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Abstract. A simple formulation of aggregation for two-
moment bulk microphysical models is derived. The solution
involves the evaluation of a double integral of the collec-
tion kernel weighted with the crystal size (or mass) distribu-
tion. This quantity is to be inserted into the differential equa-
tion for the crystal number concentration which has classical
Smoluchowski form. The double integrals are evaluated nu-
merically for log-normal size distributions over a large range
of geometric mean masses. A polynomial fit of the results
is given that yields good accuracy. Various tests of the new
parameterisation are described: aggregation as stand-alone
process, in a box-model, and in 2-D simulations of a cirro-
stratus cloud. These tests suggest that aggregation can be-
come important for warm cirrus, leading even to higher and
longer-lasting in-cloud supersaturation. Cold cirrus clouds
are hardly affected by aggregation. The collection efficiency
is taken from a parameterisation that assumes a dependence
on temperature, a situation that might be improved when re-
liable measurements from cloud chambers suggests the nec-
essary constraints for the choice of this parameter.

1 Introduction

Cirrus clouds, in particular at temperatures higher than
−40◦C, often contain very large ice crystals with maximum
dimensions exceeding 1 mm (Heymsfield and McFarquhar,
2002, Fig. 4.6). These large crystals generally have complex
shapes (Field and Heymsfield, 2003, Fig. 3), and many of
them seem to be aggregates of simpler crystals, although one
has to be careful in identifying irregular crystals with ag-

gregates (Bailey and Hallett, 2009). But also in cold cirrus
clouds (T <−40◦C) aggregated ice crystals can be found
(e.g.,Kajikawa and Heymsfield, 1989; Connolly et al., 2005;
Bailey and Hallett, 2009), indicating that aggregation might
also play a role for the cold temperature regime.

The process of ice aggregation was already investigated in
the 19th century. From September 1842 on, Faraday made a
series of experiments in order to investigate the ability of ice
to stick onto other ice particles (Faraday, 1859), which was
called “regelation” byTyndall (1857). During this time, the
accepted explanation was the so-called pressure melting pro-
posed byThomson(1859, 1860); the main idea is that suffi-
cient compressive forces exist at the contact region, causing
melting if the ice particles are brought together. However,
results byNakaya and Matsumoto(1954) show that the re-
quired pressures are far to high to be realistic under atmo-
spheric conditions.Faraday(1859) proposed the existence of
a so-called “liquid-like” layer at the ice surface, which so-
lidifies in case of contact with another piece of ice. This ap-
proach was supported about 100 yr later byWeyl (1951) and
Fletcher(1962). Additionally, measurements byNakaya and
Matsumoto(1954) andHosler and Hallgren(1960) indicate a
temperature dependence of the sticking ability, which could
be explained by the liquid layer on top of the ice crystals.
Kingery (1960) proposed a different way to explain ice ag-
gregation, namely ice sintering. Two (spherical) ice particles
attach at a single point, which is not a thermodynamically
stable state; in order to minimize surface free energy, a neck
between the spheres is formed, thus the two particles stick to-
gether. This process of ice sintering, of course, would be sup-
ported by the “liquid-like” layer, as proposed. The details of
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this process are discussed byHobbs(1965). From measure-
ments byKumai (1964) (image reprinted inHobbs, 1965)
andHobbs and Mason(1964) the existence of small quasi-
spherical ice crystals (diameter∼ 10 µm) sticking together is
evident, even at cold temperatures down to−37◦C or even
below. For large ice particles mechanical interlocking (Jiusto
and Weickmann, 1973) may play a role, especially for large
dendritic snow flakes. In summary, it is likely that ice sinter-
ing in combination with the “liquid-like” layer is the main
process for ice aggregation at small sizes; the modern term
for “liquid-like” layer is quasi-liquid-layer (QLL). At high
temperatures near melting point or even down to−15◦C,
the existence of QLLs is quite evident (Kahan et al., 2007;
Sazaki et al., 2012); however, it is not clear if, for the cold
temperature regimeT <−40◦C, the QLL still exists; also
from a theoretical point of view, this question is still unde-
cided (Ryzhkin and Petrenko, 2009).

Although details are still unclear, it is evident that aggrega-
tion can only occur when ice crystals collide. Collisions can
be caused by a variety of processes, for instance turbulent
motions and gravitational settling of crystals. For crystals
larger than a few µm, gravitational settling is the most effi-
cient aggregation process (Jacobson, 2005, Fig. 15.7). Turbu-
lent fluctuations in clouds can however enhance the gravita-
tional aggregation process as a result of synergy between dy-
namics and microphysics (Sölch and K̈archer, 2011): cirrus
clouds developing in a steady uplift situation have a thin nu-
cleation zone at their top. New crystals form there as soon as
the ongoing cooling drives the relative humidity over the nu-
cleation threshold. The number of new ice crystals is a strong
function of dSi/dt , the rate at which the supersaturation in-
creases at the threshold. Turbulent motions lead to variations
in dSi/dt , thus, in consequence to variations in the number
concentration of new crystals. If dSi/dt is by chance particu-
larly low, only few crystals form and they grow subsequently
in highly supersaturated air with only weak competition for
the excess water vapour. Thus they first grow large by depo-
sition, obtain large fall speeds, and can then collect many ice
crystals on their way from cloud top to base.

The dominance of gravitational collection has some con-
sequences: (i) the importance of aggregation decreases with
altitude (thus with decreasing temperature) because the ab-
solute humidity decreases (roughly exponentially) and there-
fore mean crystal dimensions decrease with altitude; (ii) ag-
gregation is more important in deep than in shallow (ice)
clouds; (iii) aggregation is more important in well-developed
than in young (ice) clouds.

Since for atmospheric investigations the evolution of an
ensemble of ice particles must be evaluated, the stochastic
collection equation must be investigated. This type of equa-
tion was already investigated bySmoluchowski(1916, 1917)
in order to describe Brownian coagulation analytically. For
investigating the evolution of a size distribution, the stochas-
tic collection equation must be solved or treated in a numeri-
cal way. In former studies, different treatments of modelling

ice aggregation has been obtained. Some authors have sim-
ulated aggregation via spectral models (Khain and Sednev,
1996; Cardwell et al., 2003) or even by single particle track-
ing (Sölch and K̈archer, 2011).

Field and Heymsfield(2003) believe that size distribu-
tions of ice crystals are dominated by depositional growth
for small particles (e.g. up to 100 µm) and dominated by ag-
gregation for larger particles which they underpin by demon-
strating that the crystal size distributions for large crystals
display a scaling behaviour. “Scaling” is a modern expres-
sion for the attainment of a self-preserving size distribution
(SPD) (seePruppacher and Klett, 1997, ch. 11.7.2, see also
Sect.4.4): the SPD theory suggests that the process of co-
agulation makes a crystal population loose memory of its
initial size distribution and attaining asymptotically a size
distribution of a relatively simple form. The further evolu-
tion of the latter with time can be described simply by scal-
ing transformations, that is, when thex (size) andy (num-
ber) axes are transformed with two simple functions of time
(x′(t)= x fx(t), y′(t)= y fy(t)), the size distribution is rep-
resented by a constant curve in this changing coordinate sys-
tem. Such scaling behaviour in ice clouds has been demon-
strated by several researchers and traced back to a dominance
of aggregation processes (e.g.Westbrook et al., 2007).

