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Abstract. The cloud condensation nuclei (CCN) proper-
ties of atmospheric aerosols were measured on 1–30 May
2011 at the HKUST (Hong Kong University of Science and
Technology) Supersite, a coastal site in Hong Kong. Size-
resolved CCN activation curves, the ratio of number con-
centration of CCN (NCCN) to aerosol concentration (NCN)
as a function of particle size, were obtained at supersat-
uration (SS)= 0.15, 0.35, 0.50, and 0.70 % using a DMT
(Droplet Measurement Technologies) CCN counter (CCNc)
and a TSI scanning mobility particle sizer (SMPS). The
mean bulk size-integratedNCCN ranged from∼ 500 cm−3 at
SS= 0.15 % to∼ 2100 cm−3 at SS= 0.70 %, and the mean
bulk NCCN/ NCN ratio ranged from 0.16 at SS= 0.15 % to
0.65 at SS= 0.70 %. The average critical mobility diameters
(D50) at SS= 0.15, 0.35, 0.50, and 0.70 % were 116, 67, 56,
and 46 nm, respectively. The corresponding average hygro-
scopic parameters (κCCN) were 0.39, 0.36, 0.31, and 0.28.
The decrease inκCCN can be attributed to the increase in or-
ganic to inorganic volume ratio as particle size decreases,
as measured by an Aerodyne high resolution time-of-flight
aerosol mass spectrometer (HR-ToF-AMS). TheκCCN corre-
lates reasonably well withκAMS_SR based on size-resolved
AMS measurements:κAMS_SR= κorg× forg + κinorg× finorg,
whereforg andfinorg are the organic and inorganic volume
fractions, respectively,κorg= 0.1 andκinorg= 0.6, with aR2

of 0.51.
In closure analysis,NCCN was estimated by integrating the

measured size-resolvedNCN for particles larger thanD50 de-
rived fromκ assuming internal mixing state. Estimates using
κAMS_SR show that the measured and predictedNCCN were

generally within 10 % of each other at all four SS. The de-
viation increased to 26 % whenκAMS was calculated from
bulk PM1 AMS measurements of particles because PM1 was
dominated by particles of 200 to 500 nm in diameter, which
had a larger inorganic fraction than those ofD50 (particle
diameter < 200 nm). A constantκ = 0.33 (the average value
of κAMS_SR over the course of campaign) was found to give
anNCCN prediction within 12 % of the actual measured val-
ues. We also comparedNCCN estimates based on the mea-
sured averageD50 and the average size-resolved CCN ac-
tivation ratio to examine the relative importance of hygro-
scopicity and mixing state.NCCN appears to be relatively
more sensitive to the mixing state and hygroscopicity at a
high SS= 0.70 % and a low SS= 0.15 %, respectively.

1 Introduction

Atmospheric aerosols can act as cloud condensation nuclei
(CCN) and affect cloud formation by influencing the CCN
number concentration (NCCN) and the size of cloud droplets.
Whether aerosol particles will eventually form cloud droplets
under a set atmospheric condition mainly depends on their
size, chemical composition, and mixing states. Predicting
NCCN usually involves measuring the aerosol size distribu-
tion and making assumptions about the chemical composi-
tion associated to mixing state. Bulk chemical compositions
and an assumption of internal mixing state (i.e., particles are
identical mixtures of all participating species) are often used
in predictingNCCN (Moore et al., 2012a; Wang et al., 2010).
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Ambient aerosols are complex mixtures and the aerosol com-
positions vary substantially with particle size. The hygro-
scopicity parameter (κ) is used to represent the effect of
chemical composition on CCN activity (Petters and Kreiden-
weis, 2007, 2013). Size-resolved chemical compositions give
a size-dependentκ which leads to betterNCCN predictions
than those based on bulk compositions (Medina et al., 2007;
Stroud et al., 2007; Wang et al., 2010).

While the real-time aerosol size-resolved chemical com-
positions such as non-refractory (NR)-species and black car-
bon (BC) can be obtained with an aerosol mass spectrometer
and a single particle soot photometer, respectively, informa-
tion on the mixing state is usually not available or incom-
plete. Various assumptions have been applied to describe the
aerosol mixing state (Asa-Awuku et al., 2011; Bougiatioti et
al., 2009; Cubison et al., 2008; Ervens et al., 2010; Lance
et al., 2009; Lathem et al., 2013; Moore et al., 2012a; Rose
et al., 2011; Wang et al., 2010).NCCN predictions assuming
internal mixing are usually larger than measured values by
20 % or even more, since this assumption overestimates the
contribution of organics toNCCN (Rose et al., 2011; Wang
et al., 2010; Wex et al., 2010). Another extreme assumption
is external mixing, which is when the aerosol contains dif-
ferent types of particles but each particle consists of a single
species (Textor et al., 2006; Zhang et al., 2010). Under this
assumption, the number concentration (NCN) of each type of
particles is determined as the product of the totalNCN and
the volume fraction of the species. TheD50 of a species is
calculated based on itsκ (Moore et al., 2012a; Wang et al.,
2010) andNCCN is obtained by integratingNCN aboveD50.
Finally, the totalNCCN is calculated by adding up all the pre-
dictedNCCN of the species. This simplified external mixing
state assumption could underestimateNCCN. For example,
Wang et al. (2010) reported an underestimation of∼ 20 % in
NCCN at supersaturation (SS) from 0.11 to 0.35 %. Aerosol
mixing state and chemical composition are thus important
factors that need to be considered in the CCN prediction, es-
pecially in places where anthropogenic aerosol emission is
strong and pollution is heavy (Ervens et al., 2010; Kammer-
mann et al., 2010; Kerminen et al., 2012; Rose et al., 2010;
Wang et al., 2010).

