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Abstract. This manuscript compiles both theoretical and ex-
perimental information on contact freezing with the aim to
better understand this potentially important but still not well
quantified heterogeneous freezing mode. There is no com-
plete theory that describes contact freezing and how the en-
ergy barrier has to be overcome to nucleate an ice crystal
by contact freezing. Experiments on contact freezing con-
ducted using the cold plate technique indicate that it can ini-
tiate ice formation at warmer temperatures than immersion
freezing. Additionally, a qualitative difference in the freez-
ing temperatures between contact and immersion freezing
has been found using different instrumentation and differ-
ent ice nuclei. There is a lack of data on collision rates in
most of the reported data, which inhibits a quantitative cal-
culation of the freezing efficiencies. Thus, new or modified
instrumentation to study contact nucleation in the laboratory
and in the field are needed to identify the conditions at which
contact nucleation could occur in the atmosphere. Important
questions concerning contact freezing and its potential role
for ice cloud formation and climate are also summarized.

1 Introduction

Clouds play an important role in the global radiative bud-
get (Trenberth et al., 2009) as they cover around 70 % of
the Earth’s surface (Stubenrauch et al., 2010). Depending on
cloud type, clouds can either cool and/or heat the Earth’s sur-
face. Clouds reflect shortwave (solar) radiation cooling the
Earth, and they can absorb and re-emit longwave radiation
emitted by the Earth’s surface back towards the surface caus-
ing a warming. Aerosol particles can act as cloud conden-
sation nuclei (CCN), and a much smaller fraction of atmo-
spheric aerosol particles act as heterogeneous ice nuclei (IN)

to initiate ice formation below 0◦C. Thus, aerosol particles
are important in cloud formation (e.g., lifetime, droplet size,
cloud phase and cloud albedo) and therefore influence the
hydrological cycle (Lohmann and Feichter, 2005). Most of
the precipitation in mid-latitudes originates via the ice phase
but reaches the surface as rain (melting of ice crystals) (Lau
and Wu, 2003; Lohmann and Feichter, 2005; Lohmann and
Diehl, 2006). IN are mostly solid aerosol particles, either in-
soluble or crystalline. IN are thought to have a similar crys-
talline structure to ice and/or the possibility to form hydrogen
bonds and to possess active sites (i.e., crevasses, imperfec-
tions, corners and/or steps onto the particle surface). Possible
physical and chemical influences are summarized inPrup-
pacher and Klett(1997) andVali (1999) (e.g., water uptake,
particle morphology, hygroscopicity and presence of ions be-
tween the particle layers). Natural aerosol particles such as
bioaerosols (e.g., bacteria, pollen and fungi), volcanic ash
and soil particles (e.g., mineral dust and clays) have been
found to be good IN. Amorphous organic aerosols, such as
citric acid, levoglucosan and raffinose (Murray et al., 2010;
Wagner et al., 2012; Wilson et al., 2012), secondary organic
aerosols (Wang et al., 2012; Ladino et al., 2013); and crys-
talline particles, such as ammonium sulfate (Abbatt et al.,
2006) or hydrated sodium chloride (Wise et al., 2012) may
also serve as IN. Artificial particles such as silver iodide
(AgI) have been used in the laboratory and in cloud seeding
studies (Wieringa and Holleman, 2006) because they were
found to be efficient IN.Diehl and Mitra(1998), Gorbunov
et al. (2001) andMöhler et al.(2005) found that soot parti-
cles can also act as IN, whereas other studies suggest that this
is not always the case (DeMott et al., 1999; Dymarska et al.,
2006; Friedman et al., 2011). Therefore, predicting the IN
activity, if any, of atmospheric soot is limited by poor current
understanding.
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To understand ice formation in mixed-phase clouds, it is
crucial to study each of the four known heterogeneous ice nu-
cleation modes (deposition nucleation, condensation freez-
ing, immersion freezing and contact freezing) in detail. In
addition, the influence of secondary ice formation should
also be taken into account. The preference of one freezing
mechanism over another depends on IN composition, tem-
perature and supersaturation with respect to ice and/or wa-
ter and the presence of liquid supercooled droplets. Depo-
sition nucleation occurs when water vapor deposits onto an
IN. In contrast, condensation freezing occurs when water
vapor condenses around the particle at temperatures below
0◦C to form a supercooled liquid droplet which subsequently
freezes. Immersion freezing takes place when an IN is im-
mersed within a liquid droplet at temperatures where it does
not freeze and subsequently the liquid droplet is cooled down
and initiates ice formation. The last heterogeneous freezing
mode is contact freezing.Rau(1950); Fletcher(1969, 1970);
Cooper(1974) and Fukuta (1975a) presented some of the
first ideas on the concept of contact freezing. Contact freez-
ing is defined as the process in which freezing of a super-
cooled droplet results from the collision with an aerosol par-
ticle (Vali (1985) and definitions by the International Com-
mission on Clouds and Precipitation (ICCP) and the Interna-
tional committee on Nucleation and Atmospheric Aerosols
(ICNAA)). Ice formation can be enhanced by contact freez-
ing within mixed-phase clouds since both aerosol particles
and supercooled cloud droplets may be present. Inside these
clouds, the interstitial aerosol particles collide with the su-
percooled liquid droplets by different physical forces such
as Brownian motion, inertial impaction, interception, elec-
troscavenging, thermophoresis and diffusiophoresis (Green-
field, 1957; Slinn and Hales, 1971; Beard, 1974; Wang et al.,
1978).

In the past, a lot of work has been done to study the con-
ditions relevant for the different heterogeneous modes of ice
formation. Here we only discuss studies of contact and im-
mersion freezing with which contact freezing will be com-
pared. These two freezing modes are frequently compared;
however, this comparison is not trivial and requires more
attention. Several experiments on immersion freezing us-
ing different instrumentation (e.g., the cold plate technique
(Koop et al., 1998; Shaw et al., 2005; Vali, 2008; Rigg et al.,
2013), the Differential Scanning Calorimeter (DSC,Marcolli
et al., 2007), the wind tunnel (Pitter and Pruppacher, 1973;
Diehl et al., 2002; Von Blohn et al., 2005), the Immersion
Mode Cooling Chamber (IMCA,Lüönd et al., 2010) and the
Leipzig Aerosol Cloud Interaction Simulator (LACIS,Nie-
dermeier et al., 2010)) and different aerosol particles have
been reported.

Since 1973 several research groups have studied con-
tact freezing using different instrumentation such as cloud
chambers (e.g., the NCAR ice nucleation counter (Langer
et al., 1978), the thermal diffusion chamber (Schaller and
Fukuta, 1979), the isothermal cloud chamber (ICC,DeMott

et al., 1983; DeMott, 1995) and the CoLlision Ice Nucleation
CHamber (CLINCH,Ladino et al., 2011b)), a wind tunnel
(Pitter and Pruppacher, 1973; Levin and Yankofsky, 1983;
Diehl and Mitra, 1998; Diehl et al., 2002; Von Blohn et al.,
2005), a cold plate (Fukuta, 1975a; Rosinski and Nagamoto,
1976; Durant and Shaw, 2005; Shaw et al., 2005) and an
ElectroDynamic Balance (EDB,Svensson et al., 2009; Hoff-
mann et al., 2013a, b). The collisions of the aerosol parti-
cles with droplets have been simulated in different ways. For
example,Shaw et al.(2005); Durant and Shaw(2005) and
Fornea et al.(2009) performed their experiments using the
cold plate technique where the aerosol particles were brought
into contact with the drops mechanically. In contrast, in the
wind tunnel (e.g.,Pitter and Pruppacher, 1973; Levin and
Yankofsky, 1983; Diehl and Mitra, 1998; Von Blohn et al.,
2005), EDB (Svensson et al., 2009; Hoffmann et al., 2013a,
b) and cloud chamber studies (e.g.,Langer et al., 1978; De-
Mott et al., 1983; DeMott, 1995; Ladino et al., 2011b) the
aerosol particles were naturally scavenged from the air by
the liquid drops.

Several detailed reviews on ice nucleation have been pub-
lished (e.g.,Mossop, 1963; Vali, 1985; Pruppacher and Klett,
1997; Hoose and Möhler, 2012; Murray et al., 2012). The ice
nuclei concentrations, freezing pathways, proposed mecha-
nisms and hypotheses to explain the laboratory observations
have been revised. However, there is no paper that compiles
the available information on contact freezing, which is sug-
gested to be the pathway by which ice forms at the warmest
temperatures for a given IN type based on the available lab-
oratory data (e.g.,Hoose and Möhler, 2012). Although con-
tact nucleation can be a result of scavenging processes, the
reason of the high measured freezing onset temperatures is
still unknown. While some field studies support the atmo-
spheric relevance of contact freezing (e.g.,Auer Jr., 1971;
Hobbs and Atkinson, 1976; Hobbs and Rangno, 1985; Ans-
mann et al., 2005; Seifert et al., 2011), some field studies
(e.g., Twohy et al., 2010) and modeling studies (e.g.,Cui
et al., 2006; Phillips et al., 2007) found the opposite. Contact
freezing has been observed to take place at the cloud top and
at cloud edges where dry ambient air is mixed with cloudy
air due to entrainment. This causes droplet evaporation and
hence an increase in the collision rates due to thermophore-
sis. For example,Hobbs and Rangno(1985) proposed that
contact freezing was responsible for the glaciation of the in-
vestigated cumulus clouds and the enhancement of ice for-
mation took place at the top of the cloud due to entrainment.
With the help of an aerosol Raman Lidar,Ansmann et al.
(2005) observed ice formation in an altocumulus during the
downdraft induced by a gravity wave. The observed freez-
ing events were attributed to contact freezing and they took
place at the edge of the cloud and in the downdraft region,
similar to Hobbs and Rangno(1985). Seifert et al.(2011)
showed the effectiveness of ash particles to nucleate ice in
natural clouds. They reported that contact freezing may be
responsible for the freezing events that took place at warm
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temperatures (i.e.,≤264 K) in low and mid-level cloud lay-
ers. In contrast,Twohy et al.(2010) found that the measured
orographic clouds at the Rocky Mountains were probably
formed by immersion or condensation freezing in the regions
containing water. No evidence for contact freezing was re-
ported. Although contact freezing is favorable in evaporat-
ing clouds it may not be important in the convective clouds
as shown by the modelling studies conducted byCui et al.
(2006) andPhillips et al.(2007), where immersion freezing
was found to be the dominant pathway.

