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Abstract. Diurnal and seasonal variations of gaseous sulfuric

acid (H2SO4) and methane sulfonic acid (MSA) were mea-

sured in NE Atlantic air at the Mace Head atmospheric re-

search station during the years 2010 and 2011. The measure-

ments utilized selected-ion chemical ionization mass spec-

trometry (SI/CIMS) with a detection limit for both com-

pounds of 4.3× 104 cm−3 at 5 min signal integration. The

H2SO4 and MSA gas-phase concentrations were analyzed

in conjunction with the condensational sink for both com-

pounds derived from 3 nm to 10 µm (aerodynamic diame-

ter) aerosol size distributions. Accommodation coefficients

of 1.0 for H2SO4 and 0.12 for MSA were assumed, lead-

ing to estimated atmospheric lifetimes on the order of 7

and 25 min, respectively. With the SI/CIMS instrument in

OH measurement mode alternating between OH signal and

background (non-OH) signal, evidence was obtained for the

presence of one or more unknown oxidants of SO2 in ad-

dition to OH. Depending on the nature of the oxidant(s),

its ambient concentration may be enhanced in the CIMS in-

let system by additional production. The apparent unknown

SO2 oxidant was additionally confirmed by direct measure-

ments of SO2 in conjunction with calculated H2SO4 concen-

trations. The calculated H2SO4 concentrations were consis-

tently lower than the measured concentrations by a factor

of 4.7± 2.4 when considering the oxidation of SO2 by OH

as the only source of H2SO4. Both the OH and the back-

ground signal were also observed to increase significantly

during daytime aerosol nucleation events, independent of the

ozone photolysis frequency, J (O1D), and were followed by

peaks in both H2SO4 and MSA concentrations. This suggests

a strong relation between the unknown oxidant(s), OH chem-

istry, and the atmospheric photolysis and photooxidation of

biogenic iodine compounds. As to the identity of the atmo-

spheric SO2 oxidant(s), we have been able to exclude ClO,

BrO, IO, and OIO as possible candidates based on ab initio

calculations. Nevertheless, IO could contribute significantly

to the observed CIMS background signal. A detailed analy-

sis of this CIMS background signal in context with recently

published kinetic data currently suggests that Criegee inter-

mediates (CIs) produced from ozonolysis of alkenes play no

significant role for SO2 oxidation in the marine atmosphere

at Mace Head. On the other hand, SO2 oxidation by small CIs

such as CH2OO produced photolytically or possibly in the

photochemical degradation of methane is consistent with our

observations. In addition, H2SO4 formation from dimethyl

sulfide oxidation via SO3 as an intermediate instead of SO2

also appears to be a viable explanation. Both pathways need

to be further explored.

1 Introduction

It has been well established that homogeneous oxidation of

tropospheric gases is generally dominated by reactions with

the hydroxyl (OH) radical during daylight hours and – in re-

gions with significant nitrogen oxide (NOx) concentrations

– with the nitrate (NO3) radical in the absence of sunlight

(Stone et al., 2012). Reactions of molecular oxygen, ozone,
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or peroxy radicals such as HO2 and RO2 (R: organic rest

molecule) are comparatively slow, with a few exceptions,

such as NO+HO2, which recycles OH (e.g., Atkinson et al.,

2004). Heterogeneous oxidation (on the surface of aerosol

particles and in cloud and fog droplets) is dominated by re-

actions with either dissolved ozone, hydrogen peroxide, or

molecular oxygen, the latter pathway being catalyzed by

transition metal ions (Harris et al., 2013; Berresheim and

Jaeschke, 1986). However, recent studies have revived an in-

terest in the formation and fate of atmospheric Criegee inter-

mediates (radical species produced from reactions of ozone

with alkenes; Calvert et al., 2000; Criegee, 1975), which to

this day have eluded direct measurements in the atmosphere

since Cox and Penkett (1971) first suggested their potentially

important role. Field and laboratory measurements (Berndt

et al., 2012, 2014; Stone et al., 2014; Taatjes et al., 2014;

Mauldin III et al., 2012; Welz et al., 2012) as well as the-

oretical and modeling studies (Sarwar et al., 2014; Boy et

al., 2013; Vereecken et al., 2012) now suggest that the reac-

tivity of these types of radicals towards compounds such as

SO2 may have been underestimated by at least 2 orders of

magnitude. Therefore, in addition to OH – or possibly even

rivalling OH chemistry – Criegee intermediates may, under

certain conditions, be significant contributors to atmospheric

sulfuric acid formation and the production of hygroscopic

sulfate particles, which can be activated as cloud condensa-

tion nuclei (CCN).

Selected-ion chemical ionization mass spectrometry

(SI/CIMS) has been pioneered by Eisele and coworkers

(Tanner and Eisele, 1995; Eisele and Tanner, 1991, 1993;

Eisele and Berresheim, 1992) for high-time-resolution mea-

surements of OH, H2SO4, MSA(g) (gaseous methane sul-

fonic acid), and other compounds in the troposphere. A large

number of field studies both on the ground and from the

air have been successfully conducted using this technique

and have significantly improved our understanding of tropo-

spheric chemistry (e.g., Stone et al., 2012; Huey, 2007; Heard

and Pilling, 2003). In some of these studies it has already

been conjectured that SI/CIMS may also provide information

about the presence of atmospheric oxidants other than OH

by analyzing the background signal recordings obtained in

the OH measurement mode. Specifically, the identity of this

“background X oxidant(s)” was speculated to be Criegee in-

termediates because of their observed reactivity towards SO2

in the measurement system (e.g., Berresheim et al., 2002).

In the present paper we have analyzed 2 years of SI/CIMS

measurements made at Mace Head, Ireland, for significant

occurrences of such background signals indicating the pres-

ence of one or more unknown SO2 oxidants in coastal air

which could contribute to H2SO4 formation (in addition to

OH) during day- and nighttime. Furthermore, balance calcu-

lations of ambient H2SO4 levels using measured SO2, OH,

and aerosol particle concentrations have been compared with

measured H2SO4 levels. This allowed us to approximate cor-

responding contributions to ambient H2SO4 levels from oxi-
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Figure 1. Principle scheme of SI/CIMS components including air

inlet (modified from R. L. Mauldin III, personal communication,

2012). Inset shows details of the atmospheric pressure region, with

reagent gas flows indicated for measurement of OH background sig-

nal (both 34SO2 and C3H8 are added to the sample air through the

two front injectors; see text). Laminar flow conditions with a cen-

tral flow axis velocity of 0.71 m s−1 in both the sample and ion-

ization tubes are generated by a 12 slpm sample flow, 58 slpm total

flow (i.e., sample flow plus sheath flow, the latter indicated here by

addition of an Air/HNO3 mixture), and the geometries of the sam-

ple tube (diameter 1.9 cm) and ionization tube (diameter 4.2 cm).

