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Abstract. A new free-tropospheric humidity (FTH) data
record is presented. It is based on observations from the
Meteosat Visible and Infrared Imager (MVIRI) onboard
Meteosat-2–Meteosat-5, as well as Meteosat-7, and the Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI) on-
board Meteosat-8 and Meteosat-9 at the water absorption
band near 6.3 µm. The data set is available under clear-sky
and low-level cloud conditions. With the extension to SE-
VIRI observations, the data record covers the period 1983–
2009 with a spatial resolution of 0.625◦

× 0.625◦ and a tem-
poral resolution of 3 h.

The FTH is the mean relative humidity (RH) in a broad
layer in the free troposphere. The relation between the ob-
served brightness temperature (BT) and the FTH is well es-
tablished. Previous retrievals are refined by taking into ac-
count the relative humidity Jacobians in the training process
of the statistical retrieval. The temporal coverage is extended
into the SEVIRI period, the homogenization of the BT record
is improved, and the full archive is reprocessed using updated
regression coefficients.

The FTH estimated from the Meteosat observations is
compared to the FTH computed from the RH profiles of the
Analyzed RadioSoundings Archive (ARSA). An average rel-
ative bias of−3.2 % and a relative root-mean-square differ-
ence (RMSD) of 16.8 % are observed. This relative RMSD
agrees with the outcome of an analysis of the total uncer-
tainty of the FTH product. The decadal stability of the FTH
data record is 0.5± 0.45 % per decade.

As exemplary applications, the interannual standard devi-
ation, the differences on decadal scales, and the linear trend
in the FTH data record and in the frequency of occurrence of
FTH < 10 % (FTHp10) are analyzed per season. Interannual
standard deviation maxima and maxima in absolute decadal
differences are featured in gradient areas between dry and
wet regions, as well as in areas where FTH reaches min-
ima and FTHp10 reaches maxima. An analysis of the FTH
linear trends and of the associated uncertainty estimates is
achieved to identify possible problems with the data record.
Positive trends in FTHp10 are featured in gradient areas be-
tween wet and dry regions, in regions where the FTH is
minimum, in regions where FTHp10 is maximum, and in
regions where differences between FTHp10 averaged over
the 2000s and 1990s are negative. However, these positive
trends in FTHp10 are associated with maximum standard de-
viation and are thus hardly significant. This analysis and in-
tercomparisons with other humidity data records are part of
the Global Energy and Water Cycle Experiment (GEWEX)
Water Vapor Assessment (G-VAP).

1 Introduction

The importance of relative humidity (RH) in the free tropo-
sphere originates from the nonlinear interaction between RH
and longwave radiation. In order to realistically assess the
impact of RH in the free troposphere on longwave radiation,
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the full probability distribution of RH needs to be considered.
However, the outgoing longwave radiation (OLR) is much
more sensitive to perturbations at the dry end than at the
moist end of the distribution (Spencer and Braswell, 1997;
Roca et al., 2011). The magnitude of the differential impact
of a given change at the dry end of the RH distribution com-
pared to at the moist end of it can exceed a factor of 3 (Roca
et al., 2011).

Most of the knowledge on the impact of climate change on
RH in the free troposphere arises from theoretical and global
average considerations (Pierrehumbert et al., 2007; Sher-
wood et al., 2010b; Shi and Bates, 2011; Roca et al., 2011,
and references therein). On a global scale, the assumption of
a constant upper-tropospheric RH under climate change con-
ditions is supported by the work of Soden et al. (2002) and
Soden and Held (2006), among others. However, the water
vapor pressure is expected to be below equilibrium in most of
the atmosphere. This is true in particular for the dry regions
in the free troposphere. On the zonal mean scale, a common
pattern emerges for a doubling of CO2: subtropical dry re-
gions shift poleward (Sherwood et al., 2010a), dry minima
become drier (Hurley and Galewsky, 2010) and the width of
these dry regions increases. Such impacts on the frequency
of occurrence of the dry end of the FTH range (below 10 %,
noted FTHp10 in the following) have been simulated with
the Institut Pierre Simon Laplace climate model based on the
analysis of the FTH distribution under a climate change sce-
nario (Roca et al., 2011). On a regional scale, it is challenging
to assess whether any of these large-scale features are repro-
duced and what is the expected change in their pattern if they
are not reproduced. Sherwood et al. (2010a) reviewed the
processes that determine the RH distribution in the intertrop-
ical region. A strong connection between large-scale dynam-
ics and water vapor was found, and the role of eddies (e.g.,
mesoscale convection, circulation transients) in establishing
these links highlighted the broad range of scales implied in
the humidity distribution. The authors further indicated the
need for the available theory to be better constrained.

These modifications of the spatial distribution of FTH cor-
respond to the expected climate responses either at equilib-
rium after a CO2 doubling or at the end of the 21st century. It
is unclear how these modifications have been at play over the
last 25–30 years and whether they can already be identified
in the observational record of the last 25–30 years. Satellites
observing the humidity in the free troposphere, and in partic-
ular geostationary platforms, appear to be very well suited to
contribute to constraining the available theory by providing
observations at kilometer- and hour-scale resolutions over a
30-year-long period. One of the aims of the present paper is
to provide a well-qualified data record to explore such possi-
bility at the temporal and spatial scales of the Meteosat ob-
servations.

Infrared imagers and sounders whose channels are cen-
tered at the water vapor absorption band around 6.3 µm as
well as microwave sounders whose channels are centered at

183.31 GHz allow for the sounding of the free troposphere.
Soden and Bretherton (1993) developed the commonly ap-
plied relationship between observed brightness temperature
(BT) and free-tropospheric humidity (FTH) for infrared ob-
servations of cloud-free scenes. This proportionality is rela-
tive to a vertical average of the RH in the free troposphere
and relies on the assumptions of random strong line the-
ory and constant lapse rate. The regression coefficients de-
pend on the averaging kernel and the performance of the
regression can be improved by considering the so-called
scaled reference pressure. Roca et al. (2003) statistically de-
termined the regression coefficients and used reanalyses to
determine the scaled reference pressure, whereas Schmetz
et al. (1995) used reanalyses to determine regression coef-
ficients on a pixel basis. Both retrievals were originally de-
signed for Meteorological Satellite (Meteosat) Visible and
Infrared Imager (MVIRI) observations. Buehler and John
(2005) adapted the Soden and Bretherton (1996) method
to intercalibrated Advanced Microwave Sounding Unit-B
(AMSU-B) observations (John et al., 2013). The AMSU-
B-based FTH data record (Buehler et al., 2008) is affected
by orbital drift, and it contains valid observations under all-
sky conditions except when intense scattering occurs, such
as during precipitation events. The method described in So-
den and Bretherton (1996) has recently been applied to three
of the six channels of the Sondeur Atmosphérique du Pro-
fil d’Humidité Intertropicale par Radiometrie onboard the
Megha-Tropiques satellite (Brogniez et al., 2014) launched
in October 2011. Shi and Bates (2011) spent significant effort
on recalibrating and intercalibrating the water vapor obser-
vations at 6.7 µm of the High-resolution Infrared Radiation
Sounder (HIRS). A subsequent application of the Soden and
Bretherton (1996) method yields a FTH record that is longer
than 30 years (Shi et al., 2013). The time series is affected
by orbital drift, and, as is the case for the MVIRI observa-
tions, the FTH is retrieved under clear-sky and low-level-
cloud conditions. Jackson and Bates (2001) assessed FTH al-
gorithms that are applicable to HIRS observations at 6.7 µm.
They concluded that the averaging kernel has a significant
effect on the FTH retrieval and that the results are improved
in the tropics when considering the scaled reference pressure
in the retrieval (see Soden and Bretherton, 1996).

