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Abstract. Ensembles of air quality models have been for-
mally and empirically shown to outperform single models
in many cases. Evidence suggests that ensemble error is re-
duced when the members form a diverse and accurate ensem-
ble. Diversity and accuracy are hence two factors that should
be taken care of while designing ensembles in order for them
to provide better predictions. Theoretical aspects like the
bias–variance–covariance decomposition and the accuracy–
diversity decomposition are linked together and support the
importance of creating ensemble that incorporates both these
elements. Hence, the common practice of unconditional av-
eraging of models without prior manipulation limits the ad-
vantages of ensemble averaging. We demonstrate the impor-
tance of ensemble accuracy and diversity through an inter-
comparison of ensemble products for which a sound mathe-
matical framework exists, and provide specific recommenda-
tions for model selection and weightingfor multi-model en-
sembles. The sophisticated ensemble averaging techniques,
following proper training, were shown to have higher skill
across all distribution bins compared to solely ensemble av-
eraging forecasts.

1 Introduction

A forecast is considered complete if it is accompanied by an
estimate of its uncertainty (AMS, 2002). This generally re-
quires the embedding of the modelling process into either a
deterministic perturbation scheme (e.g. tangent linear, direct
decoupled) or a probabilistic framework (e.g. Monte Carlo).
Such approaches are used to quantify the effects of uncer-
tainties arising from variations in model input (e.g. initial
and boundary conditions, emissions) or model structure (e.g.
parametrizations, numerical discretization).

Deterministic approaches are fast but they rely on the va-
lidity of the linearized approximation of error growth (Errico,
1997). The availability of increasingly powerful computing
in recent years has boosted the feasibility and use of the
probabilistic approach (Leith, 1974) because it can sample
the sources of uncertainty and their effect on the prediction
error in a non-linear fashion without requiring model modi-
fications. However, the sampling of the whole range of un-
certainty could be quantified with the construction of very
large sets of simulations that correspond to alternative con-
figurations (data or model). This is unrealistic for 3-D mod-
els and leads to a hybrid scheme calledensemble forecasting
(Molteni et al., 1996; Tracton et al., 1993). It is probabilistic
in nature but it generally does not sample the input uncer-
tainty in a formal mathematical way, limiting the extent of
the statistical methods to interpret the results.

Single-model ensembles(e.g. Mallet et al., 2006) assume
that the model is perfect and consists of a set of perturbed
initial conditions and/or physics perturbations. It is tradition-
ally used in weather forecasting, which is primarily driven
by uncertainty in the initial conditions.Multi-model ensem-
bles (e.g. Galmarini et al., 2004) (MME) quantify princi-
pally the model uncertainty as they are generally applied to
the same exercise (i.e. input data). This approach is usually
implemented in air pollution and climate modelling studies,
where the uncertainty is predominantly process driven. The
models in a MME should ideally have uncorrelated errors.
Under such conditions, the deterministic forecast generated
from the MME mean is better than any single-model fore-
cast due to the averaging out of the errors as well as the bet-
ter sampling of the input uncertainty (Kalnay, 2003). Besides
that, the MME spread quantifies the output uncertainty, pro-
viding an estimate of the forecast reliability.
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The simulation error of the ensemble mean outperforms
the error of the individual ensemble members only if the as-
sumption that the models are i.i.d. (independent and identi-
cally distributed around the true state), is satisfied (Knutti et
al., 2010). The i.i.d. assumption, however, is seldom subject
to verification and is rarely met in practice, with the net result
that the simple ensemble mean does not guarantee the low-
est error (higher accuracy) among all possible combinations.
In such cases, the ensemble mean brings redundant informa-
tion particularly for the upper and lower quartiles, making
for example the analysis of extremes less reliable. Extra ef-
fort is required in order to obtain an improved deterministic
forecast such as the MME mean for i.i.d. members. The opti-
mal solution requires some training phase, during which the
models are manipulated towards the construction of an en-
semble with a symmetric distribution around the truth. This
can be achieved through either a weighting scheme that keeps
all members (e.g. Gneiting et al., 2005; Potempski and Gal-
marini, 2009) or with a reduced ensemble (Galmarini et al.,
2013; Solazzo et al., 2013) that makes use of only aneffective
number of models. Both approaches result in the optimum
distribution of the models in the respective workspace.

Ensembles tend to yield better results when there is a sig-
nificant diversity among the models. Many ensemble meth-
ods, therefore, seek to promote diversity among the models
they combine. However, a definite connection between diver-
sity and accuracy is still lacking. An accurate ensemble does
not necessarily consist of independent models. There are
conditions under which an ensemble with redundant mem-
bers could be more accurate than one with independent mem-
bers only. Seen from another angle, similar to diversity, en-
sembles also tend to produce better results when they con-
tain negatively correlated models1. Ideally, the most accu-
rate ensemble consists of members that are distributed ran-
domly around the observations (i.e. unbiased and uncorre-
lated). This “randomness” in the model outputs of an ensem-
ble is not a pragmatic condition. Nevertheless, an optimal en-
semble can be constructed a posteriori by inducing this prop-
erty in the members.

In this work, we attempt to give an overview of the crit-
ical elements in deterministic forecasting with ensembles,
with particular focus on the ensemble built from regional
air quality models within the Air Quality Modelling Eval-
uation International Initiative (AQMEII). The overall goal of
the study is to highlight the properties, through model se-
lection or weighting, that guarantee a symmetric distribution
of errors and eventually produce a single improved forecast
out of an ensemble. Starting from a presentation of the avail-
able mathematical framework, many important aspects of en-
semble forecasting are demonstrated using synthetic and real
time series. Our motivation is to depict some best practices
for deterministic forecasting with air quality ensembles.

1This is demonstrated later in the paper

The paper is structured as follows: in Sect. 2, theoreti-
cal evidence on multi-model ensembles is presented together
with an example that serves to show the contributing factors
to the ensemble error. In Sect. 3, we present the data and
the methodology. In Sect. 4 we decompose and analyse the
ensemble error and its properties using spatially-aggregated
AQMEII data. In Sect. 5 we apply the results obtained in the
previous section into forecasting at all monitoring stations
(continental scale). Conclusions are drawn in Sect. 6.

2 Theoretical considerations

The aim of this section is to outline the documented mathe-
matical evidence towards the reduction of the ensemble error.
The notation used throughout the text is summarized in Ta-
ble 1.

2.1 The bias–variance–covariance decomposition of
the ensemble error

The bias–variance decomposition states thatthe squared er-
ror of a model can be broken down into two components: bias
and variance:
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The two components usually work in opposition: reducing
the bias causes a variance enhancement, and vice versa. The
dilemmais thus finding an optimal balance between bias and
variance in order to make the error as small as possible (Ge-
man et al., 1992; Bishop, 1995).

The error decomposition of a single model (caseM = 1 in
Eq. 1) can be extended to an ensemble of models, in which
case the variance term becomes a matrix whose off-diagonal
elements are the covariance among the models and the diag-
onal terms are the variance of each model:
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Table 1.Notation and indices of skill and redundancy. A∗ indicates standardized vectors.

Ensemble members (output of modelling systems)fi , i = 1, . . . ,M
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M∑
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∑
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Thus, the squared error of ensemble can be broken into
three terms: bias, variance and covariance. Substituting the
terms in Eq. (1), thebias–variance–covariancedecomposi-
tion (Ueda and Nakano, 1996; Markowitz, 1952) is presented
as follows:

MSE
(
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= bias

2
+

1

M
varE+

(
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1
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)
covE. (2)

Equation (2) is valid for uniform ensembles, i.e.wi =
1
M

.
The termsbias andvarE are the average bias and variance
of the ensemble members error (modelled time series minus
observed time series), respectively while the new termcovE
is the average covariance between pairs of distinct ensemble
members error. From Eq. (2) follows:

– the more ensemble members we have, the closer is
Var

[
f̄ − µ

]
to covE;

– bias2 andvarE are positive defined, but¯covE can be ei-
ther positive or negative.

The error of an ensemble of models not only depends on the
bias and variance of the ensemble members, but also depends
critically on the amount of correlation among the model’s
errors, quantified in the covariance term. Given the positive
nature of the bias and variance terms and the decreasing im-
portance of the variance term as we include more members,
the minimization of the quadratic ensemble error ideally sug-
gests unbiased (or bias-corrected) members with low error
correlation amongst them (to lower the covariance term).