The time needed (in each case starting at the first injector) to reach

the second injector is 73 ms, to the entrance of the ionization re-

gion 115 ms, and to the aperture in front of the mass spectrometer

450 ms.

dation of SO2 by oxidants other than OH and estimate their

relative importance with respect to OH reactivity.

2 Experimental

A principle scheme of the Mace Head CIMS instrument and

its operation is shown in Fig. 1. Similar to previously de-

scribed systems (Berresheim et al., 2000, 2013; Mauldin III

et al., 1998, 2012), the aerodynamically shaped main air

inlet extrudes retractably through the wall of the building,

here towards the open ocean, with a marine wind sector of

190–300◦. In the following text, “marine sector” data in-

clude only the subset of data consistent with the marine wind

sector, NO levels < 50 pptv, and/or black carbon concentra-
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tions < 50 ng m−3. From the main air flow (approximately

2.5 m3 h−1) the central region is sampled at 12 slpm through

a 1.9 cm diameter sample flow tube. Two pairs of oppositely

arranged capillary stainless steel injectors (the front pair sit-

ting upflow, the rear pair downflow at 5.2 cm distance from

each other) protrude into the sample flow tube. Depending

on the operational mode (OH signal measurement, OH back-

ground measurement, or H2SO4 and MSA(g) measurement)

selected flows of SO2, propane (C3H8), and N2 (as makeup

gas) are added through the injectors to the sample flow.

For measuring an OH signal, isotopically heavy 34SO2

(98.8 %, Eurisotop, Saint-Aubin, France) is introduced

through the front injectors and mixed into the sample air flow,

resulting in a SO2 mixing ratio of approximately 8 ppmv.

At this setting, the OH lifetime (1/e definition) in the sam-

ple flow is 6 ms. The ambient OH concentration introduced

into the CIMS system is completely converted to H34
2 SO4 by

its reaction with 34SO2 within the available reaction time of

τreac,OH= 78 ms before reaching the rear injectors. Approxi-

mately 1 % of the resulting product, H34
2 SO4, is converted via

chemical ionization at atmospheric pressure by NO−3 reactant

ions into H34SO−4 product ions, which are then focused and

guided by electrical potentials (along with remaining NO−3
ions) through an 80 µm aperture into the vacuum mass spec-

trometry region. The reactant ions are produced in a sheath

flow of purified ambient air with added HNO3 passing by

a radioactive 241Am alpha emitter (activity: 4.1 MBq; Eck-

ert & Ziegler, Berlin, Germany). Detection of the H34SO−4
signal at m/z 99 following quadrupole mass filtering yields

the equivalent concentration of OH in ambient air. With the

same method of ionization applied, ambient sulfuric acid

(H2SO4) and methane sulfonic acid (CH3SO3H), in which

sulfur occurs as 32S at a fraction of 0.95 (Krouse and Gri-

nenko, 1991), are detected at m/z 97 and m/z 95, respec-

tively. Time resolution for measuring all three masses is typ-

ically 30 s. In general, measurement signals are integrated to

5 min with corresponding detection limits of 1.3× 105 cm−3

for OH and 4.3× 104 cm−3 for both H2SO4 and MSA(g), re-

spectively (Berresheim et al., 2013; Mauldin III et al., 1998).

Further details including calibration procedures can be found

in Berresheim et al. (2000). The operational cycle of the

CIMS instrument was typically set to measure ambient OH

and H2SO4 for 5 min during each half hour, followed by

25 min measurements of ambient H2SO4 and MSA(g).

Propane (99.95 %, Air Liquide, UK) is introduced into the

sample flow through the rear injectors (establishing a mix-

ing ratio of approximately 430 ppmv in the sample flow) to

scavenge any OH which might be recycled from peroxy radi-

cals via reaction with nitric oxide, NO. On average, nighttime

OH measurements showed no statistical difference between

the background signal and the OH signal, suggesting any

potential interference by trace contaminants in the propane

to be negligible. Due to similar rate constants for SO2 and

propane with respect to their reaction with OH (both ca.

1× 10−12 cm3 s−1 at 298 K; Atkinson et al., 2004), any (re-

cycled) OH molecules are completely scavenged by propane

instead of SO2 from this point, i.e., downflow from the rear

injectors. Due to the very low NO mixing ratios in marine air

at Mace Head (Berresheim et al., 2013), contributions to the

measurement signal from the recycling of OH are expected

to be negligible.

The background (BG) signal in the OH measurement

mode is evaluated by switching the propane flow from

the rear to the front injectors. This prevents formation of

H34SO−4 ions resulting from 34SO2+OH reaction in the

system. Theoretically, any background counts observed at

m/z 99 under these conditions should only reflect the 4.2 %

fraction of 34S occurring in ambient H2SO4. If a significantly

higher BG count is observed, this might indicate the presence

of a compound with stronger electron affinity than HNO3

ending up as a product ion at m/z 99. However, experiments

conducted without 34SO2 in the system never showed any ev-

idence for the existence of such a compound. Therefore, ob-

servations of significant BG signals (above the ambient 4.2 %

H34SO−4 signal) suggested the presence of one or more un-

known oxidants (X oxidants) converting 34SO2 to H34
2 SO4 in

the CIMS system without appreciably reacting with propane.

Indeed, this interpretation was corroborated by stopping the

SO2 injection to the sample flow and observing a correspond-

ing reduction in the m/z 99 BG signal. Furthermore, with

SO2 in the system, the propane flow through the front injec-

tor was successively increased from relatively low values up

to the operational setting for measuring the BG signal. Be-

fore reaching this setting the signal was found to tail off to a

background level corresponding to the complete removal of

OH. Increasing the propane flow did not further alter the BG

signal. Also, no significant BG signal was observed during

calibration runs, in which OH concentrations on the order of

107–108 cm−3 were produced from UV photolysis of water

vapor in ambient sample air, thus further corroborating the

absence of any artifact process contributing to this signal.

The total reaction time, τreac,X, available to this unknown

X oxidant to react with SO2 in the system forming H2SO4

is the time starting when a unit volume of the sample flow

passes the position of the first injector pairs until it reaches

the end of the atmospheric pressure ionization region, i.e.,

the 80 µm aperture (see Fig. 1). That time in our system cor-

responds to 0.45 s, or approximately half a second, which is

about 6 times longer than τreac,OH. Therefore, the relative im-

portance of X in comparison to the atmospheric SO2 oxi-

dation efficiency of OH may have to be downscaled depen-

dent on the properties of X and its potential formation and/or

regeneration during the reaction time. Moreover, the atmo-

spheric importance of X further depends on the X+SO2 rate

constant. This will be examined in detail in the following

section.

