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1 Uncertainty of NCN, NCCN, κCCN and κAMS 27 

        The relative uncertainty of NCN (   
 ) is mainly determined by the uncertainty in the flow 28 

rate (10%) and number counting (10%) of TSI 3785 WCPC, and the overall    
  is 14%. The 29 

relative NCCN (    
 ) uncertainty depends on the concentration-dependent Poisson statistical 30 

uncertainty and the CCNc flow rate uncertainty (Moore et al., 2012; Roberts and Nenes, 2005):                                     31 

                                          
       

   
    

        
          (1)                    32 

where      is the integration time (1 second) of CCNc optical particle counter (OPC) and      33 

is the sample flow rate of CCNc (45 cm
3
 min

-1
), the      

  is about 5%. Overall,     
  increases 34 

with the decease of SS, since the NCCN decreases as SS decreases. The maximum uncertainty is 35 

~38% at SS = 0.15% in this study. 36 

     The uncertainty of κCCN comes from the accuracy of the dry particles classified by the DMA 37 

and the uncertainty of the activation efficiency (       
 ) used for D50 determination. The 38 

       
  can be obtained from                                     39 

                                              
     

       
              (2)

 40 

        The sizing accuracy of DMA was determined by the accuracy of DMA sheath flow rate and 41 

classifying voltage. The typical value is less than 3% (Wang et al. 2003). The overall uncertainly 42 

in derived κCCN ranges from 23% to 39%. 43 

      The uncertainty of κAMS comes from the uncertainty in κCCN (as κorg and κinorg are derived from 44 

κCCN shown in main text), as well as the species densities and the volume fractions of organics 45 

and inorganics that are derived from the AMS mass concentrations. The uncertainty of 46 

inorganic compositions densities could be considered negligible. For organics, a mean value of 47 

1.36 ± 0.11 for H:C and 0.40 ± 0.11 for O:C were found (Lee et al., 2013), and the organic 48 

density estimated from the ratio of O:C ranging from 0.29 to 0.46 and H:C ranging from 1.49 to 49 

1.28 were from 1.15 g cm
-3

 to 1.35 g cm
-3 

(Kuwata et al., 2011). The uncertainty of an assumed 50 

organic density of 1.3 g cm
-3

 is less than 8%, which is smaller than the uncertainty in mass 51 

concentrations (~30%) measured by AMS because of the uncertainty in collection efficiency 52 
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(CE) (Middlebrook et al., 2012). The large fractions of semi-volatile oxygenated organics 53 

aerosols (SV-OOA) (23.5%) and low-volatile oxygenated organic aerosols (LV-OOA) (53.9%) 54 

suggested that particles were largely aged and likely internally mixed. An internal mixing state 55 

implies that the influences of CE on both NR inorganic and organic species are in the same 56 

degree, thus have little impact on the derived volume fractions. In all, an uncertainty of 16% is 57 

estimated for determination of inorganics and organics volume fractions, which are mainly due 58 

to the uncertainties in relative ionization efficiency (RIE) (Bahreini et al., 2009; Mei et al., 59 

2013). The signal-to-noise ratio of the AMS data concerned, i.e. the ratio of mass 60 

concentrations for the measurement period to that for the filter period, was higher than 6 for this 61 

particle size range. It is worth noting that the low signal-to-noise ratios of AMS measurements 62 

for small particles (Dm < 50 nm) will cause high uncertainty in κAMS derivation. 63 

 64 

  65 



4 

 

2 Supporting Figures 66 
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 84 

Fig.S1 Correlation of NCCN from size-resolved CCN measurement (Column A) and bulk 85 

measurement (Column B).   86 
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 105 

Fig.S2 The bulk κAMS (κAMS_B) and the size-resolved κAMS (κAMS_SR) derived from AMS 106 

measurement. 107 
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 126 

Fig.S3 Correlation of κCCN derived from CCN measurement and κAMS_SR from AMS measurement.   127 
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Fig.S4. Predictions of NCCN based on D50 derived from constant κ of (a-d) 0.30, (e-h) 0.33 and (i-128 

l) 0.35 during whole period, respectively.   129 
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 147 

Fig.S5. Predictions of NCCN based on D50 derived from constant κ of (a-d) 0.33 and (e-h) 0.35 148 

during hazy period.  149 

 150 
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 157 

 158 

Fig.S6. The average size-resolved CCN activation ratio at SS (a) 0.15%, (b) 0.35%, (c) 0.50% 159 

and (d) 0.70%.  160 
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