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Abstract. This study addresses and attempts to mitigate per-
sistent uncertainty and scatter among existing approaches
for determining the rate of sea spray aerosol production
by breaking waves in the open ocean. The new approach
proposed here utilizes passive microwave emissions from
the ocean surface, which are known to be sensitive to sur-
face roughness and foam. Direct, simultaneous, and col-
located measurements of the aerosol production and mi-
crowave emissions were collected aboard theFLoating In-
strument Platform(FLIP) in deep water∼ 150 km off the
coast of California over a period of∼ 4 days. Vertical pro-
files of coarse-mode aerosol (0.25–23.5 µm) concentrations
were measured with a forward-scattering spectrometer and
converted to surface flux using dry deposition and vertical
gradient methods. Back-trajectory analysis of eastern North
Pacific meteorology verified the clean marine origin of the
sampled air mass over at least 5 days prior to measure-
ments. Vertical and horizontal polarization surface brightness
temperature were measured with a microwave radiometer at
10.7 GHz frequency. Data analysis revealed a strong sensi-
tivity of the brightness temperature polarization difference
to the rate of aerosol production. An existing model of mi-
crowave emission from the ocean surface was used to deter-
mine the empirical relationship and to attribute its underlying
physical basis to microwave emissions from surface rough-
ness and foam within active and passive phases of breaking
waves. A possibility of and initial steps towards satellite re-
trievals of the sea spray aerosol production are briefly dis-
cussed in concluding remarks.

1 Introduction

As waves grow under the forcing of near-surface wind,
some of their energy dissipates through whitecap-generating
wave breaking. These whitecaps are progenitors of sea spray
droplets ejected into the air when whitecap bubbles burst.
Larger droplets quickly re-enter the water under the effect
of gravity, while droplets small enough to be advected by the
wind equilibrate with their surrounding and mix throughout
the marine boundary layer (MBL) (de Leeuw et al., 2011).
The focus of this paper is on measurement and parameteriza-
tion of the production rate of these sea spray aerosol (SSA)
particles in the open ocean. Of specific interest are coarse
sea spray droplets, with radius at formation from∼ 2 to
∼ 40 µm, which transform by evaporation into aerosol par-
ticles with dry radiirdry = (0.5 to 10) µm (Gerber, 1985; An-
dreas, 2002).

In the process of their formation, SSA transports momen-
tum, heat (sensible and latent), and mass (gases, salts, and
organics) between the ocean and the atmosphere (Blanchard,
1983; Andreas et al., 1995; Melville, 1996; Woolf, 1993).
SSA particles act readily as cloud condensation nuclei (CCN)
and scatter light efficiently because of their hydroscopicity
and sizes. As CCN and via light scattering, SSA contributes
to direct and indirect effects on the climate system (Andreae,
1995) and affects the visibility of the marine atmosphere,
which is important for safe navigation of commercial and
Navy vessels (Gathman et al., 1998). Being one of the domi-
nant types of natural aerosols, especially in remote areas with
clean marine air, SSA determines the baseline against which
the effect of anthropogenic aerosols is assessed (Quinn et
al., 1998). The involvement of SSA in a myriad of air–sea
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interaction, atmospheric, and climate processes necessitates
accurate prediction of SSA concentrations and fluxes.

Laboratory and field measurements of SSA concentrations
and/or fluxes have been used to parameterize the sea spray
source function (SSSF) that estimates the SSA production
for aerosol models, chemical transport models, and global
climate models (Shettle and Fenn, 1979; Gathman et al.,
1998; Caffrey et al., 2006; Textor et al., 2006). Though a
review of recent efforts has identified advances such as a
recognition of the large contribution of organic substances
to SSA population and the extension of SSA observations to
smaller sizes (rdry < 0.05 µm), uncertainty of a factor of 4–5
in measuring and parameterizing the production flux of SSA
with rdry > 0.5 µm remains. This uncertainty is a major rea-
son for the 2-orders-of-magnitude spread in current global
annual SSA emission estimates (de Leeuw et al., 2011). Con-
tributing to the uncertainty in estimates of SSA production
are measurement difficulties and errors (Reid et al., 2006);
use of oversimplified assumptions and approximations (dis-
cussed in more detail below); oversimplified use of forcing
parameters, such as local wind speed alone (see Norris et al.,
2013, and Ovadnevaite et al., 2014, for relevant discussion);
and not accounting for various influences such as those of
the wave field, atmospheric stability, seawater temperature
and salinity, and the presence, amount, and nature of surfac-
tants (Monahan and O’Muirchaertaigh, 1986; Anguelova and
Webster, 2006; de Leeuw et al., 2011; Salisbury et al., 2013).
A notable recommendation for constraining the SSA produc-
tion flux is the use of field observations or consistent deter-
mination by multiple approaches (de Leeuw et al., 2011).

The present paper introduces a novel way to reduce some
of these uncertainties by describing an empirical approach
which relates SSA production to the brightness temperature
of the ocean surface as measured by a microwave radiome-
ter. Merits of the promoted approach are that (i) it avoids,
or at least reduces, the use of unverified assumptions; and
(ii) the brightness temperature is a suitable variable that fully
characterizes the sea state, including surface roughness and
foam, which are highly relevant to the SSA production. Data
for this study were collected during the field Breaking Wave
Experiment (BREWEX) conducted aboard theFloating In-
strument Platform(FLIP) from 17 April to 3 May 2012.
The overall goal of this experiment was to provide a vari-
ety of collocated measurements aimed at identifying specific
signatures of active and residual phases of oceanic white-
caps utilizing visible, infrared, microwave, and acoustic sens-
ing. This paper presents the first results of the BREWEX
data analysis and primarily focuses on SSA and passive mi-
crowave radiation emissions from whitecaps, as well as on
the physical and statistical relationship between the two.

2 Background

The scientific fields related to SSA production and to pas-
sive radiometry of ocean surface are both well developed and
largely independent of each other. Since in this study a di-
rect link is established between the two, it is instructive to
present relevant backgrounds, including methodologies re-
lated to these subject areas in order to set the stage for a joint
analysis, discussion, and interpretation of obtained results.

2.1 Sea spray aerosol flux

2.1.1 Measurements of sea spray aerosol flux

Lewis and Schwartz (2004) and de Leeuw et al. (2011) re-
view a variety of methods for measuring and estimating pro-
duction fluxes of SSA. This section briefly describes two spe-
cific methods, the dry deposition method and the vertical gra-
dient method, which are used in this study for data analysis
and interpretation.

As an input, the dry deposition method requires only size-
dependent measurements of aerosol concentration,N(r), at
some height, and as a result it produces the total surface flux,
F(r), at a desired reference height. The upward flux is as-
sumed to be equal to the downward flux; thus

F (r) = Vg · N (r), (1)

whereVg is the gravitational settling (or deposition) velocity,
which can be estimated assuming “Stokesian” behavior of a
falling droplet (Lewis and Schwartz, 2004):

Vg =

( r

8.5

)2
. (2)

Equation (2) givesVg in centimeters per second, andr
is in micrometers. Note that a variety of approaches exist
for estimating deposition velocities, including dependencies
on wind speed, such as Slinn and Slinn (1980); also see
Anguelova (2002, Appendix D) for relevant discussion. To
convertF(r) from a measurement height,H , to the desired
reference height of 10 m above the water level, aerosol con-
centration can be extrapolated using a logarithmic profile
(Hoppel et al., 2002):

N (H)

N (z)
=

(
H

z

)−
Vg
κu∗

, (3)

whereκ is the von Karman constant andu∗ is the wind fric-
tion velocity.

Well-known uncertainties and applicability limitations as-
sociated with the dry deposition method arise primarily from
the assumption of equilibrium between upward and down-
ward aerosol fluxes. This assumption essentially requires that
a certain surface flux existed for a sufficiently long time to
saturate the MBL with droplets of a specific size. Hoppel
et al. (2002) showed that, while this is less of an issue for
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larger droplets, the saturation of MBL with smaller droplets
(rdry ∼< 2 µm) can take from hours to days. Over such a pe-
riod, the environmental conditions giving rise to the surface
flux inevitably change, making it impossible to tie measured
fluxes to a specific state of the air–sea interface. Addition-
ally, due to wet deposition (i.e., occasional rain events), the
MBL is typically less than saturated with aerosols; therefore
the dry deposition method is also believed to consistently un-
derestimate the surface flux, particularly for smaller droplets.

Another method used here is the vertical gradient method
(Petelski, 2003; Petelski and Piskozub, 2006). The basic
assumption of this method is that droplet concentrations
are perfect passive tracers and are transported through the
boundary layer in the same way as other passive scalars (e.g.,
temperature or humidity). This allows the application of a
widely used boundary layer similarity theory (Monin and
Obukhov, 1954), which models the vertical profile by a log-
arithmic form:

N (r,z) = N∗(r) · ln(z) + C(r), (4)

whereN∗ is defined asN∗ = F/u∗, andC is a constant in-
dependent ofz. Vertical profiles of aerosol concentrations,
N(r,z), are measured in situ and used to determineN∗(r)

and C(r) by fitting the best-matching logarithmic profile
within each radius bin. Then, from the similarity theory, the
surface flux is calculated as

F(r) = N∗(r)C
1/2
10 · U10, (5)

whereC10 is the drag coefficient of the ocean surface and
U10 is the wind speed at 10 m height above the water level.

The main practical difficulty associated with the vertical
gradient method is that the required near-instantaneous mea-
surements of vertical profilesN(r,z) often lack statistical
confidence to constrain the shape of the fitted logarithmic
profiles. Therefore, it is expected to be more effective in ex-
perimental setups with multiple particle counters placed as a
vertical array.