Photolysis frequencies of ozone, J (O1D), and of nitro-

gen dioxide, J (NO2), were measured starting in September
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Figure 2. Midday (10:00–14:00 UTC) maximum H2SO4 and

MSA(g) concentrations in marine air at Mace Head, averaged for

each month (total measurement period: May 2010–August 2012).

Vertical bars denote standard deviations.

2010 on top of a 10 m tower next to the laboratory build-

ing. Both were exchanged with recalibrated systems on a

semiannual basis. Details of the measurement principles and

performance of the radiometers have been given by Bohn et

al. (2008). SO2 was measured in May–August 2011 with a

Thermo Systems 43i instrument using a heated sample in-

let Teflon tubing (40 ◦C) to avoid SO2 losses due to water

condensate. Based on a cycle of 30 min signal and 30 min

zero measurements (with an added active charcoal filter), we

calculated a 2σ detection limit of 25 pptv for 1 h time inte-

gration.

3 Results and discussion

3.1 Seasonal cycles and atmospheric lifetimes of H2SO4

and MSA(g)

Figure 2 shows the mean seasonal cycle of the daily

maximum H2SO4 concentration in the marine sector at

Mace Head, which typically occurred between 10:00 and

14:00 UTC, depending on cloud cover. In general, H2SO4

showed a clear diel variation closely correlated with the OH

concentration (Fig. 3, top). The reason for this correlation

was the relatively homogeneous mixing ratio of the major

precursor, SO2, in the marine atmosphere, as shown for a

3-month period in Fig. 4 (top), and the relatively short life-

time of H2SO4 caused by uptake onto aerosol surfaces. This

so-called condensational sink (CS) also showed low variabil-

ity on most days (Fig. 4, bottom). The mean SO2 mixing

ratio in the open ocean sector was 160 (± 50) pptv during

these summer months. The average atmospheric lifetime of

H2SO4 with respect to CS was estimated from scanning mo-

bility particle sizer (SMPS) and aerodynamic particle sizer

(APS) measurements using the approach of Fuchs and Su-

tugin (1971) and of Seinfeld and Pandis (1998) to be on the

order of 7 min assuming an accommodation coefficient of 1.0

(Kolb et al., 2010; Hanson, 2005; Boy et al., 2005), a diffu-

sion coefficient for H2SO4(2 H2O) of 0.075 atm cm2 s−1 at
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Figure 3. Correlation between H2SO4 and OH (top) and be-

tween MSA(g) and OH concentrations (bottom) in marine air

for the period May–August 2011 (5 min integrated data; daytime:

08:00–20:00 UTC). To match the measured data in time OH con-

centrations were calculated based on concurrent J (O1D) data and

the J (O1D)–OH relationship for marine air previously established

in Berresheim et al. (2013).

75–85 % relative humidity (Hanson, 2005), a mean free path

of 105 nm for H2SO4(2 H2O) (corresponding to the Fuchs

and Sutugin parameterization), and a hygroscopic growth

factor of 1.7 (max. 2.0; 90 % RH vs. ≤ 40 % RH) (Bialek et

al., 2012). The variability of CS shown in Fig. 4 was mainly

driven by particle counts, not relative humidity, which mostly

ranged between 75 and 85 %. Overall, we estimate that CS

values can be uncertain by at least a factor of 2, mainly due

to the uncertainties in the count rates of the SMPS and APS

instruments and of the hygroscopic growth factor.

For Mace Head we assume that except perhaps in winter

the predominant source for H2SO4 in the marine atmosphere

is ultimately biogenic (Lin et al., 2012; Seguin et al., 2010),

i.e., the emission and oxidation of dimethyl sulfide (DMS)

by OH which yields – via further oxidation of intermedi-

ate compounds – the gaseous end products H2SO4, dimethyl

sulfone (CH3SO2CH3, DMSO2), and methane sulfonic acid

(CH3SO3H, MSA) (Berresheim et al., 1993a, 1995). As de-

scribed in the previous section, the two acid compounds are

detectable by SI/CIMS using the same instrumental setting

as for the OH measurement. Corresponding seasonal cy-

cles of aerosol MSA and non-sea-salt sulfate (nss-SO4) have

been measured at Mace Head using high-resolution time-

of-flight aerosol mass spectrometry (HR-TOF-MS). Both

aerosol compounds and their concentration ratio show a clear

seasonal maximum in summer (Ovadnevaite et al., 2014).

Atmos. Chem. Phys., 14, 12209–12223, 2014 www.atmos-chem-phys.net/14/12209/2014/
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 1030 

Figure 4. 1031 Figure 4. Top: SO2 mixing ratios (1 h signal integration) mea-

sured in marine air between May and August 2011 (average: 160

(± 50) pptv; detection limit: 25 pptv, indicated by red line). Bottom:

condensational sink (CS; 5 min integration) calculated for H2SO4

(see text).

The mean seasonal cycle of peak MSA(g) mixing ratios

recorded during the same daily time slot as for H2SO4 and

summarized as monthly means is also shown in Fig. 2. Sim-

ilar to H2SO4 and the aerosol sulfur compounds, the highest

gas-phase MSA(g) levels in the marine atmosphere were ob-

served during the summer months, which corroborates the

biogenic origin of H2SO4 measured in this sector. With the

adoption of a sticking coefficient of 0.12 for the aerosol scav-

enging of MSA(g) (De Bruyn et al., 1994), we obtained an

average atmospheric lifetime of approximately half an hour

(25 min) for this compound. As for H2SO4 this is somewhat

shorter than previously estimated from measurements off the

northwestern coast of the United States (Berresheim et al.,

1993b), but still within the same order of magnitude. Am-

mann et al. (2013) questioned the earlier results obtained by

De Bruyn et al. (1994) and Schweitzer et al. (1998) for the

MSA(g) accommodation coefficient and suggested prefer-

ring a value close to 1 as reported in the most recent study by

Hanson (2005). However, in our view, adopting a unity value

would be in contradiction to common observations of a rela-

tively slower decline of atmospheric MSA(g) levels in com-

parison to H2SO4 in the late afternoon and evening hours,

which has been well documented in previous field studies

(e.g., Eisele and Tanner, 1993) and in our present study. Fur-

thermore, as has already been shown in a previous campaign

at Mace Head (Berresheim et al., 2002), ambient MSA(g)

levels typically increased with decreasing relative humidity,

including at nighttime. Both observations support that the va-

por pressure of MSA(g) is significantly higher compared to

H2SO4 (e.g., Kreidenweis and Seinfeld, 1988).