The above discrepancies stem from our incomplete under-
standing of this specific nucleation mode. Some of the identi-
fied parameters important for contact freezing from the field
studies are the cloud type, saturation conditions, droplet size
and concentration, aerosol particle size and concentration,
and the downdraft/updraft environment. The proper condi-
tions under which contact freezing is favorable are ambigu-
ous and complex. Since we know so little about the atmo-
spheric relevance of contact nucleation, the ice nucleation
community needs to spend more time and effort working on
it.

In addition to the previously mentioned field studies, there
are also few attempts to measure contact freezing nuclei
concentrations in the atmosphere (Deshler and Vali, 1992;
Meyers et al., 1992). Deshler and Vali(1992) found that
the contact freezing IN concentration at Laramie (Wyoming)
varied from 1.7 L−1 (at 258 K) to 3.1 L−1 (at 255 K). Am-
bient aerosol particles with sizes close to 10 nm were al-
lowed to collide, by diffusion and phoretic forces, with super-
cooled liquid drops with a diameter of 2600 µm. The droplets
were suspended on thermocouples in order to determine their
freezing temperatures. These field measurements are unique
so far, therefore more efforts in this direction are needed.
Field measurements are necessary to infer the atmospheric
relevance of the laboratory observations before implemented
in climate models. An increase in the numbers of contact
freezing nuclei by anthropogenic activities may impact the
indirect effect of the aerosol particles, causing more precip-
itation and less reflection of solar radiation back to space
(Lohmann, 2002).

Hoose et al.(2010) developed a parameterization to cal-
culate the contact freezing nucleation rates with the aim to
investigate the importance of this freezing mode in global
climate models and hence on climate. The obtained rates for
soot particles are comparable to that of soot in the immer-
sion freezing mode. However, the rates for dust particles are
lower than the corresponding values in the deposition nucle-
ation and immersion freezing modes because of the large size
of dust particles that renders collisions less likely than in the
case of soot.

In this manuscript we summarize the available theories,
instrumentation and laboratory studies on contact freezing
with a special focus on the experimental laboratory results
and instrumentation but we leave out the field experiments.
We highlight uncertainties of previous laboratory studies and

suggest possible modifications in future experiments in or-
der to increase their usefulness for the scientific community.
The limitations of the currently available instrumentation are
provided with the aim to build new and better instruments to
study contact freezing in the future.

2 Theory behind contact freezing

The difficulty with experimentally studying contact freez-
ing as well as describing it theoretically stems from the fact
that contact freezing is a combination of two steps: the first
step is the requirement that a collision between a supercooled
droplet and aerosol particles takes place and the second step
is the initiation of ice formation. The challenge is to decon-
volve these two steps and describe them independently.

2.1 Collision efficiency

Collision efficiency (CE) describes the fraction of aerosol
particles in the sweep-out volume that effectively comes into
contact with a droplet, falling by its terminal velocity. Fig-
ure1 shows a schematic of how aerosol particles can collide
with sedimenting water droplets due to different forces. Note
that these scavenging processes are not restricted to contact
freezing since they also influence immersion freezing.

The aerosol particles within the sweep-out volume can
be moved towards or away from the cloud droplets by the
air molecules due to their random movements. This effect,
termed Brownian motion, is most important for small aerosol
particles (aerosol particles (a) smaller than≈0.1 µm in ra-
dius). The smaller the particles, the larger the Brownian mo-
tion effect. When the aerosol particle radii are larger than
≈0.5 µm, their inertia are large enough to deviate from the
trajectories of the surrounding air and impact onto the cloud
droplets. Interception occurs when particles are of sizes that
enable them to follow the parcel trajectories around the
droplet but end up in the droplet boundary layer, very close
to its surface where they are “intercepted” by the droplet.
Interception is important in the same particle size range as
inertial impaction. If electrical charges are present both on
the aerosol particles and droplets, the aerosol particles can be
attracted by the charges on the droplet. The phoretic forces
(thermophoresis and diffusiophoresis) take place when cloud
droplets are evaporating or growing by condensation. Dur-
ing evaporation or growth by condensation a temperature
gradient between the droplet and its surrounding is cre-
ated. Air molecules at the warmer side have a higher ki-
netic energy and thus exert a net force on the particles to-
wards the colder temperature (thermophoresis). At the same
time, a water vapor gradient (diffusiophoresis) is generated
in the opposite direction, which moves the aerosol particles
in the opposite direction as thermophoresis. Electroscaveng-
ing and the phoretic forces are relatively more important in
the “Greenfield gap”, i.e., at the transition regime between
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Particle

Particle
Electroscavenging

Fig. 1.Diagram of the different collision pathways between aerosol
particles and cloud droplets relevant to contact freezing (Ladino,
2011).

Brownian motion and inertial impaction (aerosol particles
from ≈0.1 µm to≈1.0 µm in radius).

Several experimental (e.g.Beard, 1974; Lai et al., 1978;
Leong et al., 1982; Deshler, 1985; Pranesha and Kamra,
1996; Vohl et al., 2001; Ladino et al., 2011a) and theoret-
ical (e.g.,Greenfield, 1957; Slinn and Hales, 1971; Isaac
and Douglas, 1972; Wang et al., 1978; Herbert and Beheng,
1986; Tinsley et al., 2001; Park et al., 2005; Andronache
et al., 2006; Croft et al., 2009) studies have been conducted
to quantify the efficiency at which cloud drops and aerosol
particles collide as a function of particle size and concen-
tration, droplet size, relative humidity (RHw) and electric
fields. Most of the parameterizations and/or models to deter-
mine the collision rates were developed for conditions below
cloud with the exception of theIsaac and Douglas(1972), the
Young(1974a) and theWang et al.(1978) models.

Figure 2 shows the collision efficiency as a function of
particle size and RHw using a combination ofWang et al.
(1978), Park et al.(2005)’s andAndronache et al.(2006)’s
models as an illustration. AlthoughWang et al.(1978) as-
sumed the simultaneous action of the dynamical forces, with
only the net force acting on the particle;Park et al.(2005)

andAndronache et al.(2006) assumed different forces to act
independently. Therefore, they added the single forces to de-
termine the total CE.

2.2 Freezing efficiency

The freezing efficiency is the freezing probability per
droplet-particle collision. It is a function of temperature,
RHw, particle size, droplet size and sums up the particle
properties influencing the freezing process in that mode.

Knowing the collision efficiencies with the particle’s ter-
minal velocity (vt) (or particle diffusivity) and the aerosol
number concentration (Na), the number of particles (Ncoll),
which effectively collide with the droplet, can be calculated
as follows:

Ncoll(t) =

∫
π · (r(t) + a)2

· CE · vt(t) · Nadt. (1)

For a given residence time (t) of a droplet (r) in an environ-
ment with a constant temperature and aerosol concentration,
an experimental frozen fraction (FF) can be measured. Equa-
tion (1) relates to one droplet. To derive a frozen fraction it
is necessary to average over many observations of individual
droplets.

FF(t) =
Nfrozen

Ntotal
, (2)

whereNfrozen is the number of frozen droplets andNtotal is
the total number of studied droplets (liquid + ice). Hence, the
freezing efficiencyFE, can be defined as follows:

FE =
FF(t)

Ncoll(t)
=

Nfrozen

Ntotal

1∫
π · (r(t) + a)2 · CE · vt(t) · Nadt

. (3)

2.3 Theories about contact freezing

Pruppacher and Klett(1997) summarized the theories which
were available in the 1970s. They focused on active sites
(e.g.,Fletcher, 1969) as the main difference between con-
tact freezing and the other heterogeneous freezing modes.
Later on,Tabazadeh et al.(2002), Djikaev et al.(2002), Sear
(2007) and Djikaev and Ruckenstein(2008) explained the
differences between different heterogeneous modes based
on thermodynamical models. The most plausible theo-
ries/hypothesis are briefly summarized below.