In regard to both methods, field measurements of SSA
concentrations and fluxes are complicated by the presence
of different types of aerosols other than whitecap-produced
SSA. The SSA generated locally are usually mixed up with
air masses coming from different sites and bringing either
aged SSA from other remote marine areas or particles from
continental sources with natural or anthropogenic origins.
Modeling trajectories of air masses back in time to determine
their origin and transport is a tool that allows assessment of
the predominance of SSA or other aerosols at the time and
site of observation. For example, the purity and usability of
collected SSA data were assessed in Caffrey et al. (2006) by
calculating wind back trajectories using an output of a mete-
orological circulation model.

2.1.2 Parameterizations of sea spray aerosol flux

Although many methods and resulting parameterizations ex-
ist in the literature (Lewis and Schwartz, 2004), most au-
thors use or compare to parameterizations by Monahan et
al. (1986) and Smith et al. (1993). This makes them a con-
venient frame of reference for the results presented in this
paper.

The sea spray source function, defined here as the surface
flux function dF / dr or dF / d(lnr), is used to parameterize
the number of SSA particles with radii in a given infinites-
imal range propagating upwards per unit area per unit time.
This derivative is considered to be the final and most gen-
eral output of various measuring methods that can be used
as a source term by atmospheric aerosol models (e.g., Caf-
frey et al., 2006). A common practice is to assume a separa-
tion of variables, such as dF(r,U10)/d(lnr) = f (r) ·g(U10),
wheref (r) is a universal shape function depending solely
on the droplet radius, andg(U10) is a dimensionless scaling
function that contains dependence on relevant environmental
forcing factors, which are often simplified to a function of
only the wind speedU10.

To obtain the surface flux,F , Smith et al. (1993) con-
ducted long-term size-resolved field measurements of SSA
concentrations, which were converted to an SSSF parameter-
ization using the dry deposition method (see Sect. 2.1.1). The
parameterization by Monahan et al. (1986) uses the white-
cap method, which combines a separately obtained function,
f (r), and a scaling whitecap fraction,W . The scaling fac-
tor, W , is necessary for open-ocean conditions becausef (r)

is obtained from laboratory (Monahan et al., 1982) or surf
zone (de Leeuw et al., 2000) measurements of surface flux
per unit area of whitecap. Monahan et al. (1986) formulated
f (r) in terms of radius and whitecap fraction,W , in terms of
wind speed: dF / dr = W(U10) ·f (r). Unlike the dry deposi-
tion and the vertical gradient methods, the whitecap method
was not used to obtain SSSF in the analysis presented here;
however, some basic concepts and assumptions behind the
method are relevant to this study. The validity of assumptions
used in various SSSF parameterizations is further discussed
in Sect. 6.2.

2.1.3 Input variables for sea spray aerosol flux
parameterizations

The most important and common parameter used to con-
strain the SSA production flux is wind speed at 10 m ref-
erence height,U10, because wind is the main forcing factor
that leads to growth of waves, which ultimately break and
produce foam and consequently aerosol. In addition to the
localized wind speed,U10, breaking-wave activity at a par-
ticular location is also a function of the wave field which is
formed in response to large-scale spatial and temporal distri-
butions of wind. Therefore, the common practice of approx-
imating relevant forcing with localU10 alone is a significant
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simplification. This practice could, at least partially, explain
the wide data scatter observed within SSSF studies, as well
as large differences among existing SSSF parameterizations.

To account for the relevant history of winds and waves,
additional factors such as duration and fetch of the wind, as
well as the atmospheric stability, can be considered (Kara et
al., 2008). The existing state of the wave field can be char-
acterized directly by significant wave height, peak wave pe-
riod, wave slope, or wave age. A more complete SSSF pa-
rameterization should include some of these factors. Devel-
oping an SSSF parameterization in terms of wind stress or
wind friction velocity allows atmospheric stability to be in-
corporated during the conversion of locally measuredU10,
if temperature and humidity profiles are also available. For
the whitecap method, additional influences can be included
through the parameterization of the whitecap fraction used as
a scaling factor in SSSF. Motivated by such reasoning, Lafon
et al. (2004) parameterizedW in terms of wind fetch. Zhao
and Toba (2001) accounted for wave properties with a wave-
breaking parameter, which in turn depends on wind speed
and peak wave frequency. Fairall et al. (2009) conducted a
laboratory investigation of spume drop production as a func-
tion of breaking-wave probability. Most recently, Norris et
al. (2013) and Ovadnevaite et al. (2014) parameterized SSSF
directly in terms of Reynolds number, defined by wind fric-
tion velocity and significant wave height.

Environmental factors like sea surface temperature, salin-
ity, and the presence and amount of surface active materi-
als also affect the production of sea spray through a variety
of processes. Foremost, they influence the extent and persis-
tence of the whitecaps where bubble bursting produces sea
spray droplets.

2.2 Brightness temperature of the ocean surface

The large number of relevant environmental parameters in-
fluencing the SSA production and the complexity of their in-
teractions motivated the search for a source of measurements
of the ocean surface capable of capturing most, if not all,
of the relevant processes. This study suggests that one pos-
sibility is the brightness temperature of the ocean surface,
which can be measured by microwave radiometers on ships,
aircrafts, and satellites. A brief background introducing this
parameter is given below.

2.2.1 Brightness temperature definition

Any matter at a physical temperature above absolute zero
emits thermal energy in the form of electromagnetic (EM)
waves. The intensity of the radiated energy is directly related
to the physical temperature,T , of the object. It is also related
to the physical properties of the material through the emis-
sivity, e. The intensity is termed the brightness temperature,
TB : TB = e(f,P,θ)T , where emissivity is a function of fre-
quency,f ; polarization,P(P = H for horizontal andV for

vertical polarizations); and incidence angle,θ . The relation-
ship between measured brightness temperature and the phys-
ical properties, as expressed through the emissivity, can be of
more interest than the specific physical temperature. That is
the case in the present work. For more general background
on brightness temperature see Ulaby et al. (1981).

2.2.2 Measurements of sea surface brightness
temperature

The measured brightness temperature when viewing the
ocean surface is

TB(f,P,θ) = Tup(f,θ,h) + α(f,θ,h){(1− r(f,P,θ))Ts

+ r(f,P,θ)Tdown(f,θ)},

whereTup is the upwelling brightness temperature of the at-
mosphere between the surface and the sensor,α is the trans-
missivity of the atmosphere between the surface and sensor,
r is the reflectivity of the sea surface,Ts is the surface tem-
perature of the ocean,Tdown is the downwelling brightness
temperature of the atmospheric column (and cosmic back-
ground), andh is the height of the observation.

For the observations fromFLIP, h is small enough, espe-
cially at the observation frequency of 10.7 GHz (where the
atmosphere has low attenuation), so thatTup is negligible,
as are atmospheric losses between the ocean and the sen-
sor; thereforeα ≈ 1. Further, the ocean can be assumed to be
semi-infinite, with no transmission, so 1= r + e. The bright-
ness temperature can then be approximated as

TB(f,P,θ) = e(f,P,θ)Ts+ (1− e(f,P,θ))Tdown(f,θ).

At 10.7 GHz,Tdown is relatively small, particularly in cloud-
free conditions, in which it is on the order of 10 K, and the
first term dominates the measured brightness temperature.

The emissivity, in addition to the dependencies explicit in
the equation, is a function of the roughness of the sea surface
and the amount of sea foam present. The average emissivity
of a scene can be represented as the sum of lower emissiv-
ity rough surface (with emissivity,er) and higher emissivity
foam patches (with emissivity,ef), weighted by the fractional
areal coverage of whitecaps,W :

e = (1− W)er + Wef .

The high emissivity of sea foam increases the emissivity of
the ocean (Anguelova and Gaiser, 2012) whenW > 0.

2.2.3 Satellite-based observations of brightness
temperature

Satellite-based observations of the ocean provide long-term
data coverage on a global scale and are of obvious interest
and importance. Brightness temperature measurements from
satellites, as opposed to the measurements fromFLIP, in-
clude the full impact of the atmosphere between the sensor
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and sea surface. That is, the radiative processes of absorption,
scattering, and emission occurring within the atmosphere
both attenuate the signature arising from the sea surface and
add intensity consistent with the atmospheric parameters. To
account for these additional processes, and thus correctly de-
scribe the brightness temperature at the top of the atmosphere
(TOA), one needs to use a radiative transfer model.

Having TOA observations introduces both useful and com-
plicating aspects to the processing of radiometricTBP data:
useful becauseTBP data now also carry information about
atmospheric variables, such as columnar water vapor, cloud
liquid water, and precipitation, which can be retrieved from
satellite observations (Wentz, 1997); complicating because
to retrieve near-surface variables, the atmospheric compo-
nent has to be removed by means of an atmospheric cor-
rection. The quality of the atmospheric model that evalu-
ates and removes the atmospheric component, and the accu-
racy of the atmospheric parameters (temperature, water va-
por, etc.) needed to evaluate it, can significantly impact the
accuracy of the retrievals at the ocean surface, particularly
at higher frequencies with higher atmospheric absorption or
in the presence of clouds and precipitation. Currently, global
radiometric measurements for atmospheric and surface geo-
physical variables are available from several sensors, includ-
ing WindSat, the Special Sensor Microwave Imager/Sounder
(SSMIS), the Advanced Microwave Scanning Radiometer-2
(AMSR-2), and the Global Precipitation Measurement Mi-
crowave Imager (GMI).

2.2.4 Modeling the brightness temperature

In this study, we use the model developed by Hwang (2012,
hereafter H12), which is capable of evaluating the total sig-
nal,TBP, as well as all of its components separately. A brief
summary of H12 is given below; Hwang (2012) provides a
detailed description.