49 

 

 1032 

 1033 

Figure 5a. 1034 

50 

 

 1035 

 1036 

Figure 5b. 1037 

(a) (b)

Figure 5. (a) Example of observed ambient H2SO4 concentration

in comparison with H2SO4 mass balance values calculated from

Eq. (1) for 18 June 2011. Air masses originated from polar regions

between Greenland and Iceland, exhibiting strong biological activ-

ity in surface waters. As OH had only been measured for 5 min

during each half-hour period, to obtain calculated H2SO4 for each

of the corresponding measured H2SO4 values we used J (O1D) as

a proxy for OH to fill the corresponding gaps based on the OH-

J (O1D) relation established for the marine sector (Berresheim et

al., 2013) (continuous 5 min time resolution). Top: mean discrep-

ancy factor of 7.0 between midday (10:00–14:00 UTC) observed

and calculated [H2SO4]. Open symbols show calculated [H2SO4]

based on actual OH measurement signals (ratio: 5.6± 1.2). Bottom:

signal counts obtained for OH measurement (OH plus background)

and background mode only (cycle: 5 min during each 30 min pe-

riod). (b) Example of relatively small discrepancy between mea-

sured and calculated H2SO4 based on Eq. (1) (ratio 1.8) and actual

OH measurements (ratio 2.5± 1.2), respectively. With one excep-

tion, nighttime OH values were all below the detection limit. For

further explanations see caption (a) and the main text. Air mass ori-

gin was mainly from the temperate North Atlantic in connection

with anticyclonic conditions.

3.2 H2SO4 mass balance and missing SO2 oxidant in the

marine atmosphere

From 2 May to 12 August 2011, an intensive campaign was

conducted at Mace Head that included measurements of SO2.

The results allowed the calculation of H2SO4 concentrations

based on its production by SO2 oxidation by OH and removal

due to condensation on existing aerosol surface (CS, conden-

sational sink rate) assuming steady state:

[H2SO4]calc =
kOH[SO2][OH]

CS
. (1)

Comparison with measured H2SO4 concentrations showed

a significant underestimation using Eq. (1), bearing in mind

that the uncertainty in CS can be a factor of 2. For the avail-

able 38 days with concurrent H2SO4, J (O1D), CS, and SO2

observations, the mean ratio, i.e., [H2SO4]meas / [H2SO4]calc,

was 4.7± 2.4 during the midday period, 10:00–14:00 UTC,

taking calculated OH values from the relation OH-J (O1D)

(see below). The results for 26 days with direct OH observa-

www.atmos-chem-phys.net/14/12209/2014/ Atmos. Chem. Phys., 14, 12209–12223, 2014
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tions out of these 38 are 5.0± 2.4 based on the sparse direct

OH observations and 4.8± 2.5 based on the denser OH val-

ues calculated from J (O1D). All of these results are consid-

erably higher than the mean of 2.4 reported by Mauldin III et

al. (2012) for a boreal forest site in Finland. An extreme ex-

ample from 18 June 2011 is shown in Fig. 5a. On average, the

measured H2SO4 concentrations on this day were a factor of

7 higher than the values calculated by Eq. (1) and the back-

ground signal shows a strong diel cycle in phase with that of

OH. Here we have filled the gaps in our OH measurements

by using J (O1D) as proxy based on the J (O1D)–OH rela-

tionship established in Berresheim et al. (2013) to obtain cal-

culated H2SO4 for each of the measured H2SO4 values (con-

tinuous red line at the top of Fig. 5a). The results demonstrate

the close tracking of the measured data and thus, the use-

fulness of this proxy application. In addition, the open sym-

bols show the corresponding values based on the actual mea-

sured (5 min averaged) OH signals from that day (count rates

shown in bottom of Fig. 5a). As can be seen, the latter pro-

cedure results in an average discrepancy factor of 5.6± 1.2,

which agrees well with the above factor of 7.0 within given

uncertainties.

Four-day NOAA HYSPLIT air mass back trajectories for

18 June 2011, (http://ready.arl.noaa.gov/HYSPLIT.php) in

conjunction with MODIS satellite imagery (http://neo.sci.

gsfc.nasa.gov) of chlorophyll pigments in surface seawater,

pointed towards high biogenic sulfur (DMS) contributions

to the advected air derived from phytoplankton blooms be-

tween Greenland and Iceland. On the other hand, no signif-

icant changes were observed in ambient SO2 levels on the

same day. Even higher H2SO4 and also MSA(g) concentra-

tions (both in the mid-107 cm−3 range) were measured on 11

June 2011, with similar air mass trajectories and SO2 lev-

els as those on 18 June, resulting in a measured / calculated

H2SO4 ratio of 9. A notable difference between both days

was the occurrence of low tide at noon on 18 June, whereas

high tide prevailed at noon on 11 June, respectively.

A contrasting example is shown in Fig. 5b for 10 May

2011, with a ratio of only 1.8, which, in view of the over-

all uncertainties discussed earlier, suggests a nearly closed

H2SO4 balance based on the SO2+OH pathway alone.

Weather conditions on that day were strongly anticyclonic

with no indication of major contributions from biologically

active open ocean regions and with overall low solar insola-

tion, i.e., lack of significant photochemistry. The OH back-

ground signal did not significantly vary during the day in

contrast to the OH concentration itself, which despite low

insolation still showed a pronounced diel cycle. However,

as shown in Fig. 6, on the vast majority of marine sector

days during the 2010 and 2011 measurement periods, both

the background signal and the OH signal varied in tune with

each other, which strongly suggests a photolytic source for

the unknown compound(s) producing the BG signal.

Clearly a major source of H2SO4 in addition to OH oxi-

dation of SO2 was missing in the balance calculation based
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Figure 6. Mean half-hour values measured in marine air during the

time period 2010–2011 calculated from the OH mode raw signal

at m/z 99 (blue line), total background mode raw signal at m/z 99

(red line), OH mode signal minus background mode signal (green

line: net signal counts corresponding to the ambient OH concentra-

tion), signal counts at m/z 99 due to 34S mass fraction of ambient

H2SO4 (black dashed line: signal(m/z 97)· 0.044), and OH mode

background signal with 34S fraction of ambient H2SO4 subtracted

(red dashed line).

on Eq. (1). A similar discrepancy between measured and

calculated H2SO4 concentrations in the coastal atmosphere

of Mace Head was reported previously by Berresheim et

al. (2002). They speculated that the missing source might

be DMS oxidation with partial production of SO3 instead

of SO2 as an intermediate, which then readily forms H2SO4

with water vapor (Lin and Chameides, 1993). This possibil-

ity would also agree with kinetic pathways hypothesized for

the DMS+OH oxidation in which CH3SO2 and CH3SO3

are formed as intermediates, both of which decompose ther-

mally to SO2 and SO3, respectively (Berresheim et al., 1995).

Studies at an Antarctic coastal location with strong marine

DMS emissions (Jefferson et al., 1998; Davis et al., 1998)

reported similar inconsistencies between measured H2SO4

levels and SO2 mixing ratios required to close the mass bal-

ance based on SO2+OH as the only source, even when as-

suming a very low H2SO4 accommodation coefficient of 0.5.