2.3.1 IN solubility

Fletcher(1970) andGuenadiev(1970) suggested that the sol-
ubility of the IN could explain the difference between im-
mersion and contact freezing. The classical nucleation the-
ory (CNT) suggests that the ice germ forms on an active
site of the IN. Therefore, if the active site characteristics are
changed or partially modified it could have consequences for
the IN abilities. They suggest that most IN begin as dry and
insoluble particles. If a partial soluble IN is immersed in a
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Fig. 2. Theoretical collision efficiency as a function of aerosol radius for a cloud droplet with a radius of 12.8 µm and the contribution
of each single force.Edif , Eint, Eimp, ETh andEDf are the collision efficiency due to Brownian motion, interception, inertial impaction,
thermophoresis and diffusiophoresis respectively.CE is the total collision efficiency.ETh, EDf and henceCE have been calculated for a
relative humidity (RHw) of 90 % (solid lines) and for RHw = 70 % (dashed lines). The used air temperature was 297.0 K, whereas the used
droplet surface temperatures were 295.7 K and 292.8 K at a RHw of 90 % and 70 %, respectively.

liquid droplet its surface can be eroded by the surrounding
water molecules. As the active sites are located on the IN
surface, they can be partially destroyed and/or their size re-
duced. This causes an IN deactivation or a decrease in the IN
ability compared to an IN that collides with a cloud droplet
from the outside and initiates freezing immediately. Note that
particle erosion may also create new active sites on the par-
ticle surface (IN activation), the importance of which is un-
known. This needs to be validated by laboratory studies.

2.3.2 Ice embryo formation and its size

Cooper(1974) was the first to explain contact freezing theo-
retically based on the CNT. He proposed a possible mech-
anism for this ice formation pathway. Figure3 shows a
schematic fromCooper (1974) where an ice germ forms
on an IN due to deposition nucleation, immersion freezing
and contact freezing. He proposed that a sub-critical (de-
position nucleation) germ forms on the IN from the vapor
phase. Upon contact with a supercooled droplet, freezing is
triggered because the same ice embryo is supercritical when
surrounded by water (immersion freezing). He assumes that
the contact angle in both deposition nucleation and contact
freezing is similar because the ice germ forms from the va-
por phase. However, the critical ice embryo is larger for de-
position nucleation than for contact nucleation which leads
to a clear difference in the freezing (i.e., temperature) thresh-
old between these modes. This is illustrated in Fig.3 by the
size of the shaded areas.Hoose et al.(2010) defined the ice
embryo radius for deposition nucleation (rg,dep, Eq. 4) and
immersion freezing (rg,imm, Eq. 5) based onCooper(1974)
andChen et al.(2008).

(a) Deposition (b) Contact freezing

(c) Immersion Freezing

Vapor

Water

IN IN

IN

Fig. 3. Illustration of nucleation mechanisms, and the critical em-
bryo sizes (shaded areas) required for nucleation (Cooper, 1974).

rg,dep=
2vwσi/v

kT · ln(e/esi)
, (4)

rg,imm =
2vwσi/w

kT · ln(awesw/esi)
, (5)

wherevw is the volume of a water molecule in ice,σi/v the
surface tension between ice and vapor,σi/w surface tension
between ice and water,k the Boltzmann constant,T the tem-
perature,e the water vapor pressure,esi the saturation vapor
pressure over ice,aw the water activity, andesw the saturation
vapor pressure over water.

The critical ice embryo size for contact freezing (rg,con)
must be formed in the vapor phase and it should be equal to or
larger thanrg,imm in order to nucleate ice upon collision with
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 Foreign 
 particle
(phase δ)

   Liquid
(phase α)

 Crystal
(phase γ)

  Vapor
(phase β )

   Liquid
(phase α)

Fig. 4.Mechanism of contact freezing based on the different phases
interactions (Djikaev and Ruckenstein, 2008).

a supercooled droplet. Ifrg,con< rg,imm, the IN might diffuse
into the droplet instead. However, it depends on the particle
size and composition. Besides the critical ice embryo sizes,
Cooper(1974) also developed a mathematical expression to
calculate the number of contact ice germs per aerosol particle
(Ng,contact). Cooper’s idea is reflected in Equation6 which is
a modification from his original work (Hoose et al., 2010).

Ng,contact= 4πr2
N

e

vs

√
2πmwkT

× exp

[
−

1g#
dep+ f 1g◦

g,hom(rg,imm)

kT

]
, (6)

whererN is the radius of the nucleus,vs the frequency of
vibration of water vapor molecules adsorbed on the solid
substrate,mw the mass of a water molecule,1g#

dep the ac-
tivation energy for deposition nucleation,f the form factor,
and1g◦

g,hom the homogeneous energy for germ formation in
the vapor phase. Based on CNT,f 1gg,hom

◦ is the energy
of critical embryo formation for heterogeneous nucleation
(Pruppacher and Klett, 1997; Chen et al., 2008). In this case
1g◦

g,hom is a function ofrg,imm since nucleation upon contact
will only happen ifrg,con≥ rg,imm as mentioned above.

Cooper(1974)’s mechanism does not strictly require satu-
ration with respect to water. He demonstrated that if the RHw
is at or above 80 %, the IN should have a population of em-
bryos on its surface to nucleate ice upon collision with a su-
percooled droplet.

The threshold difference was validated experimentally
(e.g., Pitter and Pruppacher, 1973; DeMott, 1995; Diehl
et al., 2001); however, discrepancies using AgI (similar nu-
cleation thresholds for deposition nucleation and contact
freezing (Pruppacher and Klett(1997), page 339) could not
support this theory. Moreover, the particle size and rela-
tive humidity dependence on contact nucleation proposed by
Cooper(1974) was not supported by the experiments con-
ducted between the 1950s and 1970s. However, recent stud-
ies (e.g.,Svensson et al.(2009) andHoffmann et al.(2013a))
found a dependence on both parameters (see Sect. 3.3).

Fukuta(1975b) questioned a few points of Cooper’s mech-
anism. He said that Cooper’s mechanism does not include the
high superiority or efficiency of contact freezing compared
to immersion freezing. Additionally, he felt that the change
of the ice embryo shape upon collision was not consid-
ered properly and that the number of deposition ice embryos
(formed in the vapor-IN inter-phase) is not necessary larger
than the number of immersion freezing ice embryos (formed
in the liquid-IN inter-phase). However,Cooper(1975) argued
that his original ideas were correct based on the assumptions
made regarding the proposed mechanism.

2.3.3 Mechanical disturbances

Fukuta (1975a) tried to explain the difference in freezing
temperatures between immersion and contact freezing as a
consequence of the water–air interface movement on the IN.
Water molecules adsorb on the dry IN surface while ap-
proaching the supercooled drop forming a layer of a variable
thickness. The formed water clusters do not reach the criti-
cal size to form an ice embryo if the IN is brought in contact
with a supercooled droplet until a transient high free energy
is formed. This transient energy appears once the air-nucleus
surface gets locally immersed into the supercooled droplet as
a result of the collision between the IN and the droplet. If the
previously mentioned conditions are given, the total free en-
ergy barrier is lowered enabling ice nucleation. The free en-
ergy of the embryo formation (1G∗) and hence theJcontact

can be determined using Eqs. (7) and (8), respectively.

1G∗
= 1µ · V + ACS(γCS− γCL) + ASL · γSL, (7)

Jcontact= K · exp

[
−1G∗

kT

]
, (8)

where1µ in the free energy difference between ice and wa-
ter, V the volume of the ice germ,ACS the area between
the IN and ice embryo boundary,γCS surface-free energy
between the IN and ice embryo interface,γ|CL surface-free
energy between the IN and liquid interface,ASL the area be-
tween the liquid and the ice embryo boundary,γSL surface-
free energy between the liquid and the ice embryo interface,
andK the kinetic constant.

This mechanism would also work if an aerosol particle,
which was initially on the inside of a supercooled droplet,
diffuses to the surface. This would only be possible if a
change in the environment occurs and if a transient high free
energy is formed under this scenario. The structure of wa-
ter interacting with the substrate (i.e. particle) would change
as the particle emerged from the bulk (W. Cantrell, personal
communication, 2013).

There are several similarities between Cooper’s and
Fukuta’s mechanisms. Both mechanisms are framed in terms
of water adsorbed to the surface of the potential contact IN.
Additionally, both depend on RHw and aerosol particle size
(W. Cantrell, personal communication, 2013). As discussed
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in Sect. 3 the newest laboratory results on contact freezing
discuss the influence of RHw and IN size.

2.3.4 Three-phase contact

Sear(2007) used a two-dimensional three-state Potts model
to compare the nucleation rates of contact freezing with those
of immersion freezing.Sear(2007) found that the nucleation
rate at the three phase contact line (i.e., contact freezing) is
orders of magnitude higher compared with a particle that is
fully immersed in liquid water. Although this is a very gen-
eral model based on thermodynamics, the author suggests
that it can be extrapolated to more complex systems.

Another thermodynamical model was developed by
Djikaev and Ruckenstein(2008) to investigate the same phe-
nomena. In this model four different phases are taken into ac-
count as shown in Fig.4. The different phases are the liquid
and vapor phase, the ice crystal and the foreign particle which
are symbolized withα, β, γ andδ, respectively. The needed
reversible work to nucleate an ice crystal at the double inter-
phaseα-δ (immersion freezing) was calculated and com-
pared with the corresponding values at the triple inter-phase
α-β-δ (contact freezing).Djikaev and Ruckenstein(2008)
found that the required reversible work is smaller if the ice
germ forms at the triple inter-phase i.e., when the IN is lo-
cated at the droplet surface. Therefore, the energy barrier for
contact freezing is smaller than for immersion freezing.

