Atmos. Chem. Phys., 14, 1179111815 2014 Atmospheric
www.atmos-chem-phys.net/14/11791/2014/ .

doi:10.5194/acp-14-11791-2014 Chemistry
© Author(s) 2014. CC Attribution 3.0 License. and Physics

De praeceptis ferendiggood practice in multi-model ensembles

I. Kioutsioukis 12 and S. Galmarini!

1European Commission, Joint Research Center, Institute for Environment and Sustainability, Ispra (VA), Italy
2Laboratory of Atmospheric Physics, Physics Department, University of Patras, Greece

Correspondence td3. Galmarini (stefano.galmarini@jrc.ec.europa.eu)

Received: 12 March 2014 — Published in Atmos. Chem. Phys. Discuss.: 17 June 2014
Revised: 25 September 2014 — Accepted: 25 September 2014 — Published: 11 November 2014

Abstract. Ensembles of air quality models have been for- Deterministic approaches are fast but they rely on the va-
mally and empirically shown to outperform single models lidity of the linearized approximation of error growth (Errico,
in many cases. Evidence suggests that ensemble error is r&997). The availability of increasingly powerful computing
duced when the members form a diverse and accurate ensernm recent years has boosted the feasibility and use of the
ble. Diversity and accuracy are hence two factors that shoulgrobabilistic approach (Leith, 1974) because it can sample
be taken care of while designing ensembles in order for thenthe sources of uncertainty and their effect on the prediction
to provide better predictions. Theoretical aspects like theerror in a non-linear fashion without requiring model modi-
bias—variance—covariance decomposition and the accuracyfications. However, the sampling of the whole range of un-
diversity decomposition are linked together and support thecertainty could be quantified with the construction of very
importance of creating ensemble that incorporates both theskarge sets of simulations that correspond to alternative con-
elements. Hence, the common practice of unconditional avfigurations (data or model). This is unrealistic for 3-D mod-
eraging of models without prior manipulation limits the ad- els and leads to a hybrid scheme cabedemble forecasting
vantages of ensemble averaging. We demonstrate the impo(Molteni et al., 1996; Tracton et al., 1993). It is probabilistic
tance of ensemble accuracy and diversity through an interin nature but it generally does not sample the input uncer-
comparison of ensemble products for which a sound mathetainty in a formal mathematical way, limiting the extent of
matical framework exists, and provide specific recommendathe statistical methods to interpret the results.

tions for model selection and weightifigr multi-model en- Single-model ensemblés.g. Mallet et al., 2006) assume
semblesThe sophisticated ensemble averaging techniquesthat the model is perfect and consists of a set of perturbed
following proper training, were shown to have higher skill initial conditions and/or physics perturbations. It is tradition-
across all distribution bins compared to solely ensemble avally used in weather forecasting, which is primarily driven
eraging forecasts. by uncertainty in the initial conditionddulti-model ensem-
bles (e.g. Galmarini et al., 2004) (MME) quantify princi-
pally the model uncertainty as they are generally applied to
the same exercise (i.e. input data). This approach is usually
implemented in air pollution and climate modelling studies,
where the uncertainty is predominantly process driven. The

A forecast is considered complete if it is accompanied by aMmodels in a MME should ideally have uncorrelated errors.

esFimate of its uncgrtainty (AMS, 2(.)02)‘ This ggneral!y '€ Under such conditions, the deterministic forecast generated
quires the embedding of the modelling process into either &om the MME mean is better than any single-model fore-

deterministic perturbation scheme (e.g. tangent linear, direc&ast due to the averaging out of the errors as well as the bet-

decoupled) or a probabilistic framework (e.g. Monte Carlo). ter sampling of the input uncertainty (Kalnay, 2003). Besides

Sl.JCh appr_o_aches are “.Se‘?' to quantlfy th_e effects Of_ UNCehat, the MME spread quantifies the output uncertainty, pro-
tainties arising from variations in model input (e.g. initial viding an estimate of the forecast reliability:
and boundary conditions, emissions) or model structure (e.g. '

parametrizations, numerical discretization).

1 Introduction
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The simulation error of the ensemble mean outperforms The paper is structured as follows: in Sect. 2, theoreti-
the error of the individual ensemble members only if the as-cal evidence on multi-model ensembles is presented together
sumption that the models are i.i.d. (independent and identiwith an example that serves to show the contributing factors
cally distributed around the true state), is satisfied (Knutti etto the ensemble error. In Sect. 3, we present the data and
al., 2010). The i.i.d. assumption, however, is seldom subjecthe methodology. In Sect. 4 we decompose and analyse the
to verification and is rarely met in practice, with the net result ensemble error and its properties using spatially-aggregated
that the simple ensemble mean does not guarantee the lowAQMEII data. In Sect. 5 we apply the results obtained in the
est error (higher accuracy) among all possible combinationsprevious section into forecasting at all monitoring stations
In such cases, the ensemble mean brings redundant inform&eontinental scale). Conclusions are drawn in Sect. 6.
tion particularly for the upper and lower quartiles, making
for example the analysis of extremes less reliable. Extra ef-
fort is required in order to obtain an improved deterministic
forecast such as the MME mean for i.i.d. members. The opti- . . .

: . . . . 2 Theoretical considerations
mal solution requires some training phase, during which the
models are manipulated towards the construction of an en- . ] o )
semble with a symmetric distribution around the truth. This The &im of this section is to outline the documented mathe-
can be achieved through either a weighting scheme that keeppgatlcal ey|dence towards the reduction _of the ense_mble_ error.
all members (e.g. Gneiting et al., 2005; Potempski and Gal-The notation used throughout the text is summarized in Ta-
marini, 2009) or with a reduced ensemble (Galmarini et aI.,ble 1
2013; Solazzo et al., 2013) that makes use of onkgféective
number of modelsBoth approaches result in the optimum 2.1 The bias—variance—covariance decomposition of
distribution of the models in the respective workspace. the ensemble error

Ensembles tend to yield better results when there is a sig-

nificant diversity among the models. Many ensemble meth-The pias-variance decomposition states thatsquared er-

ods, therefore, seek to promote diversity among the modelgor of 3 model can be broken down into two components: bias
they combine. However, a definite connection between diverynd variance

sity and accuracy is still lacking. An accurate ensemble does

not necessarily consist of independent models. There are B _ 5

conditions under which an ensemble with redundant memMSE(f) = E [(f — 1) ]

bers could be more accurate than one with independent mem- _ 2 _ 2 _ 2
bers only. Seen from another angle, similar to diversity, en- =E [(f —u) | [E(fF=w)] +[E(f —n)]
sembles also tend to produce better results when they con-
tain negatively correlated modélsideally, the most accu-
rate ensemble consists of members that are distributed ran-

domly around the observations (i.e. unbiased and uncorreThe two components usually work in opposition: reducing
lated). This “randomness” in the model outputs of an ensemthe bias causes a variance enhancement, and vice versa. The
ble is not a pragmatic condition. Nevertheless, an optimal endilemmais thus finding an optimal balance between bias and
semble can be constructed a posteriori by inducing this propvariance in order to make the error as small as possible (Ge-
erty in the members. man et al., 1992; Bishop, 1995).

In this work, we attempt to give an overview of the crit-  The error decomposition of a single model (cage= 1 in
ical elements in deterministic forecasting with ensembles,£q. 1) can be extended to an ensemble of models, in which
with particular focus on the ensemble built from regional case the variance term becomes a matrix whose off-diagonal
air quality models within the Air Quality Modelling Eval-  elements are the covariance among the models and the diag-
uation International Initiative (AQMEII). The overall goal of gnal terms are the variance of each model:
the study is to highlight the properties, through model se-
lection or weighting, that guarantee a symmetric distribution ~
of errors and eventually produce a single improved forecast var[f - /L] = var[% > fi— M] = #Vaf[z (fi — M)]

out of an ensemble. Starting from a presentation of the avail- L
able mathematical framework, many important aspects of en-= 37 Yovar(fi —p)+2 _Z_ cov(fi — . fi — M)
semble forecasting are demonstrated using synthetic and real t=J

time series. Our motivation is to depict some best practices = % [% dovar(fi — M)] + MT_l

for deterministic forecasting with air quality ensembles. L
iy 2 COV(fi — . fj — 1)
2 i<j
1This is demonstrated later in the paper = varE+ (l - %) covE
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Table 1. Notation and indices of skill and redundancy* Andicates standardized vectors.