Measurements of the condensation nuclei (CN) and CCN
spectra simultaneously by combining a scanning mobility
particle sizer (SMPS) and a CCN counter (CCNc) have been
made (Asa-Awuku et al., 2010; Lance et al., 2009; Moore
et al., 2010, 2012a; Padró et al., 2010; Rose et al., 2010).
The size-resolved CCN activation ratios, i.e., the fraction of
the measuredNCCN/ NCN as a function of particle size, are
the combined results of the size distribution, size resolved
chemical composition, and the mixing state of the aerosols.
Recently, Deng et al. (2013) estimatedNCCN by integrating
the product of the measured size-distributedNCN and the
averaged size-resolved CCN activation ratio at each particle
size bin measured at Wuqing in the North China Plain. The

estimated and measured values differed by less than 6 % at
SS= 0.06 to 0.81 %.

The rapid urbanization and industrial development in the
Pearl River delta (PRD) have resulted in heavy air pollu-
tion, especially particulate matter (PM) pollution (Chan and
Yao, 2008). Hong Kong, a typical coastal city southeast of
the PRD, is affected by PM due to both local anthropogenic
emissions and transportation of pollutants from the PRD (Li
et al., 2014).

In this study, we report for the first time size-resolved
measurements of CCN activity in Hong Kong. We corre-
lated the CCN-derived hygroscopicity (κCCN) with those es-
timated from the size-dependent aerosol chemical composi-
tions determined by an Aerodyne high-resolution time-of-
flight aerosol mass spectrometer (HR-ToF-AMS, hereafter as
AMS). Assuming internal mixtures, we carried out closure
studies onNCCN prediction based on the size-distributions
of NCN measured by a TSI SMPS and on the hygroscopicity
values derived from size resolved and size integrated chem-
ical compositions measured by AMS using Köhler theory,
κAMS, and some assumed constants. Finally, using the aver-
ageD50 and the size-resolved CCN activation ratios from
the CCN measurements, we examined the relative impor-
tance of hygroscopicity and mixing state inNCCN predictions
at different SS. Hygroscopicity is technically a property of
aerosols and it is determined by their chemical composition,
mixing state, and size distribution. In this paper, we refer hy-
groscopicity as a property of the components, assuming in-
ternal mixing, in aerosols for the discussions below.

2 Experimental methods

2.1 Sampling site and meteorological conditions

Measurements of aerosol chemical properties and CCN
activity were carried out throughout the entire month of
May 2011 at the Air Quality Research Supersite situ-
ated on the campus of the Hong Kong University of Sci-
ence and Technology (HKUST) on the east coast of Hong
Kong (seehttp://www.envr.ust.hk/research/research-facility/
background-materials.html). High relative humidity (RH)
with a mean of 81 % and an average temperature of 26.0◦C
prevailed in this study. More information on the sampling lo-
cation and meteorological conditions is available from Lee
et al. (2013) and Li et al. (2013). Hygroscopic tandem differ-
ential mobility analyzer (HTDMA) measurements have also
been reported at this site (Lopez-Yglesias et al., 2014; Yeung
et al., 2014).

2.2 Instrument setup

2.2.1 Sample Inlet System

Ambient air was sampled at a flow rate of 16.67 L min−1

after passing through a PM2.5 cyclone on the roof of the
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Figure 1. Schematic of the experimental setup for size-resolved
CCN activation and chemical composition measurement.

supersite (appropriately 20 m above sea level) and into a
stainless steel sampling port supplying the online instru-
ments of the TSI SMPS, the Droplet Measurement Tech-
nologies (DMT) dual column continuous-flow CCN counter
(CCNc-200) and the Aerodyne AMS. The sampled air passed
through a 1 m long diffusion drier (Brechtel Manufacturing
Inc., San Francisco, CA) filled with silica gel, thus its RH
was below 30 % before it went into the above instruments
for measurements.

2.2.2 CCN measurements

Size-resolved CCN spectra and activation ratios were mea-
sured with the CCNc-200 (Lance et al., 2006; Roberts and
Nenes, 2005) coupled with a TSI SMPS, consisting of a dif-
ferential mobility analyzer (DMA, TSI 3081L) and a water-
based condensation particle counter (WCPC, TSI 3785).

As shown in Fig. 1, charge-neutralized aerosols passed
through the DMA for classification. The classified aerosols
were then split into two streams: with one going into the
WCPC forNCN measurements and the other into the CCNc-
200 for NCCN measurements. The particle size distribu-
tion was measured every 6 min, with an up-scan time of
300 s. The sample flow rate was 1 L min−1 for the DMA,
0.5 L min−1 for the WCPC and the CCNc-200 each, and the
closed-loop sheath air flow rate was 10 L min−1. These flow
rate settings allow SMPS (DMA + WCPC) measurements
for particles ranging from 7 to 300 nm in mobility diameter
(Dm), which as we will show later, cover theD50 (Dm) range
of the particles studied. The sheath flow rate was continu-
ously corrected using a mass flow controller. All flow rates
were regularly checked and sizing accuracy for the SMPS
and the CCNc-200 was verified with polystyrene latex (PSL)
spheres.

The CCNc-200 was operated at a total flow rate of
1 L min−1, of which 0.5 L min−1 was for column A con-
nected to the DMA to measure the size-resolved CCN spec-
trum and another 0.5 L min−1 was for column B connected to
the sample inlet system to measure the totalNCCN. A sheath-

to-aerosol flow ratio of 10 was used. Lathem and Nenes
(2011) pointed out that the direct measurements could lead
to underestimations of bulkNCCN due to the depletion of wa-
ter inside the column by a large amount of aerosols. In our
measurements, the bulkNCCN integrated from size-resolved
CCN measurement using column A are usually fewer than
5000 cm−3 and they correlate well with that from the direct
measurement using column B with a slope of 0.97 and cor-
relation coefficient (R2) of 0.53 as shown in Fig. S1 in the
Supplement. We use bulkNCCN calculated from column A
for the comparison withNCN from SMPS and for the clo-
sure study below. For every measurement cycle, four SS
(0.15, 0.35, 0.50, and 0.70 %) were selected. Measurements
at SS= 0.15 lasted 22 min whereas those at other SS lasted
12 min each for repeatability. CCNc temperature transients
during SS changes are known to produce unreliable spectra
if they occur during a voltage up-scan (Moore et al., 2010).
In our measurements, the instrument profiles were allowed
up to∼ 2 min to stabilize whenever the temperature gradient
was changed. At SS= 0.15 %, a longer time (∼ 4 min) was
required for the stabilization of temperatures. Only data col-
lected under stabilized temperatures were used for analysis.