However, the energy barrier alone does not make a nucle-
ation rate, which complicates the comparison between con-
tact and immersion freezing. Since the two approaches are
geometrically different, one may happen on any point on a
line and the other on any point on a surface. Therefore, if we
were to formulate nucleation rates out of the two theoretical
descriptions, we would get two formulas with different units:
per unit length and per unit surface. Thus, to decide if in prac-
tice, contact freezing is preferred over immersion freezing is
not straightforward. It may turn out, that contact freezing is
slower even if it has the lower energy barrier.

Recently, Gurganus et al.(2011) and Gurganus et al.
(2013) reported experimental results which contradict the
previously mentioned mechanisms. Using an improved and
modified version of a cold stage (Suzuki et al., 2007) to avoid
the point-like contact (i.e., the contact between the drop and
the IN) and to minimize the temperature variation on the wa-
ter drop surface, the preferred location to nucleate an ice
crystal was investigated on silicon wafers.Gurganus et al.
(2011) tested 189 drops and found that there is no prefer-
ence to form the ice germ at the 3-phase boundary (surface-
droplet-air) or 3-phase contact line over the 2-phase contact
area.Gurganus et al.(2013) confirmed their previous obser-
vations with an improved version of their experimental setup
(i.e. a side view of the tested droplets was possible with a
second high-speed camera).

3 Experimental results and discussion

Contact freezing became an important topic in the 1960s in
the context of weather modification. Different instruments
were developed, which will be briefly described in the fol-
lowing subsections. Table1 summarizes previous studies on
contact freezing using different instrumentation, IN type,
particle and droplet sizes, relative humidities, aerosol parti-
cle and droplet concentrations. The first experimental studies
focused on the IN properties of different organic materials
and AgI; however, nowadays the scientific community is pri-
marily focusing on bioaerosols, mineral dust and volcanic
ash particles. Note that most of the studies were conducted
with rain drops instead of cloud droplets, not all of them
used monodisperse aerosol particles and often the number
of collisions is unknown. It is therefore difficult to make a
direct comparison between the different studies due to the
large variability in the experimental conditions. Below, the
most relevant results from each instrument are shown and
discussed.

3.1 Cold plate technique

The cold plate technique is the oldest reported instrument to
study contact freezing (Gokhale and Goold Jr, 1968). The
cold plate consists of a metallic surface that is coated with a
thin layer of hydrophobic material (e.g., paraffin) to repel wa-
ter. There are two different ways to perform a contact freez-
ing experiment using this technique. In the most common
way, the liquid droplet is placed on the plate and the IN is
located at the side of the drop but in touch with it (static cold
plate). Thereafter, temperature is decreased until ice forma-
tion is observed. It typically uses one drop. Another possibil-
ity is to place the drop on the cold plate and then direct an
air stream with aerosol particles towards the drop while tem-
perature is reduced until the droplet freezes (dynamic cold
plate). In this case it is possible to use more than one drop at
the same time. The freezing of the drop(s) can be monitored
using a high speed camera or other techniques. The relative
humidity and hence evaporation can also be controlled. Fig-
ure 5 shows the apparatus used byShaw et al.(2005) and
Durant and Shaw(2005) with its main components.

The use of a single drop in a static cold plate results
in lower statistics compared to other techniques. However,
this is not the case if a dynamic cold plate is used where
the statistics are comparable or even better than other tech-
niques due to the high sensitivity to the first freezing events.
The use of single drops and single particles on a static cold
plate avoids the collision efficiency calculations and allows
more precise freezing efficiency calculations. The cold plate
technique provides useful information regarding the physical
processes such as evaporation freezing, volume vs. surface
nucleation and particle penetration after the collision takes
place.
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Table 2.Summary of the freezing temperatures for contact and immersion freezing conducted on a cold plate.T̃ is the average onset freezing
temperature (temperature at which the tested drops freeze) for contact freezing (CF), immersion freezing (IF) and homogeneous freezing
(HF), respectively.

Authors Cold plate type IN composition T̃ for CF (K) T̃ for IF (K) T̃ for HF (K)

Gokhale and Goold Jr(1968) Dynamic AgI,Clay, CuS, volcanic ash 267 [–] 265
Gokhale and Lewinter(1971) Dynamic AgI 267 [–] [–]

Fukuta(1975a) Dynamic 1-5dihydroxynaphthalene 266 [–] [–]
Fukuta(1975a) Dynamic metaldehyde 270 [–] [–]
Fukuta(1975a) Dynamic phloroglucinol 267 [–] [–]

Rosinski and Nagamoto(1976) Dynamic two soil samples 268 [–] [–]
Shaw et al.(2005) Static volcanic ash 254–255 251 246-247

Durant and Shaw(2005) Static glass-rich volcanic ash 256 252 [–]
Durant and Shaw(2005) Static soda glass 255 252 [–]

Fornea et al.(2009) Static Mount St. Helens Ash 262 255 [–]
Fornea et al.(2009) Static IHSS Pahokee Peat Soil II 263 [–] [–]
Fornea et al.(2009) Static Carbon (Lampblack) 248 [–] [–]
Bunker et al.(2012) Dynamic kaolinite 258 [–] [–]
Bunker et al.(2012) Dynamic Arizona test dust 256 [–] [–]

a b 

c 

Fig. 5. (a)Schematic with the cold plate experimental setup (left),(b) of the IN for an immersion freezing (top right) and(c) for a contact
freezing experiment (bottom right) (Shaw et al., 2005).

The first cold plate studies were conducted with polydis-
perse submicron aerosol particles, whereas the recent studies
used large monodisperse aerosol particles such as volcanic
ash. Table2 summarizes the available studies conducted with
the cold plate technique. The average onset freezing tem-
perature (i.e., temperature at which the tested drop freezes)
strongly depends on the chemical composition of the IN.
Relatively pure AgI and metaldehyde were found to be very
good materials to nucleate ice via contact freezing; however
their atmospheric relevance is low.

In Gokhale and Goold Jr(1968) 20 drops were put on the
cold plate at the same time and the aerosol particles were
dropped on the drops without any mechanical help. The au-
thors claimed that between 500 to 1000 particles reached
each drop. A similar strategy was used byBunker et al.
(2012), however they only used one drop instead of 20.

Bunker et al.(2012) found that kaolinite nucleates ice by
contact freezing at−18◦C, and ATD at−15◦C. The very
low calculatedFE (≈10−5) suggests that at high tempera-
tures, many collisions are required to nucleate ice.

Gokhale and Goold Jr(1968) andGokhale and Lewinter
(1971) showed that the AgI particles remain at the droplet
surface after the collision, i.e., there is no particle penetration
into the droplet. They also demonstrated that once a collision
takes place, the freezing of the droplets needs 16–47 mil-
liseconds to occur. Unfortunately, this behavior has not been
further investigated with other instrumentation. The time de-
pendence is important in order to evaluate the stochastic or
deterministic behavior of contact freezing. This is crucial in
order to apply relatively simple calculations of ice formation
by contact freezing on the basis of determined freezing effi-
ciencies (also termed ice nucleation activity).
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Fig. 6.Schematic of the wind tunnel experimental setup and its major components (Diehl et al., 2011; Szakáll et al., 2010).

The results fromShaw et al.(2005) andDurant and Shaw
(2005) reveal very similar freezing temperatures for volcanic
ash, glass-rich volcanic ash and soda glass particles. They
provide evidence that it does not matter if the contact be-
tween the IN and the droplet surface is from the inside or the
outside.Durant and Shaw(2005) speculate about evaporation
and its importance in the atmosphere, given that evaporation
causes immersed IN to come into contact with the droplet
surface which could trigger freezing.Fornea et al.(2009)
found that the Mount St. Helens ash particles are more effi-
cient (by 7 K) than the tested particles byShaw et al.(2005)
andDurant and Shaw(2005). These differences could be at-
tributed to differences on the chemical composition of the
investigated aerosol particles. All three studies also found an
important difference of the onset freezing temperatures be-
tween contact and immersion freezing (see Sect. 3.6).

3.2 Wind tunnel

The first wind tunnel to study collision efficiencies was built
in 1968 (Pruppacher and Neiburger, 1968; Beard and Prup-
pacher, 1969). Pruppacher developed an improved version
of the wind tunnel at the University of Mainz that enabled
contact freezing studies. In these studies a supercooled drop
is suspended in a vertical air stream. The air mass is pre-
humidified to reduce evaporation. Particles are injected up-
stream and eventually hit the levitated supercooled drop.
Freezing of the droplets after collisions is detected by a
change in its appearance (i.e., opaque). Moreover, the flow
balance also changes once the droplet freezes because its ter-

minal velocity changes. Figure6 shows a schematic of the
wind tunnel with its relevant parts (Diehl et al., 2011; Sza-
káll et al., 2010).

Figure 7 shows contact freezing results from experiments
conducted in a wind tunnel using five different particle types
(bacteria, kaolinite, montmorillonite, soot and birch spores)
as IN (Pitter and Pruppacher, 1973; Levin and Yankofsky,
1983; Diehl and Mitra, 1998; Diehl et al., 2002). They used
almost the same droplet size (220–370 µm in diameter), how-
ever, because of the nature of the aerosol particles the IN
sizes differed. Soot particles (radii) ranged from 0.05 to
0.1 µm, kaolinite and montmorillonite from 0.05 to 15 µm,
birch spores are>12.5 µm and bacteria are<0.23 µm (the
bacteria cells were passed through a grid of 0.45 µm). As-
suming that the particle size influence is small, it is possi-
ble to compare these four different data sets as they used
similar conditions and were conducted with the same instru-
ment. The authors found that the five tested particles nucle-
ated ice at temperatures higher than necessary for homoge-
neous freezing. Bacteria initiated ice formation at the highest
temperatures (269.7 K). Interestingly, bacteria show a steep
increase in the frozen fraction over a very narrow tempera-
ture range, which is not the case for the other tested materials.
This steep increase is typically observed on homogeneous
freezing experiments. The slopes of the frozen fractions with
temperature strongly depend on the used IN.