Ensemble members (output of modelling systems);, i =1, ..., M
. M
Ensemble f=>wfi,>w=1
=
Desired value (measurement) “w
& X (fi—F) =)
Pearson correlation coefficient PEC—p
fi%u
Mean bias MB:W
)2
Root mean square error RMSE/ Z(f’#"’)
Normalized deviation of el = ‘”J;fwher@i = f’%"
models from observations
Difference between the model error and dm = ey — Ry - MM* MM = % >e;
i

the weighted multi-model error pattern

Threshold indices based on a contingency table Hitf&%
for events (Forecast/observed)

M
Accuracy term ace- E (1\%1 S (fi— ;/,)2)
i=1
1 M 2
Diversity term div=E |5 > (fi — f)
i=1
—_ . 2
Squared bias bia§=E<w>
Variance of errors varE= E(var(f — u))
Covariance of errors COVE= E(cov(f — n))
2 — _ _
o 72 1 — biag andvarE are positive defined, babvE can be ei-
bias( f, =|— i —t » ) '
[ (f ll)] [M Zf' 'U“] ther positive or negative.

1 2 —
= [MZ(JC,-—M)] = biag.

Thus, the squared error of ensemble can be broken into
three terms: bias, variance and covarian@ubstituting the
terms in Eqg. (1), théias—variance—covariancelecomposi-
tion (Ueda and Nakano, 1996; Markowitz, 1952) is presente

The error of an ensemble of models not only depends on the
bias and variance of the ensemble members, but also depends
critically on the amount of correlation among the model’s
rrors, quantified in the covariance term. Given the positive
dﬁature of the bias and variance terms and the decreasing im-

as follows: portance of the variance term as we include more members,
N e S — 1\ — the minimization of the quadratic ensemble error ideally sug-
MSE(f) = bias + MV?:WEJr <1_ M) covE @) gests unbiased (or bias-corrected) members with low error

_ _ _ _ _ 1 correlation amongst them (to lower the covariance term).
Equation (2) is valid for uniform ensembles, i®; = ;.

The termsbias andvarE are the average bias and variance

of the ensemble members error (modelled time series minug.2 The accuracy—diversity decomposition
observed time series), respectively while the new teovE of the ensemble error

is the average covariance between pairs of distinct ensemble

members error. From Eq. (2) follows: Krogh and Vedelsby (1995) proved ttedta single datapoint
— the more ensemble members we have, the closer ishe quadratic error of the ensemble estimator is guaranteed
Var[f — u] to covE; to be less than or equal to the average quadratic error of the
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component models erage variance of the models, plus a term measuring the av-
M M erage deviations of the individual expectations from the en-

(f— M)Z = Z wi (fi — ) — Z w; (fi — f)z, (3) semble expectation. When we combine the two sides by sub-
i1 i1 tracting the diversity term from the accuracy term from the

Equation (3) shows that for any given set of models, the erro2Verage MSE, the interaction terms cancel out, and we get the
of the ensemble will be less than or equal to the average eforiginal bias-variance—covariance decomposition back. The
ror of the individual models. Of course, one of the individuals fact that the interaction exists illustrates why we cannot sim-

may in fact have lower error than the average, and lower tha?'y maximize diversity without affecting the other parts of
even the ensemble, on a particular pattern. But, given tha he error — in effect, this interaction quantifies the accuracy—
we have no criterion for identifying a priori that best indi- diversity trade-off for uniform ensembles.
vidual (i.e. which ensemble member will best match the ob-
at random. In other words, taking the combination of several
models would be better on average over several patterns, than . ) _
a method which selected one of the models at random. The N€ two d_ecompolsmons presented are valid for uniform en-
last statement is not self-evident for non-random samplingS€MPples, i.ew; = ;. Both indicate that error reduction in an
of the best member (e.g. conditioned to past errors from th&NSemble can be achieved through selecting a subset of the
models). members that have sondesired propertieand taking their

The decomposition (Eq. 3) is composed of two terms. Thedithmetic mean (equal weights). An alternative to this ap-
first is the weighted average error of the individuals (accu-Proach would be the use of non-uniform ensembles. Rather
racy). The second is the diversity term, measuring the amourif!an Selecting members, it keeps all models and the burden
of variability among the ensemble member predictions. SinceS Passed to the assignment of ib@rect weightsA brief
it is always positive, it is subtractive from the first term, SUmmary of the some properties of non-uniform ensembles
meaning the ensemble is guaranteed lower error than thi$ Presented in the following paragraphs.
average individual error. The larger the diversity term, the 1€ construction of the optimal ensemble has been ex-

larger is the ensemble error reduction. Here one may assurfd0iteéd analytically by Potempski and Galmarini (2009).
that the optimal error belongs to the combination that min-11€Y provide different weighting schemes for the case of un-

imizes the weighted average error and maximizes the varicorrelated and correlated models by means of minimizing the

ability among the ensemble members. However, as the variMSE. Under the assumed condition of the models’ indepen-
ability of the individual members rise, the value of the first d€nce of observations and assuming also that the models are
term also increases. This therefore shows that diversity itself!l Unbiased (bias has been removed from the models through
is not enough; it is necessary to get the right balance betweeft statistical post-processing procedure), the formulas for the

diversity and individual accuracy, in order to achieve lowest1-D case (single-point optimization) are given in Table 2.
overall ensemble error (accuracy—diversity trade-off). Also, whether correlated or not, the models are assumed as
Unlike the bias—variance—covariance decomposition, therandom variables. The optimal ensemble corresponds to the

accuracy—diversity decomposition is a property of an ensem[inear combination of models with the minimum MSE. This

ble trained on a single data set. The exact link between th&an be considered as a transfer function that distributes iden-
two decompositions is obtained by taking the expectation oftic@lly the models around the truth.

the accuracy—diversity decomposition, assuming a uniform USing equal weights, the ensemble mean has lower MSE
weighting. It can be proved that (Brown et al., 2005) than the candidate models given specific COI’ldItI'OnS' (Ta-
ble 2). For uncorrelated models, the only constraint is the

1 » 1 o =2 skill difference (MSE ratio) of the worst over the best single
E (H ; (fi=mw* = M ; (fi=7) ) ™) model. For example, the arithmetic mean of a three-member
o 1 _1 ensemble has lower MSE than the best candidate model only
= biag + —varE+ (1_ _) CcovE if the MSE ratio (worst/best) of the models is lower than 4.
M M In other words, the RMSE ratio may not exceed 2, imply-

" ing that the individual members should not be very differ-
E (i Z(fi _ M)2> -0 +@ ent. The conditions for correlated models are more restrictive
M= (Potempski and Galmarini, 2009; Weigel et al., 2010) and be-
sides skill difference, they also depend on error correlation
1 M > _ 1\ measures. Further, unlike the case of uncorrelated models,
E (M Z(fz —f) ) = Q——varE— <1— —) covE optimal weights for correlated models can be negative (Ta-
i=1 ble 2). There is no physical interpretation for the negative
The @ term (Brown et al., 2005) constitutes the interaction weights; if they arise for some models, it is simply a result of
between the two parts of the ensemble error. This is the avthe optimization of the cancelling out of the individual errors.

Atmos. Chem. Phys., 14, 117914815 2014 www.atmos-chem-phys.net/14/11791/2014/
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Table 2. Analytical formulas for the 1-D (single-point optimization) case (from Potempski and Galmarini, 2009).

