxidation and ozonolysis of the biogenic SOA pre-
cursorα-pinene, which has been chosen as a proxy for the
different monoterpene VOCs responsible for biogenic SOA
formation. The list contains compounds with the highest
yields according to the MCM-based simulations of Shilling
et al. (2009) as well as those of Zuend and Seinfeld (2012),
who also included two dimer substances. Furthermore, we in-
cluded 3-MBTCA, a highly oxidized pinene derivative found
in ambient samples (Szmigielski et al., 2007) as well as ter-
penylic acid, a tracer for fresh SOA, along with two of its
derivatives (Claeys et al., 2009).

The group “isoprene” contains isoprene-derived com-
pounds found in ambient and laboratory aerosol as suggested
by Surratt et al. (2006) and references therein. These authors
also proposed a high contribution of esterification products
with 2-methylglyceric acid as monomeric unit to SOA mass.
Table S1 lists these oligomers up to the tetramer level, where
predicted glass transition values start to level off.

The group “naphthalene” represents typical products orig-
inating from the oxidation of anthropogenic aromatic pre-
cursors. Note that for highly functionalized aromatic com-
pounds, UPPER predicts unusually high values forTm, which
are inconsistent with observations. For example, phthalic
acid melts under decomposition (presumably anhydrate for-
mation) at 403 K (Lide, 2005), whereas UPPER suggests a
melting point of about 539 K. For this reason, we used only
those naphthalene oxidation products for which literature
melting points are known, such as the substances given in
Saukko et al. (2012) and a number of compounds listed in
Kautzman et al. (2010). Note that for the same reason we
did not include oligomerization products to the “naphtha-
lene” group. Oligomerization is however also expected for
aromatic SOA, shown e.g. by Kalberer et al. (2004), which
would lead to higherTg,org (Koop et al., 2011). For these rea-
sons, our estimates for aromatic SOA materials may be re-
garded as a conservative estimate.

The group “dodecane” in Table S1 lists oxidized organ-
ics derived from the C12 straight-chain alkanes to represent
the family of similar compounds originating from aliphatic
VOCs of anthropogenic origin. The list is a selection from
the comprehensive chemical mechanism in Yee et al. (2012)
and three compounds from those suggested by Zhang et
al. (2014).

The resulting glass transition values are presented in
Fig. A2 as a function of atomic O/ C ratio, and a clear
positive correlation is observed within each group of com-
pounds. Such a correlation betweenTg,org and O/ C has
been supported by recentTg measurements of mixtures of
α-pinene-derived oxidation compounds (Dette et al., 2014).
In Fig. A2, the solid lines are obtained by linear regres-
sions of the glass transition values using a bisquare weight-
ing function and shaded areas are confidence intervals at the
1σ level. The chosen marker compounds occupy compound-
specific ranges of O/ C values, which is in part due to a dif-
ferent carbon number in the precursor molecule. To estimate
a value characteristic for a mixture of the single compounds,
we choose three values of O/ C ratios that are typical of the
respective group and take at each of those values the cor-
respondingTg,org that arises from the linear fit. The errors
are then given by the extension of confidence bands at each
point. The results are shown in Table A1.

A3 Estimation of Gordon–Taylor constantskGT

Gordon–Taylor constants are necessary to estimate the glass
transition temperatures of compound mixtures. Zobrist et
al. (2008) determined Gordon–Taylor constants for a vari-
ety of atmospherically relevant substances and SOA proxies.
However, data are sparse when compared to the wide struc-
tural variety of compounds in SOA, and no clear correlation
can be drawn from the molecular structure. For this reason,
Koop et al. (2011) recommended the use of a mean Gordon–
Taylor constant ofkGT = 2.5± 1 (cf. Table A1). Figure S6
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shows the temperature dependence of FDRH in calculations
similar to Figs. 2 and 3, this time using the best guess pa-
rameters recommended in Koop et al. (2011). The uncer-
tainty in FDRH that arises from the given input parameter
ranges is shown (grey shaded), and also the specific uncer-
tainty from varyingkGT between 1.5 and 3.5 is highlighted
(orange shaded).