Brogniez et al. (2009) assessed the quality of the MVIRI-
based FTH data record for the period 1984–2005. It is a pre-
cursor of the FTH data record presented here, and it was com-
pared to FTH values which have been computed from RH
profiles of a previous version of the Analyzed RadioSound-
ings Archive (ARSA). The mean difference between the
MVIRI FTH and the ARSA FTH over the period 1984–2005
is −1.2 % RH, and the standard deviation of the difference is
1.7 % RH, indicating the stability of the MVIRI archive over
this period. The value of the FTH product has been demon-
strated in, for example, Brogniez et al. (2005), who compared
the FTH product against 14 climate models in the framework
of the Atmospheric Model Intercomparison Project phase 2.
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Buehler and John (2005) estimated the theoretical uncer-
tainty of the AMSU-B-based FTH retrieval scheme. They
found a bias of 2 % RH for low values of FTH and 7 % RH
for high values of FTH. John et al. (2011) further found a
systematic clear-sky bias of 9 % RH by sampling the all-
sky AMSU-B product with the HIRS clear-sky mask and by
comparing the clear-sky and all-sky AMSU-B FTH products.
An exemplary application of the AMSU-B FTH data record
is given in Moradi et al. (2010). They found that the spa-
tial distribution of radiosonde types coincides with the dif-
ference between AMSU-B data and data from the Integrated
Global Radiosonde Archive (Durre et al., 2006). The HIRS
data record has been evaluated in radiance space (see Shi and
Bates, 2011) and the correlation of the BT with various cli-
mate indices has been analyzed (Shi et al., 2013), highlight-
ing the valuable contribution of this data record to the ana-
lysis of global teleconnections.

The generation of FTH data records from Meteosat,
AMSU-B and HIRS was part of a pilot project within
the World Meteorological Organization’s (WMO) Sustained,
Coordinated Processing of Environmental Satellite Data for
Climate Monitoring (SCOPE-CM) network, which aims to
establish a network of facilities ensuring continuous and sus-
tained provision of high-quality satellite products. Within
new SCOPE-CM projects, the Meteosat, AMSU-B and HIRS
data records will be homogenized in format, metadata and
documentation as much as possible, and the observations
from all available geostationary imagers will be recalibrated
and intercalibrated. The impact of this Fundamental Climate
Data Record (FCDR) on the Meteosat-based FTH product
will also be evaluated within the SCOPE-CM projects.

The Global Energy and Water Cycle Experiment
(GEWEX) Data and Assessments Panel has initiated the
GEWEX Water Vapor Assessment (G-VAP). One element of
G-VAP is the intercomparison of available long-term FTH
data records and the analysis and the comparison of tempo-
ral changes in these data records. The present work supports
the latter G-VAP activity by setting up the technical frame-
work and by starting the analysis with the Meteosat-based
FTH data record.

The objectives of this paper are (1) to describe the data
and the algorithms used to produce the extended long-term
stable FTH data record from the Meteosat observations, (2)
to characterize the quality and the stability of this observa-
tional record by comparing it with independent data, and (3)
to confront the variability of FTH on various temporal and
spatial scales with the linear trends and their significance.
The input data and the homogenization of Meteosat obser-
vations are introduced in Sects. 2 and 3, respectively. The
retrieval scheme, an overview of the technical specifications,
and exemplary figures on the characteristics of the FTH data
record are presented in the next sections. The theoretically
expected uncertainties are discussed in Sect. 5, and the evalu-
ation results are shown in Sect. 6. The applications presented
in Sect. 7 feature an analysis of the variability of the FTH and

FTHp10, of the FTHp10 differences on decadal scales, and
of the linear trend in FTH and FTHp10. Finally, in Sect. 8,
conclusions are drawn.

A series of statistical quantities and a list of abbreviations
are given in the Appendices.

2 Input data

This section briefly describes the instruments and the radi-
ance input data records used to retrieve the FTH.

MVIRI is a three-channel imaging radiometer onboard the
Meteosat-2–7 platforms, which belong to the first genera-
tion of Meteosat satellites. It continuously observed the Earth
from a geostationary orbit at 0◦ latitude/0◦ longitude every
30 min between 1982 and 2006. The spatial sampling dis-
tance of the observations is approximately 5 km at nadir and
it increases with distance from the sub-satellite point.

The Spinning Enhanced Visible and Infrared Imager (SE-
VIRI) performs observations at 12 channels that cover the
visible and thermal infrared spectral range. SEVIRI is on-
board the geostationary satellites Meteosat-8–10, which are
positioned at 0◦ latitude/0◦ longitude in operational mode.
The SEVIRI full disc observations are repeated every 15 min
between 2004 and the present day. The spatial sampling dis-
tance is 3 km, increasing with distance from the sub-satellite
point (Schmetz et al., 2002).

The elaboration of the Meteosat clear-sky radiance (CSR)
archive is described in Brogniez et al. (2006), and it is
briefly revisited in Sect. 3. The 6.3 µm BTs, as observed by
Meteosat-2 to Meteosat-5, as well as Meteosat-7, were taken
from the International Satellite Cloud Climatology Project
(ISCCP; Rossow and Schiffer, 1999) at the DX pixel res-
olution (ISCCP-DX; seehttp://isccp.giss.nasa.gov/products/
products.htmlfor details). All observations are adapted to the
Meteosat-5 spectral response function. The CSR archive built
at the Laboratoire de Météorologie Dynamique (LMD, Paris,
France) is used as input. It covers the period July 1983–June
2005. This CSR record has been extended using ISCCP-DX
data for the period July 2005–June 2006. From July 2006
onwards, the SEVIRI observations are sampled to mimic the
ISCCP-DX radiance data.

The FTH retrieval can reliably be applied under clear-sky
and low-level-cloud (cloud-top pressure larger than 700 hPa)
conditions. The sampling is largely improved when observa-
tions from the latter case are included. The scene selection is
performed using the cloud information (e.g., cloud cover and
cloud-top pressure) of ISCCP-DX for the period 1983–2009.

3 Homogenization and extension to the SEVIRI era

Prior to the FTH inversion, the CSR data record is adapted
to the Meteosat-5 spectral response function. Scatterplots
of simulated BTs from Meteosat-5 and Meteosat-8, as well
as Meteosat-5 and Meteosat-9, exhibit an excellent linear
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behavior with correlations > 0.99 (not shown). A linear equa-
tion with slope a and with interceptb is thus used for
adaptation. The coefficients for Meteosat-5/Meteosat-8 are
a = 1.0160 andb = −2.3498. The coefficients for Meteosat-
5/Meteosat-9 area = 1.0174 andb = −2.6033.