Uncorrelated models Correlated models
1
Optimal - a=_K1
p Ima aj = Z % a = m
i %

Weights
Limits formme  MSHf) < MSE(f1) <--- <MSE(fn) MSE(f)<s1<s2<--<sm
ensemble mean m <M+1 if == M
Definitions sz = variance of model’s error s;j = eigenvalues oK

K = error covariance matrix
I=[11a,..17

For example, models with highly correlated errors may besymmetric with respect to the mean RMSE, with notable dis-

given weights of opposite sign. tortions at the maximum RMSE fdr < 4 (i.e. one-third of
models). The upper bound of the RMSE values is defined
2.4 Example from the ensemble combinations consisting of biased mem-

bers of equal sign. Several combinations with multi-model

error lower than the error of the full ensemble mean exist;

We now present a theoretical example aimed at illustrating . o .
the basic ingredients of ensemble modelling discussed. Foult the same time, the whqle RMSE distribution spans higher
lues compared to the i.i.d. case (note the change in scale).

teen samples of 5000 records each have been generated; e optimal combination (i.e. lowest RMSE) uses all unbi-
corresponding to output of model simulations and one act- sed r[r)mdels lus same arﬁo-unts of biased eaually members
ing as the observations. These synthetic time series hav?rom both sidgs As for the weiahted ensemb?e n)(; conclu-
been produced with Latin hypercube sampling (McKay et ion can be infe.rred as its wei grllts by definition ,assume un-
al., 1979). The reason of selecting Latin hypercube samplingiased models 9 y
over random sampling, besides the correct representation The effect o.f variance perturbations is dislaved in the
variability across all percentiles (Helton and Davis; 2003), ismiddle row. One-third of t?]e members (thOS(IaO w)i/th id 10—
its ability to generate random numbers with predefined cor-13 i artic.ular) had deflated (Fig. 1c) or inflated (Fig. 1d)
relation structure (Iman and Conover, 1982; Stein, 1987). varianF():e Due to the bias—varian%e dilemma, the cage with
Figure 1 shows the RMSE distribution of the mean of - . '
all possible combinations of the ensemble membéfs= smallervana_r!ce (left) achl_eves lower R_MS_Efor locom-
13) as a function of the ensemble size<( 1, ..., M). The pargq t.o the|.|.d.ca§e) while the opposne |s_true for the cases
number of combinations of any members i’s gi’ven by the gxhlb!tlng Iqrger variance. The Opt'm?' weighted combina-
factorial (%) resulting in a total of 8191 combinations tion gives higher weight to the under-dispersed members and

in this setting (e.g. 286 fok =3, 1716 fork =6, etc.). IOVX?Ir We'ght tc&the over—d]lspersed ones. lated. Next
In the case of i.i.d. random variables (Fig. la), increas- examined cases so far were uncorrelated. Next, a pos-

ing the number of memberg) moves the curves toward ftive (:t)orrelggo; (3':'9‘ (116) IS mtrto?uced am(t)_ng the flrls'i_threbe
more skillful model combinations, as anticipated from the members (id 1-3) and separately, a negative correlation be-

bias—variance—covariance decomposition. Further, the optiEWeen two members (Fig. 1f) — with id 5 and 8. The upper

mal weights show little deviation from the equal weighting (lower) bound of the error distribution of the combinations

scheme (with small random fluctuations though) traditionallyIS d_|§torted towgrds higher (lower) values by_lntroducmg
used in the MMEs. Hence, the optimal combination (mmes)posmvely (negatively) correlated members. Positively corre-

and the optimal weighted combination (mmeW) coincide. lated members bring redundant information, where individ-
However the i.i.d. situation is unrealistic for MME, there- ual errors are added rather than cancelled out upon MME

fore we will examine the ensemble skill by perturbing inde- averaging. The optimal combination, for the case of posi-

C g . : i rrelations utiliz [li.i.d. members pl nly one from
pendently the three statistical measures of bias, variance anta’e correlations utilizes a d. members plus only one fro
covariance each redundant cluster (i.e. the sub-ensemble has only non-

Bias has been introduced into the ensemble by shifting thecorrelated members); for negative ones, it tends to use only

distribution of two-thirds of the models by a small amount, anti-correlated members. The same is seen also for the op-

making one-third of the models unbiased, one-third biasec{imal weighted schemg: positively correlateq ’T‘?mbers are
positively and one-third biased negatively. The RMSE distri- reated as one, n egatively correlated are significantly pro-
bution of all possible combinations (Fig. 3b) does not appearmOted over the i..d. members.

www.atmos-chem-phys.net/14/11791/2014/ Atmos. Chem. Phys., 14, 1179845 2014
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Figure 1. Ensemble error (RMSE) from all possible combinations of candidate models. The red curve on each plot represents the mean of
the distribution of anyt-model combinations while the blue curves form the min and max of the each respective distri@)tiord., (b)

bias perturbation(c, d) variance perturbationge, f) covariance perturbations. Please read text for explanations and note the different range

of the y-axis between the different panels. In the same plot, the bar chart expresses the optimal weight of each model in the full ensemble
and the straight red line symbolizes the equal weight value. In this case, the horizontal axis represents the id of the model.
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Using one-at-a-time perturbations in bias, variance and co- - relies, through the accuracy—diversity decomposition,
variance, we investigated the skill of the three examined en-  on finding the trade-off point between accurate and di-
semble products through synthetic time series. The outcome  verse members (equal weights, sub-ensemble);

of the exercise shows the following: ) ) _
— provides, through analytical formulas, weights for all

ensemble members dependent on their error covariances
(Potempski and Galmarini, 2009) (unequal weights, full
ensemble).

1. mme: its RMSE is reduced, compared to the i.i.d. case,
if within the sample there exist few members with lower
variance or negative correlation. In contrast, its error
is augmented from the presence of biased members.
All the above can be directly explained by the bias— Unlike the simple arithmetic mean of the entire ensemble, it
variance—covariance decomposition. is clear that all aforementioned cases require a learning pro-

, i i __cessl/algorithm. The aim of this work is to assess and compare

2. mme$: fqr bias and variance perturb{;\tlons, Fhe optimaly,q predictive skill of three ensemble products with well-
combination tends to use subsets built fro_m "'_‘d' MeM-jefined mathematical properties: namely, (a) the arithmetic
bers and m_embers with balanced propertles, 1.€. bI":ls‘z"pnean of the entire ensemble (mme), (b) the arithmetic mean
from_ both signs, u_nder- and 0\_/er-d|spers_ed._For the COof an ensemble subset (mmeS), linked to the error decompo-
relation perturbations, the optimal combination uses: sitions (2.1, 2.2) and (c) the weighted mean of the entire en-

— the subset built from i.i.d. members and only one Semble (mmeW), linked to the analytical optimization (2.3).
member from the positively correlated cluster Note that mmeS is a general case of mme and a special case
— the subset built from the negatively correlated of_mr_neW (if_we?ghts can only ta_lke two discrete values). The
members principal ob]_ectlve_ addressed is the emergence of ways to
produce a single improved forecast out of an ensemble that

3. mmeW: compared to the i.i.d. members, the weightedpotentially outscores the traditional arithmetic mean as well
scheme: as the best numerical model.

) i ) The critical model parameters for the techniques investi-

— reinforces members with lower variance and weak-gate in this work, for ensemble member weighting or select-

ens members with higher variance ing, are bias and weights (straightforward) for mmeW and

— treats all redundant members as one and reinforcegffective number of models and cluster selection for mmesS.
negatively correlated members. They are briefly explained now.

To summarize, ensemble averaging is a good practice when _ Bjas correction According to the bias—variance—

models are i.i.d. In reality, models depart from this ideal-
ized situation and MME brings together information from
biased, under- and over-dispersed as well as correlated mem-
bers. Under these circumstances, the equal weighting scheme
or the use of all members masks the benefits behind ensem-
ble modelling. This example serves as a practical guideline
to better understand the real issues faced when dealing with
biased, inter-dependent members.

3 Data and methodology

The material presented in the previous section demonstrated
clearly through a well-defined mathematical formulation that
building ensembles on the basis of “including as many mod-
els as possible in the pool and taking their arithmetic mean”
is generally far from optimal as it relies on conditions that are
normally not fulfilled. The necessary ingredients for ensem-
ble building, using either the entire members with weights
assigned or a subset of them with equal weights, and specifi-
cally, the optimization of the ensemble error:

— points, through the bias—variance—covariance decompo-
sition, towards the bias correction of the models and the
use of uncorrelated or negatively correlated ensemble
members (equal weights, sub-ensemble);

www.atmos-chem-phys.net/14/11791/2014/

covariance decomposition, bias is an additive factor to
the MSE and model outputs should be corrected for
their bias before any ensemble treatment. The analyti-
cal optimization of the ensemble error and the defined
weights (Table 2) also assume bias-corrected simula-
tions. Here we do not intend to review the available
algorithms for the statistical bias correction (e.g. Do-
sio and Paurolo, 2011; Delle Monache et al., 2008;
Kang et al., 2008; McKeen et al., 2005; Galmarini et
al, 2013); the correction applied in this work refers to
a simple shift of the whole distribution within the ex-
amined temporal window, without any scaling or multi-
plicative transfer function.