A4 Estimation of hygroscopicitiesκorg

The hygroscopicity of a compound can be expressed by a
single parameterκorg, which is strongly correlated to its de-
gree of oxidation (Petters and Kreidenweis, 2007; Lambe et
al., 2011). A typical value forκorg in biogenic SOA particles
collected in pristine rainforest environments is 0.1 (Gunthe
et al., 2009), which was also used by Koop et al. (2011) for
their estimation of glass transition values in biogenic SOA.

For estimation ofκorg, we use the parameterization of
Lambe et al. (2011) that correlates the O/ C ratio of sec-
ondary organic material to its hygroscopicity, Eq. (A1).

κorg = (0.18± 0.04) · O / C+ 0.03. (A1)

Each SOA precursor class is assigned a typical O/ C value
from previous investigations of marker compounds (cf. Fig
A2), and results are shown in Table A1. With the knowl-
edge ofTg,org, kGT andκorg, the entire glass transition curves
for the four SOA types can be calculated, as visualized in
Fig. S4. Dashed lines and grey shaded areas indicate ranges
of uncertainty.

A5 Evaluation of the method

For evaluation of the performance of the diffusivity estima-
tion scheme, we compare estimated diffusivity values with
values obtained in experiments by Price et al. (2014). In
these experiments, D2O–H2O exchange in an organic matrix
at constant temperature and humidity is investigated by Ra-
man spectroscopy. Figure S3 shows the experimentally deter-
minedDH2O values for sucrose and levoglucosan in Price et
al., (2014) (blue and red markers) as well as theDH2O param-
eterization from Zobrist et al. (2011) (blue solid line).DH2O
in levoglucosan has also been estimated with the diffusivity
estimation scheme (red solid line), using input parameters
from Zobrist et al. (2008) (Tg,org= 283.6 K,kGT = 5.2). Wa-
ter activity has been parameterized using the parameters in
Table S4. Experimental and estimated values coincide for the
highest and lowest water activities but differ under medium
conditions due to the different curvature of the base param-
eterization from Zobrist et al. (2011) that underlies all cal-
culations. However, diffusivities differ only within at most 2
orders of magnitude, which is a considerably small deviation
compared to the large set of approximations made here and
the difference between experimental techniques.

Figure S3 also shows the ranges of estimated diffusivity
coefficientsDH2O for two types ofα-pinene SOA: freshα-
pinene SOA (O/ C = 0.3, orange dashed line) and agedα-
pinene SOA (O/ C= 0.7, green dashed line). Dark shadings
confined by dotted lines indicate the range of uncertainty at
a fixed O/ C, corresponding to the input uncertainties used
for Fig. S4. Light shadings illustrate how an uncertainty in
O/ C of ±0.1 translates into uncertainty inDH2O and thus
accounts for the natural variability within SOA as complex
mixture.
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Figure B1. Comparison between calculation results of naphthalene
SOA deliquescence and experimental ice nucleation and water up-
take data from Wang et al. (2012). For the numerical simulations,
aerosol particles are assumed to be 1 µm in diameter and are humid-
ified at a rate of 1 % RH min−1, corresponding to a cooling rate of
about 0.1 K min−1 as used by Wang et al. (2012).

Appendix B: Application of the model to ice nucleation
experiments in the literature

B1 Sucrose experiments

Baustian et al. (2013) investigated sucrose particles deposited
on a quartz substrate and humidified inside an experimental
flow cell. After cooling and drying below the glass transition,
particles with an average diameter of 4 µm were humidified
by cooling at a rate of 0.1 K min−1. Humidification was ini-
tialized below ice saturation (Sice < 0.9). The resulting het-
erogeneous ice nucleation onsets (brown circles) are shown
in Fig. 2c along with the full deliquescence relative humidity
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Figure B2. Comparison between calculation results of citric acid
aerosol deliquescence (orange lines) and experimental ice nucle-
ation data from Murray et al. (2010) (orange diamonds, green cir-
cles). In the numerical simulations, 150 nm diameter aerosol par-
ticles are humidified at a rate of 12 % RH min−1, corresponding
to a cooling rate of around 1–2 K min−1 typical of cloud cham-
ber experiments. Black lines and shaded areas confine the region
where a glass is the favoured thermodynamic state. The dashed lines
were obtained using the water activity parameterization provided by
Lienhard et al. (2012), whereas the solid lines were obtained with
the parameterization in Koop et al. (2011).