2.2 The accuracy–diversity decomposition
of the ensemble error

Krogh and Vedelsby (1995) proved thatat a single datapoint
the quadratic error of the ensemble estimator is guaranteed
to be less than or equal to the average quadratic error of the
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component models:(
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Equation (3) shows that for any given set of models, the error
of the ensemble will be less than or equal to the average er-
ror of the individual models. Of course, one of the individuals
may in fact have lower error than the average, and lower than
even the ensemble, on a particular pattern. But, given that
we have no criterion for identifying a priori that best indi-
vidual (i.e. which ensemble member will best match the ob-
servations at future time steps), all we could do is pick one
at random. In other words, taking the combination of several
models would be better on average over several patterns, than
a method which selected one of the models at random. The
last statement is not self-evident for non-random sampling
of the best member (e.g. conditioned to past errors from the
models).

The decomposition (Eq. 3) is composed of two terms. The
first is the weighted average error of the individuals (accu-
racy). The second is the diversity term, measuring the amount
of variability among the ensemble member predictions. Since
it is always positive, it is subtractive from the first term,
meaning the ensemble is guaranteed lower error than the
average individual error. The larger the diversity term, the
larger is the ensemble error reduction. Here one may assume
that the optimal error belongs to the combination that min-
imizes the weighted average error and maximizes the vari-
ability among the ensemble members. However, as the vari-
ability of the individual members rise, the value of the first
term also increases. This therefore shows that diversity itself
is not enough; it is necessary to get the right balance between
diversity and individual accuracy, in order to achieve lowest
overall ensemble error (accuracy–diversity trade-off).

Unlike the bias–variance–covariance decomposition, the
accuracy–diversity decomposition is a property of an ensem-
ble trained on a single data set. The exact link between the
two decompositions is obtained by taking the expectation of
the accuracy–diversity decomposition, assuming a uniform
weighting. It can be proved that (Brown et al., 2005)
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The � term (Brown et al., 2005) constitutes the interaction
between the two parts of the ensemble error. This is the av-

erage variance of the models, plus a term measuring the av-
erage deviations of the individual expectations from the en-
semble expectation. When we combine the two sides by sub-
tracting the diversity term from the accuracy term from the
average MSE, the interaction terms cancel out, and we get the
original bias–variance–covariance decomposition back. The
fact that the interaction exists illustrates why we cannot sim-
ply maximize diversity without affecting the other parts of
the error – in effect, this interaction quantifies the accuracy–
diversity trade-off for uniform ensembles.

2.3 The analytical optimization of the ensemble error

The two decompositions presented are valid for uniform en-
sembles, i.e.wi =

1
M

. Both indicate that error reduction in an
ensemble can be achieved through selecting a subset of the
members that have somedesired propertiesand taking their
arithmetic mean (equal weights). An alternative to this ap-
proach would be the use of non-uniform ensembles. Rather
than selecting members, it keeps all models and the burden
is passed to the assignment of thecorrect weights. A brief
summary of the some properties of non-uniform ensembles
is presented in the following paragraphs.

The construction of the optimal ensemble has been ex-
ploited analytically by Potempski and Galmarini (2009).
They provide different weighting schemes for the case of un-
correlated and correlated models by means of minimizing the
MSE. Under the assumed condition of the models’ indepen-
dence of observations and assuming also that the models are
all unbiased (bias has been removed from the models through
a statistical post-processing procedure), the formulas for the
1-D case (single-point optimization) are given in Table 2.
Also, whether correlated or not, the models are assumed as
random variables. The optimal ensemble corresponds to the
linear combination of models with the minimum MSE. This
can be considered as a transfer function that distributes iden-
tically the models around the truth.

Using equal weights, the ensemble mean has lower MSE
than the candidate models given specific conditions (Ta-
ble 2). For uncorrelated models, the only constraint is the
skill difference (MSE ratio) of the worst over the best single
model. For example, the arithmetic mean of a three-member
ensemble has lower MSE than the best candidate model only
if the MSE ratio (worst/best) of the models is lower than 4.
In other words, the RMSE ratio may not exceed 2, imply-
ing that the individual members should not be very differ-
ent. The conditions for correlated models are more restrictive
(Potempski and Galmarini, 2009; Weigel et al., 2010) and be-
sides skill difference, they also depend on error correlation
measures. Further, unlike the case of uncorrelated models,
optimal weights for correlated models can be negative (Ta-
ble 2). There is no physical interpretation for the negative
weights; if they arise for some models, it is simply a result of
the optimization of the cancelling out of the individual errors.

Atmos. Chem. Phys., 14, 11791–11815, 2014 www.atmos-chem-phys.net/14/11791/2014/



I. Kioutsioukis and S. Galmarini: De praeceptis ferendis: good practice in multi-model ensembles 11795

Table 2.Analytical formulas for the 1-D (single-point optimization) case (from Potempski and Galmarini, 2009).

Uncorrelated models Correlated models

Optimal ak =

1
σ2
k∑

j

1
σ2
j

a =
K−1l

(K−1l,l)

Weights

Limits for mme MSE
(
f
)
≤ MSE(f1) ≤ ·· · ≤ MSE(fm) MSE

(
f
)
≤ s1 ≤ s2 ≤ ·· · ≤ sm

ensemble mean ifMSE(fm)
MSE(f1)

≤ M + 1 if sm
s1

≤ M

Definitions σ2
j

= variance of model’sj error sj = eigenvalues ofK

K = error covariance matrix
l = [1,1,a, . . . ,1]

T

For example, models with highly correlated errors may be
given weights of opposite sign.

2.4 Example

We now present a theoretical example aimed at illustrating
the basic ingredients of ensemble modelling discussed. Four-
teen samples of 5000 records each have been generated; 13
corresponding to output of model simulations and one act-
ing as the observations. These synthetic time series have
been produced with Latin hypercube sampling (McKay et
al., 1979). The reason of selecting Latin hypercube sampling
over random sampling, besides the correct representation of
variability across all percentiles (Helton and Davis; 2003), is
its ability to generate random numbers with predefined cor-
relation structure (Iman and Conover, 1982; Stein, 1987).

Figure 1 shows the RMSE distribution of the mean of
all possible combinations of the ensemble members (M =

13) as a function of the ensemble size (k = 1, . . . ,M). The
number of combinations of anyk members is given by the
factorial

(
M
k

)
, resulting in a total of 8191 combinations

in this setting (e.g. 286 fork = 3, 1716 for k = 6, etc.).
In the case of i.i.d. random variables (Fig. 1a), increas-
ing the number of members (k) moves the curves toward
more skillful model combinations, as anticipated from the
bias–variance–covariance decomposition. Further, the opti-
mal weights show little deviation from the equal weighting
scheme (with small random fluctuations though) traditionally
used in the MMEs. Hence, the optimal combination (mmeS)
and the optimal weighted combination (mmeW) coincide.
However the i.i.d. situation is unrealistic for MME, there-
fore we will examine the ensemble skill by perturbing inde-
pendently the three statistical measures of bias, variance and
covariance.

Bias has been introduced into the ensemble by shifting the
distribution of two-thirds of the models by a small amount,
making one-third of the models unbiased, one-third biased
positively and one-third biased negatively. The RMSE distri-
bution of all possible combinations (Fig. 3b) does not appear

symmetric with respect to the mean RMSE, with notable dis-
tortions at the maximum RMSE fork ≤ 4 (i.e. one-third of
models). The upper bound of the RMSE values is defined
from the ensemble combinations consisting of biased mem-
bers of equal sign. Several combinations with multi-model
error lower than the error of the full ensemble mean exist;
at the same time, the whole RMSE distribution spans higher
values compared to the i.i.d. case (note the change in scale).
The optimal combination (i.e. lowest RMSE) uses all unbi-
ased models plus same amounts of biased equally members
from both sides. As for the weighted ensemble, no conclu-
sion can be inferred as its weights by definition assume un-
biased models.

The effect of variance perturbations is displayed in the
middle row. One-third of the members (those with id 10–
13 in particular) had deflated (Fig. 1c) or inflated (Fig. 1d)
variance. Due to the bias–variance dilemma, the case with
smaller variance (left) achieves lower RMSE for lowk (com-
pared to the i.i.d. case) while the opposite is true for the cases
exhibiting larger variance. The optimal weighted combina-
tion gives higher weight to the under-dispersed members and
lower weight to the over-dispersed ones.