Effective number of model$he optimal ensemble es-
timator generally uses a subset of the available mod-
els, characterized as effective numbéfcf) of mod-

els. In principle,Mef reflects the degrees of freedom
in the system (i.e. number of non-redundant members
that cover the output space ideally and hence, can be
used to generalize). An analytical way to calculate
Mes is through the formula proposed by Bretherton et
al. (1999). Using eigen-analysis, it estimates the num-
ber of models needed to reproduce the variability of the
full ensemble.

Atmos. Chem. Phys., 14, 1179845 2014
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— Clustering MeasuresGiven a data set oV instances tends over the whole continent, it emerges that the AQMEII
X ={X1, Xo,..., Xy}, aclustering algorithm generates database is suitable to capture the core temporal and spatial
r disjoint clusters based on a distance metric. Each clusdependencies of the examined pollutants.
tering solution is a partition of the data sétinto K; The analysis considerBourly time series for the JJA
(1 <i <r)disjoint clusters of instances. A typical out- (June—July—August) period. For European ozone, the ensem-
put of a clustering algorithm is a dendrogram, where ble consists of 13 models, which give rise to 8191 different
redundant models are grouped together and the level ofombinations (ensemble products). In Sect. 4, we make use
similarity among groups is based on the distance be-of spatially aggregated time series (EU1 to EU4, illustrated
tween the elements of the input matrix. Clustering algo-in Fig. 9a) while Sect. 5 utilizes time series at point locations
rithms are sensitive to the controlling options (g (451 stations). All data used refer to Phase | of the initiative.
glomerative methgdhedistance metricthenumber of  The evaluation of the examined ensemble products (mme,
clustersand thecut-off distancgthat need to be deter- mmeW, mmeS) will rely on several indices of error statis-
mined for each particular data set (Fern and Brodley,tics calculated at rural receptors. We present them in Table 1.
2004). Here, we use the unweighted pair-group aver-Those metrics can be used for the validation of each single
age as theagglomeration methodnd the standard Eu- ensemble configuratiory{) as well as for the ensemble mean
clidean distance as ttgistance metricThe clustering  (fen9-
algorithm has been utilized against tlig matrix de-
fined in Table 1, namely the cod( d;), which gen-
erates more dissimilar errors compared todhemet- 4 Interpretation of the ensemble error in
ric (for details see Solazzo et al., 2013). Common prac- light of its terms
tice suggests cutting the dendrogram at the height where
the distance from the next clustered groups is relativelyThe goal of the section is to assess the properties of the en-
large, and the retained number of clusters is small comsemble error for the examined ensemble products and, in par-
pared to the original number of models (Riccio et al., ticular, the characteristics that show robustness and allow the
2012). For this reason, threut-off value(the threshold  position of skilled predictions. Once those basic ingredients
similarity above which clusters are to be considered dis-have been identified over a few regionally averaged time se-

jointed) is set to 0.10 for cow, d;). ries, the potential predictability of the ensemble schemes at
all available stations will be assessed in the next section.
All time series utilized originate from AQMEII (Rao et al., The cumulative density functions (cdf) of the models and

2011). AQMEII was started in 2009 as a joint collaboration the observations at the four sub-regions are presented in
of the EU Joint Research Centre, the US-EPA and EnvironFig. 2. The distribution of the models around the observa-
ment Canada with the scope of bringing together the Northtions, across all percentiles, demonstrates the highest sym-
American and European communities of regional-scale airmetry in EU4. On the opposite side we find EU3, where the
quality models. Within the initiative the two-continent model ensemble is reliable only around the median. For the other
evaluation exercise was organized, involving the two com-two domains, EU1 and EU2, the ensemble replicates well the
munities in simulating the air quality over North America interquartile range but the averaging out of errors does not
and Europe for the year 2006 (full detail in Galmarini et al., work properly at the extremes. The comparison of the cdfs
2012a). Data of several types were collected and model evaldemonstrates that the ensemble mean (mme) at the extreme
uated (Galmarini et al., 2012b). The community of the par-percentiles should be treated with caution.
ticipating models, which forms a multi-model set in terms In an ideal ensemble, the rank histogram distribution
of meteorological drivers, air quality models, emissions andshould, on average, be flat. But, a flat rank histogram does
chemical boundary conditions, is presented in detail in Gal-not necessarily indicate a good forecast (Hamill, 2001); it
marini et al. (2013). The model settings and input data areonly measures whether the observed probability distribution
described in detail in Solazzo et al. (2012a, b), Schere ets well represented by the ensemble. In fact, the analysed data
al. (2012), Pouliot et al. (2012), where references aboutset (EU4r) has a relatively flat Talagrand diagram (Fig. 3a)
model development and history are also provided. but this accurate representation of the observational variabil-
The direct comparison of the simulated fields with the ity is not reflected symmetrically across all distribution bins
air quality measurements available from monitoring stationsas already seen in Fig. 2. If we were to plot four rank his-
across the continent, at large temporal and spatial scales, isgrams, one for each distribution quartile, we would face
considered essential to assess model performance and idesignificant departures from flatness, especially outside the in-
tify model deficiencies (Dennis et al., 2010). This analysisterquartile range.
falls within the context of operational evaluation of regional-  Focusing on the ensemble error, the RMSE of the mean
scale chemical weather systems where most of the peaks iof all possible combinations as a function of the ensemble
the energy spectrum are in the high-frequency era (hour, daysize (Fig. 3b) justifies the statement obtained theoretically,
week). Together with the fact that the monitoring network ex- namely that the RMSE of the ensemble mean is lower than
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Figure 2. Cumulative density function of observations (red circle) and models (coloured lines). At the same plot, the three ensemble esti-
mators are also displayed, namely the multi-model ensemble mean (mme: square), the optimal weighted ensemble estimator (mmeW: gree!
circle) and the optimal accuracy—diversity ensemble estimator (mmeS: blue circle). Please note the different rangaxis thetween the

different panels.

the mean error of the single models. This does not prevenhegligible, leaving space for significant improvements of the
individual model errors being lower than the ensemble mearmme. Fork = 6, the 13 models give rise to 1716 combina-
error. The curve, although it originates from real data (EU4r),tions; each model participates at 792 of them. The fractional
shares the same properties with its synthetic counterpart (precontribution of individual models (fok = 6) to skilled sub-

vious section). Specifically,

— the ensemble average reduces meximumRMSE as
the order is increased,;

— aplateau is reached at theeanRMSE fork < M, indi-

groups (portion of skilled combinations per model) is given
with the red numbers. For example, among all combinations,
at k = 6, that may contain the model with id 12, two-thirds
of them (67 %) are skilful. The percentages indicate prefer-
ence to combinations including more frequently some mod-

cating that there is no advantage, on average, to combing!s (€.9. 4, 6, 9, 12) but at the same time they do not isolate

more thark membersk ~ 6);

any single model. Further, the optimal weights of the full

o o ~ ensemble given with the bar plot (multiplied by a factor of
— aminimumRMSE, among all cqmbmatlons, systemati- 10) have a complicated pattern as a result of different model
cally emerges for ensembles with a number of members;ariances and covariances. Clearly, they depart from homo-

k<M (k~3-6). Applying the eigen-analysis on the geneity (equal weighting scheme shown with the red straight
error matrix, it also yieldMes = 3. line).

The probability density function of the RMSE plotted for hThleSerror, vabrllance arg)d correlation (W'tth do_bserv_le}Uolns) Olf i
k = 6 (similar for other values) demonstrates that there existt € ensemble members are presented n a faylor plo

many combinations with lower error than the ensemble mear{F'g' 3c). They visually form three clusters. A low-skill clus-

or the minimum of ensemble mean and best single model'®" includes models 1, 2 and 10, which have the highest

Those skilled groupings are well below 50% of the total error, m.|n|mum correlation with observed data and appear
combinations, implying that random draws from the pool under-dispersed. Model 5 also belongs to that group but its

. . variance is closer to the variance of the observations. The
of models are highly unlikely to produce better results than. . . .
gny ytop ermediate-skill cluster contains models 3, 6, 7, 11 and

the ensemble mean; at the same time, those fractions are nlﬂt
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Figure 3. (a) Talagrand diagram of the full ensemb(®) Ensemble error (RMSE) from all possible combinations of candidate models
(EU4r). The notation is similar to Fig. 1. The numbers in red express the fractional contribution of each model to skilled combinations
(top right). (c) Multiple aspects of individual model skill through Taylor plot. The palhbn thex-axis represents the reference field (i.e.
observations)d) Clustering members with the cod( d ;) matrix (bottom right).