A large uncertainty in the results presented in Fig. 7 is the
aerosol particle concentration and hence the number of colli-
sions between particles and droplets, since in some of those
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Fig. 7. Comparison of different contact freezing experiments conducted in a wind tunnel. Blue represents the experiments done with soot
particles, green with kaolinite, brown with montmorillonite, red with pollen and black with bacteria (Pitter and Pruppacher, 1973; Levin and
Yankofsky, 1983; Diehl and Mitra, 1998; Diehl et al., 2002).

studies it was neither measured nor controlled. This parame-
ter is important in order to determine the collision rates and
freezing efficiencies. Only frozen fractions can be reported.
They strongly depend on experiment conditions and there-
fore do not represent the freezing probabilities of the tested
particles. The study byDiehl and Mitra(1998) is the only
exception where the aerosol concentration was between 105–
106 cm−3, which is several orders of magnitude higher than
IN concentrations found within a cloud (Deshler and Vali,
1992; Rogers, 1993; DeMott et al., 2003, 2010). If the colli-
sion rates for the used drops, particles and concentrations are
given, the freezing efficiencies could be determined.

3.3 Electrodynamic balance (EDB)

The electrodynamic balance is a versatile instrument to study
different physical properties and processes with single levi-
tated liquid droplets (e.g., index of refraction, homogeneous
ice nucleation, hygroscopicity and evaporation ratesDavis
and Ravindran, 1982; Stöckel et al., 2005; Soonsin et al.,
2010). Recently the EDB has been used for contact freezing
experiments as well (Svensson et al., 2009; Hoffmann et al.,
2013a, b). The EDB consists of a double-ring electrode with
two end cap electrodes. These concentric rings are supplied
with AC and DC voltages. The DC field is used to keep the
droplet in a balance (i.e., levitating between the rings) as this
field acts against the effect of gravitation. Droplets of dif-
ferent sizes can be generated using an electrically charged
syringe-needle system or with a piezoelectric droplet gener-
ator. Both systems ensure that the droplets are electrically

charged, which is a requirement to control them by the elec-
tric fields in the EDB. Two CCD (charge coupled device)
cameras are used to measure the droplet size via the inten-
sity of light scattered by a laser beam. Fluctuations of the
scattered light are used to detect the phase transition from
liquid to solid (or solid to liquid) (Duft and Leisner, 2004a,
b; Svensson et al., 2009). Figure8 shows a schematic of the
EDB with the alignment of the CCDs and the light source.
Charged particles can be injected to collide with the levitat-
ing droplet (mainly due to electroscavenging). The air tem-
perature, relative humidity and the total pressure within the
EDB can be measured and adjusted.

Figure9 shows the available contact freezing experiments
conducted with an EDB (Svensson et al., 2009; Hoffmann
et al., 2013a, b). All three studies reported the freezing prob-
ability or FE of different mineral dust particles to nucleate ice
crystals.Svensson et al.(2009) found that the FE increases
with decreasing temperature and increasing relative humid-
ity. Although the collision efficiency decreases with increas-
ing RHw due to thermophoresis, a RHw dependence of con-
tact nucleation indicates that the freezing efficiency upon col-
lision is secondarily sensitive to RHw.

Since the used kaolinite particles are polydisperse (from
0.3 µm to 2.5 µm in diameter) it could be that the largest
particles were responsible for the observed freezing events
in Svensson et al.(2009). If this is the case, the phoretic
forces are of minor importance. The uncertainties in the re-
ported freezing efficiencies inSvensson et al.(2009) can be
reduced if experimental collision efficiencies are determined.
Additionally, if monodisperse aerosol particles are used and
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Fig. 8.Schematic with the electrodynamic balance experimental setup (Duft and Leisner, 2004a; Zardini et al., 2006).

droplet evaporation is controlled and measured, it will be
possible to quantitatively confirm the dependence of contact
nucleation on RHw.

Hoffmann et al.(2013b) reported the FE of kaolinite and
hematite, whereasHoffmann et al.(2013a) investigated the
FE of illite. They were able to measure the experimental col-
lection efficiency which allowed them to quantitatively de-
termine the FE for each material and particle size. The kaoli-
nite FE values found byHoffmann et al.(2013b) differ from
those ofSvensson et al.(2009). Svensson et al.(2009) found
that kaolinite is able to nucleate ice at temperatures as high
as 267 K (at humid conditions) which is 27 K higher than the
observations made byHoffmann et al.(2013b). However, this
difference is substantially reduced (to 7 K) when compar-
ing the “dry conditions” data ofSvensson et al.(2009) with
Hoffmann et al.(2013b)’s data. The above-mentioned differ-
ence could be attributed to the polydisperse aerosol particles
used bySvensson et al.(2009) which are in contrast with
the 550 nm particles (in diameter) used inHoffmann et al.
(2013b)’s study.

Hoffmann et al.(2013b) and Hoffmann et al.(2013a)
found a temperature and particle size dependence when using
hematite and illite. Figure9 clearly shows how FE increases
with increasing the IN size. Additionally, the illite data nicely
shows that ice nucleation due to contact freezing takes place
at warmer temperatures when the particle size is increased.
These observations support the contact freezing mechanisms
proposed byCooper(1974) andFukuta(1975a).

3.4 Cloud chambers

There are different types of cloud chambers which are able
to study the heterogeneous freezing modes independently
and/or more than one mode at the same time. In this sec-
tion the NCAR counter, the Colorado State University (CSU)

isothermal cloud chamber, the thermal diffusion chamber
and the collision ice nucleation chamber (CLINCH) are de-
scribed with their corresponding results. Advantages of flow
chambers are continuous flows and known residence times.
It is possible to divide those instruments in two different cat-
egories, mixing cloud chambers and continuous flow cloud
chambers.

3.4.1 Mixing cloud chambers

The NCAR ice nucleus counter is a mixing chamber which
was originally built at the National Center for Atmospheric
Research (NCAR,Langer et al., 1967); however, new cham-
bers of the same type were built afterwards (e.g.,Langer,
1973; Super et al., 2010). The NCAR ice nucleus counter
is typically operated as follows. Haze particles, aerosol par-
ticles and/or CCN are combined with a humid air mass
(RHw ≈80 %) at room temperature. The air stream with the
particles is placed at the top of the chamber where its tem-
perature is gradually reduced while the introduced particles
are activated as the flow descends downward through the
chamber (Langer, 1973). Langer et al.(1978) modified the
standard NCAR counter to investigate immersion and con-
tact freezing. This modification allows the injection of new
particles which can be tested as IN. The particles are intro-
duced in the bottom section of the chamber to interact with
the activated cloud droplets at the desired temperature. The
chamber wall temperatures are controlled by a cooling sys-
tem. An acoustic sensor was used to detect ice at the exit of
the counter. The currently available NCAR counters do not
have the modification conducted byLanger et al.(1978).

The NCAR ice nucleus counter studies basically focused
on submicron (<150 nm) AgI particles. In these studies,
Brownian motion was the dominant dynamical force respon-
sible for moving the aerosol particles towards the water
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Fig. 9. Experimental freezing efficiencies (FE) of several materials obtained with an EDB. The red, green and blue diamonds represent the
kaolinite experiments (polydisperse aerosol particles) fromSvensson et al.(2009) at high, intermediate and low relative humidity with respect
to water. The purple triangles and the colored circles represent the kaolinite and hematite results fromHoffmann et al.(2013b), respectively.
The black, brown, dark yellow and orange stars represent the illite FE for 375, 275, 161 and 75 nm, respectively (Hoffmann et al., 2013a).

drops.Langer et al.(1978) determined the freezing proba-
bilities of AgI particles using the mathematical expression
from Sax and Goldsmith(1972). They found that the freez-
ing probabilities increased with decreasing temperature from
259 K to 253 K. In addition, an aerosol particle size effect
was clearly observed. Particles smaller than 0.02 µm were not
active, whereas for particles larger than 0.02 µm the freezing
probability increased with increasing particle size.

A static isothermal chamber with much longer residence
times than the NCAR counter is the CSU isothermal cloud
chamber (ICC). In the ICC, the cloud droplets were gen-
erated using an ultrasonic nebulizer and then transferred to
a stand tube (10 cm in diameter) to get into thermal equi-
librium with the filtered cooled air before the cloud is dis-
charged into the chamber (960 L) (Grant and Steele, 1966).
Non-hygroscopic aerosol injected into the chamber with dry
air and mixed quickly through the chamber volume will col-
lide with drops if no other nucleation mechanism occurs. In
the ICC, ice formation is monitored in time and particle co-
agulation is prevented by a dilution procedure (DeMott et al.,
1983; DeMott, 1995).