This behaviour is also a kind of justification for the
modelling aggregation processes via bulk models, i.e. us-
ing (fixed) size-distributions and predicting general moments
such as number and mass concentration, respectively. This
was done in some former studies (see, e.g.,Passarelli, 1978;
Lin et al., 1983; Mitchell, 1988; Levkov et al., 1992; Fer-
rier, 1994; Lawson et al., 1998; Field and Heymsfield, 2003;
Morrison et al., 2005). However, the main focus in all these
model studies as well as in most observational studies (see,
e.g.,Field et al., 2006; Connolly et al., 2012) is on the “high”
temperature regime, i.e.T >−30◦C, where precipitation is
mainly formed via the ice phase. There are only few obser-
vations in the cold temperature regime, mostly in convective
outflow cirrus clouds (Connolly et al., 2005), indicating that
aggregation of ice crystals happens. However, even in cold
cirrus clouds formed in situ, aggregates are sometimes found
(Kajikawa and Heymsfield, 1989), thus aggregation might
occur at these temperature and might have an impact on mi-
crophysical properties.

The bulk ice microphysics scheme bySpichtinger and
Gierens(2009a) so far did not represent ice aggregation; as
only cold cirrus clouds have been simulated, this was toler-
able. However, as seen above, aggregation can be an impor-
tant process and a complete cirrus microphysics scheme must
have a representation of it. This new treatment is described
in this study. It has to be noted that although the scheme can
treat multiple classes of ice (e.g. ice formed by homogeneous
nucleation and ice formed by heterogeneous nucleation), it is
not yet possible to compute aggregation between these differ-
ent classes. Therefore we describe here aggregation between
crystals of a single class of ice.
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2 Mathematical formulation of aggregation for
two-moment bulk microphysics schemes

Bulk microphysics schemes do not explicitly resolve the size
spectrum of the modelled hydrometeors as spectral models
(also known as bin models) or even models following single
particles do. Instead, bulk models use only some low order
moments of the a priori assumed size distribution and pre-
dict their temporal evolution subject to microphysical pro-
cesses as nucleation, depositional or condensational growth
(and evaporation or sublimation), sedimentation, and aggre-
gation. All these processes can be formulated by first consid-
ering the process for a single particle (or two particles in the
case of aggregation) and then computing integrals over the
assumed size distribution. Two-moment schemes consider
the evolution of the zeroth and another low-order moment,
which are proportional to the particle number concentration
(N ) and mass concentration (qc). We use a crystal mass dis-
tribution f (m) instead of a size pdf, thus we use the zeroth
and first moment off (m). In the following we present the
theory for an assumed mass distribution, which we use in
two versions, namelyn(m)dm is the number concentration of
particles having masses betweenm andm+dm, andf (m)dm
is the normalised version of this, namelyf (m)= n(m)/N

whereN =
∫
n(m)dm (the total number concentration irre-

spective of particle mass). This implies
∫
f (m)dm= 1.

Evidently, aggregation does not change the mass concen-
tration, thus the prognostic equation forqc is simply(
∂qc

∂t

)
agg

= 0.

As this paper deals with aggregation alone, we will drop in
the following the lower index referring to the process. In or-
der to formulate the differential equation forN we start by
writing down the following master-equation (e.g.Pruppacher
and Klett, 1997)

∂n(m,t)

∂t
=

1

2

m∫
0

K(m′,m−m′)n(m′, t)n(m−m′, t)dm′

−

∞∫
0

K(m,m′)n(m,t)n(m′, t)dm′. (1)

Here,K(m,m′) is the so-called coagulation kernel (i.e. the
rate at which the crystal concentration changes due to aggre-
gation per unit concentration of crystals of massm and per
unit concentration of crystals of massm′). The first rhs in-
tegral describes the formation of particles of massm from
aggregation of two smaller particles, and the second rhs in-
tegral describes the aggregation of particles of massm with
other crystals of arbitrary mass, which leads to a loss of parti-
cles of massm. Note that we can extend the 1st integral upper
limit to infinity without changing its value becausen(m−m′)

is zero for negative arguments. This fact will be used below.

As stated above, in order to find the prognostic equation
for N we have to integrate, i.e.

∂N(t)

∂t
=
∂

∂t

∞∫
0

n(m,t)dm=

∞∫
0

∂n(m,t)

∂t
dm

=
1

2

∫ ∞∫
0

dmdm′K(m′,m−m′)n(m′, t)n(m−m′, t)

︸ ︷︷ ︸
=:I1

−

∫ ∞∫
0

dmdm′K(m,m′)n(m,t)n(m′, t)

︸ ︷︷ ︸
=:I2

. (2)

It is easy to see that every combination ofm andm′ in the
first integral occurs as well in the second one. Thus, both
integrals are equal (I1 = I2), apart from the factor 1/2, so
that the result is

∂N(t)

∂t
= −

1

2

∫ ∞∫
0

K(m,m′)n(m,t)n(m′, t)dm′ dm. (3)

The derivation of this result is as follows: first we interchange
the order of integration in the first integral (I1), resulting in

I1 =

∞∫
0

dm′n(m′, t)

∞∫
0

dmK(m′,m−m′)n(m−m′, t).

Now we substitutex for m−m′ in the inner integral, with
dx = dm. The integral limits can still be set to zero and in-
finity, becausen vanishes for negative arguments. Therefore

I1 =

∞∫
0

dm′n(m′, t)

∞∫
0

dxK(m′,x)n(x, t).

Since it does not matter whether we write the integration
variable asx or asm and because the integrand is symmetric
in its two variables, we see thatI1 equals the second integral
from above, and this completes our proof of Eq. (3).

Now we go on using the normalised mass distribution. In
this form, Eq. (3) reads

∂N(t)

∂t
= −

1

2
N2

∫ ∞∫
0

K(m,m′)f (m,t)f (m′, t)dm′ dm. (4)

In a mathematical sense, the double integral over the ker-
nel function is nothing else than its expectation value for the
given distributionf (m,t). This is usually notated as〈K〉(t)

where we have retained the time dependence for clarity. The
prognostic equation forN(t) is therefore

∂N(t)

∂t
= −

N(t)2

2
〈K〉(t) (5)
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A similar formulation was already given byMurakami
(1990), however for the conversion from ice to snow and
without the statistical interpretation of〈K〉. Assuming that
〈K〉(t) is a constant during a single time step1t in the bulk
scheme, there is a formal analytical solution of the form

N(t +1t)=
N(t)

(1/2)N(t)〈K〉(t∗)1t + 1
, (6)

wheret∗ is any appropriate time within the time step. The
form of this solution has already been obtained bySmolu-
chowski (1916, 1917) for Brownian coagulation (see also
Pruppacher and Klett, 1997, Sect. 11.5). It is seen that for
long timesteps such that1t � 1/[N(t)〈K〉(t∗)] the final
N(t+1t) becomes independent of the initialN(t). With the
new value ofN and the (here unchanged) value ofqc we can
compute the updated mean mass off (m,t+1t), i.e. we can
compute the updated mass distribution.

The prognostic equation forN is the desired result, and the
solution can in principle be computed for arbitrary forms of
the mass distribution and for arbitrary coagulation kernels.
Nevertheless, the necessary integrations are tedious and it
may be justified to construct a look-up table where the re-
quired values of〈K〉(t) can be read off. The computation of
the integrals for special choices off (m) and the kernel is
demonstrated next.