All examined cases so far were uncorrelated. Next, a pos-
itive correlation (Fig. 1e) is introduced among the first three
members (id 1–3) and separately, a negative correlation be-
tween two members (Fig. 1f) – with id 5 and 8. The upper
(lower) bound of the error distribution of the combinations
is distorted towards higher (lower) values by introducing
positively (negatively) correlated members. Positively corre-
lated members bring redundant information, where individ-
ual errors are added rather than cancelled out upon MME
averaging. The optimal combination, for the case of posi-
tive correlations utilizes all i.i.d. members plus only one from
each redundant cluster (i.e. the sub-ensemble has only non-
correlated members); for negative ones, it tends to use only
anti-correlated members. The same is seen also for the op-
timal weighted scheme: positively correlated members are
treated as one, negatively correlated are significantly pro-
moted over the i.i.d. members.
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11796 I. Kioutsioukis and S. Galmarini:De praeceptis ferendis: good practice in multi-model ensembles

Figure 1. Ensemble error (RMSE) from all possible combinations of candidate models. The red curve on each plot represents the mean of
the distribution of anyk-model combinations while the blue curves form the min and max of the each respective distribution:(a) i.i.d., (b)
bias perturbation,(c, d) variance perturbations,(e, f) covariance perturbations. Please read text for explanations and note the different range
of they-axis between the different panels. In the same plot, the bar chart expresses the optimal weight of each model in the full ensemble
and the straight red line symbolizes the equal weight value. In this case, the horizontal axis represents the id of the model.
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Using one-at-a-time perturbations in bias, variance and co-
variance, we investigated the skill of the three examined en-
semble products through synthetic time series. The outcome
of the exercise shows the following:

1. mme: its RMSE is reduced, compared to the i.i.d. case,
if within the sample there exist few members with lower
variance or negative correlation. In contrast, its error
is augmented from the presence of biased members.
All the above can be directly explained by the bias–
variance–covariance decomposition.

2. mmeS: for bias and variance perturbations, the optimal
combination tends to use subsets built from i.i.d. mem-
bers and members with balanced properties, i.e. biased
from both signs, under- and over-dispersed. For the cor-
relation perturbations, the optimal combination uses:

– the subset built from i.i.d. members and only one
member from the positively correlated cluster

– the subset built from the negatively correlated
members

3. mmeW: compared to the i.i.d. members, the weighted
scheme:

– reinforces members with lower variance and weak-
ens members with higher variance

– treats all redundant members as one and reinforces
negatively correlated members.

To summarize, ensemble averaging is a good practice when
models are i.i.d. In reality, models depart from this ideal-
ized situation and MME brings together information from
biased, under- and over-dispersed as well as correlated mem-
bers. Under these circumstances, the equal weighting scheme
or the use of all members masks the benefits behind ensem-
ble modelling. This example serves as a practical guideline
to better understand the real issues faced when dealing with
biased, inter-dependent members.

3 Data and methodology

The material presented in the previous section demonstrated
clearly through a well-defined mathematical formulation that
building ensembles on the basis of “including as many mod-
els as possible in the pool and taking their arithmetic mean”
is generally far from optimal as it relies on conditions that are
normally not fulfilled. The necessary ingredients for ensem-
ble building, using either the entire members with weights
assigned or a subset of them with equal weights, and specifi-
cally, the optimization of the ensemble error:

– points, through the bias–variance–covariance decompo-
sition, towards the bias correction of the models and the
use of uncorrelated or negatively correlated ensemble
members (equal weights, sub-ensemble);

– relies, through the accuracy–diversity decomposition,
on finding the trade-off point between accurate and di-
verse members (equal weights, sub-ensemble);

– provides, through analytical formulas, weights for all
ensemble members dependent on their error covariances
(Potempski and Galmarini, 2009) (unequal weights, full
ensemble).

Unlike the simple arithmetic mean of the entire ensemble, it
is clear that all aforementioned cases require a learning pro-
cess/algorithm. The aim of this work is to assess and compare
the predictive skill of three ensemble products with well-
defined mathematical properties: namely, (a) the arithmetic
mean of the entire ensemble (mme), (b) the arithmetic mean
of an ensemble subset (mmeS), linked to the error decompo-
sitions (2.1, 2.2) and (c) the weighted mean of the entire en-
semble (mmeW), linked to the analytical optimization (2.3).
Note that mmeS is a general case of mme and a special case
of mmeW (if weights can only take two discrete values). The
principal objective addressed is the emergence of ways to
produce a single improved forecast out of an ensemble that
potentially outscores the traditional arithmetic mean as well
as the best numerical model.

The critical model parameters for the techniques investi-
gated in this work, for ensemble member weighting or select-
ing, are bias and weights (straightforward) for mmeW and
effective number of models and cluster selection for mmeS.
They are briefly explained now.

– Bias correction. According to the bias–variance–
covariance decomposition, bias is an additive factor to
the MSE and model outputs should be corrected for
their bias before any ensemble treatment. The analyti-
cal optimization of the ensemble error and the defined
weights (Table 2) also assume bias-corrected simula-
tions. Here we do not intend to review the available
algorithms for the statistical bias correction (e.g. Do-
sio and Paurolo, 2011; Delle Monache et al., 2008;
Kang et al., 2008; McKeen et al., 2005; Galmarini et
al, 2013); the correction applied in this work refers to
a simple shift of the whole distribution within the ex-
amined temporal window, without any scaling or multi-
plicative transfer function.

– Effective number of models. The optimal ensemble es-
timator generally uses a subset of the available mod-
els, characterized as effective number (Meff) of mod-
els. In principle,Meff reflects the degrees of freedom
in the system (i.e. number of non-redundant members
that cover the output space ideally and hence, can be
used to generalize). An analytical way to calculate
Meff is through the formula proposed by Bretherton et
al. (1999). Using eigen-analysis, it estimates the num-
ber of models needed to reproduce the variability of the
full ensemble.

www.atmos-chem-phys.net/14/11791/2014/ Atmos. Chem. Phys., 14, 11791–11815, 2014
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– Clustering Measures. Given a data set ofN instances
X = {X1,X2, . . . ,XN }, a clustering algorithm generates
r disjoint clusters based on a distance metric. Each clus-
tering solution is a partition of the data setX into Ki

(1 ≤ i ≤ r) disjoint clusters of instances. A typical out-
put of a clustering algorithm is a dendrogram, where
redundant models are grouped together and the level of
similarity among groups is based on the distance be-
tween the elements of the input matrix. Clustering algo-
rithms are sensitive to the controlling options (theag-
glomerative method, thedistance metric, thenumber of
clustersand thecut-off distance) that need to be deter-
mined for each particular data set (Fern and Brodley,
2004). Here, we use the unweighted pair-group aver-
age as theagglomeration methodand the standard Eu-
clidean distance as thedistance metric.The clustering
algorithm has been utilized against thedm matrix de-
fined in Table 1, namely the corr(di , dj ), which gen-
erates more dissimilar errors compared to theem met-
ric (for details see Solazzo et al., 2013). Common prac-
tice suggests cutting the dendrogram at the height where
the distance from the next clustered groups is relatively
large, and the retained number of clusters is small com-
pared to the original number of models (Riccio et al.,
2012). For this reason, thecut-off value(the threshold
similarity above which clusters are to be considered dis-
jointed) is set to 0.10 for corr(di , dj ).

All time series utilized originate from AQMEII (Rao et al.,
2011). AQMEII was started in 2009 as a joint collaboration
of the EU Joint Research Centre, the US-EPA and Environ-
ment Canada with the scope of bringing together the North
American and European communities of regional-scale air
quality models. Within the initiative the two-continent model
evaluation exercise was organized, involving the two com-
munities in simulating the air quality over North America
and Europe for the year 2006 (full detail in Galmarini et al.,
2012a). Data of several types were collected and model eval-
uated (Galmarini et al., 2012b). The community of the par-
ticipating models, which forms a multi-model set in terms
of meteorological drivers, air quality models, emissions and
chemical boundary conditions, is presented in detail in Gal-
marini et al. (2013). The model settings and input data are
described in detail in Solazzo et al. (2012a, b), Schere et
al. (2012), Pouliot et al. (2012), where references about
model development and history are also provided.

The direct comparison of the simulated fields with the
air quality measurements available from monitoring stations
across the continent, at large temporal and spatial scales, is
considered essential to assess model performance and iden-
tify model deficiencies (Dennis et al., 2010). This analysis
falls within the context of operational evaluation of regional-
scale chemical weather systems where most of the peaks in
the energy spectrum are in the high-frequency era (hour, day,
week). Together with the fact that the monitoring network ex-

tends over the whole continent, it emerges that the AQMEII
database is suitable to capture the core temporal and spatial
dependencies of the examined pollutants.