The CCNc-200 was calibrated with size selected DMA
ammonium sulfate particles at the four SS (Deng et al., 2011;
Rose et al., 2008) regularly during the campaign. The instru-
ment SS was derived from Köhler theory using a constant
van’t Hoff factor of 2.5 for ammonium sulfate (Low, 1969;
Tang and Munkelwitz, 1994; Young and Warren, 1992).

2.2.3 Aerosol chemical compositions

Non-refractory PM1 (NR-PM1) constituents of sulfate, ni-
trate, ammonium, chloride, and organics were measured with
the AMS operated under V, particle time of flight (pToF), and
W modes. The principle behind the instrument has been de-
scribed in detail elsewhere (DeCarlo et al., 2006) and will
only be briefly described here. In pToF mode, the instrument
performs particle sizing based on particle time-of-flight with
the aid of a chopper and gives size-resolved chemical compo-
sition data in vacuum aerodynamic diameter (Dva) (DeCarlo
et al., 2004). In V mode, the shorter traveling path for ions in
the ion time-of-flight (ToF) chamber gives a mass spectral re-
solving power of approximately 2000 (DeCarlo et al., 2006)
and better sensitivity. In W mode, the mass spectral resolving
power is approximately 4000 (DeCarlo et al., 2006) but the
signal-to-noise ratio is lower. The instrument was operated
alternately between the V + pToF combined mode and the W
mode for 5 min each. Evaluation of the ionization efficiency
(IE) was carried out with ammonium nitrate particles weekly
and both the flow rate and particle sizing were calibrated be-
fore and after the campaign. A more detailed description of
the performance of the AMS during the campaign is pre-
sented by Li et al. (2013) and Lee et al. (2013). The AMS
only measures NR-species but not elemental carbon (EC),
sea salt, or crustal species. However, EC only accounts for
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less than 5 % of the PM1 mass and hence can be neglected
(Huang et al., 2014; Lee et al., 2013). Sea salt and crustal
species typically exist in the coarse mode and make negligi-
ble contributions to PM1.

2.3 Data analysis

2.3.1 CN and CCN data

The time series ofNCN and NCCN distributions were ob-
tained using the TSI Aerosol Instrument Manager (AIM)
software (Wang and Flagan, 1990) and CCN acquisition soft-
ware, respectively. The data collected during the voltage up-
scan were employed for the inversion. The scanning mobil-
ity CCN analysis (SMCA) was employed for calculating the
size-resolved CCN activation fractions (Moore et al., 2010).
The ratio ofNCCN to NCN gives the size-resolved CCN ac-
tivation fraction at each size. Then, the size-resolved CCN
activation ratio was obtained by fitting the activation frac-
tion with the sigmoidal function described by Eq. (1) (see
Sect. 3.3) (Moore et al., 2010; Padró et al., 2010).

2.3.2 HR-ToF-AMS data

The standard toolkit of SQUIRREL (Sueper, 2011) was used
for AMS data analysis. The collection efficiency (CE) used
for this work was 0.5 and the relative ionization efficiency
(RIE) of 1.2 for sulfate, 1.1 for nitrate, 1.3 for chloride, 1.4
for organics and 4.0 for ammonium were used as described
by Li et al. (2013) and Lee et al. (2013). The size-resolved
mass spectra for vacuum aerodynamic diameter (Dva) rang-
ing from 50 to 2000 nm (DeCarlo et al., 2004) were obtained
every 5 min on average. The mass concentration of each size
bin was obtained by averaging with the two adjacent size bins
to reduce the influence of noise (Rose et al., 2011). In or-
der to relate the size-resolved AMS data to those of SMPS
and CCNc measurements directly, the AMSDva size was di-
vided by a factor of 1.7 to obtain the corresponding mobility
equivalent diameter (Dm) (Cheng et al., 2006; DeCarlo et al.,
2004). The volume fractions of size-resolved and bulk chem-
ical compositions were calculated from the mass concentra-
tions using densities of organics and inorganics of 1.3 g cm−3

and 1.75 g cm−3, respectively (Alfarra et al., 2006; Cross et
al., 2007; Gunthe et al., 2009; King et al., 2007).

2.3.3 D50, κCCN and κAMS

The critical diameterD50, also known as the activation di-
ameter, is the diameter at which 50 % of the particles are
activated at a specific SS. TheD50 of a simple sigmoidal
shaped activation ratio curve is determined by fitting the size-
resolved activation fractions with the equation below:

NCCN

NCN
=

B

1+

(
Dp
D50

)c , (1)

whereDp is the dry mobility diameter,B,c, and D50 are
fitting coefficients that describe the asymptote/plateau, the
slope, and the inflection point of the sigmoid, respectively
(Moore et al., 2010; Padró et al., 2012). The values of B were
more than 90 % during the whole campaign, indicating most
of the particles were in the internal mixing state (Mei et al.,
2013).

The measured hygroscopic parameter (κCCN) is deter-
mined fromD50 by the following equation:

κCCN =
4A3σ 3s /a(T )

27T 3D3
50 ln2Sc

, (2)

where A = 8.69251× 10−6 K m3 J−1, is the temperature-
dependent surface tension of the solution/air interface,T is
temperature, andSc is the critical saturation ratio. Pure water
surface tension is assumed in the calculations ofκCCN in this
paper (Petters and Kreidenweis, 2013; Sullivan et al., 2009).

The hygroscopic parameterκAMS can be obtained from
AMS measurements using

κAMS = κorg× forg+ κinorg× finorg, (3)

whereforg and finorg are the organics and inorganics vol-
ume fraction derived from AMS measurements (Petters and
Kreidenweis, 2007). BulkκAMS (hereafterκAMS_B) and size-
resolvedκAMS (hereafterκAMS_SR) are obtained from the
corresponding bulk and size-resolved volume fractions of or-
ganics and inorganics, respectively. Also, it was assumed that
κinorg= 0.6 for the whole campaign,κorg= 0.2 for the hazy
period andκorg= 0.1 for the foggy and non-episode periods.