13 with average (11, 13) to low (3, 7, 6) error, and corre-two main branches at the top further split into two more at a
lation ranging from 0.8 (11, 13) to 0.9 (6), but all models relatively low similarity level, suggesting a plausible way to
are under-dispersed. The highest skill cluster (4, 8, 9, 12proceed. A parallel inspection of the Taylor plot reveals the
includes members with low error, high correlation and the similarities of each cluster in terms of error, correlation and
right variance ratio (with a slight over-dispersion though). variance. Clustering according t), generates the clusters
Considering the participation statistics of the previous graphvisible in the Taylor plot. Many ensemble combinations with
(given by the red numbers), we see that the models contributhon-redundant members can be inferred from those plots;
ing more frequently to skilled combinations belong to high- in addition, combinations that should be avoided are also
est skill cluster; the contrary is true for the low-skill cluster. noted. Thed,, dendrogram also explains the reasoning be-
Good models have at least twice as much probability to formhind the negative weights calculated analytically. The model
part of skilful ensemble groups compared to low-skill mod- pairs identified with highly correlated errors (like 4 and 12
els. On the other hand, even low-skill models can yield goodor 11 and 13) are given weights of opposite sign, as seen in
results in the right combination. Overall, the multi-model av- Fig. 2.
erage (mme) is a robust estimate with lower error than the Error statistics £ RMSE>) of the ensemble members and
candidate models but with reduced variance. products (mme, mmeW, mmeS) for JJA 2006 at all selected
The application of the clustering procedure yielded five sub-regions, using variable window size (1 day, 2 days, 4
disjointed clusters (Fig. 3d). Looking at the dendrogram, thedays, 23 days, 46 days, 92 days) are shown in Fig. 4. The
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Figure 4. The mean RMSE of the models (coloured lines) as a function of window size (1-92 days). In addition, selected ensemble products
are also displayed: mme (thick black),mmi> (thick dotted-black), mmeW (thick red), mmeS (thick dotted red). The bars show the
theoretical minimum value (var nit) for uncorrelated models. Please note the different range of-thés between the different panels.

x-axis is the number of chunks in which the JJA time series isble redundancy (measured by the explained variation by the
sliced; hence it is inversely proportional to the window size. maximum eigenvalue) as a function of the RMSE ratio of
The skill of the deterministic models varies with location. A mme over the best single model (for ensemble oz€lérleft)

very good model at one site may perform averagely in an-shows that mme can outscore any single model provided the
other. As for the ensemble products, the following inferencesmodel error ratio and redundancy follows a specific pattern.

can be drawn: For example, the benefits of ensemble averaging are deval-
ued if we combine members that have big differences in skill
(a) mme vs. best model and dependent errors.

The error of the ensemble mean is superior to the mean of
The conditions leading to an ensemble superior to the besthe individual model errors (proved analytically) but is not
single model are illustrated in Fig. 5 (without loss of gen- necessarily better than the skill of the “locally” best model.
erality, we consider the EU4r case). For correlated modelsThe ensemble error gain (i.e. the difference between the en-
they depend on the skill difference among members and thgemble error and the average error of the models) is variable
amount of redundancy in the ensemble (i.e. the error depenas it depends significantly on the individual model distribu-
dence). The variation explained by the highest eigenvalue retions around the truth. Without loss of generality, if we con-
flects the degrees of freedom in the ensemble (and hence theider the 92-day case, we see that for all models the MSE ra-
redundancy). The pairwise plot (Fig. 5a) of the skill differ- tio (worst/best) is lower than 4.37 (EU1r: 4.37, EU2r: 2.96,
ence (measured by MSE >/MSE(best)) versus the ensem-

www.atmos-chem-phys.net/14/11791/2014/ Atmos. Chem. Phys., 14, 1179845 2014
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Figure 5. (a, b) The RMSE ratio of mme over the best single model as a function of redundancy (explained variation by the maximum
eigenvalue sm) and model skill difference MSE >/MSE(best), evaluated from all combinations of 6th order (top left) and 13th order (top
right). The diagram on the right has been evaluated at all observation(site§.Four-dimensional representation of accuracy—diversity
(bottom left) and variance—covariance (bottom right), with respect to RMSE (colour scale) and ensemble order (isolines). The isolines
represent the multi-dimensional convex hull as a function of ensemble order. Isolines shrink with increasing ensemble order.

EU3r: 1.99, EU4r: 2.60). If models were uncorrelated (seereflect the cases with a more profound balanced distribution
Table 2), the mme error would always be lower than anyof members. Indeed, in EU4r, the distribution of the models
single model’s error since the MSE ratios (worst/best) arearound the observations, across all percentiles, demonstrates
smaller than 14=€ M + 1). Fig. 4 shows that only in EU4r high symmetry (Fig. 2).

mme error is better than the individual models. This occurs

because for correlated models, the condition is also restricted

by the redundancy (eigenvalues spectrum). The joint condi{b) mme vs. mmeS

tions for the skill difference and the redundancy, for corre-
lated models, granting an ensemble with mme error lower.
than the best model are presented in Fig. 5b. The RMSE rati
of mme over the best single model for the casafof= 13)

he error derived from a reduced-size ensemble mean
mmeS) with the optimal accuracy—diversity trade-off is al-

correlated models shows that only in EU4r the explainedWays lower thar).the error utilizing the fuII. ensemble since
variation by the highest eigenvalue has the correct value f0|mOde'S are not i.i.d. ,It is also, by c_onstrucnon, always Iqwer
the specified model MSE ratio: EU1r (67, 2.5), EU2r (64 than the best model’s error and higher than the mmeW's er-
1.8), EU3r (76, 1.5), EU4r (59, 1.7) where the two num. "°!- The estimation of the optimal weights is straightforward

bers inside the parenthesis denote the explained variation b Table 2), but the sub-selection of members in mmeS is not.

the highest eigenvalue (first number) and the skill differenced'ncle mg*nt()as #Ses equal \(/jvelghts, we can apdply the conﬁepts
(second number). The isolines with RMSE ratio lower than 1 eployed by the two error decompositions and compare those
properties with the ones of mme.
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Figure 6. Comparison between mmeS and mme with respect to the error decomposition. Each of the 92 dots corresponds to an individual 1-
day simulation. The colour scale represents the RMSE ratio calculated as property(mmeS)/property(mme). Top: fractional change in accuracy
versus fractional change in diversity. Middle: fractional change of variance versus fractional change of covariance. Bottom: fractional change

in skill difference versus fractional change in error correlation. Please note the different range-@iisdetween the different panels.

1. Accuracy-Diversity A 2-D plot of accuracy versus di-
versity, with RMSE displayed as a third dimension (in
colour) is shown in Fig. 5c. The black lines define the
convex hull in the (accuracy, diversity) space of specific
ensemble order, ranging from 2 in the outer polygon to
12 (i.e.M —1) in the innermost one. As expected the-
oretically, the separate optimization of accuracy and di-
versity will not produce the best (i.e. minimum MSE)
ensemble output. For all ensemble orders, the optimal
combination consists of accurate averaged representa-
tions of sufficient diversity between members, i.e. with
an ideal trade-off between accuracy and diversity. In
particular, all skilled combinations are clearly seen in
this stratified chart; they form a well-defined area, trace-
able according to the ensemble order, that contains com-
binations with accuracy better than the average accu-
racy andideal diversity (within a wide range though)
for the specific accuracy. For example, combinations of
average accuracy form skilful ensemble products only
if their diversity is very high. Analogously, combina-
tions with good accuracy (better than average) but low
diversity result in combinations with skill lower than
the mme. Diversity with respect to the ensemble mean,

can be derived independently of the observations. ThisI

however is not true for the accuracy part, implying that

a minimum training is required. Last, we observe that

as ensemble order increases, accuracy and diversity b

www.atmos-chem-phys.net/14/11791/2014/

come more and more bounded (with accuracy being
more disperse than diversity), limiting any improve-
ment.

. Variance—covariance Similar results are obtained in
terms of the variance—covariance decomposition in
Fig. 5d. Here the convex hull areas, ranging from 3 to
12, move towards lower mean variance and higher mean
covariance with increasing ensemble order. Higher
spread is evidenced for the covariance term. As we in-
clude more members in the ensemble, the variance term
in the decomposed error formula falls while the covari-
ance term deteriorates. Skilful combinations have rela-
tively low covariance. Ensembles consisting of strongly
positively correlated members bring redundant errors in
the ensemble that does not cancel out upon averaging,
producing overall larger errors.