H12 models the ocean surface emissivity and thus its
brightness temperature as the sum of the baseline radiation
of a flat water surface, an increase in emissivity due to sur-
face roughness, and an additional term representing the con-
tribution of sea foam generated by breaking waves. The base-
line contribution is the emissivity of a flat seawater surface,
e0, at a given temperature,Ts, and salinity,S, usually mea-
sured as a specular reflection,r0. As long asTs andS remain
constant,r0 and thuse0 = 1− r0 do not change. Scattering
from roughness elements caused by long waves (e.g., swell
and long gravity waves) and short waves (e.g., short grav-
ity and capillary waves) increases the specular reflection to
r = r0 + δr. As the sea surface roughness increases with the
wind speed,U10, so does the surface scattering contribution,
δr, and the overall reflectivity of rough sea surface,r. From
Kirchoff’s law, the emissivity of rough surface changes to
er = 1− r = 1− r0 − δr = e0 − δr, which gives

e = (1−W)er +Wef = (1−W)e0 − (1−W)δr +Wef . (6)

Polarized ocean surface emissivity (Eq. 6) is indirectly mea-
sured by radiometers as polarized brightness temperature,
TBP:

TBP = ePTs = Ts[(1− W)e0P− (1− W)δrP+ Wef P]

= TB0P+ TBrP+ TBfP. (7)

Equation (7) demonstrates thatTBP at the surface carries
information about the main features of the ocean surface,
such as its temperature and salinity in termTB0P, sea surface
roughness in termTBrP, and sea foam in termTBfP. Radio-
metricTBP data are thus used to infer (retrieve) various geo-
physical parameters such as near-surface wind speed and di-
rection, sea surface temperature, salinity, and whitecap frac-
tion (Wentz, 1997; Koblinsky et al., 2003; Bettenhausen et
al., 2006; Anguelova and Webster, 2006). These, in turn, are
variables which are often used as input values in other pa-
rameterizations, including SSSF parameterizations based on
U10. However, a direct parameterization of SSSF in terms of
TBP could be more desirable, becauseTBP data represent a
snapshot of the sea state as created by both present (e.g., lo-
cal U10, Ts, andS) and past (e.g., fetch and duration of the
wind) conditions. Therefore, observations ofTBP represent
the sea state more fully than other commonly used environ-
mental parameters.

Equation (7) represents a general road map of modeling
the brightness temperature of the ocean surface. The sea sur-
face temperature,Ts, is usually available from measurements
or from numerical prediction models. Whitecap fraction,W ,
can be either measured or parameterized in terms of wind
speed,U10 (Monahan and O’Muirchaertaigh, 1980). The rest
of the terms – namely the specular (flat surface) emissiv-
ity, e0P; the correction for the scattering of rough surface,
δrP; and the foam emissivity,efP – can be modeled (Stogryn,
1972; Pandey and Kakar, 1982; Yueh, 1997; Johnson, 2006).

The approach in H12 is to express the brightness temper-
atureTB atH andV polarizations and microwave frequency
f , incidence angleθ , and azimuth angle (with respect to the
wind direction)ϕ, with two major terms, one for the emissiv-
ity of a flat surface and another for wind-induced emissivity
change (Johnson and Zhang, 1999; Reul and Chapron, 2001):

TBP(f,θ,ϕ) = Ts

[(
1−

∣∣∣R(0)
PP

∣∣∣2) + δ eP

]
, (8a)

where R
(0)
PP (f,θ) is the Fresnel reflection coefficient of

polarization, P . The wind-induced termδ eP(f,θ,ϕ) in-
cludes contributions from rough and foamy sea surfaces; thus
Eq. (8) can be written as[

TBH (f,θ,ϕ)

TBV (f,θ,ϕ)

]
= Ts

{[
e0H
e0V

]
+

[
δ erH
δ erV

]
+

[
δ efH
δ efV

]}
=

[
TB0H
TB0V

]
+

[
δ TBrH
δ TBrV

]
+

[
δ TBfH
δ TBfV

]
. (8b)
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In Eq. (9), the specular emissivity term is calculated ase0P =

1− r0P, wherer0P is obtained with the Fresnel formula. The
dielectric constant of seawater, necessary for evaluation of
the Fresnel formula, is that of Meissner and Wentz (2004).
Well-established methods for computing the scattering from
rough sea surface,rP, are the two-scale model (Wentz, 1975;
Yueh, 1997; Johnson, 2006; Lyzenga, 2006) and small-
perturbation method/small-slope approximation (SPM/SSA)
(Yueh et al., 1994a, b; Johnson and Zhang, 1999). The H12
model uses the original SPM/SSA code of Reul and Chapron
(2001) to obtainrP and then calculates the change in emissiv-
ity due to roughness asδerP = erP− e0P = |δrP|. The change
in emissivity due to foam isδefP = 1− δrfP, whereδrfP is
obtained from the Fresnel formula and the quadratic mixing
rule for the dielectric constant of sea foam (Anguelova, 2008)
as described in Hwang (2012). Within this approach,δefP in-
corporates the weighting factor,W (as in Eq. 7), implicitly;
see Appendix for more details. The capability of H12 to sepa-
rately model the contributions of different sea states to the to-
tal TBP is exploited further in this paper for analysis (Sect. 5)
and interpretation (Sect. 6.1) of field data.

3 Experiment

Measurements presented here were collected as part of the
BREWEX field experiment conducted from 17 April to 3
May 2012, i.e., year days (YDs) 108–124. Details of the ex-
periment will be published separately; here we present a sub-
set of collected measurements that are relevant to the specific
goals of this paper.

3.1 Experimental site

FLIP is a unique vessel (http://www-mpl.ucsd.edu/
resources/flip.intro.html) that provides a stable open-ocean
research platform for near-surface measurements.FLIP was
towed in a horizontal orientation from San Diego north
towards a location∼ 150 km west from Monterey Bay.
At that location on 21 April (YD 112),FLIP was flipped
into vertical orientation through ballast changes and was
allowed to move with ocean currents for the next 9 days.
The platform moved generally south, along the coast of
California over water depth of∼ 3000 m. The experiment
site thus provided deep water breaking conditions, which are
suitable for comparisons of the data to satellite observations
in open ocean. The season and location were chosen to
provide relatively high winds and limited precipitation.

3.2 Instrumentation

When vertical,FLIP becomes a∼ 109 m high spar buoy with
a draft of∼ 85 m. The diameter of the hull tapers close to
the sea surface, thus minimizingFLIP’s response to wave
motion. Three∼ 18 m long horizontal booms are deployed
on the port, starboard, and face sides ofFLIP. Instruments

are mounted on or under the booms as far from hull as pos-
sible so that measured currents and winds are undisturbed
by FLIP’s hull. In drift mode (as opposed to moored mode),
FLIP rotates with the wind so the bottom (convex side) of the
hull is always oriented upwind. In this way, instrumentation
mounted on port and starboard booms remains exposed to an
unperturbed airflow, while the face boom is always sheltered
by the hull.

A forward-scattering spectrometer, CSASP-100-HV of
Particle Measuring Systems (PMS), measured sea spray
aerosol size distribution for particle radii,r, from 0.25 to
23.5 µm (coarse mode). While scattering spectrometers of
this type are known to have accuracy limitations (Reid et al.,
2006), this particular instrument has been tested and proven
reliable in numerous experiments (Hoppel et al., 1994; Frick
and Hoppel, 2000). The PMS instrument was suspended
from the starboard boom at∼ 7.3 m height above the mean
water level (MWL) and approximately 7 m away from the
FLIP hull. The suspension height was controlled by a mo-
torized winch, which allowed occasional measurements of
vertical profiles at lower heights down to 4.9 m.

Ocean surface brightness temperatures,TB, were mea-
sured at frequencies of 10.7 and 37 GHz and vertical and
horizontal (V and H ) polarizations using a subset of the
Airborne Polarimetric Microwave Imaging Radiometer (AP-
MIR) (Bobak et al., 2001, 2011). The radiometers were
mounted on the port boom (∼ 13 m above MWL) in an
environmental enclosure with a low-loss dielectric cover
(Cuming Microwave PF3) providing a window for viewing
the scene. Data were taken downwind at an incidence an-
gle of 45◦, giving an elliptical footprint of approximately
1.4 m× 2.7 m. The incidence angle was chosen from geomet-
ric considerations, allowing the radiometers to view an area
of sea surface that was monitored by other in situ instrumen-
tation used in BREWEX. Incidence angle and polarization
rotation caused by variations in pointing angle from platform
or boom motion were monitored with an inclinometer system
mounted in the radiometer enclosure.

The radiometers are a total power design, which provides
maximum sensitivity. End-to-end calibration of the radiome-
ters was provided by rotating the enclosure to left and right to
look at two external targets mounted on the port boom. The
cold target was a metal sheet reflecting sky radiation, and the
warm target was microwave-absorbing material at ambient
air temperature. Both targets were protected with low-loss
dielectric covers. Internal calibration allowed correcting for
the radiometer’s thermal gain drift during intervals between
the external, end-to-end calibrations. The internal calibration
was provided by noise diodes and ambient terminations.

A meteorological station (Vaisala WXT520 Weather
Transmitter) was mounted on the end of the starboard boom
10 m above the MWL to measure six weather parameters:
wind speed, wind direction, air temperature, relative humid-
ity (RH), barometric pressure, and rainfall. The same suite
of data was measured with a second meteorological station
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Figure 1 1169 

Overview of time series collected during the experiment, including wind speed (measured and 1170 

modeled by COAMPS) (a); air and water temperatures (b); relative humidity (c); 10.7 GHz 1171 

microwave brightness temperatures (vertical and horizontal polarizations) (d); and aerosol 1172 

concentration in the air (e).  1173 

  1174 

Figure 1. Overview of time series collected during the experiment,
including wind speed (measured and modeled by COAMPS)(a);
air and water temperatures(b); relative humidity(c); 10.7 GHz mi-
crowave brightness temperatures (vertical and horizontal polariza-
tions)(d); and aerosol concentration in the air(e).

(Davis 6152C Cabled Vantage Pro2) mounted in theFLIP
basket 24 m above the MWL. Sub-surface temperature pro-
files within the top 10 m of the water column were occasion-
ally measured with a hand-held conductivity–temperature–
pressure profiler.