The Meteosat time series is not fully homogeneous and ex-
hibits breakpoints in the BT time series, mainly due to satel-
lite changes and changes in calibration. Such breakpoints can
be removed using homogenization approaches. The homo-
genization applied here largely follows the work by Picon et
al. (2003).

The basic approach is (1) to use the European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalyses
ERA-Interim data (Dee et al., 2011) as input to the Radiative
Transfer for the TIROS Operational Vertical Sounder (RT-
TOV) 9.3 model, (2) to simulate Meteosat-5 BT and (3) to
apply a linear regression to the observed BT for a month prior
to and after the breakpoint (adapted from Picon et al., 2003):

BTcorrected=
abefore

aafter
BToriginal+ bbefore− bafter

abefore

aafter
,

= a′BToriginal+ b′. (1)

Output from the regression is used to modify the satellite-
observed BT after the breakpoint in a way that preserves the
bias and the root-mean-square difference (RMSD) between
observed and simulated BT. The underlying assumption is
the stability of ERA-Interim simulations over the 2-month
period.

In order to perform the comparison, the following criteria
have been applied:

– Only data at 06:00 and 12:00 UTC have been consid-
ered.

– Simulations are performed under clear-sky conditions
only. This is further constrained by considering the
warmest 80 % in simulated radiances only.

– The subdomain covers±45◦ N/S and±45◦ E/W.

The homogenization coefficientsa′ andb′ can be computed
after a double application of the linear regression and after
substituting for the simulated BT.

This approach is applied to homogenize the change in
calibration in January 2001 as well as the Meteosat-7/8
and Meteosat-8/9 transitions using ERA-Interim data for the
months of December 2000 and January 2001, June and July
2006, and April and May 2007, respectively. The following
parameters have been computed and applied:

– from January 2001 onwards:a′
= 0.98908 andb′

=

2.10135;

– from July 2006 onwards:a′
= 1.01510 and b′

=

1.00681;

– from May 2007 onwards:a′
= 0.974119 andb′

=

5.31705.

Figure 1.Monthly deseasonalized clear-sky brightness temperature
anomaly for the original data (green) and for the updated homo-
genized data (red). The black line shows the difference between
both anomalies. The thick dashed vertical lines represent the time
when homogenization was applied and the thin dashed line repre-
sents the time when the blackbody calibration was implemented.

After homogenization, the intercalibration to HIRS (Breon
et al., 2000) is applied to the CSR data. The results are
consistent with HIRS channel-12 observations onboard the
NOAA12 (National Oceanic and Atmospheric Administra-
tion satellite) and the known bias of Meteosat-5 is removed.
These extended, homogenized and intercalibrated CSR data
are used as input to the FTH retrieval described in the next
section.

Figure 1 shows the deseasonalized anomaly of the original
and the updated BT, as well as their difference. The inten-
sity of a breakpoint is the difference between the anomaly
difference (black values) prior and after the breakpoint. The
breakpoints in January 2001, July 2006 and May 2007 have
the following intensities: 0.5,−4.5 and 0.8 K, respectively.
The degree of homogeneity and stability has been largely im-
proved.

Results from the Global Space-based Inter-Calibration
System over the period May 2008–December 2008 exhibit
a difference in bias of slightly less than 0.5 K between
Meteosat-8 and Meteosat-9 relative to the Infrared Atmo-
spheric Sounding Interferometer. The observing periods and
the magnitude of the bias are different, but the result con-
firms the presence of a small bias between Meteosat-8 and
Meteosat-9 in the early Meteosat-9 phase. Note that this bias
is significantly smaller in 2009 and later on.

As far as the first generation of Meteosat observa-
tions is concerned, the vicarious calibration has been re-
placed by the calibration using the onboard blackbody in
May 2000, and an updated version has been implemented
in January 2001 (http://www.eumetsat.int/website/home/
Data/Products/Calibration/MFGCalibration/index.html). In
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Figure 2. Scatterplot of the bias between “retrieved” FTH from simulated BT and “observed” FTH using the local Jacobian (“FTHj”,
left panel), the idealized Jacobian (“FTHsb96”, middle panel) and the transmission-derived weighting function (“FTHw”, right panel).
Temperature and specific humidity from ERA-40 were used as input. The histogram gives the “observed” FTH population described on the
right-hand side of the graphs. The average bias and the average RMSD are also given.

the time between, the eclipses that occurred in 2000 and in
2001 affected the overall performance (Köpken, 2001). Fi-
nally, several gain changes have been applied, in particular
on 9 January 2001 (http://www.eumetsat.int/website/home/
Data/ServiceStatus/MeteosatGainSettings/index.html).

4 The free-tropospheric relative humidity retrieval
scheme

4.1 Rationale for the retrieval

Assuming a random strong line theory and a constant lapse
rate, Soden and Bretherton (1993) showed that the observed
BT is proportional to the logarithm of the mean RH over a
deep layer of the troposphere. Under these assumptions, the
observed BT is mainly a function of RH alone and not of tem-
perature and specific humidity separately. The FTH is deter-
mined from the following equation, which was analytically
determined by Soden and Bretherton (1996):

ln

(
〈RH〉po

cos(θ)

)
= a × BT6.3µm+ b. (2)

This equation links the clear-sky BT at 6.3 µm to the mean
RH (defined with respect to water only) of a broad layer
of the troposphere. Eq. (2) also corrects for the effect of
the satellite viewing angle,θ , and it includes a scaling pa-
rameter,p0, which is defined as the ratio between the pres-
sure at a temperature of 240 K and 300 hPa. The parameter
p0 represents the deviation from a standard tropical profile
where the 240 K isotherm is located at 300 hPa (see Soden
and Bretherton, 1993). In practice, this thermal parameter
p0 is computed using ERA-Interim and ERA-40 (Uppala
et al., 2005) temperature profiles collocated with Meteosat
observations. Level profiles from ERA-Interim (since Jan-
uary 2006) and ERA-40 (until December 2005) models are
preferred over the standard pressure levels. Indeed, Roca et
al. (2009) proved that the vertical resolution does not signifi-

cantly affect the quality of the estimation of the FTH as long
as a there is a given minimum number of pressure levels.

The fitting parameters (a andb) of the BT-to-<RH> re-
trieval are determined once using a representative data set of
thermodynamic profiles and by sampling the satellite field
of view. This training database is composed of temperature
(T ) and specific humidity (q) profiles extracted from ERA-
Interim restricted to clear-sky profiles. The database contains
profiles from the first day (four time steps per day) of Jan-
uary, April, July and October for the years 2001, 2006 and
2007 in order to have a significantly large set of profiles sam-
pling the various thermodynamical conditions encountered in
the area limited to 30◦ N/S covered by Meteosat. The clear-
sky cases are defined using the ERA-Interim cloud fraction
with a strict value of 0 at all levels. In addition to the cloud
screening, a quality check is performed for the RH profiles
(determined with respect to the water phase only) to remove
the dry and supersaturated cases where the RH reaches values
below 1 % RH and above 100 % RH in the free troposphere.