The time-series hygroscopicities derived from bulk and
size-resolved AMS measurements are shown in Fig. S2 in
the Supplement.κAMS_B were larger thanκAMS_SR in all four
SS because bulk AMS compositions biased towards the inor-
ganics as discussed below. Their difference increases as SS
increases because the correspondingD50 decreases and these
smaller particles have a larger fraction than the bulk has.

3 Results and discussion

3.1 Overview

Figure 2 shows an overview of the bulkNCCN concentra-
tions andNCCN/ NCN activation ratio at SS of (a) 0.15 %,
(b) 0.35 %, (c) 0.50 %, and (d) 0.70 %, as well as (e) the bulk
NCN and the NR-PM1 total and component mass concentra-
tion and (f) the volume fractions of the AMS chemical com-
ponents over the entire month of May 2011. Statistics of the
measurements are given in Table 1. The gaps in the data in
Fig. 2 are due to instrument downtime. For most of the time,
the totalNCCN at SS of 0.15, 0.35, 0.50 and 0.70 % were be-
low 800, 3000, 5000 and 5600 cm−3 respectively, andNCN
was below 10 000 cm−3. Both NCCN andNCN in this study
are lower than those observed in July 2006 in Guangzhou, a
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Figure 2. TheNCCN and theNCCN/ NCN ratio at SS of(a) 0.15 %,(b) 0.35 %,(c) 0.50 %, and(d) 0.70 %;(e) NCN and NR-species mass
concentrations from CCNc, SMPS and AMS;(f) NR-species volume fractions derived from AMS.

nearby city in southern China (Rose et al., 2010). The bulk
NCCN/ NCN ratio was as low as 0.03 atSS= 0.15 %, but it
was as high as 0.92 at SS= 0.70 %. Even at the same SS, the
bulk NCCN, NCN andNCCN/ NCN ratio varied greatly during
the campaign.

The bulk mass concentrations of NR-PM1 ranged from
0.8 µg m−3 to 62.4 µg m−3 with a mean value of 14.5±
9.7 µg m−3 as shown in Fig. 2e. The average bulk vol-
ume fractions of NR-species were 53± 10 %, 25± 13 % ,
18± 4 %, 4± 3 % for sulfate, organics, ammonia, and ni-
trate, respectively (Lee et al., 2013). The bulk mass concen-
trations for all NR-species were in general low during the
campaign compared with those reported for the PRD region
(Gong et al., 2012; Rose et al., 2011; Takegawa et al., 2009;
Xiao et al., 2011).

There were two periods of particular interest during this
campaign: one was a foggy period (15 May) and the other
was a hazy period (28–30 May). The division of the month of
May in 2011 into foggy, hazy and non-episode periods was

based on differences in meteorology, such as RH, tempera-
ture and cloud cover, and mass concentration and the O: C
ratio. On average, the foggy period had a high RH (91.1 %),
a low temperature (23.3◦C) and a high percentage cloud cov-
erage (89.7 %) and a high liquid water content (LWC) in fine
particles (47.5 µg m−3) as shown in Li et al. (2013). The hazy
period had a much lower RH (66.6 %), a higher tempera-
ture (26.2◦C) and a much lower percentage cloud coverage
(43.3 %) and LWC (17.5 µg m−3). The slowing surface winds
and the establishment of a well-defined land-sea breeze with
a gradual daily reversal of wind direction contributed to the
accumulation of local and regional pollutants coming from
the PRD due to the persistent northerly and northwesterly air
masses (Lee et al., 2013).

During the foggy period, the bulk NR-PM1 was as high
as 30 µg m−3 (Fig. 2e; Li et al., 2013). The hazy period was
much less humid and it saw the highest mass concentration
of NR-PM1 species recorded during the whole campaign. It
also had the highest degree of oxygenation with an average
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Table 1.Statistics of the bulkNCCN (cm−3) at four SS (%) showing the minimum, maximum, mean number concentration, theNCCN/ NCN
ratio, and standard deviation (SD). The last column shows the number of data sets (n) in this campaign.

SS (%) Max Min Mean± SD n

NCCN (cm−3) NCCN/ NCN NCCN (cm−3) NCCN/ NCN NCCN (cm−3) NCCN/ NCN

0.15 2815 0.54 33 0.03 512± 452 0.16± 0.08 319
0.35 8055 0.78 186 0.08 1546± 1137 0.48± 0.14 316
0.50 9156 0.82 210 0.12 1815± 1285 0.57± 0.14 326
0.70 9268 0.92 280 0.16 2082± 1484 0.65± 0.14 320

Table 2. The average size-resolved mass concentrations (µg m−3, Conc.) and volume fractions (f ) of chemical compositions from size-
resolved AMS measurements during the foggy, hazy and the non-episode periods. Conc. andf were obtained by integrating over the size
range (Dm) from 42 to 1200 nm for Fig. 3 a–c and from 42 to 200 nm for Fig. 3 d–f. Data are shown as mean± standard deviations.

Period Organics Sulfate Ammonium Nitrate Chloride

Conc. f Conc. f Conc. f Conc. f Conc. f

Foggy 1.60± 1.10 0.39± 0.12 4.86± 3.51 0.45± 0.10 1.33± 0.98 0.14± 0.04 0.18± 0.12 0.03± 0.00 0.03± 0.02 0.001± 0.00
Hazy 4.25± 2.52 0.57± 0.08 5.96± 4.36 0.29± 0.06 1.71± 1.22 0.08± 0.03 0.51± 0.27 0.06± 0.01 0.02± 0.01 0.002± 0.00
The rest 1.19± 0.71 0.47± 0.11 2.65± 1.86 0.37± 0.08 0.81± 0.55 0.12± 0.03 0.25± 0.15 0.04± 0.00 0.02± 0.01 0.002± 0.00

O : C ratio of 0.51 (Li et al., 2013). During the hazy pe-
riod, the mean bulkNCCN ranged from 1100 cm−3 with bulk
NCCN/ NCN of 0.22 at SS= 0.15 % to 5300 cm−3 with bulk
NCCN/ NCN of 0.72 at SS= 0.70 %. During non-episode pe-
riods, the mean bulkNCCN ranged from 300 cm−3 with bulk
NCCN/ NCN of 0.14 at SS= 0.15 % to 2700 cm−3 with bulk
NCCN/ NCN of 0.61 at SS= 0.70 %.