4 Observations

Figure 1 shows an overview of time series of all measured
data relevant to this study. Times of measurements are given
here in coordinated universal time (UTC,−7 from the local
time) as a decimal of the YD. The following sections give de-
tails about the measurements shown in Fig. 1, starting with
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Figure 2  1175 

Locations of COAMPS computational grids in Northeastern Pacific. Number of grid points and 1176 

spacing between them are given for each grid.  1177 

  1178 Figure 2.Locations of COAMPS computational grids in the eastern
North Pacific. Number of grid points and spacing between them are
given for each grid.

a discussion of the data collection, quality control, and pro-
cessing procedures followed by a description of the data col-
lected and the experimental conditions.

4.1 Meteorological data

Collection of meteorological data started on YD 113. The
Vaisala weather station collected data at sampling rate of 5 s,
while the Davis weather station recorded one data point every
10 min. Records from the Vaisala and Davis weather stations
were in excellent agreement. The Davis station provided the
longest record, and it is used to illustrate the overall meteoro-
logical conditions during BREWEX (Fig. 1a–c). The output
of the Vaisala station is, however, used in the analysis be-
cause it provides more precise measurements and because it
was located at 10 m above the MWL, eliminating the need
for vertical extrapolation to a reference height.

Large-scale background meteorological conditions dur-
ing BREWEX were obtained from the U.S. Navy Cou-
pled Ocean–Atmosphere Mesoscale Prediction System
(COAMPS), version 4.2.2. COAMPS uses four nested grids
with horizontal spatial resolutions of 27, 9, 3, and 1 km, each
containing 65 vertical levels (Fig. 2). Predictive algorithms
determine the most realistic atmospheric conditions over the
area of interest, with the nested grids located so as to capture
the upwind conditions. COAMPS reanalysis is initialized by
assimilating archived historical observations of the boundary
conditions available from the U.S. Navy Operational Global
Atmospheric Prediction System (NOGAPS). The reanalysis
runs conducted for BREWEX used 12 h data assimilation cy-
cles from 24 to 30 April 2012. COAMPS wind data are given
at 10 m height reference. Time series of COAMPS data were
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constructed by samplingU10 values on a 1 km2 grid with a
1 h step around the currentFLIP position.

Figure 1a compares wind speeds,U10, from the Davis
weather station onFLIP to those from COAMPS. A wide
range of conditions were encountered during BREWEX,
with U10 ranging from 2.8 m s−1 on YD 113 to about
18 m s−1 on YD 120. Considering the difference in the spatial
resolution of theFLIP and COAMPS data, the modeledU10
values (red line in Fig. 1a) reproduce the measuredU10 val-
ues fairly well. Figure 3a and b show snapshots of COAMPS
simulations of the large-scale pattern of near-surface winds
on YD 118 at 20:00 UTC overlaid on the drift track ofFLIP.
Evident in Fig. 3a is a large synoptic system that influenced
the area on this day. A close look at the experimental site on
YD 118 (Fig. 3b) shows strong wind speed (> 12 m s−1) al-
most aligned with the coast line, as expected from the April
climatology for this area (Wyllie, 1966; Chelton, 1984).

The air temperature (Fig. 1b) changed most noticeably on
YD 113, from less than 10 to above 12◦C. In the period of
radiometric data collection the air temperature remained rela-
tively stable with diurnal variations also within 2◦C, between
12 and∼ 14◦C. The seawater temperature in the mixed layer
(0–10 m below MWL) was nearly constant and uniform at
∼ 13◦C (red symbols in Fig. 1b). The air–seawater temper-
ature difference was within±1◦C, primarily caused by di-
urnal variations. Relative humidity (Fig. 1c) was above 90 %
initially, then dropped to around 70 % on YD 117. From YD
119 to 121, RH increased gradually back to∼ 90 %. In com-
bination, these observations suggest the existence of well-
mixed boundary layers above and below the air–sea interface
with weak vertical heat flux; thus the atmospheric stability
conditions can be characterized as near-neutral.

COAMPS data were also used to run the HySplit (Hy-
brid Single-Particle Lagrangian Integrated Trajectory) pro-
gram to generate back trajectories of wind passing through
theFLIP location. Wind speed values were obtained from the
COAMPS reanalysis output at 1 h intervals along the back
trajectories out to 120 h earlier from the corresponding mo-
ment of data collection onFLIP. Back trajectories were cal-
culated using the three-dimensional velocity field from the
reanalysis data from COAMPS, but with the vertical motion
restricted to levels of constant potential temperatures (isen-
tropic surfaces).

Figure 4 shows back trajectories of air masses passing
though theFLIP location daily at 20:00 UTC. The beginning
of each trajectory is shown with the YD of arrival at theFLIP
location. Wind speed history corresponding to each back tra-
jectory is shown on the lower panel. These back trajectories
show that the air mass atFLIP between YDs 117 and 121 is
clean marine air that has been propagating above the North
Pacific for at least 5 days. This verifies that for the given time
frame the aerosol composition was predominantly of marine
origin, and that the marine boundary layer had sufficient time
to get saturated with the sea spray aerosols. The back trajec-
tory of YD 116 comes from the opposite direction, thus likely
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Figure 3 1179 

Snapshot of surface winds output from COAMPS on Year Day 118, 20:00 UTC. Two panels 1180 

represent a wider view of the Northeastern Pacific and a zoomed in view around the FLIP track, 1181 

shown with the black line.  1182 
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(b) 1186 
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1188 
Figure 3. Snapshot of surface winds output from COAMPS on year
day 118 at 20:00 UTC. Two panels represent a wider view of the
eastern North Pacific and a zoomed-in view around theFLIP track,
shown with the black line.
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Figure 4 1189 

Back trajectories of air masses passing though FLIP location daily at 20:00 UTC. Year Day of the 1190 

passing is shown by a number in the beginning of each trajectory. Wind speed history 1191 

corresponding to each back trajectory is shown on the lower panel. 1192 
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Figure 4. Back trajectories of air masses passing thoughFLIP lo-
cation daily at 20:00 UTC. Year day of the passing is shown by a
number in the beginning of each trajectory. Wind speed history cor-
responding to each back trajectory is shown on the lower panel.

advecting continental air masses. The full trajectory is not
shown in Fig. 4 because it quickly exits the analysis domain.

4.2 Brightness temperature data

Brightness temperatures,TB, from the 10.7 GHz radiometer
are used in this study; data from the 37 GHz radiometer were
found unusable due to a bias, which was not able to be repli-
cated, most likely caused by an obstruction in its field of
view.

Radiometric data were stored over discrete intervals of ap-
proximately 20 min during YDs 117–120. Fewer data were
stored under conditions of low winds (e.g., two 20 min in-
tervals per day), and more in high wind conditions with 5 to
23 20 min intervals per day. Total of 60 20 min intervals (i.e.,
20 h) of data were recorded.

During each 20 min interval, the data were collected con-
tinuously at a sampling rate of 20 Hz. Due to the high vari-
ability of instantaneous brightness temperature, and in order
to match the moving average windows applied to other time
series (Sect. 4.3), allTB samples within one 20 min interval
were averaged to provide a single data point. Linear inter-

polation between the 20 min averaged values was used when
necessary.

The resulting time series of brightness temperature at hor-
izontal and vertical polarizations,TBH andTBV , are shown in
Fig. 1d. Both polarizations show a steady increase with in-
creasing wind speed (Fig. 1d and a) over a range of∼ 10 K
for TBH (dashed blue line) and a range of∼ 5 K for TBV (red
solid line). The 10.7 GHz brightness temperature variations
are dominated by variation in the emissivity of the sea sur-
face within the antenna footprint; the reflected downwelling
brightness temperature arising from the atmosphere and cos-
mic background is a secondary factor. Figure 4 shows that
these radiometric data were collected during days when clean
marine air masses were passingFLIP.

Various polarization differences, polarization ratios, and
variances were calculated and tested, and the key relationship
in this study was found to rely on the difference in behavior
between the vertically and horizontally polarized brightness
temperatures. More specifically, the variables we found most
useful in the analysis of data acquired during BREWEX are
defined as follows:

δTBP = TBP− TB0P = δTBrP+ δTBfP, (9)

1TB = δTBH − δTBV, (10)

whereδTBP is the measured brightness temperature minus
the modeled brightness temperature of a flat surface,TB0P, in
otherwise similar conditions (Eqs. 7 and 9), calculated us-
ing the Meissner and Wentz (2004) model. Input parame-
ters used in this calculation were the radiometer frequency
f = 10.7 GHz, incidence angleθ = 45◦, water temperature
Ts = 13◦C, and salinityS = 32.6 ‰, resulting in flat-surface
brightness temperature valuesTB0H = 81.8◦ K and TB0V =

140.2◦ K. The parameterδTBP on the left-hand side of Eq. (9)
is an attempt to minimize the dependence on these variables
(i.e., Ts andS) and instead focus on the impact of surface
foam and roughness, which are expected to be most rele-
vant to the SSA production. As Eq. (9) shows, these wind-
inducedδTBP values are the measured counterparts of the
wind-induced modeled valuesδTBrP+ δTBfP in Eq. (9). The
parameter1TB introduced in Eq. (10) is the difference be-
tween horizontal and vertical polarization ofδTBP parame-
ters. This parameter approximately removes foam contribu-
tion for low to moderate wind speeds and, thus, more ac-
curately represents the roughness contribution alone (further
discussed in Sect. 6.1).

4.3 Sea spray aerosol data

Aerosol data were collected from late YD 115 to 121.
The PMS particle counter measures size-resolved
aerosol concentrations,N(r), in the range from 0.25
to 23.5 µm by alternating every 4 s between four
sub-ranges: 1.0 µm <r < 23.5 µm, 1.0 µm <r < 16.0 µm,
0.5 µm <r < 8.0 µm, and 0.25 µm <r < 4.0 µm. Particle
counts in each sub-range are binned into 15 equally spaced
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bins according to radii. These outputs were used to produce
20 min moving averages for each bin. Total aerosol con-
centrations,N , are obtained by integrating over all radii.
Figure 1e illustrates the resulting time series of raw droplet
concentrations measured during BREWEX.