The analysis considershourly time series for the JJA
(June–July–August) period. For European ozone, the ensem-
ble consists of 13 models, which give rise to 8191 different
combinations (ensemble products). In Sect. 4, we make use
of spatially aggregated time series (EU1 to EU4, illustrated
in Fig. 9a) while Sect. 5 utilizes time series at point locations
(451 stations). All data used refer to Phase I of the initiative.
The evaluation of the examined ensemble products (mme,
mmeW, mmeS) will rely on several indices of error statis-
tics calculated at rural receptors. We present them in Table 1.
Those metrics can be used for the validation of each single
ensemble configuration (fi) as well as for the ensemble mean
(fens).

4 Interpretation of the ensemble error in
light of its terms

The goal of the section is to assess the properties of the en-
semble error for the examined ensemble products and, in par-
ticular, the characteristics that show robustness and allow the
position of skilled predictions. Once those basic ingredients
have been identified over a few regionally averaged time se-
ries, the potential predictability of the ensemble schemes at
all available stations will be assessed in the next section.

The cumulative density functions (cdf) of the models and
the observations at the four sub-regions are presented in
Fig. 2. The distribution of the models around the observa-
tions, across all percentiles, demonstrates the highest sym-
metry in EU4. On the opposite side we find EU3, where the
ensemble is reliable only around the median. For the other
two domains, EU1 and EU2, the ensemble replicates well the
interquartile range but the averaging out of errors does not
work properly at the extremes. The comparison of the cdfs
demonstrates that the ensemble mean (mme) at the extreme
percentiles should be treated with caution.

In an ideal ensemble, the rank histogram distribution
should, on average, be flat. But, a flat rank histogram does
not necessarily indicate a good forecast (Hamill, 2001); it
only measures whether the observed probability distribution
is well represented by the ensemble. In fact, the analysed data
set (EU4r) has a relatively flat Talagrand diagram (Fig. 3a)
but this accurate representation of the observational variabil-
ity is not reflected symmetrically across all distribution bins
as already seen in Fig. 2. If we were to plot four rank his-
tograms, one for each distribution quartile, we would face
significant departures from flatness, especially outside the in-
terquartile range.

Focusing on the ensemble error, the RMSE of the mean
of all possible combinations as a function of the ensemble
size (Fig. 3b) justifies the statement obtained theoretically,
namely that the RMSE of the ensemble mean is lower than
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Figure 2. Cumulative density function of observations (red circle) and models (coloured lines). At the same plot, the three ensemble esti-
mators are also displayed, namely the multi-model ensemble mean (mme: square), the optimal weighted ensemble estimator (mmeW: green
circle) and the optimal accuracy–diversity ensemble estimator (mmeS: blue circle). Please note the different range of thex-axis between the
different panels.

the mean error of the single models. This does not prevent
individual model errors being lower than the ensemble mean
error. The curve, although it originates from real data (EU4r),
shares the same properties with its synthetic counterpart (pre-
vious section). Specifically,

– the ensemble average reduces themaximumRMSE as
the order is increased;

– a plateau is reached at themeanRMSE fork < M, indi-
cating that there is no advantage, on average, to combine
more thank members (k ∼ 6);

– a minimumRMSE, among all combinations, systemati-
cally emerges for ensembles with a number of members
k < M (k ∼ 3–6). Applying the eigen-analysis on the
error matrix, it also yieldsMeff = 3.

The probability density function of the RMSE plotted for
k = 6 (similar for other values) demonstrates that there exist
many combinations with lower error than the ensemble mean
or the minimum of ensemble mean and best single model.
Those skilled groupings are well below 50 % of the total
combinations, implying that random draws from the pool
of models are highly unlikely to produce better results than
the ensemble mean; at the same time, those fractions are not

negligible, leaving space for significant improvements of the
mme. Fork = 6, the 13 models give rise to 1716 combina-
tions; each model participates at 792 of them. The fractional
contribution of individual models (fork = 6) to skilled sub-
groups (portion of skilled combinations per model) is given
with the red numbers. For example, among all combinations,
at k = 6, that may contain the model with id 12, two-thirds
of them (67 %) are skilful. The percentages indicate prefer-
ence to combinations including more frequently some mod-
els (e.g. 4, 6, 9, 12) but at the same time they do not isolate
any single model. Further, the optimal weights of the full
ensemble given with the bar plot (multiplied by a factor of
10) have a complicated pattern as a result of different model
variances and covariances. Clearly, they depart from homo-
geneity (equal weighting scheme shown with the red straight
line).

The error, variance and correlation (with observations) of
the 13 ensemble members are presented in a Taylor plot
(Fig. 3c). They visually form three clusters. A low-skill clus-
ter includes models 1, 2 and 10, which have the highest
error, minimum correlation with observed data and appear
under-dispersed. Model 5 also belongs to that group but its
variance is closer to the variance of the observations. The
intermediate-skill cluster contains models 3, 6, 7, 11 and
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Figure 3. (a) Talagrand diagram of the full ensemble.(b) Ensemble error (RMSE) from all possible combinations of candidate models
(EU4r). The notation is similar to Fig. 1. The numbers in red express the fractional contribution of each model to skilled combinations
(top right).(c) Multiple aspects of individual model skill through Taylor plot. The pointR on thex-axis represents the reference field (i.e.
observations).(d) Clustering members with the corr(di , dj ) matrix (bottom right).

13 with average (11, 13) to low (3, 7, 6) error, and corre-
lation ranging from 0.8 (11, 13) to 0.9 (6), but all models
are under-dispersed. The highest skill cluster (4, 8, 9, 12)
includes members with low error, high correlation and the
right variance ratio (with a slight over-dispersion though).
Considering the participation statistics of the previous graph
(given by the red numbers), we see that the models contribut-
ing more frequently to skilled combinations belong to high-
est skill cluster; the contrary is true for the low-skill cluster.
Good models have at least twice as much probability to form
part of skilful ensemble groups compared to low-skill mod-
els. On the other hand, even low-skill models can yield good
results in the right combination. Overall, the multi-model av-
erage (mme) is a robust estimate with lower error than the
candidate models but with reduced variance.

The application of the clustering procedure yielded five
disjointed clusters (Fig. 3d). Looking at the dendrogram, the

two main branches at the top further split into two more at a
relatively low similarity level, suggesting a plausible way to
proceed. A parallel inspection of the Taylor plot reveals the
similarities of each cluster in terms of error, correlation and
variance. Clustering according todm generates the clusters
visible in the Taylor plot. Many ensemble combinations with
non-redundant members can be inferred from those plots;
in addition, combinations that should be avoided are also
noted. Thedm dendrogram also explains the reasoning be-
hind the negative weights calculated analytically. The model
pairs identified with highly correlated errors (like 4 and 12
or 11 and 13) are given weights of opposite sign, as seen in
Fig. 2.

Error statistics (< RMSE>) of the ensemble members and
products (mme, mmeW, mmeS) for JJA 2006 at all selected
sub-regions, using variable window size (1 day, 2 days, 4
days, 23 days, 46 days, 92 days) are shown in Fig. 4. The
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Figure 4. The mean RMSE of the models (coloured lines) as a function of window size (1–92 days). In addition, selected ensemble products
are also displayed: mme (thick black),< mmi> (thick dotted-black), mmeW (thick red), mmeS (thick dotted red). The bars show the
theoretical minimum value (var nm−1) for uncorrelated models. Please note the different range of they-axis between the different panels.

x-axis is the number of chunks in which the JJA time series is
sliced; hence it is inversely proportional to the window size.
The skill of the deterministic models varies with location. A
very good model at one site may perform averagely in an-
other. As for the ensemble products, the following inferences
can be drawn:

(a) mme vs. best model

The conditions leading to an ensemble superior to the best
single model are illustrated in Fig. 5 (without loss of gen-
erality, we consider the EU4r case). For correlated models,
they depend on the skill difference among members and the
amount of redundancy in the ensemble (i.e. the error depen-
dence). The variation explained by the highest eigenvalue re-
flects the degrees of freedom in the ensemble (and hence the
redundancy). The pairwise plot (Fig. 5a) of the skill differ-
ence (measured by< MSE>/MSE(best)) versus the ensem-

ble redundancy (measured by the explained variation by the
maximum eigenvalue) as a function of the RMSE ratio of
mme over the best single model (for ensemble order= 6, left)
shows that mme can outscore any single model provided the
model error ratio and redundancy follows a specific pattern.
For example, the benefits of ensemble averaging are deval-
ued if we combine members that have big differences in skill
and dependent errors.