4.2 Definition of FTH and selection of the vertical
averaging operator

There are several definitions of the vertical averaging oper-
ator <· > involved in the FTH retrieval according to the inter-
pretation of the observed radiation (Brogniez et al., 2009):

– the idealized Jacobian1BT/1RH, for which the
weights are defined in temperature coordinates (e.g.,
Soden and Bretherton, 1993; Soden and Bretherton,
1996);

– the local relative humidity JacobianJRH = ∂BT/∂RH
(e.g., Roca et al., 2003; Brogniez, 2004; Brogniez et al.,
2004);

– the transmission-derived weighting function∂τ /∂ ln(p)
(e.g., Schmetz and Turpeinen, 1988; Stephens et al.,
1996).
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Figure 3. Instantaneous FTH at 12:00 UTC on 15 July 2009 (left panel) and monthly averaged FTH for July 2009 (right panel). Undefined
areas are in grey and they are usually associated with cloud-top pressures above 700 hPa.

Jacobians and their usefulness in deriving atmospheric state
parameters from satellite observations are described in, for
example, Eyre (1987). The selection of the most appropriate
averaging operator for the retrieval is based on a compari-
son between the three regressions defined from the three def-
initions of FTH and using ERA-40 data. Figure 2 illustrates
the results of this evaluation with scatterplots of the bias be-
tween the weighted RH profiles (“observed”) and the com-
puted FTH using simulated BTs (“retrieved”) and the “ob-
served” FTH. The statistics provided in Fig. 2 clearly high-
light the higher quality of the fit obtained withJRH, and thus
the more precise definition of the FTH usingJRH. Roca et
al. (2009) analyzed the differences in spatial distribution of
the peak height of the three different averaging operators.
They showed that the spatial distribution of the peak heights
resembles the spatial distribution of RH when usingJRH and
the transmission-derived weighting function. The latter ex-
hibits a bimodal distribution that is not featured inJRH re-
sults.

The FTH is thus defined as the mean RH weighted byJRH
and normalized by the sum of weights. The layer between
150 and 700 hPa is considered in the FTH computation:

FTH(RH) =

150hPa∑
p=700hPa

RH(p) × JRH(p)

150hPa∑
p=700hPa

JRH(p)

, (3)

with RH(p) defined between 0 and 100 % with respect to the
liquid phase of water.

Using this definition, the training of the algorithm yields
a = −0.1248 andb = 33.46 (Roca et al. (2009).

4.3 Practical considerations and examples

The retrieval was applied to observations from Meteosat-2
to Meteosat-5 and from Meteosat-7 to Meteosat-9 and pro-
vides FTH values within±45◦ longitude and±45◦ latitude.
The FTH is available at 3 h resolution and as monthly av-
erages (arithmetic averages over all valid observations) on
a regular latitude/longitude grid with a spatial resolution of

0.625◦ × 0.625◦. The data record covers the period from July
1983 to December 2009. For the reasons given in Brogniez
et al. (2009), the Meteosat-6 period (i.e., from March 1997
to May 1998) is not covered.

In the following, relative units of FTH are given in percent
and the absolute units of FTH in percent RH.

Figure 3 shows examples of instantaneous and monthly av-
eraged products. Figure 4 illustrates the FTH seasonal aver-
ages featuring strong FTH minima over northern and south-
ern Africa during boreal summer and strong FTH maxima
in the Intertropical Convergence Zone (ITCZ). The location
and the extent of dry and wet areas and the corresponding
minimum and maximum FTH values strongly depend on the
season. Figure 5 shows the time series of FTH spatially av-
eraged in the three regions shown in Fig. 4. The three time
series exhibit large differences in amplitude and in shape of
the annual cycle. Note that minor changes in the definition
of the regions have a noticeable impact on the time series,
in particular on outliers. Exemplary outliers are observed in
March 1992 (in the South Atlantic) and in April 1990 (over
northeastern Africa), and they seem to be caused by devi-
ations from the climatological behavior of atmospheric dy-
namics on the regional scale.

As mentioned earlier, the identification of clear sky and
low-level cloud in the Meteosat observations depends on
ISCCP-DX data, and the quality of FTH depends on the qual-
ity of the cloud classification. A strong degradation of the
FTH quality can be expected when high-level clouds are not
correctly identified. Coastal areas exhibit reduced FTH data
quality due to problems with cloud detection before February
1997. The retrieval is also not reliable over elevated terrain
with surface pressures less than 700 hPa, since the observed
signal might contain contributions from the surface.

The FTH data record is refer-
enced under digital object identifier
doi:10.5676/EUM_SAF_CM/FTH_METEOSAT/V001
and is freely available athttp://www.cmsaf.eu/wui.
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Figure 4. FTH seasonal averages: December-January-February (DJF, top left), March-April-May (MAM, top right), June-July-August (JJA,
bottom left) and September-October-November (SON, bottom right). The period considered is 1984–2009. The red boxes indicate regions
for which the average time series is plotted in Fig. 5.

Figure 5.Time series of regional FTH averaged over south-central Africa (top), the South Atlantic (middle) and northeastern Africa (bottom).
The regions are shown in the bottom left panel in Fig. 4.

5 Towards an uncertainty budget estimate

This section briefly discusses the uncertainty budget estimate
for the FTH product. Following Chambon et al. (2012), the
uncertainty budget is composed of three main uncertainty

source terms: (1) calibration uncertainty, (2) retrieval un-
certainty and (3) sampling uncertainty. In line with Roca
et al. (2010) the calibration uncertainty is considered to be
a systematic difference, whereas the retrieval uncertainty
depends on the details of the underlying algorithm. The
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representativeness uncertainty depends on the temporal and
spatial averaging, and it vanishes at the instantaneous pixel
scale. This uncertainty depends on the number of indepen-
dent observations. In order to estimate this number, the cor-
relation length in space and time for the FTH has been esti-
mated by analyzing variograms (see Roca et al., 2012, for de-
tails). Typical spatial correlation lengths of 350 km and tem-
poral correlation lengths of 7.5 h have been observed.

An upper-bound calibration uncertainty of 1 K is consid-
ered (van de Berg et al., 1995). In this case, the relative un-
certainty on FTH is equivalent to the intercept of the retrieval
(b in Eq. 2) and is between 10 and 15 % (Roca et al., 2009).
Results from the training of the FTH retrieval allow for the
estimation of the retrieval uncertainty. Based on the tropical
training, a RMSD of 2 % RH (8 % when assuming an aver-
age FTH of 25 %) and an average difference of 0.3 % RH
were estimated. Assuming a daily average over a 2.5◦ grid
box and a typical standard deviation of 20 % yields a 10 %
relative sampling uncertainty. As a result, in this idealized
case, the total uncertainty in the estimation of the mean FTH
is equally driven by the calibration and the sampling terms,
and to a lesser extent by the algorithm term. The estimated
total uncertainty is the square root of the sum of the three
variances, and in this case it is around 16–19 %, with a cov-
erage probability of 68 % (Roca et al., 2012).