3.2 f, κCCN and κAMS

The average size-resolved mass distributions and volume
fractions (f ) of NR-PM1 calculated from AMS measure-
ments are shown in Fig. 3a–c and d–f, respectively, for the
foggy period, the hazy period, and the non-episode periods.
The NR-PM1 showed a major mode at the dry particle size
(Dm, hereafter, diameters shown areDm) of ∼ 285 nm in the
foggy period, at∼ 355 nm in the hazy period and at∼ 325 nm
in the non-episode periods. Sulfate and organics accounted
for large mass fractions (78 % in total) during the whole cam-
paign as shown in Table 2. Sulfate dominated in the foggy pe-
riod, contributing to a volume fraction of 0.45 for 42–200 nm
particles. Organics and nitrate often had a shoulder at a small
size mode at 100 to 130 nm. This shoulder was obvious in the
hazy period and non-episode periods but not so in the foggy
period. On average, this smaller mode accounted for 11 and
12 % of organics and nitrate, respectively. On the other hand,
only 2 % of sulfate was found in this mode (Lee et al., 2013).

Figure 3d–f show the average size-resolved volume frac-
tion distributions of the AMS aerosol compositions from 42
to 200 nm in the foggy period, the hazy period and the non-
episode periods. The volume fraction of organics decreased,
while the inorganics increased with particle size. Overall, the
size-resolved volume fractions of organics ranged from 0.73

at 42 to 0.25 at 200 nm. Additionally, the bulk volume ratio
of organics to inorganics between 42 and 200 nm was 0.65
in the foggy period, 1.33 in the hazy period, and 0.87 in the
non-episode periods.

The measuredκCCN (yellow symbols) and the calculated
κAMS_SR (blue symbols), in the form of median values and
interquartile ranges, are plotted against their corresponding
D50 in Fig. 3d–f. The median and mean values ofκCCN and
κAMS_SR were essentially the same. Overall, the medianD50
were 116, 68, 55, and 47 nm, with an interquartile range of
less than 16 %, at SS of 0.15, 0.35, 0.50, and 0.70 %, respec-
tively. During the foggy period, which featured high inor-
ganics volume fractions, the medianκCCN were 0.44, 0.37,
0.36 and 0.29 at SS from 0.15 % to 0.70 %. They are higher
than the corresponding values in the hazy period (0.38, 0.36,
0.32 and 0.28) and the non-episode periods (0.39, 0.37, 0.33
and 0.27). The difference inκCCN in these periods was most
obvious at SS= 0.15 %, at whichD50 was around 110 nm,
and the corresponding inorganic volume fraction was 0.6 in
foggy period, 0.4 in the hazy period and 0.5 in the non-
episode period. The high inorganic volume fraction results
in high aerosol hygroscopicity.

TheκAMS_SR calculated from Eq. (3) assumingκorg= 0.1
andκinorg= 0.6 agreed well with the measuredκCCN in the
foggy period and the non-episode periods as shown in Fig. 3d
and f. In the hazy period (Fig. 3e), assumingκorg = 0.2
andκinorg= 0.6 gave better agreement betweenκAMS_SRand
κCCN. The hazy period had a higher O: C ratio of 0.51, com-
pared to 0.43 and 0.39 in foggy and the non-episode periods
respectively (Li et al., 2013), leading to a higher hygroscop-
icity of the organic aerosols (Chang et al., 2010; Lambe et
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Table 3.Methods used inNCCN prediction based on the individual CCN scan and averageD50 over whole period from AMS measurement.

Methods Mixing state Chemical composition κAMS D50

I Internal Bulk AMS measurements κAMS = 0.1× forg+ 0.6× finorg Individual
II Internal Bulk AMS measurements as above Average
III Internal Size-resolved AMS measurements as above Individual
IV Internal Size-resolved AMS measurements as above Average
V Internal N/A 0.35/0.33/0.30 Constants

Figure 3. Size-resolved mass concentration distributions of aerosol chemical composition derived from AMS averaged over(a) the foggy
period,(b) the hazy period, and(c) the non-episode periods; the corresponding size-resolved volume fractions of aerosol chemical compo-
sitions (colored areas), the observedκCCN (yellow) and the calculatedκAMS_SR (blue) during(d) the foggy period,(e) the hazy period and
(g) the non-episode period. Data points median values and interquartile ranges.κinorg= 0.6 in all cases,κorg= 0.1 in (d) and(f), κorg= 0.2
in (e).

al., 2011; Massoli et al., 2010; Mei et al., 2013; Moore et al.,
2012b).

We further examine the correlations between the observed
κCCN and the size-resolved organic volume fraction (forg) in
Fig. 4a for the hazy period and Fig. 4b for the rest of the cam-
paign. In order to avoid low signal-to-noise ratios of AMS
measurements on the correlation study, only data points with
mass concentrations in a size bin of larger than 0.6 µg m−3

were used. Extrapolation of the least square fit line in Fig. 4a
and b toforg= 1 yieldsκorg= 0.21± 0.02 and 0.09± 0.01
for the organic fraction and extrapolation toforg= 0 yields
κinorg= 0.59± 0.03 and 0.59± 0.01 for the inorganic frac-
tion, respectively. These values are close to the characteris-
tic values of organic (0.1) and inorganic hygroscopicity (0.6)
in the PRD region (Rose et al., 2011), and to the averaged
values ofκorg= 0.1 andκinorg= 0.6–0.7 in earlier studies in

www.atmos-chem-phys.net/14/10267/2014/ Atmos. Chem. Phys., 14, 10267–10282, 2014



10274 J. W. Meng et al.: CCN activity and closure analysis at the HKUST Supersite in Hong Kong

Table 4.Overview ofNCCN predictions,κ from D50 based on CCN measurement and derived from equation 3 based on AMS measurement
are shown as mean± standard deviation, slope andR2 are from the least square fit between the calculatedNCCN and measured ones.