Following the discussion of the previous section, we examine
if the direction of move in the 2-D space of the error terms,
from mme to mmesS, has any systematic regularities. Figure 6
displays the fractional change in accuracy—j+accuracy
ratio (mmeS/mme)] — versus the corresponding fractional
hange in diversity for all (92 in total) 1-day segments.
n the same figure, we plot the corresponding changes of
variance/covariance and skill difference/explained variabil-
ity. The colour scale indicates the RMSE ratio between the
%wo ensemble means. Using dissimilar time series from the

Atmos. Chem. Phys., 14, 1179845 2014
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four examined sub-regions, we observe that the optimal subThis encourages the use of a scheme derived from an accu-
ensemble combination (mmeS) compared to the full ensemrate recent representation of ozone to forecasts at daily to
ble (mme) generally: weekly timescales (e.g. Galmarini et al., 2013).

The weights, the mean bias and the effective number

— improves accuracy and by a smaller portion lowers itsof models have been re-calculated for variable time series
diversity —in other words, between accuracy and diver-|ength that is progressively increasing from 1 to 92 days, for
sity, the controlling factor in those experiments in terms the four European sub-regions (Fig. 7). The differences in
of error minimization is accuracy more than diversity; the parameters weights and MB, calculated from consecu-

. ) i _ tive blocks, show that both tend to stabilize after 40-60 days.

— lowers variance (term in Eq. 2) and by a higher portion the same is approximately also true for the effective number
lowers the covariance (term), implying that, between o models. Linked to the previous discussion, we hence con-
variance and covariance, the controlling factor for error ¢|,ge from the use of different time series that a lower bound
minimization is covariance more than variance; for the training window length that generates robust weight

. estimates is roughly 2 months.

- red_ucc_ag the redunda_ncy (as_ measured by the explamed Following the gexglored temporal sensitivity of the weights
variability by the maximum eigenvalue) and by a higher ;. ,/ - \ve now examine the robustness of those estimates
rate reduces the skill difference among members, indi-t, ¢, re cases and in particular their capability in making
cating that skill difference is more pronounced in error 5. ate predictions. All ensemble products have been evalu-
minimization than error correlation. ated against the same test set, consisting of 30 equally spaced

days from JJA (3 June, 6 June, 9 June). Eight differ-

The converged findings from four dissimilar ozone time se- { sets of weight ined f h bl del
ries indicate that, for example, training mmesS through learn-SNt SEIS Of Weights aré examined for €ach ensemble model,

; : : : ; .originating from four different lengths for the training period
ing diversity algorithms (e.g. Kuncheva and Whitaker, 2003; origina .
Brown et al., 2005) is not as effective as algorithms applied(namely’ 1 day, 11 days, 31 days and 62 days) and two bias

on the model's error covariance (e.g. Liu and Yao, 1999; I_incorrection schemes (namely, the ideal for the test set and the
etal., 2008, Zanda et al., 2007) e ’ " one calculated from the training set). We denote the weights

trained over a sufficiently long training period static (e.g.
weights calculated over a sample of 62 days), to distinguish
them from thedynamicweights (i.e. calculated over the most

The error of the weighted ensemble mean (mmeW) is alwaygecent temporal window, day0, and applied on its successive
superior since it has been analytically derived to minimizeday0+1). The reasoning behind the dynamic weighting test-
the MSE. For small window sizes (less than 4 days), theind is that, although weights (mmeW) lack any autocorre-
mmeW error is superior to the theoretically derived lower lation pattern (i.e. what is optimal yesterday is not optimal
bound for the mme error (second term in the bias—variancetoday), this does not imply that this quasi-optimal weighting
covariance decomposition) if models were uncorrelated. Anfor tomorrow is not still a good ensemble product (mmew
insight for the sign of the weights can be inferred from the Weights are real numbers, hence there are infinite weight-
clustering according td,,. ing vectors where only one is optimal but there should exist
Like mmeS, mmeW improves the error and also replicatesmany combinations without major skill difference from the
better the observed variance (Fig. 3c) (similar results applyoptimal).
also to the ensemble product generated from spectral opti- The sensitivity of the ensemble products skill as a function
mization demonstrated in Galmarini et al., 2013). The dis-Of the training period length and the bias correction scheme
tribution around the truth in all those ensemble products hads Presented in Table 3. The following conclusions can be
always higher symmetry compared to mme, as can be seelRferred for the daily forecasts:
in Fig. 2. In addition, they all perform much better at the ex-

(c) mme vs. mmeW

tremes compared to the mean of the full ensemble. — The weights derived through analytical optimization
(mmeW) do not correspond to products with simi-
4.1 Sensitivity of the ensemble error to the length lar properties between consecutive days in cases of
of the training data limited-length training data sets. On the other hand,

o . static weights trained over a period longer than 30 days
The temporal robustness of the two weighting schemes is  oytscore all other products.

now explored in order to identify the predictive skill of

those products. The selection of the necessary training pe-

riod should take into account thmemory capacityf the — MmeS is always superior to the mme, in all exam-
atmosphere. Using complexity theory (e.g. Malamud and ined modes (historic, prognostic with static/dynamic
Turcotte, 1999), the ozone time series demonstrates non-  weights). It also achieves lower error than mmeW with
stationarity and strong persistence (e.g. Varotsos et al., 2012).  dynamic weights.
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Table 3. The mean MSE of the 30 daily cases, in training mo#g &nd testing mode as a function of the training period length (1 day, 11
days, 31 days, 62 days) and ideal/non-ideal bias correction. The comparison has been applied to four European sub-regions and three select
ensemble products (mme, mmeW, mmeS). The cases with MSE lower than mme are given in italics and the best member is displayed in

bold.

Ideal bias correction

Predicted bias correction

EU1r H 1d 11d 31d 62d H 1d 11d 31d 62d
mme 49.0 49.0 490 490 49.0 49.0 86.7 87.6 86.7 86.8
mmeS 99 206 230 23.3 186 9.9 829 456 427 42.7
mmeW 06 418 182 14.3 13.7 0.6 544.1 393 28.8 27.8
EU2r H 1d 11d 31d 62d H 1d 11d 31d 62d
mme 28.4 28.4 28.4 28.4 28.4 28.4 1531 1174 109.6 110.1
mmeS 10.2 221 19.6 24.8 245 102 1406 64.2 54.2 57.6
mmeW 0.5 371 243 15.0 13.7 0.5 1021.3 60.8 34.7 34.1
EU3r H 1d 11d 31d 62d H 1d 1id 31d 62d
mme 2855 2855 2855 2855 2855 2855 371.0 3429 342.8 3426
mmeS  113.3 176.4 190.7 140.3 140.3 113.3 299.8 246.1 207.0 206.9
mmeW 1.7 507.4 1950 127.6 116.4 1.7 4208.2 323.1 203.7 185.3
EU4r H 1d 11d 31d 62d H 1d 1id 31d 62d
mme 37.7 37.7 37.7 37.7 37.7 37.7 134.9 83.9 72.9 72.9
mmeS 9.7 273 23.3 228 235 9.7 1384 63.1 535 52.5
mmeW 09 146.8 29.2 252 226 0.9 578.7 835 531 48.3

— In view of the predictability limits of each scheme, the sity or covariance did not systematically outscore mme (not
achieved forecast MSE of mmeW is roughly 25 times shown).
higher than its hindcast MSE if bias correction is ideal
and 50 times its hindcast MSE if bias correction is non-
optimal. For mmesS, the forecast MSE is roughly double
its hindcast MSE if bias correction is ideal and quadru-
ple its hindcast MSE if bias correction is non-optimal.