6 Evaluation

6.1 Data record for evaluation

ARSA version 2.7 is an archive of global radiosonde mea-
surements of temperature, water vapor and ozone profiles
which have been quality controlled and combined with aux-
iliary observations. The ARSA archive has been developed
and provided by the Atmospheric Radiation Analysis group
at the LMD. In the first processing step, the radiosonde ob-
servations are quality controlled. For example, water vapor
observations are considered only when they are available up
to a minimum pressure of 350 hPa, and the Thermodynamic
Initial Guess Retrieval (also developed at the LMD) clima-
tological database is used to remove outliers. In the sec-
ond step, existing radiosonde measurements are combined
with other reliable data sources. This step depends on ERA-
Interim data, which are also used for extrapolation into upper
levels of the atmosphere. Finally, the profiles are interpolated
to 43 pressure levels from sea level pressure to 0.0025 hPa.
ARSA covers the period between 1979 and 2013 with a few
tens of thousands of observations per month. More details
can be found athttp://ara.abct.lmd.polytechnique.fr/index.
php?page=arsa.

6.2 Methodology

The evaluation approach using ARSA follows the approach
given in Brogniez et al. (2006, 2009). In order to simulate

the Meteosat-5 observations, the RTTOV9.3 model (Matri-
cardi et al., 2004) has been applied to the ARSA profiles. The
RTTOV model uses fast transmittance algorithms based on
accurate transmittances obtained from line-by-line compu-
tations (GENLN2 for the 3–20 µm spectral range; Edwards,
1992). RTTOV uses HITRAN-2000 (Rothman et al., 2003)
as spectroscopic data base. For the specific case of the 6.3 µm
strong vibration–rotation absorption band by water vapor, the
RTTOV model takes into account the water vapor continuum
(foreign-broadening and self-broadening, model CKD-2.4;
Clough et al., 1989) that has a non-negligible contribution in
the water vapor band (e.g., Stephens et al., 1996, and Soden
et al., 2000). Based on the work of Brunel and Turner (2003)
referenced in the RTTOV v9 user guide, the bias uncertainty
of RTTOV with respect to the Meteosat water vapor channel
is < 0.1 K, with a standard deviation of > 0.3 K.

RTTOV also includes the K-matrix model that computes
standard Jacobians (among them∂BT/∂q, whereq is the vol-
ume mixing ratio).∂BT/∂q is converted toJRH by comput-
ing es∂BT/∂q, wherees is the saturation vapor pressure.JRH
is used to integrate the ARSA observations. Note that the
results of Chen et al. (2010), who assessed three different
transmittance models through their impact on simulated radi-
ances and Jacobians, can be interpreted as follows: RTTOV
can benefit from improvements to the transmittance model
for the computation of Jacobians in cold and dry atmospheric
conditions.

The following selection criteria are applied for the valida-
tion:

– nighttime only,

– FTH > 5 % to reduce potential surface contributions,

– absolute differences in BTs < 3 K (i.e., approximately
3σ ) and simulated and observed BTs > 220 K to min-
imize cloud detection uncertainties of the ISCCP-DX
algorithm.

A pair of ARSA and Meteosat observations is considered to
be collocated when the temporal distance is within 1.5 h and
the spatial distance is within 0.625◦. Although ARSA con-
tains measurements from radiosondes launched on ships and
at small islands, the validation is dominated by observations
over land.

To evaluate the quality of the FTH data record, the rel-
ative and absolute bias, the corresponding RMSD, and the
decadal stability are determined on a monthly basis and as
spatial averages. These uncertainty parameters are only con-
sidered when the number of valid observations is larger than
10. More detail is given in Appendix A.

6.3 Results

The time series of monthly averages of absolute and relative
biases of the FTH from Meteosat and the FTH from ARSA,
their absolute and relative RMSD, and the number of valid
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Figure 6. Monthly mean of the relative bias between the FTH from Meteosat and the FTH from ARSA (top panel), monthly mean of the
relative RMSD between the Meteosat-FTH and the ARSA-FTH (second panel), monthly mean of the absolute bias between the Meteosat-
FTH and the ARSA-FTH, monthly mean of the RMSD (third panel) and number of valid observations (N , bottom panel). The thick dashed
and the thin dotted vertical lines indicate homogenization and major radiometric events. The averaged bias, the averaged RMSD and the
averagedN are also given. The colored lines in the first two panels highlight the FTH requirements from Global Climate Observing System
(GCOS-154); the error budget estimate from Sect. 5; and a line at 15 %, which is close to the peak values in maximum relative bias.

observations (N ) are shown in Fig. 6. Over the period July
1983 to December 2009, the averaged relative bias, the aver-
aged relative RMSD and the averagedN are−3.2, 16.8 and
170 %, respectively. The averaged relative bias and 55 % of
the monthly relative biases between the FTH from Meteosat

and the FTH from ARSA are smaller than the Global Cli-
mate Observing System (GCOS) requirement for the FTH
(5 %, as in GCOS-154). The relative bias between the FTH
from Meteosat and the FTH from ARSA exhibits strong tem-
poral fluctuations as well as a standard deviation of 4.5 %.N
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strongly fluctuates in time, and neither small nor large values
of N systematically coincide with maxima or minima in rel-
ative bias. No correlation is found (R = −0.01) betweenN
and the relative bias (see Eq. (A3) for a definition of the Pear-
son correlation coefficient,R). Besides several local maxima
and minima in the time series of the relative bias between the
FTH from Meteosat and the FTH from ARSA, the following
features are noteworthy:

– an increase in relative bias between the summers 1988
and 1990;

– a maximum in relative bias in January 1996, with spuri-
ous biases in 1996.

These features most likely originate from changes in calibra-
tion procedures or instrumentation as discussed in Sect. 3.
The main difference between the comparisons performed in
the FTH space and in the BT space is that the features men-
tioned above appear to be enhanced in the relative bias of
FTH due to the exponential relation between CSR and FTH
and due to the normalization. Sharp summer minima in the
relative bias with values down to almost−15 % are often fea-
tured. These minima are less obvious before 2001, and they
are most likely caused by the increased uncertainty in the
FTH retrieval when the troposphere is very dry. The relative
RMSD between the FTH from Meteosat and the FTH from
ARSA exhibits weaker variations than the relative bias and
a slight decrease between 1988 and 2006. More than 66 %
of the monthly relative RMSD values are within 16–19 %,
which is the estimated uncertainty of the FTH product.

The features mentioned above are also highlighted on the
time series of the absolute bias and RMSD (Fig. 6, third
panel), but they appear to be damped. The most obvious dif-
ference is the lack of decrease in RMSD. The averaged bias
and RMSD are stable and small over the period 1983–2009
(−1.2 % RH and 5.0 % RH, respectively). The normalization
step with respect to the FTH likely causes the decrease in
relative RMSD, which is an indication of a general increase
in FTH. Note that the normalization is done with respect to
the FTH from ARSA. Finally, the annual cycle of the abso-
lute bias between the FTH from Meteosat and the FTH from
ARSA is less pronounced than the one of the relative bias
because the normalization has an amplifying effect (e.g., the
months of July and August exhibit the strongest minima and
are characterized by larger dry regions than during the other
months of the year).