Our results shown in Fig. 5a and b may be consistent with a

significant contribution by marine biogenic DMS emissions

to H2SO4 levels at Mace Head via intermediate production of

a precursor other than SO2. Furthermore, this influence may

even supersede potential regional contributions from emis-

sions which are dependent on tidal cycles, as discussed ear-

lier for the cases of 11 and 18 June 2011. However, current

uncertainties in our knowledge of DMS oxidation chemistry

prevent a quantitative assessment of this potential H2SO4

source.

Alternatively, biogenic emissions of, for example, organic

halogens from the regional coastal environment during low

tide may produce highly reactive atmospheric compounds

that in addition to OH could play a significant role in at-

mospheric H2SO4 formation. Another class of compounds

that have recently been suggested are stabilized Criegee in-

termediates (sCIs) which have been re-evaluated with re-

Atmos. Chem. Phys., 14, 12209–12223, 2014 www.atmos-chem-phys.net/14/12209/2014/
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spect to their potential oxidation of atmospheric SO2 by Liu

et al. (2014), Stone et al. (2014), Welz et al. (2012), and

Mauldin III et al. (2012). In the following two sections we

investigate the potential importance of SO2 reactions with

some halogen and sCI radicals as sources of H2SO4 in addi-

tion to the DMS→SO3 and SO2+OH pathways in marine

air at Mace Head. The nitrate radical, NO3, is not expected

to be of any importance for nighttime SO2 oxidation at Mace

Head, at least not in air from the marine sector (Berresheim

et al., 2013).

3.3 Electronic structure calculations on halogen oxide

reactions with SO2

Other candidates besides OH acting as SO2 oxidants might

be halogen oxide radicals; however, to our knowledge re-

spective rate constants are available in the literature only for

the reactions of IO and ClO with SO2 (Larin et al., 2000;

DeMore et al., 1997), which are 3 and 6 orders of magni-

tude smaller compared to kSO2+OH, respectively. We have

made ab initio transition state energy calculations for the re-

actions of SO2 with ClO, BrO, IO, and OIO using quantum

theory. The hybrid density functional/Hartree–Fock B3LYP

method was employed from within the Gaussian 09 suite of

programs (Frisch et al., 2009), combined with an appropri-

ate basis set for I (Glukhovtsev et al., 1995) and the stan-

dard 6–311+ g(2d,p) triple zeta basis sets for Br, Cl, O, and

S. The geometries, rotational constants, vibrational frequen-

cies, and relative energies of the transition states are listed

in Table 1. Following geometry optimizations of the tran-

sition states for the reactions of ClO, BrO, IO, and OIO

with SO2, and the determination of their corresponding vi-

brational frequencies and (harmonic) zero-point energies, en-

ergies relative to the reactants were obtained. In the case of

BrO and ClO+SO2, more accurate transition state energies

were computed at the CBS-QB3 level (Montgomery et al.,

2000). At this level of theory, the expected uncertainty in

the calculated transition state energies should be better than

0.07 eV (Foresman and Frisch, 1996). Spin-orbit effects were

ignored since these are present both in the reactant halogen

oxide and the transition state. Figure 7 illustrates the transi-

tion state geometries for ClO, BrO, IO, and OIO+SO2.

Transition state theory (TST) calculations were then

carried out using the calculated molecular parameters

in Table 1. Although the reaction between IO and SO2

has a small barrier (7.3 kJ mol−1), the reaction has quite

a tight transition state and the TST calculation yields

k(200–400 K)= 4.3× 10−14 exp(−1150 / T ) cm3 s−1. The

resulting value of k(343 K)= 1.6× 10−15 cm3 s−1 is consis-

tent with an experimental upper limit of 5.6× 10−15 cm3 s−1

determined at that temperature by Larin et al. (2000). At a

marine boundary layer (MBL) temperature of 293 K, the

rate coefficient is only 8.5× 10−16 cm3 s−1. This reaction

would have to compete with OH+SO2, which has a rate

coefficient of k= 9× 10−13 cm3 s−1. Although [IO] can be
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Figure 7. Transition state geometries for ClO, BrO, IO, and

OIO+SO2.

around 30 times larger than [OH] at midday at Mace Head,

the ratio of rate constants is 1 / 1050, so the OH reaction

is about 35 times faster. However, the estimated SO2+ IO

rate constant is large enough to allow for a fraction of IO to

oxidize SO2 to H2SO4 inside the CIMS instrument and to

contribute to the background signal (see Sect. 3.4).

During nighttime at Mace Head, OIO builds up to a mix-

ing ratio of a few parts per trillion (Saiz-Lopez and Plane,

2004). However, the very large barrier for the OIO+SO2 re-

action (50.1 kJ mol−1) means that this reaction is negligibly

slow: k(200–400 K)= 6.4× 10−13 exp(−6400/T ) cm3 s−1

and k(293 K)= 2.2× 10−22 cm3 s−1.

BrO has been observed at a mixing ratio of sev-

eral parts per trillion during the day at Mace Head

(Saiz-Lopez et al., 2004). However, the reaction BrO+

SO2 also has a significant barrier (20.4 kJ mol−1),

and so the reaction is much too slow in the MBL:

k(200–400 K)= 5.8× 10−14 exp(−2700/T ) cm3 s−1

and k(293 K)= 5.6× 10−18 cm3 s−1. Finally, the TST

calculation for ClO+SO2, which also has a signif-

icant barrier (24.1 kJ mol−1), yields k= 5.2× 10−14

exp(−3100/T ) cm3 s−1. The theoretical rate coefficient at

298 K is therefore 1.5× 10−18 cm3 s−1, which is in accord

with an experimental upper limit of 4× 10−18 cm3 s−1 at

this temperature (DeMore et al., 1997). In summary, we

conclude that none of the halogen oxides considered here

exhibit sufficient turnover rates with SO2 in ambient air to

account for the missing H2SO4 source.

3.4 Could X be a Criegee radical produced from

ozonolysis?

Previous measurements at Mace Head have shown clear diur-

nal cycles of light alkenes (including isoprene) with a strong

dependence on solar flux (Broadgate et al., 2004; Lewis et

al., 1999). Assuming that “X” is indeed a Criegee interme-

diate produced from ozonolysis of alkenes and reacting with

SO2 both in the atmosphere and in the CIMS inlet system to

www.atmos-chem-phys.net/14/12209/2014/ Atmos. Chem. Phys., 14, 12209–12223, 2014
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Table 1. Molecular parameters and energies for transition state theory calculations (see text for theoretical methods). The symbol ∗ indicates

a transition state.