The most striking features in this time series are multiple
concentration peaks during YDs 116 and early 117, which
are too high in magnitude to be correlated with the low to
moderate winds observed for the same period (Fig. 1a and e).
Meanwhile, measurements ofN collected during higher
winds after YD 117 appear to follow the wind speed inten-
sity. A combination of these observations with the airflow
direction reversal mentioned earlier (Fig. 4 and Sect. 4.1)
suggests that the air masses passing throughFLIP’s loca-
tion on YDs 116 and early 117 might be contaminated by
land and/or surf zone aerosol sources. This would interfere
with the requirement of the dry deposition method for steady
production flux over a period of hours or even days. In addi-
tion, considering that the goal of this study is to investigate
the relationship between the SSA production flux and surface
brightness temperature, it is necessary that all data be asso-
ciated with clean air masses so that the effects of the local
forcing (controlling) factors are captured. Therefore, droplet
concentration measurements for YDs 116 and early 117 were
discarded, and only samples of clean marine air with known
5-day back trajectories over the North Pacific were used. In
the time frame useful for further analysis, from YD 117 to
the end of the data collection,N steadily increased from
∼ 7× 104 to 2× 105 m−3 as wind speed increased.

To remove the dependence of measured particle radius
on ambient relative humidity, time-dependent RH measure-
ments were used to convert the mean droplet radius of each
bin to the corresponding dry radius,rdry, i.e., the radius of
corresponding salt particle without water (for details on this
conversion see Gerber, 1985, and Andreas, 2002). Mean ra-
dius within each bin was calculated on a logarithmic scale.

To obtain the surface flux using the dry deposition method,
all measurements of droplet concentrations,N(r), were con-
verted to 10 m height reference using Eq. (3). The gravita-
tional settling velocity was estimated with Eq. (2) using orig-
inal non-dry radius, and the wind friction velocity was cal-
culated by logarithmically extrapolating measuredU10 to the
surface (Large and Pond, 1981). The sea spray surface flux at
10 m height,F(rdry), was then calculated using Eq. (1). Re-
sults of these calculations were binned by equally spaced log-
arithmic increments of dry radius and presented as flux per
infinitesimal range of radii, dF (r)/dln(r). Hereafterr refers
to rdry and “ln” refers to the natural logarithm.

Another output of the dry deposition method is the total
surface flux integrated over all radii within the PMS mea-
surement range,FPMS. The subscript ofFPMS points out
that this quantity is dependent on the radii cutoff range spe-
cific to the PMS instrument (more specifically, the range
1.0 µm <r < 23.5 µm was used to calculateFPMS throughout
this paper). Nonetheless, the total flux,FPMS, as opposed to
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Figure 5 1195 

Vertical profiles of aerosol concentrations at 5 radii (symbols) and corresponding logarithmic fits 1196 

(solid lines). 1197 
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Figure 5. Vertical profiles of aerosol concentrations at five radii
(symbols) and corresponding logarithmic fits (solid lines).

the size-resolved production flux, dF (r) / dln(r), is useful to
study the sensitivity of the SSA surface flux to radiomet-
ric brightness temperature,TB. Within the data subset where
simultaneous brightness temperature and SSA flux data are
available, use of the total surface flux in this analysis helps to
compensate for the reduction in the aerosol data sample size
due to limited simultaneous radiometer uptime.

In addition to the dry deposition method, estimates of the
surface flux were obtained using the vertical gradient method
(Sect. 2.1.1). To ensure the steady-state conditions required
for measuring the vertical concentration profile,N(z,r), with
a single particle counter in vertical profiling mode, only one
segment of∼ 7 h (YDs 118.6 to 118.9) from all data collected
was used. Within this segment, wind speed held relatively
steady atU10 ≈ 11 m s−1. Concentration profiles were con-
structed based on data collected at three heights of 7.3, 6.0,
and 4.9 m. Three consecutive profiles were measured within
this time frame, with sampling times at each level ranging
from 30 min to 1 h. Samples at each height were averaged
to form one vertical profile for the entire 7 h segment. Addi-
tionally, only five radius bins (ranging from∼ 1 to∼ 3.5 µm)
were found to contain a sufficient number of samples suitable
for profile fitting. ResultingN(z,r) profiles (Fig. 5) were fit-
ted with best-matching logarithmic curves to obtainN∗(r)

in Eq. (4). Consequently, Eq. (5) was used to calculate sur-
face flux, which was then normalized by ln(r) to match the
format and dimensions of the dry deposition method output.
Note that the vertical deposition method provided only a few
points at one wind speed. Therefore these points serve for
reference and verification purposes but, unlike the output of
the dry deposition method, are not sufficient for full quanti-
tative parameterization.

5 Results

The main objective of this study is to investigate the re-
lationship between aerosol production flux and microwave
brightness temperature of the sea surface. In this section, we
present the analysis of the collected aerosol and radiometric
data (Fig. 1) in pursuit of this goal.

Figure 6 shows size-resolved sea spray source function
dF (r) / dln(r) (black circles) in terms ofrdry at four wind
speeds obtained with the dry deposition method (Sects. 2.1.1
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Figure 6  1199 

Parameterizations of SSA surface flux, obtained in this study (marked with symbols) and compared 1200 

to past studies (solid or dashed lines), given as functions of dry radius and wind speed. Positions of 1201 

curves with the same color and symbol are such that higher wind curves are always above lower 1202 

wind curves. 1203 
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Figure 6. Parameterizations of SSA surface flux, obtained in this
study (marked with symbols) and compared to past studies (solid
or dashed lines), given as functions of dry radius and wind speed.
Positions of curves with the same color and symbol are such that
higher wind curves are always above lower wind curves.

and 4.3). Surface fluxes obtained with the vertical gradi-
ent method from the available data (see Sect. 4.3) are also
shown in Fig. 6 (black asterisks). SSA fluxes obtained with
the SSSFs of Monahan et al. (1986) (blue solid lines) and
Smith et al. (1993) (red dashed lines) for the same wind
speeds as for the dry deposition method provide additional
comparisons.

The results of the vertical gradient method are approxi-
mately an order of magnitude higher than the results from
the dry deposition method and those obtained with the pa-
rameterization of Smith et al. (1993). This difference is dis-
cussed further in Sect. 6.2. The overall shape of the Smith et
al. (1993) parameterization agrees with the empirical fluxes
calculated using the dry deposition method. The compari-
son with the parameterization based on the whitecap method
(Monahan et al., 1983, 1986) shows agreement for larger
droplets (rdry >∼ 2 µm) and differences for smaller droplets,
with the parameterization predicting much higher fluxes.

Figure 7 evaluates the sensitivity of the total SSA sur-
face flux,FPMS (Sect. 4.3), to various input parameters, such
that the vertical axis values remain constant across all pan-
els, but the horizontal axis changes depending on the cho-
sen input parameter. In all four panels, individual data points
(red and black dots) were obtained from the time series with
4 s sampling rate (Sect. 4.3) by first smoothing the time se-
ries by a 20 min moving average and then decimating them
(for presentation clarity) by averaging over every 20 consec-
utive aerosol data points. Trends (solid black curves) are ob-
tained by linearly connecting bin averages, where six equally
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Figure 7  1205 

Total sea spray aerosol surface flux within the PMS instrument particle radius measurement range, 1206 

plotted against each of four variables: a) U10, b) δTBV, c) δTBH, and d) TB. Shown symbols 1207 

represent all individual data points, while specifically black symbols highlight the subset 1208 

corresponding to 118.5 – 119.2 YD time frame. Solid black line connects equally spaced bin 1209 

averages with shown 95% confidence intervals. Fitted thin blue curve in panel d) is given by Eq. 1210 

(14). 1211 
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Figure 7. Total sea spray aerosol surface flux within the PMS in-
strument particle radius measurement range, plotted against each of
four variables:(a) U10, (b) δTBV , (c) δTBH, and(d) 1TB. Shown
symbols represent all individual data points, while specifically black
symbols highlight the subset corresponding to the YD 118.5–119.2
time frame. Solid black line connects equally spaced bin averages
with shown 95 % confidence intervals. Fitted thin blue curve in
panel(d) is given by Eq. (14).

spaced bins are defined across the range of each input pa-
rameter. A 95 % confidence interval is shown for each bin-
averaged point, calculated as 2σN

−1/2
s , whereσ is the stan-

dard deviation of the points in the bin andNs is the number of
samples in the bin. Figure 7a shows the wind speed depen-
denceFPMS(U10), whereU10 was measured by the Vaisala
meteorological station at 10 m height. This dependence is
widely used to parameterize the surface flux but is known
to have wide scatter, which is confirmed in the present fig-
ure. It is clear that the bin-averagedFPMS (U10) relationship
alone is unable to completely capture the observed variabil-
ity of the surface flux. For example, a group of outlier points
is shown in black. This group corresponds to the data col-
lected in the YD 118.5–119.2 time frame, during which the
wind was rapidly growing (see Fig. 1a). During this time
the wave field is still developing and is not expected to pro-
duce as many whitecaps, and hence aerosol, as a wave field
in equilibrium with the corresponding wind speed, such as
YD > 119.5. This difference in red and black populations il-
lustrates the fundamental deficiency of the wind speed as a
controlling parameter for SSA production parameterization.
Below, we propose a different input parameter that does not
have this deficiency, is directly sensitive to the local produc-
tion of SSA, and is able to collapse black and red populations
on a single curve.