Scatterplots and histograms of the difference between the
FTH from Meteosat and the FTH from ARSA have been per-
formed (not shown). A small bias between both FTH data
records is noteworthy, with larger ARSA-based FTH values
than Meteosat-based FTH values. The histogram of the dif-
ferences peaks at−1± 1 % RH and is slightly skewed to-
wards negative values.

The stability of the data record is considered to be the
slope of the linear regression between the difference of

the Meteosat FTH and the corresponding ARSA FTH (see
Appendix A). Based on the differences shown in Fig. 6
(top panel) and after conversion from percent per month
into percent per decade, the decadal stability is found to
be 0.5± 0.45 %, which envelops the GCOS requirement of
0.3 % (GCOS-154). The uncertainty of the decadal stability
is relatively large and is obvious in Fig. 6.

7 Variability and trend analysis

After introducing the frequency of occurrence of FTH < 10 %
(FTHp10), an analysis of the standard deviation of FTH and
FTHp10 on interannual scale is performed and the correla-
tion to the El Niño 3.4 and to the quasi-biennial oscillation
(QBO) indices is presented as well as the differences between
FTHp10 averaged over the 2000s and over the 1990s. This
analysis contributes to the discussion of linear trends and as-
sociated uncertainties in Sect. 7.3. Intra-seasonal variability
also contributes to the uncertainty, but it is not considered
here.

Throughout this section, full years are considered from
January 1984 to December 2009.

7.1 FTHp10

Roca et al. (2011) introduced the frequency of occurrence of
dry air as a marker of the behavior of the dry part of the FTH
distribution, namely the frequency of occurrence of FTHp10.
This climatological indicator corresponds to the radiatively
sensitive range of FTH and it is more resilient to the various
assumptions in the retrieval (e.g., cloud clearing). A strong
contrast between minima and maxima reveals the spatial dis-
tribution of the moisture field as seen in the FTHp10 seasonal
climatology shown in Fig. 7. The locations of frequently dry
areas coincide with locations of the dry seasonal averages in
Fig. 4. Figure 7 further highlights the dry area in the south-
ern tropical Atlantic Ocean where the air is very dry more
than 70 % of the time, and it highlights the strong FTHp10
maxima in amplitude and in spatial extent that occurs mostly
during the boreal summer. The maximum FTHp10 is found
in the northeastern Mediterranean Sea in the boreal summer
climatology.

7.2 Variability

An analysis of the FTH and the FTHp10 temporal and spa-
tial variability is of general interest, as outlined in the Intro-
duction. In addition, the significance of FTH and FTHp10
trends is assessed in the next section. In general, the coverage
probability (or level of confidence) is a function of the stan-
dard deviation and thus of the temporal variability. There-
fore, the spatial distribution of the standard deviation is ana-
lyzed on the interannual scale, the correlation to El Niño 3.4
and QBO indices is discussed, and the differences between
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Figure 7. Same as Figure 4 but for the frequency of occurrence of FTH<10% (FTHp10). 2 

Areas where only a small number of observations are valid are shown in grey. 3 

Figure 7. Same as Fig. 4 but for the frequency of occurrence of FTH < 10 % (FTHp10). Areas where only a small number of observations
are valid are shown in grey.

FTHp10 averaged over the 2000s and over the 1990s are an-
alyzed.

In order to assess the interannual variability of FTH and
FTHp10, Fig. 8 shows the relative standard deviation in FTH
and in FTHp10 for each season. The relative standard devi-
ation maxima in FTH are located over the South Atlantic, the
North Atlantic and central-eastern Africa in DJF and over
northeastern Africa in JJA. Minima are associated with the
ITCZ and the extratropics. Note that the SON season clearly
features the minimum averaged relative standard deviation,
mainly due to largely reduced maxima during this season.
The positions of maxima and minima in relative FTH stan-
dard deviation obviously coincide with the positions of the
FTH minima and maxima but also with gradient areas be-
tween dry and wet regions. These results are in good agree-
ment with the findings of Brogniez et al. (2009), and we
recall here the outstanding relevance of the variability in
the dry free troposphere on the outgoing longwave radia-
tion (e.g., Udelhofen and Hartman, 1995; Sohn and Schmetz,
2004). Keeping in mind that FTH minima are associated with
FTHp10 maxima, similar results are found for FTHp10, but
only for the dry end of the distribution. Also, the strong max-
imum in relative standard deviation of FTH featured in the
region of northeastern Africa in JJA appears as a local min-
imum in standard deviation of FTHp10, indicating a strong
stability of the occurrence of dry events in this region.

Following Roca et al. (2011) large-scale dynamics have
a strong impact on the FTH distribution and its variabil-

ity. Brogniez et al. (2009) analyzed the FTH from MVIRI
over northeastern Africa over the period 1983–2004 for the
months of July/August and separated the analysis into dry
and wet years. The air masses of the driest years have been
shown to mainly originate from the tropics with a contribu-
tion from the extratropics, whereas the wet air masses origi-
nate from tropical regions only. The variability of the extent
of specific features in FTHp10 over northeastern Africa in
JJA and their position must also be analyzed to better under-
stand the overall dynamics and underlying distributions of
FTH, their impact on OLR and their changes over time.

The correlation coefficientR between seasonal averages of
FTH, FTHp10 and the El Niño 3.4 index (available athttp:
//www.esrl.noaa.gov/psd/data/climateindices/list/) has been
analyzed (not shown). Only DJF averages have been con-
sidered because El Niño events are more intense during bo-
real winter. The coverage probability of the correlation has
been computed as described in Shi et al. (2013). The aver-
aged correlation coefficient for positive values only and for
negative values only was found to be 0.14 and−0.11, respec-
tively. The number of grid cells with coverage probability of
95 % or larger, relative to the total number of grid cells (in
the following referred to as “area fraction”) is 1.8 % for FTH
and 3.6 % for FTHp10. The FTH and FTHp10 exhibit sig-
nificant correlations over northeastern Africa and over parts
of the Arabian Peninsula, with FTH (FTHp10) values being
positively (negatively) correlated with the El Niño 3.4 index
(0.48;−0.45). The positive correlation for FTH is consistent
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Figure 8. Relative standard deviation in FTH for each season (top
four panels) and in FTHp10 (bottom four panels) over the period
1984–2009. Areas where only a small number of observations are
valid are shown in grey.

with results of Shi et al. (2013), who analyzed the correlation
between BT based on HIRS observations and the El Niño
3.4 index. Similarly, the correlation between deseasonalized
FTH and FTHp10 values and the QBO index was analyzed.
The total area fraction of significant correlation is slightly
larger than for the correlation with the El Niño 3.4 index, but
it is associated with averaged correlations about only 0.13.
El Niño events and the QBO thus have a minor contribution
to the overall variability in FTH and FTHp10 over the con-
sidered area.