The error of the ensemble mean is superior to the mean of
the individual model errors (proved analytically) but is not
necessarily better than the skill of the “locally” best model.
The ensemble error gain (i.e. the difference between the en-
semble error and the average error of the models) is variable
as it depends significantly on the individual model distribu-
tions around the truth. Without loss of generality, if we con-
sider the 92-day case, we see that for all models the MSE ra-
tio (worst/best) is lower than 4.37 (EU1r: 4.37, EU2r: 2.96,
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Figure 5. (a, b) The RMSE ratio of mme over the best single model as a function of redundancy (explained variation by the maximum
eigenvalue sm) and model skill difference (< MSE>/MSE(best), evaluated from all combinations of 6th order (top left) and 13th order (top
right). The diagram on the right has been evaluated at all observation sites.(c, d) Four-dimensional representation of accuracy–diversity
(bottom left) and variance–covariance (bottom right), with respect to RMSE (colour scale) and ensemble order (isolines). The isolines
represent the multi-dimensional convex hull as a function of ensemble order. Isolines shrink with increasing ensemble order.

EU3r: 1.99, EU4r: 2.60). If models were uncorrelated (see
Table 2), the mme error would always be lower than any
single model’s error since the MSE ratios (worst/best) are
smaller than 14 (= M + 1). Fig. 4 shows that only in EU4r
mme error is better than the individual models. This occurs
because for correlated models, the condition is also restricted
by the redundancy (eigenvalues spectrum). The joint condi-
tions for the skill difference and the redundancy, for corre-
lated models, granting an ensemble with mme error lower
than the best model are presented in Fig. 5b. The RMSE ratio
of mme over the best single model for the case ofM (= 13)
correlated models shows that only in EU4r the explained
variation by the highest eigenvalue has the correct value for
the specified model MSE ratio: EU1r (67, 2.5), EU2r (64,
1.8), EU3r (76, 1.5), EU4r (59, 1.7), where the two num-
bers inside the parenthesis denote the explained variation by
the highest eigenvalue (first number) and the skill difference
(second number). The isolines with RMSE ratio lower than 1

reflect the cases with a more profound balanced distribution
of members. Indeed, in EU4r, the distribution of the models
around the observations, across all percentiles, demonstrates
high symmetry (Fig. 2).

(b) mme vs. mmeS

The error derived from a reduced-size ensemble mean
(mmeS) with the optimal accuracy–diversity trade-off is al-
ways lower than the error utilizing the full ensemble since
models are not i.i.d. It is also, by construction, always lower
than the best model’s error and higher than the mmeW’s er-
ror. The estimation of the optimal weights is straightforward
(Table 2), but the sub-selection of members in mmeS is not.
Since mmeS uses equal weights, we can apply the concepts
deployed by the two error decompositions and compare those
properties with the ones of mme.

Atmos. Chem. Phys., 14, 11791–11815, 2014 www.atmos-chem-phys.net/14/11791/2014/



I. Kioutsioukis and S. Galmarini: De praeceptis ferendis: good practice in multi-model ensembles 11803

Figure 6. Comparison between mmeS and mme with respect to the error decomposition. Each of the 92 dots corresponds to an individual 1-
day simulation. The colour scale represents the RMSE ratio calculated as property(mmeS)/property(mme). Top: fractional change in accuracy
versus fractional change in diversity. Middle: fractional change of variance versus fractional change of covariance. Bottom: fractional change
in skill difference versus fractional change in error correlation. Please note the different range of they-axis between the different panels.

1. Accuracy-Diversity. A 2-D plot of accuracy versus di-
versity, with RMSE displayed as a third dimension (in
colour) is shown in Fig. 5c. The black lines define the
convex hull in the (accuracy, diversity) space of specific
ensemble order, ranging from 2 in the outer polygon to
12 (i.e.M − 1) in the innermost one. As expected the-
oretically, the separate optimization of accuracy and di-
versity will not produce the best (i.e. minimum MSE)
ensemble output. For all ensemble orders, the optimal
combination consists of accurate averaged representa-
tions of sufficient diversity between members, i.e. with
an ideal trade-off between accuracy and diversity. In
particular, all skilled combinations are clearly seen in
this stratified chart; they form a well-defined area, trace-
able according to the ensemble order, that contains com-
binations with accuracy better than the average accu-
racy andideal diversity (within a wide range though)
for the specific accuracy. For example, combinations of
average accuracy form skilful ensemble products only
if their diversity is very high. Analogously, combina-
tions with good accuracy (better than average) but low
diversity result in combinations with skill lower than
the mme. Diversity with respect to the ensemble mean
can be derived independently of the observations. This
however is not true for the accuracy part, implying that
a minimum training is required. Last, we observe that
as ensemble order increases, accuracy and diversity be-

come more and more bounded (with accuracy being
more disperse than diversity), limiting any improve-
ment.

2. Variance–covariance. Similar results are obtained in
terms of the variance–covariance decomposition in
Fig. 5d. Here the convex hull areas, ranging from 3 to
12, move towards lower mean variance and higher mean
covariance with increasing ensemble order. Higher
spread is evidenced for the covariance term. As we in-
clude more members in the ensemble, the variance term
in the decomposed error formula falls while the covari-
ance term deteriorates. Skilful combinations have rela-
tively low covariance. Ensembles consisting of strongly
positively correlated members bring redundant errors in
the ensemble that does not cancel out upon averaging,
producing overall larger errors.

Following the discussion of the previous section, we examine
if the direction of move in the 2-D space of the error terms,
from mme to mmeS, has any systematic regularities. Figure 6
displays the fractional change in accuracy – [−1+accuracy
ratio (mmeS / mme)] – versus the corresponding fractional
change in diversity for all (92 in total) 1-day segments.
In the same figure, we plot the corresponding changes of
variance/covariance and skill difference/explained variabil-
ity. The colour scale indicates the RMSE ratio between the
two ensemble means. Using dissimilar time series from the
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four examined sub-regions, we observe that the optimal sub-
ensemble combination (mmeS) compared to the full ensem-
ble (mme) generally:

– improves accuracy and by a smaller portion lowers its
diversity – in other words, between accuracy and diver-
sity, the controlling factor in those experiments in terms
of error minimization is accuracy more than diversity;

– lowers variance (term in Eq. 2) and by a higher portion
lowers the covariance (term), implying that, between
variance and covariance, the controlling factor for error
minimization is covariance more than variance;

– reduces the redundancy (as measured by the explained
variability by the maximum eigenvalue) and by a higher
rate reduces the skill difference among members, indi-
cating that skill difference is more pronounced in error
minimization than error correlation.

The converged findings from four dissimilar ozone time se-
ries indicate that, for example, training mmeS through learn-
ing diversity algorithms (e.g. Kuncheva and Whitaker, 2003;
Brown et al., 2005) is not as effective as algorithms applied
on the model’s error covariance (e.g. Liu and Yao, 1999; Lin
et al., 2008, Zanda et al., 2007).

(c) mme vs. mmeW

The error of the weighted ensemble mean (mmeW) is always
superior since it has been analytically derived to minimize
the MSE. For small window sizes (less than 4 days), the
mmeW error is superior to the theoretically derived lower
bound for the mme error (second term in the bias–variance–
covariance decomposition) if models were uncorrelated. An
insight for the sign of the weights can be inferred from the
clustering according todm.

Like mmeS, mmeW improves the error and also replicates
better the observed variance (Fig. 3c) (similar results apply
also to the ensemble product generated from spectral opti-
mization demonstrated in Galmarini et al., 2013). The dis-
tribution around the truth in all those ensemble products has
always higher symmetry compared to mme, as can be seen
in Fig. 2. In addition, they all perform much better at the ex-
tremes compared to the mean of the full ensemble.

4.1 Sensitivity of the ensemble error to the length
of the training data

The temporal robustness of the two weighting schemes is
now explored in order to identify the predictive skill of
those products. The selection of the necessary training pe-
riod should take into account thememory capacityof the
atmosphere. Using complexity theory (e.g. Malamud and
Turcotte, 1999), the ozone time series demonstrates non-
stationarity and strong persistence (e.g. Varotsos et al., 2012).