3 Computation of the double integrals

3.1 Choice of a mass distribution

In principle we could use any probability density function on
R+ for f (m). Following Spichtinger and Gierens(2009a),
we use here a log-normal distribution, i.e.

f (m)=
1

√
2π logσm

exp

[
−

1

2

(
log(m/mm)

logσm

)2
]

1

m
. (7)

Here, log denotes natural logarithm. The normalisedf (m)

has two parameters. The first parameter is the modal mass
(or geometric mean)mm, which is updated after every time
step by the prognostic values of number and mass concen-
tration, respectively; the second parameter is the geometric
standard deviationσm, which is usually fixed or formulated
as a function of the mean mass. The mass distribution is
then given by normalisation with number concentration, i.e.
n(m)=N ·f (m). The general kth moment of the mass distri-
bution is denoted byµk[m] and for log-normal distributions
we obtain

µk[m] :=

∞∫
0

mkn(m)dm=N ·mkmexp

(
1

2
(k logσm)

2
)
. (8)

Number and mass concentration are prognostic variables
in our scheme, represented by the general momentsN =

µ0[m],qc = µ1[m], respectively, with a mean mass ofm̄=

qc/N =mmexp
(

1
2 (logσm)2

)
.

Aggregation would tend to lead to a deviation from the
log-normal distribution towards an exponential one. This ef-
fect cannot be taken into account in our model and would re-
quire some development, for instance introduction of an ice
class “aggregates” with exponential distribution and devel-
opment of an aggregation scheme between small ice crystals
(log-normally distributed) and aggregates. All this is future
work.

3.2 Choice of an aggregation kernel

We assume that ice crystals aggregate in particular when
large crystals fall through an ensemble of small crystals,
when they collide and stick together. This particular mech-
anism is called gravitational collection and can be described
by the following form of a collection kernel (Pruppacher and
Klett, 1997, p. 569)

K (R,r) := π (R+ r)2 |v(R)− v(r)|E(R,r). (9)

Here,R andr are the “radii” (see below) of the larger and
smaller colliding ice crystals, respectively, such that the first
factor on the rhs is the geometric cross section for the colli-
sion. The second factor is the absolute difference of the fall
speeds of the two crystals, that is, the speed of their relative
motion. Because of hydrodynamic (and potentially other) ef-
fects it is not just the geometric cross section that determines
whether two crystals collide, and even if they collide they
do not need to stick together. Therefore a correction factor
E(R,r) is applied which accounts for these effects.E is usu-
ally called collision or collection efficiency. Choices ofE
will be presented below.

The next problem to solve is to formulate the collection
kernel for non-spherical ice crystals instead of spheres. Here
we do this for hexagonal cylinders, a common shape for
ice crystals as used for instance inSpichtinger and Gierens
(2009a). For convenience, the size is replaced by the parti-
cle mass. This can be done since mass (m) and size (L) are
related (see e.g.Heymsfield and Iaquinta, 2000), usually ex-
pressed via power laws (e.g.m= αLβ ). Using these rela-
tions, we obtain the following expression for the surface of a
hexagonal ice crystal of massm

A(m)=
2

ρb
·α

1
βm

β−1
β + 6 ·

1

α
1
β

√√√√ 2α
1
β

3
√

3ρb
·m

β+1
2β (10)

whereρb = bulk density of ice = 0.81× 103 kg m−3.
Assuming randomly oriented columns (analogous to the

usual approximation for radiation parameterisation inEbert
and Curry, 1992) we obtainr2

=
A(m)
4π by replacing the ice

crystals surface by the surface of a sphere, such that

(R+ r)2 =
1

4π

(
2
√
A(M)A(m)+A(M)+A(m)

)
. (11)
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We replace the radii(R,r) with the corresponding masses
(M,m) and obtain

K(M,m) =
1

4

(
2
√
A(M)A(m)+A(M)+A(m)

)
·

|v(M)− v(m)|E(M,m). (12)

The terminal velocity of each of the falling particles can be
described using the following power law

v(m)= γmδ · c(T ,p). (13)

The parametersα,β, γ andδ needed to translateK(R,r) into
K(M,m) are given inSpichtinger and Gierens(2009a). Note
that the parameters usually are constants for values ofm in a
certain mass interval. Thus, this leads to a generic splitting of
the integrals, as can be seen in the next section. A correction
factor for the terminal velocity is added in order to consider
density changes, leading to different aerodynamic drag. The
correction factor is represented as follows (Heymsfield and
Iaquinta, 2000)

c(T ,p)=

(
p

p0

)a(
T

T0

)b
, (14)

with constants p0 = 300hPa, T0 = 233K, a = −0.178,
b = −0.394. Since the correction factor depends only on
temperature and pressure, respectively, it can be treated as
a constant for the calculations of the integrals.

3.3 Computation of the integrals

The integral values (〈K〉 in m3s−1) were calculated using an
adaptive Simpson quadrature (e.g.Lyness, 1969) for different
values of the geometrical standard deviationσm. The calcu-
lated integral results forσm = 2.85 are indicated as squares in
Fig. 1. The calculation was done forT = 233K and 300hPa,
i.e.c(T ,p)= 1 in Eq. (14). For other choices of atmospheric
parameters the values change moderately. For reasons given
below we compute the integrals with a collision efficiency of
unity. The integration was conducted up to a modal mass of
106 ng = 10−6 kg (equivalent to a length∼ 8mm) as this is
the upper limit for an aggregated particle, which will be used
in the later parameterisation. The calculated integral values
were divided into four ranges because of mass dependent co-
efficientsα, β, γ andδ. For each range a polynomial was fit-
ted through the calculated values. The combination of these
polynomials is displayed as solid line in Fig.1. The four
polynomial ranges correspond to changes in the growth and
sedimentation behaviour of ice crystals (e.g. changes of the
parametersα, . . . ,δ) as indicated inSpichtinger and Gierens
(2009a):

1. 1× 10−4 ng<mm ≤ 2.5× 10−3 ng: mainly hexagonal
ice crystals with aspect ratio 1.

2. 2.5×10−3 ng<mm ≤ 4×102 ng: columns with aspect
ratio larger than 1.
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(M,m) and obtain

K(M,m) =
1
4

(
2
√
A(M)A(m)+A(M)+A(m)

)
·

|v(M)−v(m)|E(M,m). (12)

The terminal velocity of each of the falling particles can be
described using the following power law

v(m) = γmδ ·c(T,p) (13)

The parameters α, β, γ and δ needed to translate K(R,r)
into K(M,m) are given in Spichtinger and Gierens (2009a).
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der to consider density changes, leading to different aerody-
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p
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)a(
T

T0
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, (14)

with constants p0 = 300hPa, T0 = 233K, a = −0.178,
b=−0.394. Since the correction factor depends only on
temperature and pressure, respectively, it can be treated as
a constant for the calculations of the integrals.

3.3 Computation of the integrals

The integral values (〈K〉 in m3s−1) were calculated using an
adaptive Simpson quadrature (e.g. Lyness, 1969) for different
values of the geometrical standard deviation σm. The calcu-
lated integral results for σm = 2.85 are indicated as squares
in Figure 1. The calculation was done for T = 233K and
300hPa, i.e. c(T,p) = 1 in eq. (14). For other choices of
atmospheric parameters the values change moderately. For
reasons given below we compute the integrals with a colli-
sion efficiency of unity. The integration was conducted up
to a modal mass of 106 ng = 10−6 kg (equivalent to a length
∼ 8mm) as this is the upper limit for an aggregated parti-
cle, which will be used in the later parameterization. The
calculated integral values were divided into four ranges be-
cause of mass dependent coefficients α, β, γ and δ. For each
range a polynomial was fitted through the calculated values.
The combination of these polynomials is displayed as solid
line in Figure 1. The four polynomial ranges correspond to
changes in the growth and sedimentation behaviour of ice
crystals (e.g. changes of the parameters α,...,δ) as indicated
in Spichtinger and Gierens (2009a)

1. 1·10−4 ng<mm≤ 2.5·10−3 ng: Mainly hexagonal ice
crystals with aspect ratio 1.
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Fig. 1. 〈K〉 integral values (in m3s−1) as a function of the modal
mass (in kg) of the crystal mass distribution and for σm = 2.85.
The corresponding sizes range between a modal length of 0.6 and
8000 µm. Exact values from a numerical integration are shown as
squares. The solid lines represent polynomial fits in 4 different mass
ranges, indicated by the black lines.