(FDRH, blue solid line) from multiple model runs (spacing:
2 K) mimicking the experimental conditions. Simulations be-
low 215 K (left black square marker) are found to nucleate in
the deposition mode, whereas particles in runs between about
215 K and 238 K (right black square marker) are assumed to
undergo immersion freezing. This result is compliant with
the experimental values, none of which exceeds a nucle-
ation temperature of 235 K. Above 238 K full deliquescence
occurs before the ice supersaturation required for heteroge-
neous ice nucleation (brown dashed line) is reached. Also,
homogeneous ice nucleation is not possible anymore below
the water saturation limit according to Koop et al. (2000;
green dashed line), leaving no remaining ice nucleation path-
way.

B2 Naphthalene SOA experiments

Wang et al. (2012) generated SOA by oxidation of naphtha-
lene by OH in a potential aerosol mass (PAM) reactor, de-
posited the particles on glass slides and investigated the on-
sets of water uptake and ice nucleation inside an ice nucle-
ation cell that was mounted on a microscope. Experimental
results are shown in Fig. B1 for three different SOA oxi-
dation states: low O/ C (0.27) given in red, medium O/ C
(0.54) in green and high O/ C (1.0) in blue. For the compar-
ing model simulations, we employ our diffusivity estimation
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scheme with the glass transition parameterization for naph-
thalene given above. A humidification rate of 1 % RH min−1

was employed and temperature varied accordingly to main-
tain a constant dew point. In Fig. B1, the lines of full del-
iquescence relative humidity (FDRH) divide the measured
heterogeneous ice nucleation onsets into two groups, irre-
spective of the degree of oxidation used in the simulation.
Heterogeneous nucleation at or below 225 K is consistent
with simulation results (closed diamonds), whereas ice nu-
cleation at or above 230 K cannot be explained with the es-
timated water diffusion properties (open diamonds). Accord-
ing to the model simulation, naphthalene SOA should be
already deliquesced at temperatures and RH where ice nu-
cleation is still experimentally observed. The model simu-
lations thus suggest that solid compounds that remained in
the otherwise fully deliquesced particle, possibly insoluble
products from naphthalene OH oxidation, nucleated ice het-
erogeneously with lower efficiency. Such insoluble products
are not considered in the model.

The reliability of the method is confirmed by comparing
experimental and modelled water uptake onsets that show
very good correlation. The modelled water uptake onset was
defined as the point where the particle diameter had increased
by 100 nm to take into account the fact that experimental on-
sets were determined by visible inspection under a light mi-
croscope.

B3 Citric acid experiments

Murray et al. (2010) observed the process of heterogeneous
ice nucleation on glassy aerosol particles by investigating cit-
ric acid particles in the AIDA cloud chamber. The exper-
imentally determined onsets of heterogeneous (orange dia-
monds) and homogeneous ice nucleation (green circles) are
shown in Fig. B2 along with results of simulations mimick-
ing the experimental conditions. In the calculations, we as-
sumed a particle diameter of 150 nm and a humidification
rate of 12 % RH min−1, corresponding to a cooling rate of
1–2 K min−1. Humidification was initiated atSice = 1 since
the cloud chamber walls were covered with ice during the ini-
tial cooling process. We performed two series of simulations
for two different water activity parameterizations available
in the literature. According to the parameterization in Lien-
hard et al. (2012) (dashed lines), heterogeneous nucleation
occurs exclusively above the (equilibrium) glass transition
relative humidity RHg and thus in the immersion freezing
regime. With the parameterization from Koop et al. (2011)
(solid lines), equilibrium glass transition and full deliques-
cence occur at later stages in the humidification process. Ac-
cording to this data, only the experimental data point at about
206 K would have occurred in the immersion mode.

At 212 K, ice nucleation occurs only homogeneously in
Murray’s experiments, indicated by the much later ice nu-
cleation onset. The humidification run started with liquid
aerosol particles that showed retarded deliquescence, but
were not able to nucleate ice heterogeneously.
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