This encourages the use of a scheme derived from an accu-
rate recent representation of ozone to forecasts at daily to
weekly timescales (e.g. Galmarini et al., 2013).

The weights, the mean bias and the effective number
of models have been re-calculated for variable time series
length that is progressively increasing from 1 to 92 days, for
the four European sub-regions (Fig. 7). The differences in
the parameters weights and MB, calculated from consecu-
tive blocks, show that both tend to stabilize after 40–60 days.
The same is approximately also true for the effective number
of models. Linked to the previous discussion, we hence con-
clude from the use of different time series that a lower bound
for the training window length that generates robust weight
estimates is roughly 2 months.

Following the explored temporal sensitivity of the weights
andMeff, we now examine the robustness of those estimates
for future cases and in particular their capability in making
accurate predictions. All ensemble products have been evalu-
ated against the same test set, consisting of 30 equally spaced
days from JJA (3 June, 6 June, 9 June,. . .). Eight differ-
ent sets of weights are examined for each ensemble model,
originating from four different lengths for the training period
(namely, 1 day, 11 days, 31 days and 62 days) and two bias
correction schemes (namely, the ideal for the test set and the
one calculated from the training set). We denote the weights
trained over a sufficiently long training period asstatic (e.g.
weights calculated over a sample of 62 days), to distinguish
them from thedynamicweights (i.e. calculated over the most
recent temporal window, day0, and applied on its successive
day0+1). The reasoning behind the dynamic weighting test-
ing is that, although weights (mmeW) lack any autocorre-
lation pattern (i.e. what is optimal yesterday is not optimal
today), this does not imply that this quasi-optimal weighting
for tomorrow is not still a good ensemble product (mmeW
weights are real numbers, hence there are infinite weight-
ing vectors where only one is optimal but there should exist
many combinations without major skill difference from the
optimal).

The sensitivity of the ensemble products skill as a function
of the training period length and the bias correction scheme
is presented in Table 3. The following conclusions can be
inferred for the daily forecasts:

– The weights derived through analytical optimization
(mmeW) do not correspond to products with simi-
lar properties between consecutive days in cases of
limited-length training data sets. On the other hand,
static weights trained over a period longer than 30 days
outscore all other products.

– MmeS is always superior to the mme, in all exam-
ined modes (historic, prognostic with static/dynamic
weights). It also achieves lower error than mmeW with
dynamic weights.

Atmos. Chem. Phys., 14, 11791–11815, 2014 www.atmos-chem-phys.net/14/11791/2014/



I. Kioutsioukis and S. Galmarini: De praeceptis ferendis: good practice in multi-model ensembles 11805

Table 3.The mean MSE of the 30 daily cases, in training mode (H ) and testing mode as a function of the training period length (1 day, 11
days, 31 days, 62 days) and ideal/non-ideal bias correction. The comparison has been applied to four European sub-regions and three selected
ensemble products (mme, mmeW, mmeS). The cases with MSE lower than mme are given in italics and the best member is displayed in
bold.

Ideal bias correction Predicted bias correction

EU1r H 1d 11d 31d 62d H 1d 11d 31d 62d

mme 49.0 49.0 49.0 49.0 49.0 49.0 86.7 87.6 86.7 86.8
mmeS 9.9 20.6 23.0 23.3 18.6 9.9 82.9 45.6 42.7 42.7
mmeW 0.6 41.8 18.2 14.3 13.7 0.6 544.1 39.3 28.8 27.8

EU2r H 1d 11d 31d 62d H 1d 11d 31d 62d

mme 28.4 28.4 28.4 28.4 28.4 28.4 153.1 117.4 109.6 110.1
mmeS 10.2 22.1 19.6 24.8 24.5 10.2 140.6 64.2 54.2 57.6
mmeW 0.5 37.1 24.3 15.0 13.7 0.5 1021.3 60.8 34.7 34.1

EU3r H 1d 11d 31d 62d H 1d 11d 31d 62d

mme 285.5 285.5 285.5 285.5 285.5 285.5 371.0 342.9 342.8 342.6
mmeS 113.3 176.4 190.7 140.3 140.3 113.3 299.8 246.1 207.0 206.9
mmeW 1.7 507.4 195.0 127.6 116.4 1.7 4208.2 323.1 203.7 185.3

EU4r H 1d 11d 31d 62d H 1d 11d 31d 62d

mme 37.7 37.7 37.7 37.7 37.7 37.7 134.9 83.9 72.9 72.9
mmeS 9.7 27.3 23.3 22.8 23.5 9.7 138.4 63.1 53.5 52.5
mmeW 0.9 146.8 29.2 25.2 22.6 0.9 578.7 83.5 53.1 48.3

– In view of the predictability limits of each scheme, the
achieved forecast MSE of mmeW is roughly 25 times
higher than its hindcast MSE if bias correction is ideal
and 50 times its hindcast MSE if bias correction is non-
optimal. For mmeS, the forecast MSE is roughly double
its hindcast MSE if bias correction is ideal and quadru-
ple its hindcast MSE if bias correction is non-optimal.

– In many cases, the forecast MSE of mmeS and mmeW
outscores the hindcast MSE of the mme. It systemati-
cally emerges in cases with ideal bias correction.

Weighting is a risky process (Weigel et al., 2010) and its ro-
bustness should be thoroughly explored prior to operational
forecasting. In diagnostic mode (training phase), mmeW
minimizes the error achieving at least an order of magni-
tude lower MSE compared to the other ensemble products
(Table 3). In prognostic mode (testing phase), if the training
data have sufficient extent (at least 30 days), the minimum
error is obtained with mmeW while for the case of limited
training data, the minimum error is obtained with mmeS. An
improvement similar to the one obtained through the mmeW
scheme (bias correction, model weighting) has been docu-
mented in weather forecasting with MME (Krishnamurti et
al., 1999), where weights were estimated from multiple re-
gression. Similarly, improvement based on recent represen-
tation of an ensemble subset is documented in Galmarini et
al. (2013). Other ensemble products based on learning diver-

sity or covariance did not systematically outscore mme (not
shown).

5 Predictability assessment at the monitoring stations

In the previous section, using four dissimilar regionally av-
eraged time series, we have seen that in prognostic mode,
mmeW with static weights (i.e. calculated over a 60-day in-
terval) results in the least error previsions. In view of the op-
erational evaluation, we now explore the spatial extension of
the method. Specifically, using observed and modelled time
series at the station level rather than at the regional level, we
test the spatial forecast skill of mme, mmeW and mmeS on
blind time series. We split records into a test data set (30
equally spaced days from JJA: 3 June, 6 June, 9 June, etc.)
and a training data set (remaining two-thirds of the records).
Using the training data set, we first bias correct the time se-
ries and then we estimate the mmeW weights and mmeS sub-
set. Last, we apply the estimated parameters from the training
data set (weights, bias,Meff, clusters) into the test data set.

Training Phase. Figure 8 displays the mmeW weights for
each participating model at the observed sites (one figure per
candidate model) for the training data set. Although the op-
timization has been applied at each monitoring station in-
dividually, it can be inferred that the weighting pattern (per
model) shows more of a coherent image across the continent,
rather than a random design, reflecting a spatially robust error
covariance. On the opposite case, it can provide a mean for
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Figure 7. Variability of weights (left column), bias (middle column) and effective number of models (right column) as a function of time-
series length. Each thin line represents a different model. The effective number of models is calculated through eigenanalysis and error
minimization.

discriminating the performance of individual models. This
spatial robustness of the weights is particularly important for
the re-gridding of the results at locations not used in the train-
ing. Last, the highest frequency of model use in mmeS is
observed for the models having the higher mmeW weights.
Hence, although calculated with different approaches, the
weight peaks at seasonal scale of the mmeW and mmeS have
similarities (i.e. models 3, 5 and 6 that receive on average
the highest weights are also the ones used most frequently in
mmeS).

Using various input matrices, we find the effective number
of models to vary between 2 and 8, through a homogeneous
spatial pattern (Fig. 9). Indeed, using analytical error min-
imization over all combinations (i.e. the one with the right
trade-off between accuracy and diversity),Meff covers all
bins between 2 and 8, peaking at 3–4 members. The spatial
variability is due to the absence of any filtering in the latter
case. At half of the stations, evenly distributed across the do-
main, mmeS uses only either 3 or 4 models, while over 80 %
of the sites need 2–5 models from the pool.