2. 2.5 ·10−3 ng<mm ≤ 4 ·102 ng: Columns with aspect
ratio larger than 1.

3. 4 ·102 ng<mm≤ 1 ·104 ng: The sedimentation veloc-
ity gets larger.

4. 1 ·104 ng<mm: Even larger columns.

As can be seen in Figure 1, the polynomial fits to the exact
integral values are very good; the maximum deviation is less
than 10% and the mean deviation even less than 2%. Thus
the polynomials can be used as an accurate solution while
saving computing time.

These fits were calculated for a whole range of lognormal
size distributions with geometric standard deviations in the
range σm = 1.90−5.29. The coefficients for these fits are
given in the appendix, table 2. In figure 2 the kernels for
these vales are displayed against modal mass mm of the dis-
tribution (upper panel) as well as against mean mass of the
distribution m̄=mmexp(0.5 · (logσm)2) (lower panel). As
expected by theory, the kernels are larger for a wider distri-
bution; this behaviour can be seen clearly in the upper panel
of fig. 2. In fact, the kernels for a fixed modal mass vary
over more than one order of magnitude for different geomet-
ric standard deviations. This indicates that the width of the
size distribution is very important for the strength of the ag-
gregation process.

3.4 Comparison with other model parameterisations

For testing our new parameterisation, we first compare
the derived kernels with already existing parameterisations.
There were some former attempts in deriving aggregation pa-
rameterisations for hydrometeors, especially snow and ice
crystals. Passarelli (1978) derived an analytical kernel for

Fig. 1. 〈K〉 integral values (in m3s−1) as a function of the modal
mass (in kg) of the crystal mass distribution and forσm = 2.85.
The corresponding sizes range between a modal length of 0.6 and
8000 µm. Exact values from a numerical integration are shown as
squares. The solid lines represent polynomial fits in 4 different mass
ranges, indicated by the black lines.

3. 4×102 ng<mm ≤ 1×104 ng: the sedimentation veloc-
ity gets larger.

4. 1× 104 ng<mm: even larger columns.

As can be seen in Fig.1, the polynomial fits to the exact
integral values are very good; the maximum deviation is less
than 10 % and the mean deviation even less than 2 %. Thus
the polynomials can be used as an accurate solution while
saving computing time.

These fits were calculated for a whole range of log-normal
size distributions with geometric standard deviations in the
range σm = 1.90–5.29. The coefficients for these fits are
given in the appendix, TableA1. In Fig. 2 the kernels for
these vales are displayed against modal massmm of the dis-
tribution (upper panel) as well as against mean mass of the
distribution m̄=mmexp(0.5 · (logσm)2) (lower panel). As
expected by theory, the kernels are larger for a wider distri-
bution; this behaviour can be seen clearly in the upper panel
of Fig. 2. In fact, the kernels for a fixed modal mass vary
over more than one order of magnitude for different geomet-
ric standard deviations. This indicates that the width of the
size distribution is very important for the strength of the ag-
gregation process.

3.4 Comparison with other model parameterisations

For testing our new parameterisation, we first compare
the derived kernels with already existing parameterisations.
There were some former attempts in deriving aggregation
parameterisations for hydrometeors, especially snow and
ice crystals.Passarelli(1978) derived an analytical kernel
for aggregating ice crystals, leading to an unhandy expres-
sion of hypergeometric functions. However, he assumed an

www.atmos-chem-phys.net/13/9021/2013/ Atmos. Chem. Phys., 13, 9021–9037, 2013
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Fig. 2. Fits on calculated aggregation kernels for different geo-
metric standard deviations. Upper panel: Aggregation kernels vs.
modal mass. The change due to the width of the distribution can
be seen clearly. Lower panel: Aggregation kernels vs. mean mass.
Since the mean mass depends on the geometric width of the distri-
bution, the variation of the kernels due to different width is smaller.
Additionally, the aggregation kernel as derived by Schumann (2012)
is shown for comparison. The corresponding sizes range between a
modal length of 0.6 and 8000 µm.

aggregating ice crystals, leading to an unhandy expression
of hypergeometric functions. However, he assumed an ex-
ponential size distribution, because he was interested in ag-
gregation of snow, i.e. aggregation at warm temperatures.
The assumption of exponential distributions simplified the
expressions. This procedure is not viable in our case be-
cause we use lognormal distributions for ice crystals (as jus-
tified in Spichtinger and Gierens, 2009a). Mitchell (1988)
derived an aggregation kernel in a similar way as Passarelli
(1978), using exponential distributions and, similar to our
treatment, power laws for terminal velocities. Again, the
aggregation parameterisation was derived for the warm tem-
perature range, with the special assumption of an exponen-
tial distribution. Ferrier (1994) used an approach similarly to
ours, using gamma size distribution. He evaluated the dou-
ble integrals numerically in order to create a look-up table.
However, again this parameterisation was made for the warm
temperature regime. Many other models rely on these de-

scribed parameterisations (e.g., Morrison et al., 2005, using
Passarelli’s parameterisation), maybe with modifications.

For the low temperature regime (T <−40C◦) only one
recent parameterisation by Schumann (2012) is available.
Schumann (2012) estimated the aggregation kernel (his equa-
tion 52, translated into our formulation) to be

K =E ·16 ·πr̄2v(r̄) (15)

using the volume mean radius r̄=
(

3m̄
4πρbs

) 1
3

with a bulk ice

density of 917kgm−3. For comparison we used our termi-
nal velocity formulation, the volume mean radius was de-
rived from the mean mass of an ice crystal; the efficiency
is set to be E ≡ 1. In fig. 2 (lower panel) some kernels
for our formulation (σm = 1.9/2.85/5.29, representing nar-
row/medium/broad size distributions) are shown in compar-
ison with the kernel as derived by Schumann (2012). The
kernels are plotted against the mean mass m̄. At least in the
mass range 10−14≤ m̄≤ 10−9kg, the qualitative agreement
is quite good, although the kernel by Schumann (2012) is
about 5 times higher than our parameterisations. In the mass
ranges m̄≤ 10−14kg and m̄≥ 10−9kg there is a larger over-
estimation compared to our parameterisations. These over-
estimations are not crucial, since (1) the larger masses do not
apply for the parameterisation by Schumann (2012) which is
used for contrails, where small to moderate crystal masses
prevail, and (2) for the very small masses the aggregation
time scales are much larger than cloud and contrail lifetimes
(see below).

3.5 Time scale analysis

In order to estimate the possible impact of aggregation on ice
crystal number concentrations, we estimate the time scales
of aggregation

−1
2
N2〈K〉= ∂N

∂t

!=
N

τ
⇔−τ =

2
N · 〈K〉

(16)

In fig. 3 the timescales of aggregation are displayed for a typ-
ical size distribution with geometric standard deviation value
of σm = 2.85 and for typical ice crystal number concentra-
tions in cirrus clouds (see, e.g., Krämer et al., 2009) in the
range between N = 104 m−3 = 10L−1 and N = 107 m−3 =
10cm−3, respectively. Since aggregation is a pure sink for
ice crystal number concentrations, the time scale is negative;
however, in fig. 3 we show absolute values of τ for a better
representation.