Species Transition state

geometrya
Rotational

constants

(GHz)

Vibrational

frequencies (cm−1)

Relative

energyb

(kJ mol−1)

ClO 18.03 829 –

SO2 58.67, 10.17,

8.667

508, 1146, 1334 –

ClO–SO∗
2

Cl: 2.906, 0.862, −0.283

O: 1.988, −0.503, −0.103

S: −0.021, −0.255, −0.325

O: −0.353, 1.084, 0.116

O: −0.553, −1.414, 0.357

8.227, 1.831,

1.540

248i, 73, 135, 270,

296, 492, 720, 1113,

1303

24.1

BrO 12.50 713 –

BrO−SO∗
2

Br: −0.048, 0.360, 0.367

O: 0.235, −0.502, 1.910

S: 1.906, 0.0189, 3.011

O: 2.914, 0.483, 2.075

O: 2.140, −1.167, 3.803

8.138, 1.128,

1.011

239i, 63, 114, 227,

280, 494, 625, 1115,

1302

20.4

IO 9.844 649 –

IO−SO∗
2

I: 1.387, 0.0252, 0.0250

O: −0.292, −0.940, −0.130

S: −2.056, 0.068, 0.307

O: −1.803, 1.417, 0.167

O: −2.984, −0.780, 0.412

8.050, 0.875,

0.806

258i, 73, 109, 222,

292, 495, 613, 1107,

1288

7.3

OIO 18.31,

7.054, 5.092

273, 809, 831 –

OIO−SO∗
2

S: −0.005, 0.236, 0.0738

O: 0.210, 0.766, 1.416

O: 1.111, −0.069, −0.803

I: −1.644, 3.069, 0.096

O: −0.961, 1.427, −0.805

O: −0.190, 4.124, 0.404

4.572, 0.871,

0.839

304i, 29, 79, 129,

202, 261, 417, 495,

547, 810, 1064, 1247

50.1

a Atomic positions in Cartesian coordinates (Å);
b above the reactants, including zero-point energies.

produce additional H2SO4, we can estimate its relative con-

tribution compared to the SO2+OH reaction as follows. In

the following equations, the term sCI is used as a surrogate

for sCI (stabilized Criegee intermediates) and CI (Criegee in-

termediates in general) species.

As already pointed out in the “Experimental” section, we

have to account for additional formation of [sCI]cims from

alkene+O3 reactions over the total available residence time

of 0.45 s in the atmospheric pressure reaction and ioniza-

tion region of the CIMS instrument (see Fig. 1). By con-

tinuous reaction with SO2 and ionization of the resulting

H34
2 SO4 molecules over the corresponding distance (32 cm)

this leads to an accumulation of the H34SO−4 background sig-

nal atm/z 99 assuming the sCI+SO2 oxidation to be instan-

taneous at the high SO2 concentration in the CIMS reactor

tube. The enhancement factor, EF, relative to the ambient air

sCI concentration, [sCI]amb, is

EFH2
34SO4

=

[sCI]amb+

tres∫
0

Prod(sCI) · dt

[sCI]amb

= 1+
tres

τsCI,amb

. (2)

This result is the consequence of the fact that both

types of sCIs, namely sCIs present in ambient air

([sCI]amb=Prod(sCI)× τsCI,amb) and sCIs produced inside

the CIMS inlet, are immediately converted to H34
2 SO4 by

added 34SO2 in the CIMS inlet system. With the assump-

tion of a lifetime with respect to unimolecular decompo-

sition of 0.2 s for sCI compounds resulting from ozonoly-

sis of the monoterpenes α-pinene and limonene (Mauldin

Atmos. Chem. Phys., 14, 12209–12223, 2014 www.atmos-chem-phys.net/14/12209/2014/
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III et al., 2012, Supplement) and the dominant ambient re-

action of sCIs with water (kH2O+sCI= 1.4× 10−17 cm3 s−1

(MCM 3.2, http://mcm.leeds.ac.uk/MCM/; Saunders et al.,

2003; Jenkin et al., 2003), [H2O]= 3.1× 1017 cm−3 repre-

senting Mace Head conditions of T = 14 ◦C, 75 % relative

humidity), the ambient lifetime of such stabilized Criegee in-

termediates is estimated to be 0.1 s. As already mentioned,

approximately 1 % of the H2SO4 is ionized in the CIMS ion-

ization region. Therefore, the production of sCIs in this re-

gion indeed yields H2SO4 via reaction with SO2, of which,

however, only 0.5 % is ionized on average as this process acts

linearly. Consequently, we have to modify Eq. (2) to take into

account the reduced ionization probability for H2SO4 pro-

duced in the ionization region:

EFH34SO−4
= 1+

treac

τsCI,amb

+ 0.5 ·
tion

τ sCI,amb
, (3)

with tres= 450 ms, treac= 115 ms, tion= 335 ms, and

τ−1
sCI,amb= 1/0.2 s+ 4.3 s−1

= 9.3 s−1. This formalism is

identical to that derived for a similar instrument by Berndt

et al. (2012) (chemical ionization time-of-flight mass spec-

trometer with atmospheric pressure inlet: CI-APi-TOF-MS).

Thus, from Eq. (3) it follows that 34SO2 oxidation by

sCIs contributes a background signal which represents an

enhancement of the ambient sCI concentration by a factor

EF= 3.6. Therefore, if X is indeed an sCI compound (of

the kind considered here), the measurement signal resulting

from sCIs would have to be weighted by 1 : 3.6 with respect

to the OH signal to obtain the corresponding ambient air

[sCI] concentration.

[sCI]amb =
1

EFH34SO−4

·
BGSig

OHSig

· [OH]amb (4)

To compare both compounds with respect to their oxida-

tion efficiency towards SO2, the corresponding rate con-

stants must be factored in as well, i.e., ksCI+SO2
/ kOH+SO2

= 6× 10−13 cm3 s−1 / 9 × 10−13 cm3 s−1
= 0.67, with

kOH+SO2
(298 K) = 9 × 10−13 cm3 s−1 taken from Atkin-

son et al. (2004) and ksCI+SO2
adopted for the monoterpene

derived sCI+SO2 reaction as reported by Mauldin III et

al. (2012).

This means that the relative oxidation efficiency (ROE)

of those ozonolytically generated sCI compounds would be

only on the order of 20 % compared to that of OH with re-

spect to SO2 oxidation, assuming that the CIMS background

signal is equal to the OH signal as observed on average in the

ambient air measurements at Mace Head (see Fig. 6).

ROE=
ksCI+SO2

· [sCI]amb · [SO2]amb

kOH+SO2
· [OH]amb · [SO2]amb

(5)

=
1

EFH34SO−4

·
BGSig

OHSig

·
ksCI+SO2

kOH+SO2

These calculations depend strongly on the kinetic parameters

for the corresponding sCI reactions. In this work we have

adopted rate constants published by Mauldin III et al. (2012)

and Berndt et al. (2012) for relatively large stabilized Criegee

intermediates produced from ozonolysis of monoterpenes.