The FTH data record covers two full decades, namely the
1990s and the 2000s. The differences between FTHp10 aver-
aged over the 2000s and over the 1990s are shown per season
in Fig. 9. Negative values occur when FTHp10 values in the
2000s are larger than in the 1990s. Thus, FTHp10 is gener-
ally larger in the 2000s than in 1990s. The maximum area
fraction of negative difference is 90 % in DJF and the mini-
mum area fraction of negative difference is 71 % in SON. The
regions of minimum difference mainly coincide with gradi-
ent areas between dry and wet regions and, to a smaller ex-
tent, with the dry regions themselves. The largest connected

area of positive difference is found over northeastern Africa
in SON and is located at the west-southwest border of a re-
gional FTHp10 maximum. This most likely corresponds to
an east-northeast retreat of the dry region between the 1990s
and 2000s. These differences were compared to the noise –
that is, to the square root of the squared sum of the internal
decadal standard deviations (not shown). The maximum area
fraction with an absolute ratio between the differences and
the noise that is larger than 1 is 9 % in DJF. The minimum
area fraction with an absolute ratio between the differences
and the noise that is larger than 1 is 1 % in SON. Areas of
large absolute ratios are typically found between the ITCZ
and the neighboring dry areas. Even though most of the full
area of interest exhibits an increase in the frequency of dry
events, it cannot be concluded that this tendency is signifi-
cant.

7.3 Linear trend analysis

7.3.1 Methodology

Two methods to analyze linear trends are tested: the “me-
dian of pair-wise slopes regression” method (referred to as
the “Theil–Sen slope estimator”; Theil, 1950) and the linear
regression method. The “Theil–Sen slope estimator” method
is more robust (i.e., less sensitive to outliers) than linear re-
gression and better suited to analyze linear trends in clima-
tological data series. This estimator takes into account the
median of all pair-wise slopes in the data. Approximately
600 pairs are needed to accurately estimate coverage prob-
abilities (Wilcox, 2001), but the FTH data record only has
312. A simple linear regression computation has thus also
been performed. Minor differences in absolute values and
patterns of the different trends are observed (not shown). The
linear regression method is thus used in the following. The
estimated uncertainty of the trend is computed as described
in Wilks (2011). Here, the autocorrelation is neglected be-
cause seasonal averages are considered. Based on the esti-
mated uncertainty the coverage probability is estimated from
a two-sided Student’st test.

To increase the accuracy of the trend analysis, 5◦
× 5 av-

erages are used instead of the full resolution of the original
product.

7.3.2 Results

Figures 10 and 12 show the linear trend in FTH and in
FTHp10 as well as the associated coverage probabilities per
season over the period 1984–2009. Positive (negative) trends
in FTH largely coincide with negative (positive) trends in
FTHp10, except over southeastern Europe in DJF, where
FTHp10 exhibits trends that are around 0 % yr−1. Note that
FTHp10 only reflects the very dry events, whereas the FTH
has been averaged over the full range of FTH values.
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Figure 9. Difference between decadal averages of FTHp10 in the period 1990-1999 and in the 2 
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Figure 9. Difference between decadal averages of FTHp10 in the period 1990–1999 and in the period 2000–2009. The difference was
computed per season. Red contour lines indicate a 0 % difference. Areas where only a small number of observations are valid are shown in
grey.

In general and for both FTH and FTHp10, the strongest
trends are observed in areas where there is a strong gra-
dient between dry and wet regions and in dry areas. The
dipole structure of positive and negative trends in FTH and
in FTHp10 over northeastern Africa in DJF and JJA is lo-
cated at the borders of the associated dry regions. This can be
an indication of a displacement of (frequently) dry events in
these areas. The observed trends in FTH and in FTHp10 are
hardly significant at the 95 % confidence level. The minimum
area fraction with significant trends at this confidence level is
2.5 % (in SON) and the maximum area fraction is 19.8 % (in
MAM), both found for FTHp10. The largest connected areas
of significant trends are found in the extratropics. They co-
incide with generally large (small) values of FTH (FTHp10)
and small estimated uncertainties. They should be interpreted
with care because they are affected by potential oversimplifi-
cations of the retrieval scheme, which might occur in the ex-
tratropical environment, where the assumption of a constant
lapse rate is no longer valid. The estimated uncertainties are
shown in Figs. 11 and 13 for the FTH and FTHp10, respec-
tively. Areas of large absolute trends frequently coincide with
large estimated uncertainties but also appear slightly shifted
compared to the estimated uncertainty maxima. An excep-
tion is the area of negative FTH trends, which is located over
Brazil and the neighboring South Atlantic in SON. Strong
similarities between the estimated uncertainty and the inter-
annual variability arise from comparing Figs. 11 and 13 with

Fig. 8. The interannual variability thus dominates the esti-
mated uncertainty. Together with the length of the record
(26 years), this explains that significant trends in FTH and
FTHp10 are hardly observed in this analysis.

Brogniez et al. (2009) reported that 1985 was among the
driest years of the full FTH data record. Since this specific
year is at the beginning of the time series, it strongly im-
pacts the trend estimate. This impact has been assessed for
FTHp10 by removing the first 2 years from the data record
(not shown). After recomputing the trends, dry areas and gra-
dient areas between dry and wet areas exhibit larger positive
trends and connected areas of such trends cover larger areas.
In particular, the dry area over northeastern Africa in JJA and
the dry area over the South Atlantic in DJF exhibit significant
positive trends at the 95 % confidence level. Interestingly, the
areas of significant trends in the extratropics in MAM and
over central Africa in DJF almost disappear, which is associ-
ated with trends being close to zero. As stated in Santer et
al. (2011), these results confirm that trend estimates, their
significance and their uncertainty depend on the period con-
sidered and in particular on the statistics of the data at the
start and end of the period.

Even though the estimated trends and the differences be-
tween FTHp10 averaged over the 2000s and over the 1990s
are practically not significant and cover different periods, the
spatial patterns of increasing FTHp10 values generally coin-
cide with negative differences. Further analysis is needed to
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Figure 10. Same as Figure 4 but for the linear trend in relative FTH. The blue and red contour 2 

lines show coverage probabilities of 68% and 95%, respectively. Areas where only a small 3 

number of observations are valid are shown in grey. 4 
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Figure 10.Same as Fig. 4 but for the linear trend in relative FTH. The blue and red contour lines show coverage probabilities of 68 and 95 %,
respectively. Areas where only a small number of observations are valid are shown in grey.
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Figure 11. Same as Figure 10 but for the uncertainty of the linear trend in relative FTH. 2 
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Figure 11.Same as Fig. 10 but for the uncertainty of the linear trend in relative FTH.

check whether trends in dry areas, in particular for FTHp10,
are reproduced in reconstructions of tropospheric RH from
back-trajectory models, in order to check whether such an
increase could be related to a change in the large-scale dy-
namics of the last saturation statistics. In this context, the
dipole structures of FTH and FTHp10 trends over north-

eastern Africa in JJA and DJF are noteworthy. The associ-
ated feature in the estimated uncertainty coincides with a
similar feature in interannual variability. The back-trajectory
analysis should be extended with an analysis of the position
and extent of the dry areas, specifically over northeastern
Africa.
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Figure 12. Same as Figure 10 but for FTHp10. 2 

  3 

Figure 12.Same as Fig. 10 but for FTHp10.
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Figure 13. Same as Figure 11 but for the uncertainty of the linear trend in FTHp10. 2 

 3 

Figure 13.Same as Fig. 11 but for the uncertainty of the linear trend in FTHp10.