It is evident, that only in a very narrow range set by param-
eters number concentration and ice crystal size, respectively,
aggregation might play a role. Since the life time of cirrus
clouds might be in the order of one day (e.g. Spichtinger et
al., 2005), this time interval might serve as an upper limit for
the impact of aggregation on cirrus clouds. Since in clouds
with only a few ice crystals (e.g. N =104 m−3) the ice crys-
tals can growth to large sizes - at least at high temperatures

Fig. 2. Fits on calculated aggregation kernels for different geomet-
ric standard deviations. Upper panel: aggregation kernels vs. modal
mass. The change due to the width of the distribution can be seen
clearly. Lower panel: aggregation kernels vs. mean mass. Since the
mean mass depends on the geometric width of the distribution, the
variation of the kernels due to different width is smaller. Addi-
tionally, the aggregation kernel as derived bySchumann(2012) is
shown for comparison. The corresponding sizes range between a
modal length of 0.6 and 8000 µm.

exponential size distribution, because he was interested in
aggregation of snow, i.e. aggregation at warm temperatures.
The assumption of exponential distributions simplified the
expressions. This procedure is not viable in our case be-
cause we use log-normal distributions for ice crystals (as
justified inSpichtinger and Gierens, 2009a). Mitchell (1988)
derived an aggregation kernel in a similar way asPassarelli
(1978), using exponential distributions and, similar to our
treatment, power laws for terminal velocities. Again, the ag-
gregation parameterisation was derived for the warm tem-
perature range, with the special assumption of an exponen-
tial distribution.Ferrier(1994) used an approach similarly to
ours, using gamma size distribution. He evaluated the dou-
ble integrals numerically in order to create a look-up table.
However, again this parameterisation was made for the warm
temperature regime. Many other models rely on these de-

scribed parameterisations (e.g.,Morrison et al., 2005, using
Passarelli’s parameterisation), maybe with modifications.

For the low temperature regime (T <−40◦C) only one
recent parameterisation bySchumann(2012) is available.
Schumann(2012) estimated the aggregation kernel (his
Eq. 52, translated into our formulation) to be

K = E · 16·πr̄2v(r̄) (15)

using the volume mean radiusr̄ =

(
3m̄

4πρbs

) 1
3

with a bulk ice

density of 917 kgm−3. For comparison we used our termi-
nal velocity formulation, the volume mean radius was de-
rived from the mean mass of an ice crystal; the efficiency
is set to beE ≡ 1. In Fig. 2 (lower panel) some kernels
for our formulation (σm = 1.9/2.85/5.29, representing nar-
row/medium/broad size distributions) are shown in compar-
ison with the kernel as derived bySchumann(2012). The
kernels are plotted against the mean massm̄. At least in the
mass range 10−14

≤ m̄≤ 10−9kg, the qualitative agreement
is quite good, although the kernel bySchumann(2012) is
about 5 times higher than our parameterisations. In the mass
rangesm̄≤ 10−14kg andm̄≥ 10−9kg there is a larger over-
estimation compared to our parameterisations. These overes-
timations are not crucial, since (1) the larger masses do not
apply for the parameterisation bySchumann(2012) which is
used for contrails, where small to moderate crystal masses
prevail, and (2) for the very small masses the aggregation
timescales are much larger than cloud and contrail lifetimes
(see below).

3.5 Timescale analysis

In order to estimate the possible impact of aggregation on ice
crystal number concentrations, we estimate the timescales of
aggregation

−
1

2
N2

〈K〉 =
∂N

∂t

!
=
N

τ
⇔ −τ =

2

N · 〈K〉
(16)

In Fig. 3 the timescales of aggregation are displayed for
a typical size distribution with geometric standard devia-
tion value of σm = 2.85 and for typical ice crystal num-
ber concentrations in cirrus clouds (see, e.g.,Krämer et al.,
2009) in the range betweenN = 104 m−3

= 10L−1 andN =

107 m−3
= 10 cm−3, respectively. Since aggregation is a

pure sink for ice crystal number concentrations, the timescale
is negative; however, in Fig.3 we show absolute values ofτ
for a better representation.

It is evident that only in a very narrow range set by param-
eter number concentration and ice crystal size, aggregation
might play a role. Since the life time of cirrus clouds might
be in the order of one day (e.g.Spichtinger et al., 2005), this
time interval might serve as an upper limit for the impact
of aggregation on cirrus clouds. Since in clouds with only a
few ice crystals (e.g.N = 104 m−3) the ice crystals can grow
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Fig. 3. Time scales of aggregation for a medium width of the ice
crystal size distribution (σm = 2.85) and for typical ice crystal num-
ber concentrations as found in cirrus clouds at cold temperatures
(see, e.g., Krämer et al., 2009). The corresponding sizes range be-
tween a modal length of 0.6 and 8000 µm.

- this regime can be effectively influenced by aggregation.
Cirrus clouds containing many ice crystals are usually dom-
inated by small crystals. Thus, although ice crystal number
concentration is able to reduce the aggregation time scales
by orders of magnitudes, an upper limit in crystal size due
to thermodynamic constraints leads to less effective aggrega-
tion. We will see later, that this very simple estimation from
time scale analysis will be coroborrated by detailed tests.

4 Various tests

The change in particle number density per timestep is de-
scribed in (5) as

∂N(t)
∂t

=−N(t)2

2
〈K〉(t)

The solution of this can either be achieved through an exact
solution involving separation of variables with the following
result

N(t+∆t) =
N(t)

(1/2)N(t)〈K〉(t∗)∆t+1
(17)

or through the following Euler approximation

N(t+∆t) =N(t)+
∂N(t)
∂t

·∆t (18)

=N(t)−N(t)2

2
〈K〉(t) ·∆t (19)

Tests have shown that both methods give practically identi-
cal results. The following tests have been performed with the
Euler approximation. Further tests have shown that the poly-
nomial approximation of the 〈K〉 integrals was a sufficient
approximation (see above), so the following tests have been
performed using the polynomial approximation.

4.1 Test of aggregation only

4.1.1 Maximum aggregation

The new formulation of the aggregation process was tested
in MATLAB with different start values for the particle num-
ber density ranging from 104 to 5 · 104 particles per cubic
metre. We let aggregation occur as the only process. We
set E ≡ 1 for these tests, that is, the following results show
a maximum effect of aggregation. The aggregation was run
for 1000 s, i.e. approximately 17 minutes. If aggregation
occurs, the particle number density N will decrease and the
mean mass (m̄= qc/N ) increase. Using the expressions for
the log-normal distribution we compute then a new modal
mass and the corresponding new f(m) is used in the next
timestep. For the calculations, we set an upper boundary for
the mass of the aggregated particles at 10−6 kg, which cor-
responds to a particle size of 8 mm. Larger ice crystals will
not occur in the model.

Figure 4 shows the results of these tests. For small initial
modal masses (e.g. 10−11 kg, green line) and starting with,
for example, 105 particles m−3, after simulating 1000 s we
still have 105 particles m−3. Thus almost no aggregation oc-
curs. If the initial modal mass is instead increased to 10−9 kg
(blue line) while still starting with 105 m−3 particles, we
only have about 104 m−3 particles left after 1000 s. Thus
about 90% of the particles have aggregated.

As expected, when small crystals (i.e. small modal
masses) predominate, nothing happens. The probability for
collision is negligible and the relative fall speeds are low.
The larger the particles get, the more they aggregate. For
the largest initial modal masses (i.e. 10−9 kg) the particles
stick together very fast so that the iteration has to be stopped
before reaching 1000 s.