Testing Phase. The presented results hereafter assess the
predictability of the examined schemes trained over a finite

time series. Besides the summary statistics, the skill is also
evaluated geographically as well as a function of the effective
number of models. In addition, the effect of a second-order
correction in bias is investigated. We conclude with the pre-
sentation of results for NO2 and PM10, following the same
methodological framework.

Forecast Skill. The composite skill of the selected ensem-
ble products, originating from all blind forecasts at the 451
stations (aggregated), is presented in a Taylor plot (Fig. 13)
together with the single deterministic models. The benefits
of ensemble treatment, either in the form of simple averag-
ing models (mme) as well as using more sophisticated tech-
niques (mmeS, mmeW) are clearly evident. Besides the error
(RMSE), mmeS and mmeW also improve the correlation and
the variance of the output with respect to mme. The improve-
ment reflects the better capture of the 50 % of values outside
the interquartile range, i.e. the lower than 25th and the higher
than 75th percentile values.

The results are now spatially disaggregated and the lat-
itudinal and longitudinal forecast skill of mme, mmeW and
mmeS is shown in Fig. 10 for the gross error (RMSE) and the
ability to capture the extreme upper tail of the distribution via
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Figure 8. Ozone spatial weights (mmeW) calculated for each model (1–12) for JJA (1 segment) at the observed rural sites (segment de-bias)
and aggregated frequency of model use in mmeS, from all the 451 stations for the test data set.

the hit rate indicator. The weighted ensemble, in the form of
mmeW or mmeS, significantly improves both indices over
the ensemble mean. The advancement happens at all sin-
gle locations, as the cdf plot of the RMSE ratios with mme
shows. The error is lowered by up to 35 % for mmeW and
25 % for mmeS. Half of the stations experience RMSE low-
ering in the mmeW (mmeS) case by up to 13 % (10 %) and
the other half in the range 13–35 % (10–25 %). There exists
a weak tendency for larger improvement at the sites with the
higher RMSE. The histogram of the errors from all stations
for (mme, mmeS, mmeW) has a mean of (21.7, 19.6, 18.6)
and a standard deviation of (5.8, 5.2, 4.6) implying that be-
sides skill, forecast uncertainty also benefits from a similar
improvement.

In view of the extremes, the correct identification of con-
centrations over the 120 µg m−3 threshold value (right plot),
has a clear latitude dependence inmme(the more southerly

the better for ozone) that is considerably corrected in both
mmeW and mmeS, with a more homogeneous pattern in
mmeW. The median hit rate of mme is 28 % and becomes
44 % in mmeS and nearly doubles (52 %) in mmeW. One-
quarter of the total stations lying in middle to high latitudes
experience the highest improvement; a hit rate of less than
10 % in mme becomes up to 40 % in mmeW and 30 % in
mmeS.

Effect of Meff. We investigate now the statistical proper-
ties of the three ensemble products as a function of theMeff
calculated from the minimum error. The mean is well cap-
tured by all products (Fig. 11a). It is decreasing for small
Meff (≤ 4) and remains roughly constant for higher values.
This indicates that ensembles tend to be more symmetric at
lower concentrations, indicating again that one of the areas
where mme fails is extreme values, since only few models
actually capture them. The latter statement is reinforced by
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Figure 9. Top: spatial distribution ofMeff based on minimum error combination (left) and its histogram (right). Middle: same as top but for
Meff based on the eigenvalues of the covariance of the diversity matrix. Bottom: same as top but forMeff based on the eigenvalues of the
cor(ei,ej) matrix. Please note the different range of they-axis between the different histograms.

the coefficient of variation plot (Fig. 11b) – it unfolds the
differences in the statistical distribution of the three ensem-
ble products. Overall, the spread (range) of concentrations
is monotonically decreasing asMeff increases. ForMeff ≤ 4,
this is due to equal reductions in mean and standard devia-
tion, for Meff > 4 it is due to a decrease in standard devia-
tion only (as the coefficient of variation is decreasing but the
mean is stable). The statistical distributions of the three en-
semble products start to converge forMeff > 6, i.e. when the
range of concentration is well bounded below 120 µg m−3.
Finally, skewness and kurtosis do not demonstrate any sig-
nificant dependence onMeff (not shown).

The findings of the previous paragraph for the statistical
distribution are explored hereafter for the skill with respect to
Meff. The dissimilarities among the three ensemble products
are clearly revealed in all examined skill scores. The corre-
lation (PCC) with observations is nearly independent of the
Meff for mmeS and mmeW (Fig. 11c). On the other hand,
mme has notably lower PCC forMeff ≤ 4, pointing again to
the discrepancies in capturing the whole range of variability
when there is a significant amount of extreme records (over
120 µg m−3). A similar result is found for the standard de-
viation ratio (STDR) (Fig. 11e). In terms of error (RMSE)
(Fig. 11d), it is a decreasing function ofMeff and the three
ensemble products start to converge forMeff > 6. As Meff
increases, the distribution of the models around the obser-
vations gradually becomes more symmetric, hence the gain
from mmeW or mmeS is minimized as the mme sample has

already a quite symmetric distribution. This can be seen in
Fig. 12, where Talagrand diagrams have been plotted accord-
ing to the station’sMeff. Taken together with the distribu-
tion convergence seen in the previous paragraph, the results
demonstrate that the MME sample resembles the properties
of an i.i.d. sample only for cases without extreme percentiles,
since only few models are able to forecast them. In turn, this
indicates that as long as the variance of some models departs
significantly from the observed variance, the benefits of im-
provements in the ensemble skill in the form of mmeS or
mmeW over mme become substantial. Last, the improved hit
rate (hitR) in mmeW and mmeS over mme seen in Fig. 10
has a coherent pattern across allMeff values, as also seen in
Fig. 11f.

Effect of the bias correction scheme. So far, the model out-
puts have been separately adjusted for systematic errors by a
first-order bias correction. Here we test the effect of an addi-
tional adjustment applied on their spread through a second-
order bias correction. As the purpose of this work is not
the evaluation of the different correction strategies, we apply
a simple multiplicative correction factor to the whole bias-
corrected time series. The results are presented in Fig. 13
through a comparison of their composite skill in Taylor plots
as well as through binned bias plots.

The skill of the numerical models in simulating ozone
(first column) is enhanced with the inclusion of the second-
order correction, which is also reflected in the ensemble
products and in particular in mme and mmeS. As expected,
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Figure 10.Top row: the RMSE of ozone at each observed site for mme (left). The behaviour at the upper tail of the distribution; percentage
of correct hits for events> 120 µg m3 for mme (right). Second/third rows: as top row but for mmeW and mmeS. Bottom row: the cdf of each
spatial plot.

the second correction is also accompanied by an increase in
the effective number of models as it yields more symmetric
fields. The binned mean bias plot demonstrates that the en-
semble products retain the same ability sequence in the two
schemes across all ranges (i.e. first mmeW, second mmeS,
third mme) with the known overestimation tendency for con-
centrations below 75 µg m−3 and underestimation above that
threshold. The differences between the schemes and prod-
ucts become substantial for the limited records exceeding the
180 µg m−3 value. In general, the mmeW provides signifi-
cantly better forecasts over mmeS and mme even with fewer
corrections (for example mmeW trained with first-order cor-
rected models scores better than mmeS from second-order
corrected models); this also applies for mmeS over mme.

Results for other pollutants(NO2, PM10). For the other
two pollutants (NO2 and PM10), some of the results seen in
ozone are also valid, like the improvement in the model’s
skill and the increase of the effective number of models.
Compared to ozone simulations, the distance between the
three ensemble products is lower in the Taylor plot indicat-
ing a mild improvement over mme. This is also confirmed
through the analysis of the binned mean bias. In addition, the
seasonality expressed through the PCC is lower in the case
of NO2 and PM10. Hence, between different species, the sta-

tistical improvements are proportional to the MME skill in
forecasting the specific species. In other words, mmeS and
mmeW improve the skill of mme up to a point; further im-
provement requires an advancement of the core uncertainty
factors inside the deterministic models like the emissions, the
boundary conditions and the parametrization of physical pro-
cesses.