Categories Principles SS (%) κ Slope R2

CCNC

The averageD50 from CCN measurement

0.15 0.39± 0.06 1.10 0.94
0.35 0.36± 0.09 1.01 0.95
0.50 0.31± 0.10 1.05 0.97
0.70 0.28± 0.09 1.08 0.98

The average CCN activation ratio

0.15 – 1.09 0.94
0.35 – 0.99 0.95
0.50 – 1.02 0.97
0.70 – 1.04 0.98

AMS

TheD50 from κAMS_B

0.15 – 1.21 0.93
0.35 – 1.06 0.95
0.50 – 1.13 0.96
0.70 – 1.17 0.98

The averageD50 from κAMS_B

0.15 0.45± 0.07 1.26 0.93
0.35 0.46± 0.06 1.08 0.96
0.50 0.46± 0.06 1.13 0.96
0.70 0.46± 0.07 1.18 0.98

TheD50 from κAMS_SR

0.15 – 1.06 0.91
0.35 – 0.94 0.93
0.50 – 1.03 0.95
0.70 – 1.10 0.97

The averageD50 from κAMS_SR

0.15 0.37± 0.07 1.08 0.94
0.35 0.35± 0.08 1.01 0.95
0.50 0.31± 0.07 1.05 0.97
0.70 0.29± 0.09 1.09 0.98

Others

Constantκ

0.15 0.35/0.33/0.30 1.05/0.98/0.91 0.95/0.95/0.95
0.35 0.35/0.33/0.30 1.01/0.96/0.91 0.95/0.95/0.95
0.50 0.35/0.33/0.30 1.08/1.05/1.03 0.97/0.97/0.97
0.70 0.35/0.33/0.30 1.13/1.12/1.11 0.98/0.98/0.98

Beijing and the Gulf of Mexico (Gunthe et al., 2011; Moore
et al., 2012b). The average organic hygroscopicity is within
the typical range for individual organic species from zero for
insoluble organics to 0.3 for soluble organics (Hersey et al.,
2011; Lambe et al., 2011; Petters and Kreidenweis, 2007).
κAMS_SR correlates reasonably well withκCCN, with R2 of
0.51, as shown in Fig. S3 in the Supplement.

On the other hand, the mean value ofκAMS_B derived from
bulk AMS compositions was 0.45 at SS= 0.15 % and 0.46
for the other SS, which are significantly larger than the mea-
suredκCCN ranging from 0.39 to 0.28 for SS of 0.15 % to
0.7 % as shown in Table 4. Size-resolved AMS measure-
ments are needed to accurately determine the hygroscopicity
parameter and predictNCCN (Cubison et al., 2008; Moore et
al., 2012a). For closure analysis below, we useκorg= 0.1 and
κinorg= 0.6.

3.3 CCN closure study

The closure studies onNCCN prediction were carried out
based on the measured size-resolvedNCN distributions and
the AMS measurements. In the first approach, we assumed
internal mixing and usedκAMS from (i) bulk and (ii) the size-
resolved AMS measurements for each data set using Eq. (3),
and (iii) assumed constantκvalues. The corresponding indi-
vidual D50 was then calculated from theseκestimates using
Eq. (2), based on whichNCCN was predicted. Furthermore,
we also used the averageD50 over the whole campaign in
NCCN prediction. Table 3 summarizes the assumptions and
parameters used in these methods. In these casesNCCN was
calculated by integrating the measured size-resolvedNCN
distributions for particles larger thanD50. The aim of using
the averageD50 was to test how well it represented the ac-
tivation properties of aerosol during the campaign. Finally,
we examined the relative importance of chemical composi-
tion and mixing state inNCCN predictions at different SS by
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Figure 4. Correlations between the observedκCCN and the organic
volume fraction (forg) determined by size-resolved AMS measure-
ments for the(a) hazy period (n = 72) and(b) the non-episode pe-
riod (n = 516). The red line is the linear least squares fit (p value
<0.01).

comparing theNCCN using the averageD50 with an internal
mixing assumption and the size-resolved CCN activation ra-
tios from CCN measurements which reflect the actual mixing
state of the aerosols. The last approach involved integrating
the product of the measured size-distribution ofNCN and the
size-resolved CCN activation ratio in each particle size bin.

3.3.1 Prediction ofNCCN based onκAMS

κAMS from bulk AMS measurements

The hygroscopicityκAMS_B was estimated by assuming that
all particles have the same chemical composition as de-
termined by bulk AMS measurements andκorg= 0.1 and
κinorg= 0.6. The closure results are shown in Fig. 5(i) a–h
and Table 4. Overall, the approaches of using individualD50
and the averageD50 grossly over-predictedNCCN by up to
21 and 26 %, respectively. As shown in Fig. 3a–c, PM1 was
dominated by inorganic species with the bulk volume frac-

tion as high as 69 % during the whole period. The bulk vol-
ume ratio mainly reflects the composition of particles from
200 to 500 nm where inorganic species dominated. On the
other hand,D50 at the four SS were all less than 200 nm
where organic species accounted for more than 39 % of bulk
volume fraction as shown in Table 2 and Fig. 3. Therefore,
derivingκAMS from bulk AMS measurements leads to a pos-
itive bias toward inorganic species, and hence an overesti-
mation ofκAMS_B andNCCN. Wang et al. (2010) found that
the overestimation arising from the use of the bulk mass con-
centrations decreased from 80 to 39 % when SS decreased
from 0.35 to 0.11 %. Our data also shows decreasing over-
estimation as SS decreases, except for data at SS= 0.15 %,
where theNCCN was smaller than 1000 cm−3 most of the
time. The low counts may have introduced larger uncertainty
in the measurements as shown in the Supplement.