Timesteps from 0.1 s (timescale for microphysics) to 10 s
(timescale for dynamics) gave very similar results, that is, the
parameterization is consistent and convergent with different
timesteps. We chose to use a timestep of 1 s.

4.1.2 Introducing temperature dependency

Experience from field measurements suggests that aggrega-
tion occurs more efficiently in warmer than in colder air (e.g.
Kajikawa and Heymsfield, 1989). This behaviour is also con-
sistent with the possible existence of a QLL on top of ice
crystals, even at low temperatures. The temperature depen-
dence is expressed by the following parameterization for the
collision efficiency of ice crystals (Lin et al., 1983; Levkov
et al., 1992) which is independent of the crystal masses and
dependent only on temperature (the original papers do not
mention whether the parameterisation is based on measure-
ments)

E(T ) = exp(0.025 ·(T −273.16)) (20)

With this parameterization, E can be taken out from the in-
tegral calculation and treated as a prefactor. Note here, that

Fig. 3. Timescales of aggregation for a medium width of the ice
crystal size distribution (σm = 2.85) and for typical ice crystal num-
ber concentrations as found in cirrus clouds at cold temperatures
(see, e.g.,Krämer et al., 2009). The corresponding sizes range be-
tween a modal length of 0.6 and 8000 µm.

to large sizes – at least at high temperatures – this regime
can be effectively influenced by aggregation. Cirrus clouds
containing many ice crystals are usually dominated by small
crystals. Thus, although ice crystal number concentration is
able to reduce the aggregation timescales by orders of mag-
nitudes, an upper limit in crystal size due to thermodynamic
constraints leads to less effective aggregation. We will see
later that this very simple estimation from timescale analysis
will be corroborated by detailed tests.

4 Various tests

The change in particle number density per time step is de-
scribed in Eq. (5) as

∂N(t)

∂t
= −

N(t)2

2
〈K〉(t).

The solution of this can either be achieved through an exact
solution involving separation of variables with the following
result

N(t +1t)=
N(t)

(1/2)N(t)〈K〉(t∗)1t + 1
(17)

or through the following Euler approximation

N(t +1t)=N(t)+
∂N(t)

∂t
·1t (18)

=N(t)−
N(t)2

2
〈K〉(t) ·1t. (19)

Tests have shown that both methods give practically identi-
cal results. The following tests have been performed with the
Euler approximation. Further tests have shown that the poly-
nomial approximation of the〈K〉 integrals was a sufficient
approximation (see above), so the following tests have been
performed using the polynomial approximation.

4.1 Test of aggregation only

4.1.1 Maximum aggregation

The new formulation of the aggregation process was tested
in MATLAB with different start values for the particle num-
ber density ranging from 104 to 5× 104 particles per cu-
bic metre. We let aggregation occur as the only process.
We setE ≡ 1 for these tests, that is, the following results
show a maximum effect of aggregation. The aggregation was
run for 1000 s, i.e. approximately 17 min. If aggregation oc-
curs, the particle number densityN will decrease and the
mean mass (̄m= qc/N) increase. Using the expressions for
the log-normal distribution we compute then a new modal
mass and the corresponding newf (m) is used in the next
time step. For the calculations, we set an upper boundary for
the mass of the aggregated particles at 10−6 kg, which corre-
sponds to a particle size of 8 mm. Larger ice crystals will not
occur in the model.

Figure4 shows the results of these tests. For small initial
modal masses (e.g. 10−11 kg, green line) and starting with,
for example, 105 particles m−3, after simulating 1000 s we
still have 105 particles m−3. Thus almost no aggregation oc-
curs. If the initial modal mass is instead increased to 10−9 kg
(blue line) while still starting with 105 m−3 particles, we
only have about 104 m−3 particles left after 1000 s. Thus
about 90 % of the particles have aggregated.

As expected, when small crystals (i.e. small modal
masses) predominate, nothing happens. The probability for
collision is negligible and the relative fall speeds are low.
The larger the particles get, the more they aggregate. For the
largest initial modal masses (i.e. 10−9 kg) the particles stick
together very fast so that the iteration has to be stopped be-
fore reaching 1000 s.

Timesteps from 0.1 s (timescale for microphysics) to 10 s
(timescale for dynamics) gave very similar results, that is, the
parameterisation is consistent and convergent with different
timesteps. We chose to use a time step of 1 s.

4.1.2 Introducing temperature dependency

Experience from field measurements suggests that aggrega-
tion occurs more efficiently in warmer than in colder air (e.g.
Kajikawa and Heymsfield, 1989). This behaviour is also con-
sistent with the possible existence of a QLL on top of ice
crystals, even at low temperatures. The temperature depen-
dence is expressed by the following parameterisation for the
collision efficiency of ice crystals (Lin et al., 1983; Levkov
et al., 1992) which is independent of the crystal masses and
dependent only on temperature (the original papers do not
mention whether the parameterisation is based on measure-
ments)

E(T )= exp(0.025· (T − 273.16)). (20)
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Fig. 4. Particle number density N0 at the start of the iteration (x-
Axis) and after 1000 s of iteration (N , y-Axis). For small modal
masses, the particle number density hardly changes during the iter-
ation and the plot is almost a straight line. As reference for no ag-
gregation, a black line is plotted. As expected, larger modal masses
result in increased aggregation. Thus the particle number density
decreases during integration, which is shown in the graph. The cor-
responding size to the modal masses plotted ranges between 6 and
345 µm. Note that the tests have been performed with E ≡ 1, that
is, the maximum effect of aggregation is seen here. The red line is
almost equal to the black line, thus can hardly be seen in the plot.

experimental evidence of the exact form of the temperature
dependence is not given. Nevertheless, this is the only tem-
perature dependence we found from literature, which also
seems to be reasonable.

The temperature dependent collision efficiency is 0.21≤
E(T )≤ 0.44 for typical temperatures in ice clouds (210≤
T ≤ 240K). Thus we expect reduced aggregation effects on
N compared to the previous tests when we introduce the
new factor. Figure 5 shows the final crystal concentrations
as before for aggregation without temperature dependency
(E = 1) and for different temperatures. As expected, with
decreasing temperature aggregation becomes less important.
Even at the highest considered temperature (240 K) the re-
duction of the aggregation effect is considerable, in particular
for high initial number densities. This finding is a good argu-
ment for ignoring aggregation in simulations of cold cirrus
clouds where not only E is small but also the median crystal
masses are smaller than in warm cirrus.

4.2 Test of aggregation within a box model

For investigating the impact of aggregation idealized box
model simulations were carried out. Here, we use a max-
imum efficiency E ≡ 1 as well as a temperature dependent
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Fig. 5. Particle number density N0 at the beginning of the itera-
tion (x-Axis) and after 1000 s of iteration (N, y-Axis) for a modal
mass of 10−9 kg, which corresponds to a particle with modal length
345 µm. As a reference for no aggregation, a black line is plotted.
Adding a temperature dependency shows a weakened aggregation
effect with decreasing temperatures. The lower the tempertures the
more particles are present at the end of the simulation.

efficiency E(T ) in order to see a realistic impact of aggrega-
tion on cirrus clouds.