8 Conclusions

Meteosat-2–5 and Meteosat-7–9 observations at 6.3 µm are
used to retrieve information on humidity in the free tropo-
sphere. The inversion from BT to FTH is reliable in the clear-
sky case and in the presence of low-level clouds. Temper-

ature data from ERA-Interim are used to slightly improve
the performance of the statistical retrieval scheme. Thanks
to a successful cooperation between a research institute and
an operational service, the FTH data record was extended
into the SEVIRI era. The FTH data record is now avail-
able, free of charge, from the European Organization for
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the Exploitation of Meteorological Satellites (EUMETSAT)
Satellite Application Facility on Climate Monitoring (CM
SAF) at https://www.cmsaf.eu/wuiand is referenced under
doi:10.5676/EUM_SAF_CM/FTH_METEOSAT/V001. The
FTH data record is available within±45◦ N/S and±45◦ E/W
with a spatial resolution of 0.625◦

× 0.625◦, and it covers the
period 1983–2009 with a temporal resolution of 3 h. Monthly
averages are also available.

Based on the comparison against FTH derived from the
ARSA archive by using the RH Jacobians for the integration
of the RH profiles, the average relative bias of the FTH prod-
uct is−3.2 % and its relative RMSD is 16.8 %. The relative
RMSD is in agreement with the estimated uncertainty. The
decadal stability is 0.5± 0.45 %. The relatively large uncer-
tainty estimate covers the GCOS requirement on humidity
in the free troposphere of 0.3 % per decade. Due to the in-
crease in bias between summer 1988 and summer 1990, and
due to a maximum bias in January 1996, with generally spu-
rious biases in 1996, and even though significant efforts have
been dedicated to the homogenization of the Meteosat time
series, the quality of the FTH data record will benefit from
an FCDR of the full Meteosat time series, including the re-
covery of Meteosat-6 data in order to close data gaps in the
time series.

The interannual relative standard deviation of FTH and
FTHp10, the differences between FTHp10 averaged over the
2000s and over the 1990s, and linear trends using seasonal
averages of FTH and FTHp10 have been analyzed. Maxima
in interannual standard deviations generally coincide with
minima in FTH and maxima in FTHp10. Maxima in absolute
estimates of the trends in seasonal FTH and FTHp10 are as-
sociated with maxima in standard deviation. As a result, the
estimated trends are hardly significant. In the ITCZ region,
where the results could be corrupted by the cloud-clearing
method, the trends and their uncertainties must be interpreted
with caution. However, the maxima in the trend estimate
of FTHp10 coincide with maximum absolute differences in
FTHp10 averaged over the 2000s and over the 1990s. The
linear analysis performed in the dry free-tropospheric sub-
tropical regions leads to results that are not significant but are
consistent with theoretical considerations in both the sign and
the small magnitude of the change over the last∼ 25 years.
The combination of trend estimates, coverage probability and
estimated uncertainty provides valuable information to fur-
ther analyze changes in the climate system. The analysis of
the dry end of the FTH distribution is very relevant, not only
because of its impact on OLR but also because of the ob-
served indication of small changes in value, area and associ-
ated large variability.

This analysis will benefit from the availability of a Meteo-
sat FCDR and a gap-free input data record. It will also
benefit from the extension of the temporal coverage to the
most recent times in order to promote a robust view on the
decadal changes estimated here using linear trends compu-
tations. Within the WMO’s SCOPE-CM project, EUMET-
SAT leads the “Inter-calibration of imager observations from
time-series of geostationary satellites” project. Among oth-
ers things, the aim of this project is the development and the
provision of a Meteosat FCDR. This FCDR will be used to
improve the quality of the Meteosat-based FTH data record.

Initial comparisons to other available FTH records (e.g.,
based on HIRS and AMSU-B observations) have already
been carried out by CM SAF (http://www.cmsaf.eu/docs)
and by G-VAP (http://www.gewex-vap.org). The work pre-
sented here is part of the analysis of long-term temporal
changes within G-VAP. The extension of this analysis to
other FTH data records and the inter-comparison is in
progress and is being performed by an international team as-
sociated with G-VAP.
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Appendix A: Statistical quantities

In this Appendix, frequently used statistical quantities are de-
fined:

– The relative systematic difference (or relative bias) be-
tween two estimationsxi andyi of the same variable is
computed as

relative bias=
1

N

N∑
i=1

(yi − xi)

xi

× 100. (A1)

The relative RMSD is defined as follows:

relative RMSD= (A2)√√√√ 1

(N − 1)

N∑
i=1

(
((yi − bias) − xi)

xi

× 100

)2

.

In Eqs. (A1) and (A2) the sum is computed for all valid
pairs within a given month, notedN . Absolute bias
and RMSD are computed by omitting the factor 100/xi

in Eqs. (A1) and (A2). The term “absolute” is usually
omitted.

– Decadal stability is computed by applying linear regres-
sion analysis to the results from Eq. (A1). The slope of
the regression is the temporal change of the relative bias
per month in percent per month. When multiplying by
120, the decadal stability is in percent per decade.

– The Pearson’s correlation coefficientR between the
variablesx andy, each havingN elements, is defined
as follows:

R = (A3)

N
N∑

i=1
xiyi −

N∑
i=1

xi

N∑
i=1

yi√
N

N∑
i=1

x2
i −

(
N∑

i=1
xi

)2

×

√
N

N∑
i=1

y2
i −

(
N∑

i=1
yi

)2
.

Note that theN can differ from theN in Eqs. (A1)
and (A2).
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Appendix B: Abbreviations

Table B1.List of abbreviations.

Abbreviation Word/phrase

AMSU-B Advanced Microwave Sounding Unit-B
ARSA Analyzed RadioSoundings Archive
BT Brightness temperature
CM SAF Satellite Application Facility on Climate Monitoring
CSR Clear-sky radiance
DJF December/January/February
ECMWF European Centre for Medium-Range Forecasts
ERA-Interim, ERA-40 ECMWF Reanalysis
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
FCDR Fundamental Climate Data Record
FTH Free-tropospheric humidity
FTHp10 Frequency of occurrence of FTH<10 % RH
GCOS Global Climate Observing System
GEWEX Global Energy and Water cycle EXperiment
G-VAP GEWEX water VAPor assessment
HIRS High-resolution Infrared Radiation Sounder
ISCCP-DX International Satellite Cloud Climatology Project, DX type
ITCZ Intertropical Convergence Zone
JJA June-July-August
LMD Laboratoire de Météorologie Dynamique
MAM March-April-May
Meteosat Meteorological Satellite
MVIRI Meteosat Visible Infra-Red Imager
NetCDF Network Common Data Format
NOAA National Oceanic and Atmospheric Administration
OLR Outgoing longwave radiation
QBO Quasi-biennial oscillation
RH Relative humidity
RMSD Root-mean-square difference
RTTOV Radiative Transfer for the TIROS Operational Vertical Sounder
SAF Satellite Application Facility
SCOPE-CM Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SON September-October-November
WMO World Meteorological Organization
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