However, other studies of smaller Criegee intermediates with

low internal energies (CH2OO by Stone et al. (2014), Berndt

et al. (2014), and Welz et al. (2012); CH3CHOO by Taat-

jes et al.(2013)) suggest much faster reactions of these CI

species with both SO2 and H2O, respectively. They are pro-

duced from both ozonolysis of alkenes and from photolysis

of, for example, CH2I2. Furthermore, laboratory studies by

Fittschen et al. (2014) and Bossolasco et al. (2014) suggest

that CH2OO could also be produced in the photochemical

degradation of methane via the reaction of methyl peroxy

radicals, CH3O2, with OH. For a sensitivity test of the pro-

duction pathway ozonolysis we neglect the fact that, for the

conditions in the CIMS inlet, only approximately 80 % of

these CI would react with the added 34SO2. The results are

shown in Table 2.

We find that the oxidation efficiency of sCIs – if formed

via ozonolysis – compared to OH would not be significant,

based on the condition of equal CIMS background and OH

signal counts. The relatively small difference between the es-

timates for such different species is a consequence of the fact

that both reaction parameters (for sCI+SO2 and sCI+H2O)

are faster for the small Criegee intermediates. The effect of

a faster reaction of sCIs with SO2 is almost exactly can-

celed out by the faster reactions with H2O. A special case

is CH2OO, for which there is a debate regarding its reaction

rate with water. Berndt et al. (2014) state that CH2OO re-

acts fast with H2O dimers, which was not accounted for in

previous studies, but would dominate the fate of CH2OO in

ambient air at Mace Head. But they could not explain the big

difference to the small effects of water vapor on the CH2OO

decay as deduced by Stone et al. (2014), who published a

slow reaction constant for CI+H2O. In any case, ROE for

CH2OO for average conditions at Mace Head is calculated

to be small taking both sets of parameters from these two

publications separately.

For these reasons, if the X oxidant(s) generating the BG

signal of the CIMS instrument were one of the Criegee in-

termediates shown in Table 2 and were produced ozonolyt-

ically, the relative oxidation efficiencies for SO2 by these

Criegee intermediates compared to OH for average condi-

tions at Mace Head would be estimated to be small, in-

creasing the calculated H2SO4 concentration based on the

SO2+OH source alone by only 5–30 %. This is still a major

shortfall with respect to the average factor of 4.7 required to

match the observed ambient air H2SO4 concentration.

On the other hand, if the different Criegee intermediates

shown in Table 2 were produced either photolytically or by

reaction of a precursor with OH, the corresponding enhance-

ment factors EF would be 1 (no further production in the

CIMS inlet) and the corresponding ROEs would be larger

than 10, e.g., for CH2OO and CH3CHOO. Taking the CIMS

background signal as an upper limit for the estimate of their
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Table 2. Details of the calculation of the relative oxidation efficiency (ROE, see Eq. 5) for specific Criegee intermediates assuming ozonolysis

of alkenes as their only source of formation for average ambient conditions at Mace Head (14 ◦C, 75 % RH, BGsig/OHsig = 1).

CH2OO anti-CH3CHOO syni-CH3CHOO α-pinene Limonene

k(sCI+SO2) [cm3 s−1] 3.9× 10−11 a 6.7× 10−11 b 2.4× 10−11 b 5.9× 10−13 c 7.7× 10−13 c

k(sCI+H2O) [cm3 s−1] < 9× 10−17 d 1× 10−14 b < 4× 10−15 b 1.4× 10−17 e 1.4× 10−17 e

τ−1 (unimolecular) [s−1] 500a

< 100f
< 250b < 250b 5c 5c

τ−1 (8 ppm SO2) [s−1] 7800 13 400 4800 118 154

τ−1 (ambient H2O) [s−1] 27d

(2840)f
3000 1200 4.2 4.2

EF (Eq. 3) 150 919 411 3.6 3.6

k(sCI+SO2) / k(OH+SO2) 43.3 74.4 26.7 0.66 0.86

ROE (Eq. 5) 0.29

(0.05)f
0.09–0.08g 0.08–0.06g 0.18 0.24

Fraction of sCIs reacting with 34SO2 in

the CIMS inlet

0.94 0.80 0.77 0.93 0.94

a Welz et al. (2012),
b Taatjes et al. (2013),
c Mauldin III et al. (2012),
d Stone at al. (2014),
e MCM 3.2,
f Berndt et al. (2014),
g range reflecting unimolecular decomposition rates 0–250 s−1.

oxidation efficiency for SO2, it cannot be excluded that these

small Criegee intermediates significantly influence the ambi-

ent H2SO4 budget at Mace Head. However, given the short

atmospheric lifetime of these species, we doubt that suffi-

ciently large steady-state concentrations are realistic.

The consequence for the ambient H2SO4 budget at Mace

Head is complex. Either (1) very different ozonolytically pro-

duced Criegee intermediates than those studied so far, (2)

photolytically produced Criegee intermediates, (3) Criegee

intermediates produced via reactions of OH, (4) an entirely

different kind of oxidant for SO2, or (5) a production process

converting a sulfur compound other than SO2 might be still

missing in our present account of the H2SO4 concentration

in the coastal marine atmosphere.

Figure 8a and b show two out of a few examples of obser-

vations we made during the May–August 2011 period which

were not obscured by the midday primary OH production

period in relation to coastal aerosol nucleation events dur-

ing which OH and also both H2SO4 and MSA(g) concentra-

tions increased significantly in conjunction with a major in-

crease in the background signal counts for the X oxidant(s).

On 13 May 2011 (Fig. 8a) the first low tide was centered

at about 07:00 UTC. Note that no detectable aerosol nucle-

ation (> 3 nm diameter) occurred at this time, as insolation

was still low; however, some spikes in both OH concentra-

tion and the BG signal were already visible. A significant nu-

cleation event occurred during the second low tide between

18:00 and 21:00 UTC with somewhat enhanced H2SO4 and

MSA(g) concentrations. Both the OH concentration and the

BG signal again increased as well.

On the next day, 14 May 2011 (Fig. 8b), these effects

are even more pronounced, with the tide shifted by about

+45 min and two major nucleation events clearly detectable.

The peak of the morning event at about 08:00 UTC coincided

with a major production of both OH and the X compound

(BG signal). In contrast to the preceding day, the evening

event showed relatively minor OH and X production due to

the tidal shift.