DeMott et al.(1983) observed that the contact freezing
efficiency was very high for the AgI-type ice nuclei ex-
amined at temperatures of 257 K and higher in agreement
with Langer et al.(1978). They also found a clear pseudo-
first-order dependence of ice nucleation by AgI aerosols on
droplet concentrations and aerosol size. With the help of the
isothermal chamber and the CSU expansion chamber,De-
Mott (1995) was able to determine that the freezing rates for
contact freezing were higher than for the other three hetero-
geneous freezing modes.

3.4.2 Continuous flow cloud chambers

Another cloud chamber type is the thermal diffusion cham-
ber. These chambers have been widely used to investigate the
ice nuclei abilities of aerosol particles in different heteroge-
neous freezing modes and homogeneous freezing (Schaller
and Fukuta, 1979; Hussain and Saunders, 1984; Tomlinson
and Fukuta, 1985; Rogers, 1988; Stetzer et al., 2008; Kanji
and Abbatt, 2009). All of these devices, some with contin-
uous flow and some not, use temperature gradients between
ice-coated walls to expose aerosols to ice and water super-
saturations.Schaller and Fukuta(1979) built the first thermal
diffusion chamber that was able to study contact freezing.
The instrument has a wedge-shaped design and consists of
two flat plates covered with ice in order to produce saturation
with respect to ice. The temperature of both chamber walls
can be varied, with the top wall being warmer than the bottom
wall. It is also possible to have a concentric cylindrical con-
figuration with a vertical orientation of the chamber (Rogers,
1988). For contact freezing, haze particles were formed at
subsaturated conditions with respect to water. Once the haze
particles were formed, the IN were injected into the chamber
to allow them to collide with the haze particles.

Schaller and Fukuta(1979) observed a very low rate of nu-
cleation for AgI particles, which means that they are less effi-
cient nucleating ice at high temperatures (between 267 K and
265 K). However, these results may be specific to the type of
used AgI particles. Metaldehyde was found to be a very good
IN at these temperatures, forming three orders of magnitude
more ice crystals as compared to the used AgI. It could be
that the high efficiency was due to the electric-dipolar nature
of metaldehyde, which increases the number of collisions
due to electroscavenging. Unfortunately, metaldehyde was
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Fig. 10.Schematic with the CLINCH experimental setup; (left) side view and (right) front view of the instrument (Ladino, 2011).

not used in the subsequent contact freezing studies to con-
firm these observations. Note that collisions were with small
haze droplets that are not diluted cloud droplets. Therefore, it
is possible that the IN abilities of the tested aerosol particles
were influenced by the solute.

The latest cloud chamber built is CLINCH (Ladino et al.,
2011b). It is a continuous flow chamber which consists of
two vertical parallel plates with lengths that can be varied
between 20 and 80 cm as shown in Fig.10. CLINCH uses a
droplet generator to inject a series of droplets (with a variable
frequency) at the top of the chamber. The aerosol particles
enter the chamber at the head from both sides with an air
flow. Aerosol particles can interact with the liquid droplets
at a constant temperature and humidity in the volume be-
tween these plates. Both plates have the same temperature
which is controlled with a cryostat. An Ice Optical DEtector
(IODE) is used to distinguish between liquid droplets and ice
crystals by depolarization (Nicolet et al., 2010). CLINCH is

able to perform experiments on contact freezing varying the
droplet size, particle size, IN type, aerosol particle concentra-
tion, residence time and temperature at ice saturation relative
humidity.

Ladino et al.(2011b) studied the effect of the IN size and
the aerosol particle concentration on the frozen fraction using
kaolinite particles and cloud droplets of 12.7 µm in radius.
The left panel in Fig.11 shows that the onset freezing tem-
perature (defined when 3 % of the droplets freeze) slightly
increases with increasing the IN size. Although the authors
observed a small difference in the onset freezing values, there
is not a significant difference between the two tested IN sizes.
This is in contrast with the observations made byLanger
et al.(1978) andDeMott (1995) who found a particle size in-
fluence when using AgI and AgI-AgCl particles and will be
investigated further. Based on the CNT an increase in the sur-
face area increases the probability to have more active sites
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at which the ice germ can form, which results in higher onset
freezing temperatures (Pruppacher and Klett, 1997).

The right panel in Fig.11 shows the frozen fraction for
two different aerosol particle concentrations. Keeping the CE
constant for a drop-particle size pair, the number of parti-
cles within the droplet’s sweep-out volume and the num-
ber of collected particles by the droplets will increase if
the aerosol particle concentration is increased. It results in
a larger number of potential IN and active sites interacting
with the droplets, causing a larger number of nucleated ice
crystals. Nevertheless, differences in freezing fractions when
using 300 cm−3 or 1000 cm−3 kaolinite particles were sur-
prisingly small and will be further investigated.

In CLINCH the droplet size is measured accurately at the
top section, however its size along the chamber and at the
bottom section is uncertain since the droplets shrink due to
evaporation. The droplet size is a key parameter when deter-
mining the collision efficiency, which in turn is important to
determine the freezing efficiency of contact freezing. This is
the reason for the high and uncertain freezing efficiencies re-
ported from CLINCH (Ladino et al., 2011b). More research
in this direction is needed.

3.5 Freezing efficiency results inter-comparison

In the above sections it was shown that the frozen frac-
tion can be experimentally determined by the different in-
strumentation. In some cases the freezing efficiencies can

also be calculated based on the instrument and available in-
formation. However, the reported freezing efficiencies are
experiment-dependent. Because kaolinite has been exten-
sively studied with different instrumentation, it was chosen
to inter-compare the freezing efficiencies obtained with the
wind tunnel, the cold plate technique, EDB and CLINCH.
However, the chemical composition of the used kaolinite
particles may be different since kaolinites from different
sources have different mineralogical compositions as shown
by Atkinson et al.(2013). The experiment-dependent kaoli-
nite freezing efficiencies are summarized in Fig.12.

Although Pitter and Pruppacher(1973) did not calcu-
late/report the freezing efficiency of their wind tunnel exper-
iments, we used the provided data to calculate their corre-
sponding freezing efficiencies based on some assumptions
in order to investigate the role of the aerosol particle con-
centration on the freezing efficiencies. The threeNcoll sce-
narios from the wind tunnel data demonstrate the high vari-
ability and sensitivity of these calculations. The dependence
of freezing efficiency on RHw reported inSvensson et al.
(2009), particle size reported inBunker et al.(2012); Hoff-
mann et al.(2013b, a) and the two droplet size inLadino et al.
(2011b) is obvious.

Figure12 also shows theoretical calculations (solid color
lines) ofNg,contactusing Eq. (6) following the procedure de-
scribed inHoose et al.(2010). These calculations were con-
ducted for particles with a diameter of 500 nm, a contact
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Fig. 12. Comparison of the available kaolinite freezing efficiencies due to contact nucleation as a function of temperature from different
instrumentation. In those studies that reported frozen fractions we have calculated the freezing efficiency, assuming different values for
Ncoll. The stars represent the wind tunnel data with different assumptions for the unknown parameterNcoll (Pitter and Pruppacher, 1973),
whereas the diamonds, circles and squares depict the data from the EDB (Svensson et al., 2009; Hoffmann et al., 2013b), CLINCH (Ladino
et al., 2011b) and the cold plate data (Bunker et al., 2012), respectively.

angle of 12.7◦ and a1G of −0.621× 10−20 J. Note that
Ng,contact is equivalent toFE. The theoretical calculations
show that ice forms at higher temperatures with increasing
RHw. This is in agreement with the observations made by
Svensson et al.(2009). Note that the relative humidities for
the dry, intermediate and humid conditions of the experi-
ments conducted bySvensson et al.(2009) were not reported.
At high RHw’s, the theoretical increase ofFE with temper-
ature is very steep and it requires less than 5 K to move
from 1.0× 10−5 to 1.0. This is in agreement with the hu-
mid air data fromSvensson et al.(2009) but is in contrast
with the experimentally derivedFE’s from Pitter and Prup-
pacher(1973) data. At RHw of 80 % around 10 K are needed
to obtainFE= 1 from the theoretical calculations. This tem-
perature trend is closer to the trend reported byPitter and
Pruppacher(1973); Ladino et al.(2011b); Hoffmann et al.
(2013a, b) and the dry data fromSvensson et al.(2009). The
discrepancies can be attributed to the different experimental
conditions and to the assumptions made for the theoretical
calculations. The large FE values reported byLadino et al.
(2011b) are the result of an overestimation of the droplet size
in the CE calculations and due to the use of a laser with a
circular profile in the IODE detector.

Even though the particle type (kaolinite) is the same in
all four studies, the experimental conditions differ substan-
tially. The IN efficiency of the kaolinite used byBunker et al.
(2012) was lower as compared to the other studies. The kaoli-
nite source, the differences in droplet size, and sensitivities
on determining the first freezing event could explain these
discrepancies. It is possible that the used kaolinite samples

have substantial differences in their chemical composition.
The experimental differences and the high uncertainty in the
collision rates are reflected in the calculated kaolinite freez-
ing efficiency. These values differ by several orders of mag-
nitude in the same temperature range, even when similar par-
ticle and droplet sizes are used. Although the comparison of
the theoretical and experimental results is qualitative, it con-
firms how sensitive the determination ofFE is. That is why
better designed experiments or inter-laboratory campaigns
(i.e., experiments of contact freezing using different tech-
niques with the same IN samples and aerosol particle con-
centration, RHw and droplet and particle sizes) are needed to
validate the freezing efficiency of contact freezing that could
be used in process and climate models.