5 Predictability assessment at the monitoring stations

In the previous section, using four dissimilar regionally av-
eraged time series, we have seen that in prognostic mode,
mmeW with static weights (i.e. calculated over a 60-day in-
— In many cases, the forecast MSE of mmeS and mmeWerval) results in the least error previsions. In view of the op-
outscores the hindcast MSE of the mme. It systemati-erational evaluation, we now explore the spatial extension of
cally emerges in cases with ideal bias correction. the method. Specifically, using observed and modelled time
series at the station level rather than at the regional level, we
Weighting is a risky process (Weigel et al., 2010) and its ro-test the spatial forecast skill of mme, mmeW and mmeS on
bustness should be thoroughly explored prior to operationablind time series. We split records into a test data set (30
forecasting. In diagnostic mode (training phase), mmeWequally spaced days from JJA: 3 June, 6 June, 9 June, etc.)
minimizes the error achieving at least an order of magni-and a training data set (remaining two-thirds of the records).
tude lower MSE compared to the other ensemble productdJsing the training data set, we first bias correct the time se-
(Table 3). In prognostic mode (testing phase), if the trainingries and then we estimate the mmeW weights and mmesS sub-
data have sufficient extent (at least 30 days), the minimunrset. Last, we apply the estimated parameters from the training
error is obtained with mmeW while for the case of limited data set (weights, biad/es, clusters) into the test data set.
training data, the minimum error is obtained with mmeS. An  Training PhaseFigure 8 displays the mmeW weights for
improvement similar to the one obtained through the mmeWeach participating model at the observed sites (one figure per
scheme (bias correction, model weighting) has been docueandidate model) for the training data set. Although the op-
mented in weather forecasting with MME (Krishnamurti et timization has been applied at each monitoring station in-
al., 1999), where weights were estimated from multiple re-dividually, it can be inferred that the weighting pattern (per
gression. Similarly, improvement based on recent represenmodel) shows more of a coherent image across the continent,
tation of an ensemble subset is documented in Galmarini etather than a random design, reflecting a spatially robust error
al. (2013). Other ensemble products based on learning divereovariance. On the opposite case, it can provide a mean for
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series length. Each thin line represents a different model. The effective number of models is calculated through eigenanalysis and error
minimization.

discriminating the performance of individual models. This time series. Besides the summary statistics, the skill is also
spatial robustness of the weights is particularly important forevaluated geographically as well as a function of the effective
the re-gridding of the results at locations not used in the trainnumber of models. In addition, the effect of a second-order
ing. Last, the highest frequency of model use in mmeS iscorrection in bias is investigated. We conclude with the pre-
observed for the models having the higher mmeW weights sentation of results for Nand PM10, following the same
Hence, although calculated with different approaches, themethodological framework.
weight peaks at seasonal scale of the mmeW and mmeS have Forecast Skill The composite skill of the selected ensem-
similarities (i.e. models 3, 5 and 6 that receive on averageble products, originating from all blind forecasts at the 451
the highest weights are also the ones used most frequently istations (aggregated), is presented in a Taylor plot (Fig. 13)
mmeS). together with the single deterministic models. The benefits
Using various input matrices, we find the effective numberof ensemble treatment, either in the form of simple averag-
of models to vary between 2 and 8, through a homogeneouig models (mme) as well as using more sophisticated tech-
spatial pattern (Fig. 9). Indeed, using analytical error min-niques (mmeS, mmeW) are clearly evident. Besides the error
imization over all combinations (i.e. the one with the right (RMSE), mmeS and mmeW also improve the correlation and
trade-off between accuracy and diversity)es; covers all  the variance of the output with respect to mme. The improve-
bins between 2 and 8, peaking at 3-4 members. The spatiahent reflects the better capture of the 50 % of values outside
variability is due to the absence of any filtering in the latter the interquartile range, i.e. the lower than 25th and the higher
case. At half of the stations, evenly distributed across the dothan 75th percentile values.
main, mmeS uses only either 3 or 4 models, while over 80% The results are now spatially disaggregated and the lat-
of the sites need 2-5 models from the pool. itudinal and longitudinal forecast skill of mme, mmeW and
Testing PhaseThe presented results hereafter assess thenmeS is shown in Fig. 10 for the gross error (RMSE) and the
predictability of the examined schemes trained over a finiteability to capture the extreme upper tail of the distribution via
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the hit rate indicator. The weighted ensemble, in the form ofthe better for ozone) that is considerably corrected in both
mmeW or mmesS, significantly improves both indices over mmeW and mmeS, with a more homogeneous pattern in
the ensemble mean. The advancement happens at all simmeW. The median hit rate of mme is 28 % and becomes
gle locations, as the cdf plot of the RMSE ratios with mme 44 % in mmeS and nearly doubles (52 %) in mmeW. One-
shows. The error is lowered by up to 35 % for mmeW andquarter of the total stations lying in middle to high latitudes
25 % for mmeS. Half of the stations experience RMSE low- experience the highest improvement; a hit rate of less than
ering in the mmeW (mmeS) case by up to 13% (10 %) and10% in mme becomes up to 40% in mmeW and 30 % in
the other half in the range 13-35 % (10—-25 %). There existanmesS.
a weak tendency for larger improvement at the sites with the Effect of M. We investigate now the statistical proper-
higher RMSE. The histogram of the errors from all stationsties of the three ensemble products as a function oiihge
for (mme, mmeS, mmeW) has a mean of (21.7, 19.6, 18.6alculated from the minimum error. The mean is well cap-
and a standard deviation of (5.8, 5.2, 4.6) implying that be-tured by all products (Fig. 11a). It is decreasing for small
sides skill, forecast uncertainty also benefits from a similarMes (< 4) and remains roughly constant for higher values.
improvement. This indicates that ensembles tend to be more symmetric at
In view of the extremes, the correct identification of con- lower concentrations, indicating again that one of the areas
centrations over the 120 pgththreshold value (right plot), where mme fails is extreme values, since only few models
has a clear latitude dependencerime(the more southerly actually capture them. The latter statement is reinforced by
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the coefficient of variation plot (Fig. 11b) — it unfolds the already a quite symmetric distribution. This can be seen in
differences in the statistical distribution of the three ensem-Fig. 12, where Talagrand diagrams have been plotted accord-
ble products. Overall, the spread (range) of concentrationgng to the station’sMes. Taken together with the distribu-
is monotonically decreasing @gq¢ increases. FoMef < 4, tion convergence seen in the previous paragraph, the results
this is due to equal reductions in mean and standard deviademonstrate that the MME sample resembles the properties
tion, for Mt > 4 it is due to a decrease in standard devia- of an i.i.d. sample only for cases without extreme percentiles,
tion only (as the coefficient of variation is decreasing but thesince only few models are able to forecast them. In turn, this
mean is stable). The statistical distributions of the three enindicates that as long as the variance of some models departs
semble products start to converge Mgt > 6, i.e. when the  significantly from the observed variance, the benefits of im-
range of concentration is well bounded below 120 ggm  provements in the ensemble skill in the form of mmeS or
Finally, skewness and kurtosis do not demonstrate any sigmmeW over mme become substantial. Last, the improved hit
nificant dependence aWef (Not shown). rate (hitR) in mmeW and mmeS over mme seen in Fig. 10
The findings of the previous paragraph for the statisticalhas a coherent pattern acrossMbs values, as also seen in
distribution are explored hereafter for the skill with respect to Fig. 11f.
Mesi. The dissimilarities among the three ensemble products Effect of the bias correction schen®o far, the model out-
are clearly revealed in all examined skill scores. The correputs have been separately adjusted for systematic errors by a
lation (PCC) with observations is nearly independent of thefirst-order bias correction. Here we test the effect of an addi-
Mes for mmeS and mmeW (Fig. 11c). On the other hand,tional adjustment applied on their spread through a second-
mme has notably lower PCC fafes < 4, pointing againto  order bias correction. As the purpose of this work is not
the discrepancies in capturing the whole range of variabilitythe evaluation of the different correction strategies, we apply
when there is a significant amount of extreme records (ovela simple multiplicative correction factor to the whole bias-
120 ug nt3). A similar result is found for the standard de- corrected time series. The results are presented in Fig. 13
viation ratio (STDR) (Fig. 11e). In terms of error (RMSE) through a comparison of their composite skill in Taylor plots
(Fig. 11d), it is a decreasing function 81 and the three  as well as through binned bias plots.
ensemble products start to converge Mg > 6. AS Meg The skill of the numerical models in simulating ozone
increases, the distribution of the models around the obsergfirst column) is enhanced with the inclusion of the second-
vations gradually becomes more symmetric, hence the gaiorder correction, which is also reflected in the ensemble
from mmeW or mmeS is minimized as the mme sample hagproducts and in particular in mme and mmesS. As expected,
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the second correction is also accompanied by an increase itistical improvements are proportional to the MME skill in
the effective number of models as it yields more symmetricforecasting the specific species. In other words, mmeS and
fields. The binned mean bias plot demonstrates that the emnmeW improve the skill of mme up to a point; further im-
semble products retain the same ability sequence in the twprovement requires an advancement of the core uncertainty
schemes across all ranges (i.e. first mmeW, second mme%actors inside the deterministic models like the emissions, the
third mme) with the known overestimation tendency for con- boundary conditions and the parametrization of physical pro-
centrations below 75 pgni and underestimation above that cesses.
threshold. The differences between the schemes and prod- The gross improvement in the RMSE of the multi-model
ucts become substantial for the limited records exceeding thensemble mean achieved through a second-order bias correc-
180 pg nT3 value. In general, the mmeW provides signifi- tion, compared to first order, was 0.6 % fo$,@.1 % for NG
cantly better forecasts over mmeS and mme even with feweand 11.8 % for PM10. On the other hand, the improvement
corrections (for example mmeW trained with first-order cor- in the RMSE achieved through the exploitation of the ensem-
rected models scores better than mmeS from second-orddrle mean in the form of mmeW or mmeS was 8.6 % far O
corrected models); this also applies for mmeS over mme. 14.9% for NQ and 13.5 % for PM10. Hence, the improve-
Results for other pollutantéNO,, PM10). For the other ment in the error of the ensemble mean achieved through
two pollutants (N@ and PM10), some of the results seen in spread adjustment, on top of the correction of the system-
ozone are also valid, like the improvement in the model'satic errors, does not outscore the improvements that can be
skill and the increase of the effective number of models.achieved through proper weighting or sub-selecting.
Compared to ozone simulations, the distance between the
three ensemble products is lower in the Taylor plot indicat-
ing a mild improvement over mme. This is also confirmed 6 Summary and conclusions
through the analysis of the binned mean bias. In addition, the
seasonality expressed through the PCC is lower in the casensemble forecasting with multi-model ensembles improves
of NO, and PM10. Hence, between different species, the stathe forecast skill by reducing the non-linear error growth
and averaging out individual models’ error components. The