A recent successful H2SO4 intercomparison experiment

at Mace Head (M. Sipilä and S. Richters, personal com-

munication, 2013) between the CIMS instrument and a CI-

APi-TOF-MS instrument has confirmed that the CIMS in-

deed measures only the concentration of gaseous “free”

(monomeric) H2SO4 during nucleation events. With the

rapid transition from monomers to multimer clusters in

which H2SO4 becomes tied up (confined) and no longer

broken down to the HSO−4 core ions in the CIMS colli-

sion dissociation chamber (Fig. 1), a net decrease in ambi-

ent H2SO4 concentrations may therefore be expected. How-

ever, as shown in the nucleation events in Fig. 8a and b,

(monomer) H2SO4 levels even increased after a certain lag

time following the onset of the event. We interpret our ob-
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(a) (b)

Figure 8. (a) Example observation showing relationships between aerosol nucleation events at low tide, OH concentrations, and OH back-

ground (BG) signal (due to X compound). Top: H2SO4 and MSA(g) concentrations (30 s integration), tidal height, and total particle number

concentration Np > 3 nm diameter (30 s integration) measured with a condensation particle counter (CPC; TSI 3025). Bottom: OH con-

centrations (5 min; black dots), count rates for OH+BG and BG only (non-OH) signals (30 s), and ozone photolysis frequency (J (O1D)).

(b) Example of increased OH concentrations and OH background signal (BG) during two aerosol nucleation events at low tide under marine

sector conditions. Symbols as in (a).

servations as strong formation of X oxidant(s) (e.g., CH2OO

from photolysis of CH2I2; Welz et al., 2012) or OH (per-

haps via thermal decomposition of sCIs; Berndt et al., 2012,

2014; Kroll et al., 2001) followed by rapid oxidation of

DMS and SO2 to form the products H2SO4 and MSA(g).

Such coastal nucleation events have previously been shown

to be induced by photolysis and photooxidation of ma-

rine iodine compounds emitted mainly from exposed sea-

weed during low tide (O’Dowd et al., 2002). Considering

again the IO+SO2 reaction and adopting a rate constant

of k(IO+SO2)= 8.5× 10−16 cm3 s−1 (Sect. 3.3), we calcu-

late that approximately 8 % of atmospheric IO is convert-

ing 34SO2 to H34
2 SO4 in the CIMS inlet system, based on

a 34SO2 mixing ratio of 8 ppmv and a total IO residence

time of 0.45 s. Also, it is assumed that IO does not react

with propane. Based on Eq. (3), the corresponding yield for

H34SO−4 would be reduced from 8 to 5 %. With this esti-

mate, an upper limit for the atmospheric IO mixing ratio can

be derived from the corresponding CIMS background signal.

We estimate ambient IO levels to be, on average, less than

1.3 pptv at noontime (Fig. 6) and less than 5 pptv at the max-

imum of the nucleation event shown in Fig. 8a and b. This is

consistent with previous measurements of IO at Mace Head

which showed maximum levels up to 5 pptv (Saiz-Lopez et

al., 2006; Alicke et al., 1999). However, other measurements

taken over “hot spots” of exposed seaweed beds have shown

IO peak values of up to 50 pptv (Commane et al., 2011).

Thus, it can be concluded that the observed background sig-

nal could be explained by the presence of IO that would

nevertheless not contribute to atmospheric SO2 oxidation be-

cause of a too small IO+SO2 rate constant. Future studies

are required in order to systematically characterize remain-

ing uncertainties in the CIMS and CS measurements and to

verify a possible link between the unknown oxidant(s), the

CIMS background, and the iodine cycle in the marine atmo-

sphere.

4 Conclusions

We observed a persistent but relatively low H2SO4 concen-

tration at nighttime (on the order of a few 105 cm−3). Also,

on some occasions, short spikes were observed at night-

time in the H2SO4 signal during low tide, which might sug-

gest short-term emissions of reactive hydrocarbons capable

of forming Criegee intermediates and OH in reactions with

ozone, both capable of oxidizing SO2. We assume that such

processes also happen during daytime but are superimposed

by the formation of another major oxidant which shows a

similar diurnal pattern like OH. A detailed analysis of the

atmospheric H2SO4 budget at Mace Head revealed that a

dominant oxidant for the production of H2SO4 is missing,

which, on average, would have to contribute 4.7 times more

than the observed production from OH+SO2. Whether this

oxidant might be a Criegee intermediate with its produc-

tion mainly determined by strong light-induced emissions of

marine alkene species and/or atmospheric photolysis of io-

dine species remains an open question. However, we con-

sider it unlikely that α-pinene or limonene are present at sig-

nificant levels in the marine atmosphere. In forest environ-

ments these compounds are also emitted at nighttime, result-
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ing in a quite different diurnal cycle of the CIMS background

signal (Mauldin III et al., 2012) than we have observed in

the coastal atmosphere. In the present work we have shown

that the signal measured with the CIMS instrument during

its background mode indeed provides evidence for the pres-

ence of one or more unknown oxidants for atmospheric SO2

in addition to OH. However, as this X oxidant does not sig-

nificantly react with propane in the CIMS system, the corre-

sponding X signal must be corrected in some cases to account

for additional production inside the CIMS inlet system before

evaluating its oxidation efficiency towards SO2 in ambient

air. For this reason, and also based on the currently available

kinetic data for the SO2 oxidation by sCI compounds result-

ing from monoterpenes or from smaller alkenes, we conclude

that at least Criegee intermediates produced via ozonolysis

are unimportant in comparison with the SO2+OH oxida-

tion in the marine atmosphere at Mace Head. It appears that

Mauldin III et al. (2012) have not considered this correction,

which reduces the proposed oxidation efficiency for SO2 of

stabilized Criegee intermediates from ozonolysis of α-pinene

or limonene in forested environments as well. Theoretical

calculations of the oxidation of SO2 by the halogen oxides

ClO, BrO, IO, or OIO show that those reactions are too

slow to influence the atmospheric concentration of H2SO4.

On the other hand, CH2OO formed via photolysis of CH2I2

appears to be a candidate to explain the observed increase

in the CIMS background signal, especially during daytime

aerosol nucleation events at low tide, and appears to have

a significant impact on the ambient H2SO4 budget. In any

case, more comprehensive measurements including alkenes,

isoprene, and halogen compounds are needed in conjunction

with laboratory kinetic studies to confirm the presence of ox-

idant species other than OH with significant contributions to

the H2SO4 budget in the marine atmosphere. An additional

source of H2SO4 not accounted for by the SO2+ (OH or X)

pathway may be the formation of SO3 (instead of SO2) as

an intermediate in the oxidation of DMS followed by rapid

reaction with water vapor. To better evaluate the contribu-

tion from this potential source, further studies involving ad-

ditional measurements of DMS are planned for future work

in conjunction with what we have already attempted in the

present study, i.e., analysis of air mass advection from bio-

logically active oceanic regions using satellite remote sens-

ing data.
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