3.6 Contact freezing versus immersion freezing

Roberts and Hallett(1968) and Niemand et al.(2012) in-
vestigated the fraction of active ice nuclei in the immersion
freezing mode as a function of temperature.Roberts and Hal-
lett (1968) used five clays and minerals, whereasNiemand
et al. (2012) used five natural mineral dust samples. Both
studies found that the fraction of active IN in this heteroge-
neous freezing mode is temperature dependent.Roberts and
Hallett (1968) found that≈ 50 % of the tested particles were
active at temperatures between 258 K and 248 K.Niemand
et al. (2012) reported that at 254 K and 246 K, 0.01 % and
1 % of the tested aerosol particles were active in the immer-
sion freezing mode, respectively. In theoryNiemand et al.
(2012)’s data could be compared with the contact freezing
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Fig. 13. Comparison of contact freezing (CF) and immersion freezing (IF) results as a function of temperature using different IN. All the
experiments were conducted in a wind tunnel. The contact freezing and the immersion freezing experiments are represented by the solid
(circles) and dotted (squares) lines respectively. The blue color represent the experiments done with soot particles, green with kaolinite, red
with pollen and black with bacteria (Pitter and Pruppacher, 1973; Levin and Yankofsky, 1983; Diehl and Mitra, 1998; Diehl et al., 2002).
Note that the collision rates are not accounted for in any of the presented results.

data from Fig.12; however, this is not possible due to the
limitations mentioned in the above section.

A direct qualitative and quantitative comparison between
contact freezing and immersion freezing from experimental
results has been done byPitter and Pruppacher(1973); Levin
and Yankofsky(1983); Diehl and Mitra(1998); Diehl et al.
(2002); Ladino et al.(2011b); Shaw et al.(2005); Durant and
Shaw(2005) andFornea et al.(2009) using a wind tunnel,
the CLINCH/IMCA, or the cold plate technique. The same
particles were either immersed within a droplet (before or
during the experiment) or put in contact with the droplet sur-
face (mechanically or due to a flow).Langer et al.(1978),
Schaller and Fukuta(1979), DeMott et al.(1983), andDe-
Mott (1995) conducted experiments of the other heteroge-
neous freezing modes in addition to contact freezing in their
cloud chambers. However, due to the large complexity in as-
signing an ice nucleation event to a specific mechanism they
are not discussed here.

Figure 13 shows a qualitative comparison of contact vs.
immersion freezing experiments conducted in a wind tun-
nel. Contact freezing occurs at higher temperatures than im-
mersion freezing when bacteria, pollen or kaolinite particles
were used. In these experiments, the numbers of ice crystals
formed was typically higher than for immersion freezing at
a given temperature. Only soot particles show the opposite
behavior where immersion freezing was found to be more
efficient than contact freezing. The difference between the
two freezing modes for soot is however, much smaller than
for kaolinite particles. Kaolinite particles show a difference

in the onset freezing temperature of around 10 K whereas the
other tested particles only show a difference of less than 4 K.

Another qualitative comparison between these two modes
was done byLadino et al.(2011b). The contact freezing
experiments were conducted in CLINCH, whereas the im-
mersion freezing experiments used the immersion freezing
chamber IMCA (Lüönd et al., 2010). This comparison is lim-
ited by having used different chambers and different droplet
sizes, but used the same kaolinite particles of the same size,
particle generator, size selection technique and detector. Fig-
ure 14 shows the results using two different particle sizes.
Note that the number of ice crystals in CLINCH is limited
by the number of collisions to a frozen fraction of 0.4. For
both particle sizes 400 nm (left) and 800 nm (right) there is
a small difference in the onset freezing temperature and in
the frozen fraction being more pronounced for the 400 nm
particles. This means that CLINCH/IMCA also qualitatively
shows that contact freezing is initiated at higher temperature
than immersion freezing. This comparison has a similar lim-
itation as the one from the wind tunnel studies because the
number of particles that collides with the droplet on average
is below one, hence it is smaller than the single particle im-
mersed within each droplet in the IMCA experiments. Fur-
thermore the influence of the droplet size in CLINCH is not
clear since it is shrinking, which changes its collision effi-
ciency. This will be investigated further in the future.

Table2 summarizes the quantitative comparisons between
immersion and contact freezing from the experiments con-
ducted with the cold plate technique. Two volcanic ash par-
ticles and two organic particles that behave like glasses were
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Fig. 14. Comparison of contact freezing and immersion freezing results for kaolinite particles. Red circles represent the contact freezing
experiments for cloud droplets of 26 µm (in diameter) with a residence time of 5 s, whereas the blue squares represent the immersion freezing
data with a droplet diameter of 6 µm.dp refers to the aerosol particle diameter.

investigated. The differences in the onset freezing tempera-
ture vary between 3 K and 7 K. The differences are consis-
tent even if different cold plates and IN are used. All cold
plate experiments were conducted using different particle
and droplet sizes, which complicate the comparison of re-
sults from different authors. These experiments did not report
the frozen fraction as they used a single droplet and a single
aerosol particle.

The comparison between these two modes is more pre-
cise in the cold plate technique experiments as it uses one
IN per drop in both contact and immersion freezing. How-
ever, this comparison can be improved if the IN surface area
which enters in contact with the droplet (or the line length
of the three-phase boundary according to the three-phase-
model in Sect. 2.3.4) is estimated and used instead of the
number of particles. The aerosol particle surface area for im-
mersion freezing experiments is constant over time, however,
the surface area in the contact freezing experiments in the
wind tunnel, EDB and CLINCH studies increases with time
with the exception of cold plate technique studies where only
one aerosol particle per drop was used. For the wind tun-
nel experiments it is unknown if the IN/drop ratio in contact
and immersion freezing mode is comparable. The compari-
son with CLINCH is also not adequate, as their contact freez-
ing experiments are not normalized to the number of colli-
sions, whereas in IMCA the particle-droplet ratio is always
one. However, if the shrinking droplet size from CLINCH
is estimated accurately, a better calculation ofNcoll can be
obtained and hence a normalization will be possible. Thus
simultaneous comparable measurements of contact and im-
mersion freezing are urgently needed.

As shown above, immersion freezing and contact freezing
data are often compared to each other. However, a compar-
ison between both modes is difficult because a number of
parameters should be controlled or constrained. We suggest
here a possible approach for the comparison ofNg,contactand
Ng,immersion(see Fig.15).

The freezing efficiencies or the frozen fractions for both
modes can only be directly compared, when droplets of one
size are exposed to the same number of particles of the same
size for the same time. The implications not only for exper-
iments on both modes but also for natural clouds, in which
contact freezing is possible, are as follows. Under pure im-
mersion freezing conditions (all particles are immersed in
droplets and each droplet contains only one particle) the
droplet freezes after some time since the IN surface area in
contact with the supercooled liquid is constant over time. In
this setting the ln of the frozen fraction scales linearly with
time and surface area of the IN at a given temperature (Mur-
ray et al., 2011; Hoffmann et al., 2013b; Knopf and Alpert,
2013):

ln

(
Nfrozen(t)

Ntotal

)
= Jimm(T ) · S(t) · t, (9)

whereJimm is the nucleation rate due to immersion freezing
as a function of temperature (T), andS(t) the total area of
immersed particles as a function of time (t).

Under pure contact freezing conditions, once an IN col-
lides with a supercooled droplet it can cause freezing of
the droplet due to contact freezing. If this does not hap-
pen, we assume that the IN gets immersed into the droplet
and can then act as an immersion freezing nucleus. If im-
mersion freezing does not cause the droplet to freeze under
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Fig. 15.Schematic of a typical contact and immersion freezing experiment. For details refer to the main text.

the prevailing conditions, another IN can collide with the
droplet. Again, either contact freezing can take place, or im-
mersion freezing can occur after the particle is immersed in
the droplet. This cycle continues until the droplet freezes by
one of the two processes. Hence, contact freezing is constant
over time (as is the collision rate) assuming a constant par-
ticle flux and similar aerosol particle size since the collision
efficiency varies as a function of both parameters, while the
number (and thus the surface area) of immersed particles in
a droplet increases linearly with time, causing the immer-
sion freezing process to be a function of time squared. To
unambiguously determine which freezing process causes the
droplets to freeze requires studying the time-dependence of
the freezing process (Hoffmann et al., 2013b):

ln

(
Nfrozen(t)

Ntotal

)
= [Jimm(T ) · S(t) · t ] + [FE(T ) · nc · t ] , (10)

=

[
Jimm(T ) · Sp · nc · t2

]
+

[
FE(T ) · n|textc · t

]
, (11)

whereSp is the aerosol particle surface area, andnc the colli-
sion rate (Ncoll/t). Based on the evaluation ofHoffmann et al.
(2013b)’s experiments according to Eq. (11), they found that
they indeed observed contact freezing in their experiments.