4.2.1 Model description and setup

In this section we test the effect of aggregation on the ice
crystal number concentration in the framework of a box
model (Spichtinger and Gierens, 2009a) which we con-
sider a more realistic test in that various microphysical pro-
cesses can act simultaneously. The box is thought to rep-
resent an initially cloud free air parcel which is lifted with
a constant vertical velocity. During the cooling proce-
dure, homogeneous freezing of aqueous solution droplets
(short “homogeneous nucleation”, parameterized after Koop
et al., 2000) will occur, i.e. ice crystals are formed. In
the supersaturated environment the ice crystals grow by
diffusional growth (based on approximations by Koenig,
1971) to larger sizes. The parameterisations for both pro-
cesses are described in detail in Spichtinger and Gierens
(2009a). For determining the impact of aggregation for
different temperature and velocity regimes, many idealized
box simulations were carried out. Each simulation starts
at p = 300hPa. The initial temperature is given by T =
210/220/230/240K, the vertical velocity range is given by
w = 0.01/0.02/0.05/0.1/0.2/0.5/1/2/5m s−1. The total
simulation time is calculated by tsim = 720m/w; this pro-
cedure ensures that at the end of the simulation the same
environmental conditions (T,p) are reached for each inital

Fig. 4. Particle number densityN0 at the start of the iteration (x
axis) and after 1000 s of iteration (N , y axis). For small modal
masses, the particle number density hardly changes during the it-
eration and the plot is almost a straight line. As reference for no ag-
gregation, a black line is plotted. As expected, larger modal masses
result in increased aggregation. Thus the particle number density
decreases during integration, which is shown in the graph. The cor-
responding size to the modal masses plotted ranges between 6 and
345 µm. Note that the tests have been performed withE ≡ 1, that
is, the maximum effect of aggregation is seen here. The red line is
almost equal to the black line, thus can hardly be seen in the plot.

With this parameterisation,E can be taken out from the inte-
gral calculation and treated as a prefactor. Note here that ex-
perimental evidence of the exact form of the temperature de-
pendence is not given. Nevertheless, this is the only tempera-
ture dependence we found from literature, which also seems
to be reasonable.

The temperature dependent collision efficiency is 0.21≤

E(T )≤ 0.44 for typical temperatures in ice clouds (210≤

T ≤ 240K). Thus we expect reduced aggregation effects on
N compared to the previous tests when we introduce the
new factor. Figure5 shows the final crystal concentrations
as before for aggregation without temperature dependency
(E = 1) and for different temperatures. As expected, with
decreasing temperature aggregation becomes less important.
Even at the highest considered temperature (240 K) the re-
duction of the aggregation effect is considerable, in particular
for high initial number densities. This finding is a good argu-
ment for ignoring aggregation in simulations of cold cirrus
clouds where not onlyE is small but also the median crystal
masses are smaller than in warm cirrus.

4.2 Test of aggregation within a box model

For investigating the impact of aggregation idealised box
model simulations were carried out. Here, we use a maxi-
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ation and the plot is almost a straight line. As reference for no ag-
gregation, a black line is plotted. As expected, larger modal masses
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345 µm. Note that the tests have been performed with E ≡ 1, that
is, the maximum effect of aggregation is seen here. The red line is
almost equal to the black line, thus can hardly be seen in the plot.

experimental evidence of the exact form of the temperature
dependence is not given. Nevertheless, this is the only tem-
perature dependence we found from literature, which also
seems to be reasonable.

The temperature dependent collision efficiency is 0.21≤
E(T )≤ 0.44 for typical temperatures in ice clouds (210≤
T ≤ 240K). Thus we expect reduced aggregation effects on
N compared to the previous tests when we introduce the
new factor. Figure 5 shows the final crystal concentrations
as before for aggregation without temperature dependency
(E = 1) and for different temperatures. As expected, with
decreasing temperature aggregation becomes less important.
Even at the highest considered temperature (240 K) the re-
duction of the aggregation effect is considerable, in particular
for high initial number densities. This finding is a good argu-
ment for ignoring aggregation in simulations of cold cirrus
clouds where not only E is small but also the median crystal
masses are smaller than in warm cirrus.

4.2 Test of aggregation within a box model

For investigating the impact of aggregation idealized box
model simulations were carried out. Here, we use a max-
imum efficiency E ≡ 1 as well as a temperature dependent
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more particles are present at the end of the simulation.

efficiency E(T ) in order to see a realistic impact of aggrega-
tion on cirrus clouds.

4.2.1 Model description and setup

In this section we test the effect of aggregation on the ice
crystal number concentration in the framework of a box
model (Spichtinger and Gierens, 2009a) which we con-
sider a more realistic test in that various microphysical pro-
cesses can act simultaneously. The box is thought to rep-
resent an initially cloud free air parcel which is lifted with
a constant vertical velocity. During the cooling proce-
dure, homogeneous freezing of aqueous solution droplets
(short “homogeneous nucleation”, parameterized after Koop
et al., 2000) will occur, i.e. ice crystals are formed. In
the supersaturated environment the ice crystals grow by
diffusional growth (based on approximations by Koenig,
1971) to larger sizes. The parameterisations for both pro-
cesses are described in detail in Spichtinger and Gierens
(2009a). For determining the impact of aggregation for
different temperature and velocity regimes, many idealized
box simulations were carried out. Each simulation starts
at p = 300hPa. The initial temperature is given by T =
210/220/230/240K, the vertical velocity range is given by
w = 0.01/0.02/0.05/0.1/0.2/0.5/1/2/5m s−1. The total
simulation time is calculated by tsim = 720m/w; this pro-
cedure ensures that at the end of the simulation the same
environmental conditions (T,p) are reached for each inital

Fig. 5. Particle number densityN0 at the beginning of the iteration
(x axis) and after 1000 s of iteration (N , y axis) for a modal mass of
10−9 kg, which corresponds to a particle with modal length 345 µm.
As a reference for no aggregation, a black line is plotted. Adding a
temperature dependency shows a weakened aggregation effect with
decreasing temperatures. The lower the temperatures the more par-
ticles are present at the end of the simulation.

mum efficiencyE ≡ 1 as well as a temperature dependent
efficiencyE(T ) in order to see a realistic impact of aggrega-
tion on cirrus clouds.

4.2.1 Model description and set-up

In this section we test the effect of aggregation on the ice
crystal number concentration in the framework of a box
model (Spichtinger and Gierens, 2009a) which we con-
sider a more realistic test in that various microphysical
processes can act simultaneously. The box is thought to
represent an initially cloud free air parcel which is lifted
with a constant vertical velocity. During the cooling pro-
cedure, homogeneous freezing of aqueous solution droplets
(short “homogeneous nucleation”, parameterised afterKoop
et al., 2000) will occur, i.e. ice crystals are formed. In
the supersaturated environment the ice crystals grow by
diffusional growth (based on approximations byKoenig,
1971) to larger sizes. The parameterisations for both pro-
cesses are described in detail inSpichtinger and Gierens
(2009a). For determining the impact of aggregation for dif-
ferent temperature and velocity regimes, many idealised
box simulations were carried out. Each simulation starts
at p = 300hPa. The initial temperature is given byT =

210/220/230/240K, the vertical velocity range is given
byw = 0.01/0.02/0.05/0.1/0.2/0.5/1/2/5 ms−1. The total
simulation time is calculated bytsim = 720m/w; this proce-
dure ensures that at the end of the simulation the same en-
vironmental conditions (T ,p) are reached for each initial
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E. Kienast-Sjögren et al.: Ice aggregation in two-moment schemes 9029

temperature run (or equivalently, an altitude difference of
1zsim = 720m is reached). For each set-up three scenar-
ios were calculated: without aggregation, with temperature-
dependent aggregation and with maximum aggregation. For
deriving the maximum impact of aggregation, the box is a
closed system, i.e. ice crystals stay in the box. However, for
more realistic treatment, we have to consider sedimentation.
The process of sedimentation is treated in the box model as
described inSpichtinger and Cziczo(2010). Here, we repeat
some key features of this treatment. Time and space is dis-
cretized by time steps1t and space increments1z, respec-
tively; tn := n·1t . Generally, the sedimentation process for a
quantityψ (e.g. ice mass mixing ratioqc or ice crystal num-
ber concentrationN ) can be described in the following way