In a quest for a better correlation between SSA surface flux
and a local sea state parameter, we investigated relationships
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Figure 8  1213 

Surface flux parameterization with U10 replaced by TB. Symbols represent data points given in 1214 

Table 1 and corresponding fitted curves are given by Eq. (13). 1215 

 1216 

 1217 
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Figure 8.Surface flux parameterization withU10 replaced by1TB.
Symbols represent data points given in Table 1, and corresponding
fitted curves are given by Eq. (13).

betweenFPMS and δTBH, δTBV , and 1TB (see Sect. 4.2),
shown in Fig. 7b, c, and d, respectively. The most impor-
tant feature demonstrated by Fig. 7 is that the parameter
1TB appears to be capable of capturingFPMS variability
better than wind speed,U10. In fact, the relationship be-
tweenFPMS and1TB is characterized by less scatter, better
smoothness, and greater sensitivity than that betweenFPMS
and U10. The instantaneous values (red and black dots in
Fig. 7) are grouped closer together around their respective
bin averages inFPMS(1TB) than inFPMS(U10), resulting in
tighter 95 % confidence intervals. The trend of the relation-
shipFPMS(1TB) is more consistent and monotonic than that
of FPMS(U10) dependence (thick solid lines in Fig. 7a and d).
Finally the sensitivity ofFPMS to these different values may
be compared by calculating the range of variation (Fmax–
Fmin) in the bin-averaged values over the full dynamic range
for each parameter observed during the experiment. The re-
sulting quantification demonstrates a significant advantage
for 1TB:

(Fmax− Fmin)|U10
= 1771[s−1 m−2

],

(Fmax− Fmin)|δTBV = 1087[s−1 m−2
],

(Fmax− Fmin)|δTBH = 1883[s−1 m−2
],

(Fmax− Fmin)|1TB = 2706[s−1 m−2
]. (11)

In other words, SSA surface flux was found to be the least
sensitive toδTBV ; slightly more sensitive toδTBH than to
U10; and by far the most sensitive to1TB, specifically 1.53
times more so thanU10 over the observed range of condi-
tions.

Table 1.Similar to Fig. 8, the table shows sea spray aerosol surface
flux, dF /dln(rdry), as a function of dry radius,rdry, and brightness
temperature polarization difference,1TB. Brightness temperature
polarization difference has been binned to the nearest K. For ref-
erence,1TB = 3, 4, 5, 6 [K] corresponds toU10 = 5.4, 8.4, 12.0,
16.8 m s−1.

dF / dln(rdry) [m−2 s−1]

rdry [µm] 1TB = 3 K 1TB = 4 K 1TB = 5 K 1TB = 6 K

0.51 35 212 290 299
0.58 118 360 324 509
0.63 102 232 384 583
0.70 132 361 583 926
0.77 212 366 627 894
0.85 229 489 819 1334
0.93 284 479 870 1530
1.01 276 588 988 1481
1.13 434 629 968 1256
1.23 349 673 992 1251
1.36 339 717 1082 1480
1.50 363 678 1220 1853
1.66 473 797 1249 1700
1.81 447 723 1224 1893
1.99 427 696 1206 1716
2.17 420 886 1334 2217
2.43 518 878 1250 2163
2.65 412 712 1239 2024
2.95 466 707 1071 2002
3.22 427 597 1036 1752
3.51 306 463 762 1396
3.92 268 409 674 1173
4.24 161 272 490 1040
4.72 144 225 388 1022
5.14 72 142 300 803
5.73 66 97 185 597
6.29 49 69 127 365
6.85 13 36 119 148
7.58 4 21 62 91
8.30 0 6 19 54
9.14 0 3 8 47

10.00 0 4 5 0
11.09 0 0 0 0
12.14 0 0 0 0

For these reasons, brightness temperature polarization dif-
ference,1TB, emerges as a sensitive and robust input pa-
rameter for estimating SSA surface flux, superior to the wind
speed,U10, or any other parameter tested here. This result
is the key finding of this study. The central practical ques-
tion then is the feasibility of replacingU10 with 1TB so that
the SSA surface flux is parameterized as dF (r, 1TB) / dln(r).
Figure 8 and Table 1 demonstrate the utility of parameteriz-
ing SSA production flux in terms of brightness temperature
polarization difference, as opposed to the conventional pa-
rameterizations shown in Fig. 6.
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Figure 9  1221 

Brightness temperature comparison between FLIP observations and H12 model output. Panel (a) 1222 

compares horizontal and vertical polarizations separately and panel (b) compares their difference. 1223 

Both panels show total values (foam + roughness), as well as the foam only component. Error bars 1224 

show one standard deviation for data within each bin. 1225 
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Figure 9. Brightness temperature comparison betweenFLIP obser-
vations and H12 model output. Panel(a) compares horizontal and
vertical polarizations separately, and panel(b) compares their dif-
ference. Both panels show total values (foam+ roughness), as well
as the foam-only component. Error bars show 1 standard deviation
for data within each bin.

6 Discussion

The discussion in this section aims to understand the physi-
cal meaning of the parameter1TB in relation to aerosol pro-
duction, make our case for using brightness temperature as
an input variable for SSA surface flux parameterization, and
lay initial groundwork for potential satellite remote sensing
applications. Using the H12 model, we explore and inter-
pret the physical meaning of the parameter1TB and pro-
pose an explanation for its relevance to the SSA surface flux
(Sect. 6.1). We use the background information (Sect. 2) and
our results (Sect. 5) to discuss existing uncertainties that ul-
timately motivate us to seek new alternative parameteriza-
tions (Sect. 6.2). We propose an empirical approach based on
1TB, which reduces some of these uncertainties (Sect. 6.3).
A discussion of the applicability of the proposed empirical
approach for direct satellite remote sensing of SSA produc-
tion flux follows (Sect. 6.4).

6.1 Physical interpretation of1TB parameter

The H12 model (Sect. 2.2.4) can be used to interpret the pa-
rameters derived from the brightness temperature. Of specific
interest are the wind-induced parametersδTBH and δTBV ,
which contain contributions from both roughness and foam
on the water surface; i.e.,δTBP = TBrP+TBfP (Eqs. 8b and 9).
These are shown in Fig. 9a as functions of wind speed,U10.
The model calculates the contributions of surface roughness
and foam separately. The modeled contribution of the foam
term is also shown in Fig. 9a. The differenceδTBP− TBfP =

TBrP can be considered the contribution arising only from
surface roughness (not plotted to avoid cluttering).

The curves in Fig. 9a have a number of features significant
for further discussion. First, comparison ofδTBH andδTBV
(solid and dash-dotted curves) exhibits the expected behav-

ior that radiometric data atH polarization are more sensi-
tive to sea state changes than those atV polarization, a result
consistent with that seen in Fig. 7c and b (Sect. 5). Second,
the presence of foam (dashed and dotted curves) becomes
noticeable for wind speed above∼ 7 m s−1 (also expected),
and absolute foam contributions atH andV polarizations are
of similar magnitude. The H12 model suggests that relative
contributions of roughness and foam atV polarization are of
comparable magnitude (as seen atU10 = 15 m s−1), whereas
theH polarization signature is dominated by surface rough-
ness.

In addition to modeled curves, Fig. 9a showsδTBP ob-
tained from measured values via Eq. (9) (squares and trian-
gles). These are the same data as shown in Fig. 7b and c,
only bin-averaged by wind speed,U10. Ideally, the model
output (solid and dash-dotted curves) is expected to match
observations (the symbols); however it does not, mostly due
to an apparent∼ 2–3 K constant offset in both polarizations.
Such “DC offset” is a common problem in the processing
of field measurements (Hollinger, 1971; Swift, 1974; Camps
et al., 2004) and can be caused by a number of reasons re-
lated to choice of radiometer calibration procedure, choice
of model for the flat sea surface termδTB0P, and reflection of
unknown (cloud-dependent) atmospheric radiation from the
water surface. Regardless of origin, the offset approximately
cancels out when the difference between the two polariza-
tions is taken (Eq. 10). As a result, there is a near-perfect
match between the model output and parameter1TB cal-
culated from field measurements (Fig. 9b). Note that it is
possible that the same noise-cancelling property is partially
responsible for making1TB a better and more robust pa-
rameter thanδTBH for parameterizing SSA surface flux, as
demonstrated in Fig. 7.

The separation of modeled brightness temperatures into
roughness and foam components in the H12 model allows
for some physical interpretation of the1TB parameter. Be-
cause the foam contributions forH andV polarizations are
similar (Fig. 9a), they mostly cancel out within1TB and be-
come a negligibly small part of the total signal (Fig. 9b). The
main contribution to1TB in Fig. 9b is, therefore, from the
surface roughness. This suggests that a parameter dependent
on roughness and independent of foam serves as the best in-
dicator of aerosol production. Such a result has intriguing
implications for the interpretation of the SSA production.

Usually the SSA production is associated with the white-
cap fraction on the ocean surface, which is the main premise
of the whitecap method. Unlike bursting bubbles within
whitecaps, surface roughness does not directly cause aerosol
production, making the suggested interpretation counterin-
tuitive. While this experiment was not designed to resolve
this question definitively, we can hypothesize an underly-
ing physical reason for the apparently dominant importance
of the surface roughness by considering the active and pas-
sive phases of breaking waves separately. The wave-breaking
process is known to significantly enhance surface roughness
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near steep and actively breaking wave crests (Cox, 1958;
Longuet-Higgins, 1963, 1992), which contributes to the ob-
served wind speed sensitivity of microwave scattering and
emission. This allows the interpretation of parameters which
are primarily sensitive to roughness, i.e.,δTBH (in Fig. 9a)
and1TB (in Fig. 9b), as measures of the surface area and in-
tensity of the active phases of breaking waves. Surface foam,
on the other hand, exists not only in active but also in the
passive phases of wave breaking and covers much larger ar-
eas (Monahan, 1990). Therefore, sinceδTBV has a compara-
ble level of sensitivity to roughness as to foam (as shown in
Fig. 9a), it can be interpreted as responding to both the active
and passive phases of breaking waves.