The gross improvement in the RMSE of the multi-model
ensemble mean achieved through a second-order bias correc-
tion, compared to first order, was 0.6 % for O3, 2.1 % for NO2
and 11.8 % for PM10. On the other hand, the improvement
in the RMSE achieved through the exploitation of the ensem-
ble mean in the form of mmeW or mmeS was 8.6 % for O3,
14.9 % for NO2 and 13.5 % for PM10. Hence, the improve-
ment in the error of the ensemble mean achieved through
spread adjustment, on top of the correction of the system-
atic errors, does not outscore the improvements that can be
achieved through proper weighting or sub-selecting.

6 Summary and conclusions

Ensemble forecasting with multi-model ensembles improves
the forecast skill by reducing the non-linear error growth
and averaging out individual models’ error components. The
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Figure 11.Top: statistical properties of mme, mmeS and mmeW forecasts versus observations from the 451 stations for the test data set as a
function ofMeff: (a) mean and(b) coefficient of variation (SD/Mean). The shadow area in the mean plot shows the 10th and 90th percentile
of the observed concentrations. Middle/bottom: forecast skill of mme, mmeS and mmeW from the 451 stations for the test data set as a
function ofMeff: (c) PCC,(d) RMSE,(e)STDR (standard deviation ratio) and(f) Hit Rate.

mme(equal weights) is a spatiotemporal robust estimate of
the actual state with increased accuracy (single errors can-
cel out) but with variance lower than the observations. Its
skill degrades outside the interquartile range due to the in-
efficiency of the majority of the models to simulate extreme
percentiles, where hence averaging brings mainly redundant
information. The last property limits the usefulness of the
ensemble mean, particularly for the study of extreme events,
unless a mechanism that accounts for ensemble redundancy
is taken into account. Possible pathways investigated to elim-
inate this distortion and yield ensemble output with symmet-
ric residuals across all distribution bins are model weighting
and model sub-selecting, both supported by mathematical ev-
idence. The analysis makes use of continental-scale simula-
tions and observations from AQMEII.

The goal of this work is to evaluate potential schemes to
produce a single improved forecast out of an ensemble. The
key results, obtained from the application of two general-
purpose ensemble models to a representative air-quality data
set, can be summarized as follows (in order of decreasing
generality):

1. The unconditional averaging of ensemble members is
highly unlikely to systematically generate a forecast
with higher skill than its members across all percentiles
as models generally depart significantly from behaving
as a random sample (i.e. under the i.i.d. assumption).
Further, the ensemble mean is superior to the best single
model given conditions that relate to the skill difference
of the members and the ensemble redundancy.

2. The relative skill of the deterministic models radically
varies with location. The error of the ensemble mean is
not necessarily better than the skill of the “locally” best
model, but its expectation over multiple locations is,
making the ensemble mean a skilled product on average.
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Figure 12.Top: Talagrand diagram of the full ensemble aggregated at the stations as a function ofMeff. Bottom: cumulative density function
of observations (red circle) and models (coloured lines), aggregated at the stations as a function ofMeff. The ensemble mean is displayed
with a square.

A continuous spatial superiority over all single models
is feasible in ensemble products such asmmeW(error
optimization through model weighting; keep all mod-
els) andmmeS(error optimization through trade-off be-
tween accuracy and diversity or variance and covari-
ance; average on selected subset of models).

3. Unlike mme, mmeW and mmeS require some training
phase to find robust weights or clusters. The mmeW
skill was more sensitive to its controlling factors than
mmeS. A 2-month period was found necessary for the
stabilization of the mmeW weights. On the other hand,
mmeS was robust using both static/dynamic modes. In
prognostic mode, if the training data have sufficient
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Figure 13.The Taylor diagrams in the first row refer to only bias correction (db1) while those in the second row refer to bias plus variance
correction (db4). The bar plot in the third row shows the distribution of the effective number of models in the two schemes. The line plots
in the last row compare the binned bias of the two correction schemes (db1: dotted, db4: line); the percentage of values within each bin
is also given. Each column shows a different pollutant (O3, NO2, PM10). The plots have been produced from the aggregated time series
incorporating all the stations of the test data set. Please note the different range of thex- andy-axes in the different panels.
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extent (at least 30 days), the minimum error is obtained
with mmeW while for the case of limited training data,
the minimum error is obtained with mmeS. Specifically:

– mmeW: the weights were rather sensitive to the
length of the training period, requiring at least 30
days to approach an asymptotic consensus. Nev-
ertheless, learning over long time periods (∼ 2
months) and using those weights in predictive mode
proved robust and accurate. Under proper train-
ing, its forecast skill outperformed all other ensem-
ble products as well as individual models. The im-
provement across all stations over the mme was up
to 35 % for the RMSE and around 85 % for the me-
dian hit rate.

– mmeS: for the 13-member ensemble, the effective
number of models was in the range 2–8, with the
peak between 3 and 4. Its skill was significantly bet-
ter over mme and individual models and it demon-
strated the highest robustness with respect to the
length of the training period. For training data of
limited length (< 1 month), its skill was also bet-
ter than mmeW. For ozone, switching from mme to
mmeS, the properties that were relatively corrected
more were accuracy (over diversity), error covari-
ance (over error variance) and skill difference (over
error correlation). The learning algorithms for sub-
set selection, based on a sole dependent function of
the error (e.g. diversity) rather than the error, did not
achieve higher skill than mme. The improvement
across all stations over the mme was up to 25 % for
the RMSE and 57 % for the median hit rate.

4. The gross improvement in the RMSE of the multi-
model ensemble mean achieved through the first- and
second-moment correction of the modelled time series,
compared to only first-moment correction was 0.6 % for
O3, 2.1 % for NO2 and 11.8 % for PM10. On the other
hand, the improvement in the RMSE achieved through
the exploitation of the ensemble mean in the form of
mmeW or mmeS was 8.6 % for O3, 14.9 % for NO2 and
13.5 % for PM10. Hence, even with adjustments in the
systematic error and the spread in the models of an en-
semble, a portion of its potential predictability is lost by
using solely full ensemble averaging; superior improve-
ments can be achieved through the optimization of an
error decomposition approach.

5. For i.i.d. samples, the effective number of models equals
the ensemble size (members). The mmeS and mmeW
improve the skill of mme by constraining the ensemble
into another where participating models replicate better
the properties of an i.i.d. sample. UsingMeff as indi-
cator of i.i.d. sample, the decomposition of the skill as
a function of the effective number of models demon-
strated that for ozone, the three products were converg-

ing with increasingMeff. Those cases were occurring
for intermediate concentration ranges, that all models
are somehow tuned to replicate. On the other hand, as
Meff was decreasing and the ensemble was departing
from behaving as an i.i.d. sample, the error gain from
mmeS or mmeW over mme was gradually increasing,
reaching on average 15 % and 30 %, respectively. The
extreme records were generally found in the asymmet-
ric range of the ensemble.

Compared to the traditional ensemble mean, the use of non-
redundant sub-ensembles results in lower forecast uncer-
tainty and increased skill for studies of the extremes. How-
ever, as the skill of even the best model is limited for
very high values (e.g.> 150 µg m−3 O3), so is the skill of
the ensemble products. Hence, besides any statistical post-
treatment of the ensemble to coherently improve forecast
skill, there is a need for continuous model improvement, es-
pecially for cases that depart from intermediate levels.

Hence, an ensemble may contain an infinite number of
models but the ideal ensemble should be constructed from
this pool based on some criteria that reflect a symmetrical
error distribution. The multi-model mean defines the bench-
mark against which all other weighting schemes should be
evaluated. A general roadmap for the non-trivial problem of
weighting (mmeW) or sub-selecting (mmeS) from an ensem-
ble is attempted hereafter:

1. generate a raw ensemble and applybias correctiontech-
niques to remove systematic errors (prerequisite for
mmeW);

2. evaluate indices of skill difference and redundancy to
assess the superiority of the ensemble mean against the
best single model;

3. optimize distribution symmetry over atraining setof
proper sizeusing either all members or a subset of them;
the first approach concludes with aweighting scheme,
the second with the identification of theeffective num-
ber of modelsand the allowed/forbiddencombinations
of membersthat can be sampled to constitute effective
ensembles; the length of the training data set is deter-
mined from physical concepts as well as the statistical
properties of the specific ensemble;

4. average the weighted or reduced ensemble.

The above procedure does not imply any spatial or cross-
variate dependence. It aims at optimizing ensemble aver-
aging at single locations for single variables. A framework
for the optimization of the ensemble skill for multivariate
spatial dependence, like the multi-dimensional optimization
(Potempski and Galmarini, 2009) or the ensemble-copula
coupling (Schefzik et al., 2013), will be assessed in a future
study.
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