κAMS from size-resolved AMS measurements

Figure 5(ii) a–d and e–h show the correlations between the
measuredNCCN and theNCCN predicted from the individ-
ual D50 of each data set and the averagedD50 derived from
κAMS_SR, respectively. The slope andR2 are given in Table 4.
In general, theNCCN prediction deviated by 10 % or less
for both approaches, a substantial improvement compared to
those usingκAMS_B, and the averageD50 adequately reflects
the aerosol activation properties. At SS= 0.70 %, individual
D50 and the averageD50 gave the close deviations of 10 and
9 % respectively between the measured and predictedNCCN.
At high SS, where even particles of moderate hygroscopic-
ity are activated (Kim et al., 2011), theNCCN prediction is
less sensitive to hygroscopicity than at low SS. The differ-
ence of the deviations increased as SS decreased from 0.70
to 0.35 %. At lower SS, differences in hygroscopicity as re-
flected from the differentD50 used in the calculations gave
larger differences inNCCN predictions.

The overestimation from using the averageD50 decreased
from 9 % at SS of 0.70 % (D50= 46 nm) to 5 and 1 % at SS
of 0.50 % (D50= 56 nm) and 0.35 % (D50= 67 nm), respec-
tively. The fraction of non/less-hygroscopic hydrocarbon-
like organic aerosol (HOA) decreased with increasing par-
ticle size (Lee et al., 2013). It contributes little toNCCN by
itself but the assumption of internal mixing allows it to con-
tribute to CCN due to its mixing with more hygroscopic
species and leads to an overestimatedNCCN (Rose et al.,
2011; Wang et al., 2010). Size-resolved EC was not available
and EC might also have caused the overestimation inNCCN
prediction. When SS decreased,D50 increased and the im-
pact of HOAs on theNCCN predictions decreased because of
its smaller abundance relative to the hygroscopic inorganics.
The large deviation inNCCN prediction at SS= 0.15 % may
be due to the uncertainty in the low number counts of CCN
measurements or the high sensitivity ofNCCN to hygroscop-
icity at low SS as discussed later.
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Figure 5. Calculations ofNCCN based on (i)(a–d) the individualD50 and(e–h) the averageD50 over the whole period fromκAMS_B, (ii)
(a–d) the individualD50 and(e–h) the averageD50 over the whole period fromκAMS_SR and (iii) (a–d) the averageD50 and(e–h) the
average size-resolved CCN activation ratio from CCN measurement over the whole period.

3.3.2 Prediction ofNCCN from the constantκ

A constantκ = 0.30 has been proposed for predictingNCCN
and understanding the indirect effects of continental aerosols
on climate on a global modeling scale (Andreae and Rosen-
feld, 2008; Pringle et al., 2010). Rose et al. (2011) showed
that the deviations between the measured and predicted
NCCN were less than 20 % when they used an averaged
κ = 0.30 over the course of their campaign in PRD in 2006.
We evaluated the use of constantκ = 0.30, 0.33 (the average
κAMS_SR over the campaign at the four SS), and 0.35 to esti-
mateNCCN. Overall, usingκ = 0.35 overestimatedNCCN at
all four SS while using 0.33 and 0.30 underestimated it at
low SS≤ 0.35 % and overestimated it at high SS≥ 0.50 %,
respectively, as shown in Fig. S4 in the Supplement and Ta-
ble 4. The slopes forκ = 0.30, 0.33 and 0.35 are quite differ-
ent (0.91, 0.98 and 1.05) at SS= 0.15 %, while they are much
closer (1.11, 1.12 and 1.13) at SS= 0.70 %. The difference
in NCCN prediction for the threeκdecreased gradually from
14 % at SS= 0.15 % to 2 % at SS= 0.70 %. These results fur-
ther confirm that the prediction ofNCCN is less sensitive to

κ at high SS than at low one, and that the impact of hygro-
scopicity on theNCCN prediction decreases with increasing
SS.

The difference in the sensitivity of predictedNCCN to hy-
groscopicity at different SS can also be attributed to the
aerosol size distributions (Dusek et al., 2006; Ervens et
al., 2007). The average aerosol size distribution over the
whole period had a main mode at∼ 70 nm and a shoulder
at ∼ 30 nm (Fig. 6a) in this campaign. At SS= 0.15 %,D50
is approximately 116 nm and on the right of the main mode
(Fig. 6b), a slight variation ofκ andD50 will cause a large
change inNCCN prediction. On the contrary, at SS= 0.70 %,
the correspondingD50= 46 nm is on the left of the main
mode (Fig. 6c), a variation ofκ andD50 will have less impact
on NCCN prediction as theNCCN is dominated by the mode
at 70 nm.

In addition, we carried out theNCCN prediction during the
hazy period, when HOAs contribute to∼ 25 % of organic
aerosols (OAs) (Li et al, 2013), based on the average size-
resolved (1)κAMS = 0.33 over the whole campaign period
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Figure 6. The average aerosol size distribution over the whole pe-
riod (a), NCCN prediction based onD50 at SS of 0.15 %(b) and
0.70 %(c). Data points are mean values and standard deviation.

and (2)κAMS = 0.35 over the hazy period only. As shown
in Fig. S5 in the Supplement, usingκAMS = 0.33 and 0.35
gave similar results with overestimations of 14 and 13 % at
SS= 0.70 % respectively. In the hazy period, the assumption
of internal mixing state allowed HOA-containing particles to
act as CCN, thereby resulting in an overestimation ofNCCN
by up to 14 %. At SS= 0.15 %, usingκ = 0.33 led to an over-
estimation of just 2 %, while an overestimation of 9 % was
found when usingκ = 0.35. Overall, usingκ = 0.33 gave pre-

dictions of NCCN (Table 4) comparable to those using the
κAMS_SR and better than those usingκAMS_B at all four SS.