It is surmised that parameters related purely to the ac-
tive phase (i.e.,δTBH and1TB) serve as good indicators of
aerosol production for two reasons. First, the intensity of the
active phase of wave breaking might be a better indicator of
the amount of bubbles produced that burst later during the
passive phase. Second, the amount of aerosol produced dur-
ing the active phase might be larger than during the passive
phase. This could happen within a smaller surface area of the
active phase due to much shorter bubble lifetime between
generation and burst, and also due to a more likely advec-
tion of droplets by the airflow upwards from the top of wave
crests. Unfortunately, the existing literature does not quan-
tify the aerosol production rate difference between active and
passive phases of breaking waves, thus motivating further re-
search in this area. Meanwhile, we proceed using the1TB
parameter under the assumption of its direct relevance to the
sea surface processes responsible for SSA production.

6.2 Existing measurement and parameterization
uncertainties

A 1-order-of-magnitude difference between size-resolved
SSA fluxes measured with the dry deposition and the verti-
cal gradient methods (Fig. 6) shows how much the choice
of measuring technique or methodology can influence the
results. A similar difference was observed by Petelski and
Piskozub (2006) between their SSA surface flux estimates
based on the vertical gradient method and the Smith et
al. (1993) parameterization. This difference observed in the
present experiment and that of Petelski and Piskozub sug-
gests that the reasons for these differences are more funda-
mental than a mere measurement error or a difference in data
filtering and processing techniques.

The difference between the results of the dry deposition
and the vertical gradient methods is, in fact, a good example
of the large uncertainties that occur by starting with a differ-
ent set of assumptions and simplifications for the boundary
layer physics when estimating the surface flux (Sect. 2.1.1).
As was discussed earlier, the dry deposition method could
underestimate the SSA flux, particularly for smaller radii,
while the vertical gradient method likely overestimates the
flux because of the assumption of passive tracer-like aerosol

behavior. The similarity theory expects a constant flux across
the vertical profile, but the effect of the gravitational droplet
settling is such that the flux decays with height and becomes
significantly smaller at 10 m above MWL, particularly for
particles with larger radii.

Further, the uncertainties inherent in the flux estimation
are compounded when these data are used to develop pa-
rameterizations for predicting SSA surface flux. Usually,
physics-based, as opposed to empirical, approaches are em-
ployed for such SSA surface flux parameterizations, because
the physical approaches allow processes controlling the SSA
production to be recognized and modeled explicitly. How-
ever, physical approaches come with their own sets of as-
sumptions and simplifications (Sect. 2.1.2) which are diffi-
cult to verify. For example, the validity of the assumption of
variable separation (see Sect. 2.1.2) has not been verified em-
pirically; however, it is expected not to hold when one care-
fully examines the results of Smith et al. (1993) or Petelski
and Piskozub (2006), both giving some evidence of a more
complex shape of the empirical function dF(r,U10) / dr. In
addition to the assumption of the shape–magnitude separa-
tion, the whitecap method – the most direct and widely used
method of observing and parameterizing the SSA production
– relies on the assumptions of (i) proportionality betweenW

and SSA production and (ii) similarity between aerosol pro-
duction by laboratory and by open-ocean whitecaps, both of
which add an unknown uncertainty. Finally, a common as-
sumption that the magnitude of total SSA production can be
sufficiently controlled by the local wind speed,U10, is of-
ten made for convenience and is not expected or observed to
hold.

Difficulties outlined above motivate continued search for
alternative approaches that would eliminate or reduce ex-
isting uncertainties. The new parameterization method pro-
posed below is empirical rather than physical in nature. Its
primary advantage is in the choice of inherently more ap-
propriate input parameters, which leads to the reduction of
uncertainties caused by weak physical assumptions.

6.3 Empirical parameterization of sea spray aerosol
flux

The brightness temperature and derived combinations of
brightness temperatures at different polarizations are sensi-
tive to the sea state under various conditions and have been
successfully used to obtain a number of basic geophysical pa-
rameters (Sect. 2.2.1). Figure 7d and Eq. (11) provide strong
quantitative evidence that the polarization brightness temper-
ature difference,1TB, is a good predictor of the SSA flux. It
can be used, therefore, in place of a physical forcing variable
to parameterize SSA production.

Such parameterization can be formulated in a number of
ways. In the most general form, a continuous parameteriza-
tion function,F

(
rdry,1TB

)
, should be constructed, similar

to F
(
rdry,U10

)
shown in Fig. 6. Building such a function
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with the available limited sample size requires some simpli-
fications, such as the separation-of-variables assumption, i.e.,

dF/dln(rdry) = f (1TB) · g(rdry), (12)

wheref (·) is a function of sea state represented by the1TB
parameter, andg(·) is a radius-dependent shape function, in-
dependent of the sea state. After an arbitrary pick of an ap-
propriately shaped analytical function and optimization of its
empirical coefficients, we arrive at

dF/dln(rdry) = A · 1T n
B · rk

dryexp(−rdry/r0), (13)

whereA = 65 [K−n µm−k m−2 s−1], n = 2.3, k = 2.5, and
r0 = 0.85 [µm] are empirical constants with dimensions cho-
sen such that the left-hand side of Eq. (13) has a [m−2 s−1]
dimension, whilerdry maintains the [µm] dimension. The re-
sult of the Eq. (13) empirical fit is compared to available data
points in Fig. 8.

The empirical constants above were obtained in two
steps. First, the best match was found between the radius-
dependent part of the analytical function and the surface flux
curve averaged over all1TB. Next, each of the four data
curves in Fig. 8 (and Table 1) was averaged over all radii
to find the optimal dependence on1TB. Note that for the
above calculations, data presented in Table 1 were truncated
on both ends. The first two rows in Table 1 were removed due
to concerns that the PMS instrument underestimates particle
concentrations in this range (Reid et al., 2006). The last five
rows were removed because the small number of droplets
registered in this range was insufficient to form a statisti-
cally significant sample. Therefore, the parameterization in
Eq. (13) and all data and fitted curves presented in Fig. 8 are
based on data in the range ofrdry = (0.63 to 7.58) µm.

The parameterization given in Eq. (13) has its limita-
tions and is intended as a first step towards constructing the
F

(
rdry,1TB

)
function, rather than a final product. First, the

amount of simultaneous and collocated data where both SSA
andTB measurements are available is limited, particularly for
larger droplets. Second, the separation-of-variables assump-
tion (Eq. 12) is made mostly for convenience and to com-
pensate for the small data sample size, and it does not have
strong physical reasoning behind it. Contrarily, as weather
conditions become rougher, large-droplet production is ex-
pected to grow faster. Some signs of that effect can be seen
in Fig. 8 (i.e., the sharp drop-off of large-droplet production
in the calmest case with1TB = 3 K). However, the separa-
tion of variables forces a fixed radius-dependent shape and,
therefore, does not allow the capture of this effect. In future
studies, as more data become available to complement the
data in Table 1, it will become possible to construct a more
complex and realisticF

(
rdry,1TB

)
function.

If an aerosol modeling application does not require a size-
resolved source function, a more robust bulk parameteriza-
tion can be obtained using the totalFPMS(1TB) dependence.

By fitting the best-matching curve through the data presented
in Fig. 7d (thin solid line), we find the following expression:

FPMS = a (1TB)m , (14)

where a = 29 [◦K−m m−2 s−1] and m = 2.6 are empirical
constants (Eq. 14 is shown in Fig. 7d). When using this result,
it is important to keep in mind that it is sensitive to the spe-
cific radius detection range of the PMS instrument (Sects. 3.2
and 4.3). Unlike the derivation of Eq. (13), in this case the
entire range ofrdry shown in Table 1 was used without trun-
cation. Note thatn 6= m because calculations of the best fit
to Eq. (14) were done for a sum of droplets measured across
the measured radius range, effectively giving preference to
droplets with more commonly occurring radii, whereas in
calculations for Eq. (13) all radii shown in Fig. 8 were given
equal weight.

Under the assumption of variable separation (Eq. 12) and
provided appropriate normalizations are applied, one can
combine Eq. (14) or the1TB-dependent term of Eq. (13)
with a radius-dependent shape function obtained from a dif-
ferent source (e.g., de Leeuw et al., 2011). This modifica-
tion can potentially remove a concern (see Reid et al., 2006)
regarding correct estimates of particle radii registered by
the PMS forward-scattering spectrometer used in this study.
Moreover, the benefits of replacing wind speed,U10, with
the1TB parameter, which essentially is the central finding of
this paper, can be exploited within SSA production parame-
terizations obtained completely independently of this study.
This option may be particularly attractive in cases where
a wind-speed-dependent parameterization is based on field
measurements of SSA surface flux using a different method-
ology, which may be superior to the dry deposition method
employed in this study. In this case, instead of using Eqs. (13)
or (14), it might be beneficial to simply replaceU10 with 1TB
using the following relationship:

1TB = −0.0071· U2
10+ 0.4253· U10+ 0.6692, (15)

which fits the modeled1TB(U10) relationship shown in
Fig. 9b. Note that, given the excellent agreement between
the H12 model and observations for this relationship, a wider
range of model output was used to form the polynomial given
in Eq. (15), which extends wind speed applicability limits to
U10 = (2 to 22) m s−1. An interesting sidenote at this point
is that Eqs. (14) and (15) suggest aFPMS ∼ U1.7

10 proportion-
ality in the studied range, which is somewhat in agreement
with radiometrically observed whitecap fraction power laws
(Salisbury et al., 2013). The next step would be to use the re-
lationship given in Eq. (15) by applying it toU10-dependent
parameterization given, for example, by Smith et al. (1993).
Then their Eq. (7) becomes

Log(A1) = 0.02731T 2
B + 0.03301TB + 2.4768,

Log(A1) = 0.00501T 2
B + 0.54631TB − 0.8470. (16)
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Keeping the rest of their parameterization untouched, one can
arrive at the sea spray production parameterization free of
wind speed dependence. This approach effectively leaves the
parameterization unchanged on average; however it is likely
to improve the SSA production estimate accuracy in situa-
tions where1TB deviates from its mean value for a given
wind speed, e.g., such as shown with black points in Fig. 7a.