3.7 Parameterizations

In order to consider contact freezing in numerical models,
several parameterizations were derived for the IN concen-
trations (Young, 1974b; Meyers et al., 1992; Phillips et al.,
2008; Morrison et al., 2008; Hoose et al., 2010). Because
the wind tunnel and the CLINCH experiments yield a frozen
fraction but not the number of IN, we compare the exper-
imental wind tunnel and CLINCH data with the parameter-
ized frozen fractions fromDiehl et al.(2006) in Fig.16. Good
agreement between the wind tunnel data and mineral dust,
bacteria and pollen is achieved because these data were used
to obtain the parameterization. However, soot in the wind
tunnel initiated freezing at much colder temperatures than the
parameterization suggests. This is because the soot parame-
terization is based on the data byGorbunov et al.(2001).
It is however questionable if the freezing of soot in theGor-
bunov et al.(2001) study is really due to contact nucleation or
rather due to deposition nucleation. The much colder freez-
ing temperatures of the soot measured byDiehl and Mitra
(1998) are thought to be caused by an organic coating of the
particles emitted as a byproduct of the used kerosene burner
(Diehl, personal communication). The kerosene soot burner
data show a freezing onset and increase of frozen fraction
with decreasing temperature that is comparable to what is
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Fig. 16. Comparison of contact freezing frozen fractions obtained
from wind tunnel studies (thick squares) using kaolinite (blue) and
montmorillonite (red) (Pitter and Pruppacher, 1973), soot (black)
(Diehl and Mitra, 1998), pollen (light blue) (Diehl et al., 2002) and
bacteria (green) (Levin and Yankofsky, 1983) and CLINCH (thin
squares with error bars) using kaolinite (Ladino et al., 2011b) as
compared with the parameterized contact freezing frozen fractions
by Diehl et al.(2006) (solid lines).

found for two different sizes of kaolinite using CLINCH.
Kaolinite in CLINCH freezes at much colder temperatures
than in the wind tunnel. This range in freezing onset and in-
crease of frozen fraction with decreasing temperature shows
the uncertainty in the data and will translate in an equally
large uncertainty in the parameterization of the frozen frac-
tion.

4 Conclusions

There is experimental evidence for contact freezing to act
as proposed byCooper (1974), Durant and Shaw(2005)
andDjikaev and Ruckenstein(2008), however it is still un-
clear why the available laboratory results indicate that con-
tact freezing is the most efficient ice nucleation mode. More
and better controlled experiments are needed to validate the
proposed hypotheses byCooper(1974) andFukuta(1975a)
which so far are the most promising ideas. Both theories
are based on the CNT and include key parameters partially
proven by laboratory experiments such as water adsorp-
tion on the particle surface, RHw and IN size. Additionally,
the evaporation freezing pathway introduced byDurant and
Shaw(2005) could take place within mixed-phase clouds un-
der subsaturated conditions.

Laboratory experiments designed to specifically quantify
contact freezing indicate that contact freezing initiates ice
formation at warmer temperatures than other heterogeneous
freezing modes. However, contact freezing is limited by the

collision efficiency and therefore its efficiency in the atmo-
sphere is not known. A difference of around 1–10 K in the
onset freezing temperatures and in the number of formed ice
crystals at a given temperature between contact and immer-
sion freezing was found when using the wind tunnel and the
CLINCH/IMCA flow chambers with different IN. However,
these comparisons are not conclusive due to several limita-
tions in both systems. Experiments conducted in the mix-
ing chamber also showed a clear difference between contact
freezing, condensation/immersion freezing, and deposition
nucleation. A difference of around 3–7 K was found in the
onset freezing temperatures when using a static cold plate
with different volcanic ash particles. Based on the labora-
tory results from the static cold plate which are quantitative,
contact freezing is clearly distinguished from the other het-
erogeneous freezing modes and it is so far the most efficient
pathway to nucleate ice crystals.

The atmospheric IN concentrations are much smaller than
the values used in the laboratory experiments. Addition-
ally, the laboratory experiments could be biased by the use
of RHw below 100 %, which favors the collisions between
aerosol particles and cloud droplets due to thermophoresis.
Therefore, the atmospheric relevance of contact freezing is
not yet clear. A quantitative calculation of the frozen fraction
is needed to determine the maximum freezing efficiencies.
Disagreements with theoretical collection rates remain and
need to be investigated in future. Most of the experimental
studies did not report the collision rates and therefore give
only experiment-specific frozen fractions but no experiment-
independent freezing efficiencies (with the exception of the
data reported byHoffmann et al., 2013bandHoffmann et al.,
2013a). Once collision rates are known, the uncertainty in the
freezing efficiency calculation will be substantially reduced.
It will allow an intercomparison between data sets from dif-
ferent experiments and an extrapolation of the laboratory re-
sults to atmospheric conditions is possible. This especially
includes more experiments with cloud droplets and monodis-
perse submicron aerosol particles, taking into account the
aerosol particle concentration and RHw are needed.

The static cold plate studies suggest that the difference in
the temperature at which an ice germ forms in the contact
and immersion freezing mode could be caused by the inter-
action between the different phases but does not involve a
collision energy. However, wind tunnel and flow chamber ex-
periments where collisions take place also show a difference
between these two heterogeneous freezing modes. It is thus
difficult to conclude if the ice germs form at higher temper-
atures during contact freezing than immersion freezing due
to the collision (IN-droplet) or due to the phase interactions
or if it is a combination of both factors. There are some in-
dications for both theories but they are not proven as the ex-
perimental data have some limitations. In the static cold plate
experiments large particles were used, thus the surface area
of the particles which comes in contact with the droplets is
much larger than the submicron particles which were used in
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wind tunnel studies and in CLINCH. In cases where colli-
sions are present, the surface area that comes in contact with
the droplet is not known.

In a real cloud, more than one freezing mechanism can
take place at the same time. It will be interesting to per-
form experiments where a single IN is immersed in a liquid
droplet and thereafter more IN are injected that collide with
the droplet/IN system to simulate the real competition be-
tween immersion and contact freezing within a mixed-phase
cloud. In addition to it, the inclusion and control of grow-
ing and shrinking of droplets to alter the collision frequency
will increase the atmospheric relevance of these experiments.
This type of experiment will tell us if contact freezing mat-
ters in this scenario. Mixing chambers like the NCAR ice
nucleus counter or the CSU-CIC can be perfectly adjusted to
do that.

New instrumentation is needed where the atmospheric
conditions can be reproduced as closely as possible in or-
der to increase the usefulness of the produced data. New
instrumentation should measure and control the important
parameters for contact freezing (RHw, a, r, Na). Addition-
ally, field measurements on contact freezing are urgently
needed since these studies are very scarce (e.g.,Davis and
Auer, 1972). The conditions at which contact freezing takes
place in a natural environment are needed to estimate its
atmospheric relevance. To assess whether and where con-
tact nucleation is a possible process, a field study similar
to the NASA African Monsoon Multidisciplinary Analyses
(NAMMA) experiment is needed. One limitation to perform
field measurements is to overcome the low collection rates.
The collection rates could be enhanced if the aerosol con-
centration and the residence time are increased. The aerosol
concentration can be increased with the help of an aerosol
particle concentrator and/or a counter flow virtual impactor
(it is commonly used to separate cloud droplets or ice crys-
tals from interstitial aerosols but it is also possible to use it
as an aerosol concentrator;Slowik et al., 2011). Field mea-
surements will allow us to validate the laboratory experi-
ments and their data will be very valuable for validation of
numerical models (cloud resolving, regional and global cli-
mate models). Field measurements are also important be-
cause they include dynamical effects such as organized up-
draft and downdraft motions, wind shear, turbulence and en-
trainment, which are commonly neglected in the laboratory
studies. The addition of those dynamical effects on the con-
tact freezing laboratory experiments will allow us to better
mimic this heterogeneous freezing mode.

Almost all previous comparisons between immersion
freezing and contact freezing were done with the aim to study
the IN ability in both modes and to infer which mode is more
efficient. However, an accurate direct comparison is not pos-
sible (or has not yet been done) because even when using the
same IN and the same particle size the experimental condi-
tions are different. The number of particles within or in con-
tact with the droplet in both modes is different. Assuming

that the ratio particle/droplet is the same, the comparison is
still not completely valid because in the immersion mode the
entire IN surface is immersed, therefore the whole IN plays
a role in that case. In contrast, in contact freezing only a part
of the IN surface is in contact with the droplet, therefore only
a small part of the IN is responsible for freezing. In order to
directly compare and validate the available instrumentation,
it would be interesting to perform a contact nucleation in-
tercomparison where all experiments use the same chemical
composition and particle size at a defined temperature range.

Answering the following key questions will help us to un-
derstand the impact of contact freezing on cloud glaciation
and hence on the hydrological cycle and on the radiative
properties of clouds. Some of these points were already high-
lighted byVali (1985) andMeyers et al.(1992) but they re-
main open and/or uncertain:

– Which is the most appropriate or representative theory
to explain ice formation due to contact freezing from a
microscopic perspective?

– Is the collision energy crucial to initiate freezing or is
it purely an air-water inter-phase effect?

– Is contact freezing time dependent and thus a stochas-
tic process?

– Does the particle stick on the droplet surface as found
by Gokhale and Goold Jr(1968) or does the particle
get partially or completely immersed into the droplet?
If the latter, what are the particle penetration rates?

– How many collisions are needed to trigger the freezing
of cloud droplets due to contact freezing? What are the
freezing efficiencies of different INs in contact freez-
ing mode?

– Do parameters other than particle type, aerosol size,
temperature, aerosol particle concentration and time
influence contact freezing? Does droplet size matter?

– Why is contact freezing more efficient at nucleating
ice than the other freezing modes?

– Is contact freezing an especially effective mechanism
also in real atmospheric cloud situations?
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