3.3.3 Mixing state and hygroscopicity

As discussed earlier, closure analysis based on hygroscop-
icity or D50 derived from chemical compositions assuming
internal mixing alone cannot account for variability in the
mixing state of aerosols, which could cause significant differ-
ences between predicted and measuredNCCN. In this section,
we first calculateNCCN by integrating the measured size-
resolvedNCN distributions above the averageD50, obtained
from the average CCN size-resolved activation ratio over the
whole campaign. The second method involves integrating the
product of the measured size distribution ofNCN and the av-
erage size-resolvedNCCN/ NCN activation ratio in each par-
ticle size bin. The size-resolvedNCCN/ NCN activation ra-
tios reflect the influences of both the size-resolved chemical
compositions and mixing state on CCN activity, and thus be
used to examine the relative importance of mixing state and
hygroscopicity in closure analysis compared to predictions
assuming internal mixing state (Deng et al., 2013). The first
method involves the hygroscopicity of aerosols as reflected
by the value ofD50 and the assumption of internal mixing
while the second method involves hygroscopicity with actual
mixing state information imbedded in the measured activa-
tion ratio curves. A comparison of the predictions of these
two methods would give hints to the role of assumption of
mixing states. SinceD50 was obtained from the sigmoidal
fits, those fits instead of actual data points were also used
in the second method for better comparison. The average
size-resolved CCN activation ratios at the four SS over the
whole campaign are shown in Fig. S6 in the Supplement.
Data points are shown as means± standard deviations.

The correlations of measured and predictedNCCN based
on the averageD50 (a–d) and the average size-resolved acti-
vation ratio (e–h) are shown in Fig. 5(iii) a–d and e–h. The
slopes of the fitted lines andR2 at different SS are given
in Table 4. The predicted and the measuredNCCN differed
by less than 10 % using the averageD50. The difference is
comparable to those using the averageD50 from κAMS_SR
(Fig. 5(ii) e–h). At SS= 0.70 %, using the average size-
resolved CCN activation ratios reduced the overestimation
from 8 % when using the averageD50 to 4 %. As discussed
above, the sensitivity of theNCCN prediction to hygroscop-
icity is low at SS= 0.70 %, where a large change of 25 %
in hygroscopicity from 0.28 to 0.35 result in only a varia-
tion within 5 % inNCCN (Table 4). From the AMS measure-
ments, the portion of non/less-hygroscopic species inferred
by the fractions off43 andf57 increased as the particle size
decreased (Lee et al., 2013). Because of their higher abun-
dance, their mixing with the hygroscopic components has
a higher impact at SS= 0.70 % (D50= 46 nm) than that at
low SS= 0.15 % (D50= 116 nm), where the reduction in
the overestimation is minimal, from 10 % when using the
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Figure 7. The average size-resolved CCN activation ratio at SS of
(a) 0.15 % and(b) 0.70 % during the hazy, foggy and non-episode
periods.

averageD50 to 9 % when using the average activation ratios
approach. On the contrary, a difference of 19 % was found
when hygroscopicity increased from 0.30 to 0.39 at this low
SS.

The average size-resolved activation ratios during the
hazy, foggy and non-episode periods at SS= 0.15 and 0.7 %
are shown in Fig. 7. At SS= 0.15 %, the activation ratios dur-
ing the hazy and non-episode periods are similar but it is
higher during the foggy period due possibly to the higher
volume fraction of inorganics (Fig. 3d–f) and the smaller
amount of non/less hygroscopic organics (Li et al., 2013).
At SS= 0.70 %, the CCN activation ratios of particles rang-
ing from 50 to 100 nm in size are lower in the hazy period
than in the non-episode period. The difference in the trends
at SS= 0.15 and 0.70 % may be due to the larger fractions
of non/less hygroscopic species in smaller particles in the
hazy period. These particles, which constitute a larger frac-
tion of OAs in the hazy period than in the other periods, likely
formed external mixtures with particles containing the aged
particles of sulfate and the more oxidized (and hygroscopic)
organics. Hence, a larger difference in the activation ratios

Figure 8. NCCN estimation in hazy period based on (a andb) the
averageD50 and (c andd) the average size-resolved CCN activation
ratio from CCN measurement over the hazy period.

between the hazy and the other periods could be observed at
SS= 0.70 % than at SS= 0.15 %.

Figure 8 shows theNCCN predicted based on the average
D50 and the average size-resolved CCN activation ratio over
the hazy period. At SS= 0.15 %, using the average CCN ac-
tivation ratio reduces overestimation from 12 % when using
averageD50 to 10 %. However, a much larger reduction from
8 to 1 % was found at SS= 0.70 %. This comparison supports
thatNCCN prediction is likely more sensitive to mixing state
than to hygroscopicity at high SS and vice versa at low SS.

4 Conclusion

In this study, a DMT CCNc-200 forNCCN measurement, a
TSI SMPS forNCN measurement, and an Aerodyne HR-ToF-
AMS for size-resolved and bulk PM1 chemical composition
measurement were used to investigate the size-resolved CCN
activity at a coastal site in Hong Kong in May 2011. Closure
studies were carried out based on theκAMS estimated from
bulk and size-resolved AMS measurement assuming inter-
nal mixing state. The deviation ofNCCN predicted from the
individual D50 obtained fromκAMS was similar to that pre-
dicted from the averageD50 over the whole period at the
four SS, which indicates that the averageD50 well repre-
sented the aerosol CCN activation properties in this study.
Using κAMS_B grossly over-predictedNCCN by up to 26 %
because of the positive bias toward the inorganic fraction. On
the contrary, theNCCN predictions based onκAMS_SR were
within 10 % of the measurements. An accurate description
of κ incorporating size-dependent compositions is necessary
for goodNCCN predictions.
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We compared the sensitivity of theNCCN prediction to
hygroscopicity (based on assumed internal mixing andκ

estimates) and mixing state at different SS.NCCN appears
to be more sensitive to hygroscopicity than to mixing state
at SS= 0.15 %, but the reverse is true at SS= 0.70 %. At
SS= 0.15 %,D50 (116 nm) is larger than the mode diameter
of the typical aerosol distributions we observed. A slight vari-
ation inκ(andD50) would have a larger effect onNCCN pre-
diction than would at high SS= 0.70 %, whereD50 (46 nm)
is smaller than the mode diameter. The effect of mixing state
is larger at SS= 0.70 %, which is associated with smaller
particles having a higher percentage of non/less-hygroscopic
components, than at SS= 0.15 %. Hygroscopicity is rela-
tively less important toNCCN prediction at this high SS.

The Supplement related to this article is available online
at doi:10.5194/acp-14-10267-2014-supplement.
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