www.atmos-chem-phys.net/14/11791/2014/ Atmos. Chem. Phys., 14, 1179845 2014
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mme(equal weights) is a spatiotemporal robust estimate of The goal of this work is to evaluate potential schemes to
the actual state with increased accuracy (single errors carproduce a single improved forecast out of an ensemble. The
cel out) but with variance lower than the observations. Itskey results, obtained from the application of two general-
skill degrades outside the interquartile range due to the inpurpose ensemble models to a representative air-quality data
efficiency of the majority of the models to simulate extreme set, can be summarized as follows (in order of decreasing
percentiles, where hence averaging brings mainly redundargenerality):

information. The last property limits the usefulness of the

ensemble mean, particularly for the study of extreme events, 1. The unconditional averaging of ensemble members is
unless a mechanism that accounts for ensemble redundancy highly unlikely to systematically generate a forecast
is taken into account. Possible pathways investigated to elim-  With higher skill than its members across all percentiles
inate this distortion and yield ensemble output with symmet- ~ @s models generally depart significantly from behaving
ric residuals across all distribution bins are model weighting ~ @s @ random sample (i.e. under the i.i.d. assumption).
and model sub-selecting, both supported by mathematical ev-  Further, the ensemble mean is superior to the best single

idence. The analysis makes use of continental-scale simula- Model given conditions that relate to the skill difference
tions and observations from AQMEII. of the members and the ensemble redundancy.

2. The relative skill of the deterministic models radically
varies with location. The error of the ensemble mean is
not necessarily better than the skill of the “locally” best
model, but its expectation over multiple locations is,
making the ensemble mean a skilled product on average.
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A continuous spatial superiority over all single models
is feasible in ensemble products suchnameW(error
optimization through model weighting; keep all mod-
els) andmmeSerror optimization through trade-off be-

tween accuracy and diversity or variance and covari-

ance; average on selected subset of models).

www.atmos-chem-phys.net/14/11791/2014/

3.

Unlike mme, mmeW and mmeS require some training
phase to find robust weights or clusters. The mmeW
skill was more sensitive to its controlling factors than

mmeS. A 2-month period was found necessary for the
stabilization of the mmeW weights. On the other hand,
mmeS was robust using both static/dynamic modes. In
prognostic mode, if the training data have sufficient
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extent (at least 30 days), the minimum error is obtained ing with increasingMef. Those cases were occurring
with mmeW while for the case of limited training data, for intermediate concentration ranges, that all models
the minimum error is obtained with mmeS. Specifically: are somehow tuned to replicate. On the other hand, as
Mest was decreasing and the ensemble was departing
from behaving as an i.i.d. sample, the error gain from
mmeS or mmeW over mme was gradually increasing,
reaching on average 15% and 30 %, respectively. The
extreme records were generally found in the asymmet-
ric range of the ensemble.

— mmeW the weights were rather sensitive to the
length of the training period, requiring at least 30
days to approach an asymptotic consensus. Nev-
ertheless, learning over long time periods 4
months) and using those weights in predictive mode
proved robust and accurate. Under proper train-
ing, its forecast skill outperformed all other ensem- Compared to the traditional ensemble mean, the use of non-
ble products as well as individual models. The im- redundant sub-ensembles results in lower forecast uncer-
provement across all stations over the mme was upainty and increased skill for studies of the extremes. How-
to 35 % for the RMSE and around 85 % for the me- ever, as the skill of even the best model is limited for
dian hit rate. very high values (e.g> 150 ugnt3 03), so is the skill of

— mmeSfor the 13-member ensemble, the effective the ensemble products. Hence, besides any statistical post-
number of models was in the range 2-8, with the treatment of the ensemble to coherently improve forecast
peak between 3 and 4. Its skill was significantly bet- Skill, there is a need for continuous model improvement, es-
ter over mme and individual models and it demon- Pecially for cases that depart from intermediate levels.

strated the h|ghest robustness with respect to the Hence, an ensemble may contain an infinite number of
length of the training period. For training data of models but the ideal ensemble should be constructed from

limited length 1 month), its skill was also bet- this pool based on some criteria that reflect a symmetrical
ter than mmeW. For ozone, Switching from mme to error distribution. The multi-model mean defines the bench-
mmes’ the properties that were re'ative'y Correctedmark against which all other We|ght|ng schemes should be
more were accuracy (over diversity), error covari- evaluated. A general roadmap for the non-trivial problem of
ance (over error variance) and skill difference (over Weighting (mmeW) or sub-selecting (mmeS) from an ensem-
error correlation). The learning algorithms for sub- ble is attempted hereafter:

set selection, based on a sole dependent function of
the error (e.qg. diversity) rather than the error, did not
achieve higher skill than mme. The improvement
across all stations over the mme was up to 25 % for
the RMSE and 57 % for the median hit rate. 2. evaluate indices of skill difference and redundancy to
assess the superiority of the ensemble mean against the
best single model,

1. generate a raw ensemble and afiphs correctiortech-
nigues to remove systematic errors (prerequisite for
mmeW);

4. The gross improvement in the RMSE of the multi-
model ensemble mean achieved through the first- and
second-moment correction of the modelled time series, 3. optimize distribution symmetry over @aining setof
compared to only first-moment correction was 0.6 % for proper sizausing either all members or a subset of them;
Oz, 2.1% for NG and 11.8 % for PM10. On the other the first approach concludes withveeighting scheme,
hand, the improvement in the RMSE achieved through  the second with the identification of thefective num-
the exploitation of the ensemble mean in the form of ber of modelsaand the allowed/forbiddecombinations
mmeW or mmeS was 8.6 % fors014.9 % for NQ and of membershat can be sampled to constitute effective
13.5% for PM10. Hence, even with adjustments inthe  ensembles; the length of the training data set is deter-
systematic error and the spread in the models of an en-  mined from physical concepts as well as the statistical
semble, a portion of its potential predictability is lost by properties of the specific ensemble;
using solely full ensemble averaging; superior improve-
ments can be achieved through the optimization of an 4. average the weighted or reduced ensemble.

error decomposition approach. The above procedure does not imply any spatial or cross-

5. Fori.i.d. samples, the effective number of models equalsvariate dependence. It aims at optimizing ensemble aver-
the ensemble size (members). The mmeS and mmeVding at single locations for single variables. A framework
improve the skill of mme by constraining the ensemble for the optimization of the ensemble skill for multivariate
into another where participating models replicate betterspatial dependence, like the multi-dimensional optimization
the properties of an i.i.d. sample. Usiddes as indi-  (Potempski and Galmarini, 2009) or the ensemble-copula
cator of i.i.d. sample, the decomposition of the skill as coupling (Schefzik et al., 2013), will be assessed in a future
a function of the effective number of models demon- Study.
strated that for ozone, the three products were converg-
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