6.4 Towards satellite remote sensing of sea spray
aerosol production

The derived empirical relationship between the surface flux
and brightness temperature polarization difference has use-
ful implications for remote sensing of SSA production. First,
1TB is a variable that well characterizes the sea state when
both surface roughness and whitecaps from breaking waves
are present. It could be useful as a forcing variable for a wide
range of conditions in the ocean as suggested by its useful-
ness for parameterizing SSA flux in terms of more relevant
input variables (Sect. 2.1.3). Next, the availability of a re-
liable empirical relationshipF(1TB) can provide reference
estimates of SSA production when developing more physi-
cally based parameterizations. Finally, a capability to obtain
SSA flux from available radiometric satellite observations
will provide observations of SSA production on a global
scale.

The primary variable needed for the proposed empirical
parameterization is1TB, defined by Eq. (10). This variable
is readily available from existing or future dual-polarimetric
microwave satellite sensors – e.g., WindSat, SSMIS, AMSR-
2, and GMI – which in combination provide sufficient spa-
tial resolution and revisit time (i.e.,∼ 4 revisits per day with
∼ 30 km pixel size) on the global scale to match grid require-
ments of global aerosol models, such as the Navy Aerosol
Analysis and Prediction System. The1TB parameter is ob-
tained at the top of the atmosphere of the ocean surface, thus
atmospheric contribution has to be removed from the mea-
sured TOA signal before it can be used. This contribution
is primarily a function of precipitable water vapor and cloud
liquid water within the atmospheric column, which are calcu-
lated, for example, as a part of WindSat retrieval algorithm.

Various sensors use different incidence angles, and Fig. 10
shows modeled1TB for an incidence angle,θ , of 45◦ (this
study) and at otherθ more typical of satellite measurements,
e.g., 50, 53, and 55◦. Within the studied range of parameters,
conversions can be made using simple linear fits to the rela-
tionships between1TB45, 1TB50, 1TB53, and1TB55, shown
in Fig. 10b:

1TB50 = 1.40· 1TB45+ 0.12, (17a)

1TB53 = 1.58· 1TB45+ 0.64, (17b)

1TB55 = 1.96· 1TB45+ 0.36. (17c)

As incidence angle increases over this range, the sensitiv-
ity of the 1TBθ parameter increases (Fig. 10a), and nearly
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Figure 10.Expected values of the brightness temperature polariza-
tion difference,1TB, at various incidence angles,θ , based on H12
model. Panel(a) gives dependence of1TB on wind speed,U10, at
four different angles,θ ; panel(b) gives corresponding dependencies
on1TB at θ = 45◦.

doubles between 45 and 55◦ (see Eq. 17c), thus resulting in
a potential reduction in the uncertainty of the surface flux
estimate. For example, using the slope of the fit given in
Eq. (14), which is based on Fig. 7d, if the retrieved value of
1TB45 = 5 K with a 0.5 K uncertainty, that would translate
into ∼ 25 % uncertainty in the estimate of the surface flux,
FPMS. However, if the brightness temperatures are measured
at an incidence angle ofθ = 55◦, the same 0.5 K uncertainty
in 1TB55 would result in an uncertainty of∼ 12.8 %, i.e., re-
ducing the uncertainty of the surface flux estimate by half.
Therefore, provided the retrieval uncertainty remains con-
stant, the model suggests that it is beneficial to retrieve the
1TB parameter at higher incidence angles.

It is likely that 1TB measured at microwave frequencies
other than the 10.7 GHz (used throughout this study) can be
useful for retrieving1TB at the ocean surface and, ultimately,
for the SSA production estimates. Although the H12 model
allows recalculation of1TB at other frequencies, since our
results were only validated atf = 10.7 GHz, conversion to
other frequencies was deemed premature within this paper.

Finally, present results do not take into consideration the
effect of azimuthal angle on1TB (see Appendix for details).
Therefore, retrieval of the wind vector from WindSat or an
atmospheric circulation model can allow for additional cor-
rection based on azimuthal angle parameterization leading to
further reduction in uncertainty.

7 Conclusions

This paper describes an experiment during which aerosol
concentrations with radii ranging from 0.25 to 23.5 µm and
the surface brightness temperature, 10.7 GHz, were mea-
sured among other parameters. To the best of our knowl-
edge, this is the first time such collocated and simultaneous
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measurements have been collected in the open ocean. An em-
pirical relationship between parameters derived from these
two time series has been developed and presented. This rela-
tionship (Figs. 7, 8; Eqs. 13, 14) suggests that a brightness-
temperature-derived parameter,1TB, may be a better param-
eter thanU10 for the empirical parameterization of the rate
of aerosol production at the ocean surface. Figure 7 demon-
strates the significant improvement over the traditionally
used wind speed,U10. Section 6 provides a discussion of pos-
sible underlying physical bases for this outcome and points
towards practical applications, such as the retrieval of aerosol
production from satellite radiometric data. Some of the main
uncertainties and shortcomings that are out of the scope of
the current work but which must be addressed in any tran-
sition of this technique to operational use are (i) imperfec-
tions of aerosol production estimate methods (see Sect. 6.2),
(ii) limited sample size used to construct the empirical rela-
tionships (Eqs. 13 and 14) in this study, and (iii) the neces-
sity to accurately remove the atmospheric component of1TB
measured by a satellite.
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Appendix A

In Sect. 2.2.4, we introduced the H12 model for the ocean
surface emissivity,eP, and corresponding brightness temper-
ature,TBP, developed by Hwang (2012). We use the H12
model in Sect. 6.1 to interpret the results in Sect. 5. Because
the H12 approach given with Eq. (8b) differs somewhat from
the general concept ofTBP modeling given with Eq. (7), we
provide additional clarifications in this Appendix.

The contribution of each termTB0P, TBrP, and TBfP in
Eq. (7) to the total signal,TBP, is explicitly weighted by the
whitecap fraction,W . In H12, termsδTBrP andδTBfP repre-
sent increases toTB0P, incorporating weighting factors im-
plicitly in the models used to obtainδerP andδefP. The mod-
eling of foam emissivity in H12 demonstrates how this im-
plicit weighting is made.

The polarized foam emissivity,efP (P = H or V polariza-
tion), is computed in the H12 model with the Fresnel for-
mula using the dielectric constant of sea foam,εf . The H12
model uses the quadratic mixing rule following the analysis
of Anguelova (2008),

εf =

[
fa+ (1− fa)ε

1/2
]2

, (A1)

wherefa is the void fraction of sea foam (defined as the con-
tent of air in a unit volume of air-water mixture) andε is the
dielectric constant of seawater. The H12 model approximates
fa with whitecap fraction,W , while W is estimated with the
parameterization developed by Callaghan et al. (2008). The
use ofW as a proxy forfa in H12 is the assumption that
providesδefP = W · efP directly as discussed below.

Previous models of sea foam emissivity (Droppleman,
1970; Rozenkranz and Staelin, 1972) and new studies of
foam dielectric and radiative properties (Anguelova, 2008;
Anguelova and Gaiser, 2012, 2013) use high void fraction
values, usuallyfa > 90 %. Such a high void fraction provides
the high, black-body-like emissivity for foam-covered sur-
faces that has been observed in experiments (Rose et al.,
2002; Raizer and Sharkov, 1982). However, even for high
winds,W is no more than 6–10 % (Callaghan et al., 2008).
Therefore, when the high foam emissivity,ef , is weighted
with a low value forW to obtain the foam emissivity con-
tribution with the productW · ef and brightness temperature,
TBfP, due to foam in open ocean (Eq. 7), the net result is a
relatively small contribution from foam (Anguelova, 2008,
Fig. 12).

The most rigorous approach to evaluateTBfP is to use
Eq. (7), i.e., obtain foam emissivity,ef, from the void frac-
tion, fa, and then weight it with the whitecap fraction,W .
However, due to the lack of detailed information about the
vertical distribution of void fraction, a simplified approach
is used in H12. Because the penetration depth of 10.7 GHz
frequency is small compared to the thickness of a whitecap,
the estimate of ocean surface emissivity can be reduced to
a quasi-2-D (horizontal) problem. These considerations lead
to an assumption that over a large footprint (i.e., many white-
caps) the average near-surface void fraction can be approxi-
mated with the whitecap fraction, i.e.,fa = W . This simpli-
fication is unlikely to introduce significant errors to the foam
emissivity estimate; however, strictly speaking it remains to
be subject to further validations.

As shown in Eq. (8), another parameter contributing to the
brightness temperature variation is the azimuth angle,φ, i.e.,
the angle between the viewing direction and wind vector pro-
jections onto the plane of the ocean surface. At zenith angle
θ = 45◦ and wind speedU10 = 10 m s−1, the azimuthal vari-
ation of the brightness temperature is about 1 to 2 K for L
and K bands (e.g., Yueh et al., 1995, 2010). In the SPM/SSA
model, the emissivity change can be expressed in azimuthal
harmonic terms (Yueh et al., 1994b). To the second-order
small-slope approximation, only the even terms up to the sec-
ond harmonics can be resolved (Johnson and Zhang, 1999);
that is,

δeBP = δe
(0)
BP + δe

(2)
BPcos(2ϕ), (A2)

where harmonicsδe(2n)
BP are determined using the dimen-

sionless surface roughness spectrum. Equation (A2) is a rel-
atively coarse representation of the directional distribution
function. Note that model calculations presented in this pa-
per do not take the azimuthal angle effect into consideration
and, therefore, are considered integrated over this parameter.
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