ψ(tn+1)= ψ(tn) · exp(−αψ )+
F

top
ψ

ρvψ
·
(
1− exp(−αψ )

)
(21)

with the terminal velocityvψ for the quantityψ ; αψ =
vψ1t

1z

denotes the respective Courant number andF
top
ψ is the flux

through the top of the layer. For our purpose, we use fluxes
for quantities ice mass mixing ratioqc and ice crystal number
densityN ; the mass and number weighted terminal velocities
are then given by the following expressions

vqc =
1

qc

∞∫
0

n(m)m v(m)dm (22)

vN =
1

N

∞∫
0

n(m)v(m)dm (23)

whereasn(m) denotes the mass distribution. SinceF top
ψ is

usually unknown for a single box, we can assume, that the
flux through the top is given by a fraction of the flux through
the bottom, i.e.,F top

ψ = fsedF
bottom
ψ with the sedimentation

parameterfsed. Using this ansatz, it is possible to categorise
different sedimentation scenarios:

– fsed= 1.0 corresponds to no sedimentation as net ef-
fect. The flux exiting the lower part of the box has the
same magnitude as the flux entering the top of the box.

– fsed= 0.9 corresponds to regions in the middle and
lower part of the cloud. The flux leaving the region is
almost but not completely balanced by the flux entering
that region from above.

– fsed= 0.5 corresponds to the top region of a cloud. The
flux leaving that region is only half balanced by a flux
from above.

These three scenarios are used in the simulations in order
to investigate the impact of aggregation under different, but
realistic conditions.

In the following we discuss a typical scenario of a steady
updraught ofw = 0.05 ms−1 at high temperatures (i.e. initial
temperatureT = 240K).

4.2.2 Results for an initial temperature of 240 K

As a baseline experiment we consider first a case without the
effect of sedimentation, that is, withfsed= 1. The temporal
variation of the crystal number density in the box is shown
in Fig. 6. As the box is cooled down from 240 K, the thresh-
old supersaturation for homogeneous nucleation is reached
about 120 min later, and the nucleation burst leads to a high
crystal concentration (≈ 2× 104 m−3). The further develop-
ment depends strongly on whether we include aggregation or
not. Without aggregation, the crystal concentration stays es-
sentially constant (a weak reduction is caused by the expan-
sion of the lifting box). With aggregation, however, the crys-
tal concentration decreases strongly (by about 95 %) within
two hours. In the scenario with a temperature-dependent ag-
gregation the reduction of the number concentration is less
drastic, but still of the order 85%. This happens in this aca-
demic case because the large crystals effectively stay within
the box (the crystals leaving the box are replaced by identical
crystals entering from above) and aggregate over the whole
simulation time.

Now we turn sedimentation on, allowing the large crys-
tals to leave the box without complete replacement from
above. For the top region of the clouds (fsed= 0.5), the re-
sults are displayed in Fig.6. Again, nucleation occurs after
120 min and a large number of ice crystals appear. These
grow by vapour deposition and RHi decreases. Sedimenta-
tion is a much more important process now than aggregation,
which can be seen from the timescale of the decrease ofN

which occurs much faster than in the previous case where
sedimentation was switched off. The two curves represent-
ing the cases with and without aggregation are almost identi-
cal, also after further nucleation bursts occur. This is possible
because RHi starts to increase again because of the ongoing
cooling whenN is sufficiently diminished.

In the middle of the cloud, where a good deal of falling ice
crystals are replaced by crystals falling from above (fsed=

0.9), aggregation is a bit more important than at the top of
the cloud. This is shown in Fig.6. We see that the reduc-
tion of N after the nucleation burst is slower than at the
top of the cloud because more falling crystals are replaced.
Aggregation accelerates the reduction ofN such that a cer-
tain level ofN is now reached some ten minutes earlier in
the case with aggregation than without. The scenario with
temperature-dependent aggregation lies between the two oth-
ers. Secondary nucleation bursts do not occur in either case
in the middle of the cloud until the end of the simulation.

www.atmos-chem-phys.net/13/9021/2013/ Atmos. Chem. Phys., 13, 9021–9037, 2013
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Fig. 6. Ice crystal number concentration as a function of time for
different sedimentation factors. Top panel: fsed = 1.0, i.e. no sed-
imentation, leading to the strongest impact of aggregation; middle
panel: fsed = 0.5, representing the upper part of a cloud; bottom
panel:fsed = 0.9, representing the lower part of a cloud. Simula-
tions without aggregation are indicated by red lines, simulations
including aggregation with maximum strength are represented by
blue lines and simulations with temperature-dependent aggregation
are indicated by gree lines. All simulations starts at T = 240K,
p = 300hPa and are driven by a constant vertical updraught of
w = 0.05m s−1.

peratures, for all choices of fsed and both aggregation sce-
narios. This is indeed what we found from our box model
simulations: the curves for the cases with and without ag-
gregation differ not drastically, thus we refrain from showing
the simulations in detail.

4.2.4 Maximum impact of aggregation as derived from
box model simulations

For determining the maximum impact of aggregation for dif-
ferent temperature and velocity regimes, we investigate the
box model simulations with sedimentation factor fsed = 1,
i.e. no sedimentation is allowed. In order to determine the
maximum impact of aggregation we define an aggregation
factor fagg: The factor is given by the ratio of ice crystal
number concentrations of the aggregation run and the refer-
ence run (without aggregation):

fagg =
n(t)aggregation
n(t)no aggregation

(24)

with t=end of simulation, and for temperature-dependent
simulations the analogon is formed. In fig. 7 the aggrega-
tion factor is shown for maximum aggregation (top panel)
and temperature-dependent aggregation (bottom panel).

Figure 7 can be interpreted as follows:

– For low vertical velocities at warm temperatures, homo-
geneous nucleation does produce just low number con-
centrations (see, e.g., fig. 12 in Spichtinger and Gierens,
2009a, for a relationship betweenw andN ). Since there
is only few competition on the available water vapour,
these few ice crystals can grow to large sizes; thus ag-
gregation is quite effective as we know from time scale
analysis in sec. 3.5. This can be seen in an aggregation
factor approaching values at faggr ∼ 0.01−0.1

– As soon as we proceed to colder temperatures and/or
higher vertical velocities the picture changes. Under
such conditions, much more ice crystals are produced in
homogeneous nucleation events. Thus, although the ice
crystals still live in a highly supersaturated environment,
they have to compete for the available water vapour.
Thus, they grow, but only to smaller sizes. Since for
the efficiency of aggregation the size is much more im-
portant than the number concentration, in this regimes
aggregation is less efficient. This leads to larger aggre-
gation factors. For very cold temperatures, when ice
crystals stay really at small sizes, aggregation is not im-
portant anymore, i.e. faggr ∼ 0.9−1.

– The temperature dependence of the collision efficiency
reduces the values but not the qualitative result. Thus,
the aggregation factors are closer to 1 than in the case
of E ≡ 1, however, the structure of the curves does not
change

Fig. 6.Ice crystal number concentration as a function of time for dif-
ferent sedimentation factors. Top panel:fsed= 1.0, i.e. no sedimen-
tation, leading to the strongest impact of aggregation; middle panel:
fsed= 0.5, representing the upper part of a cloud; bottom panel:
fsed= 0.9, representing the lower part of a cloud. Simulations with-
out aggregation are indicated by red lines, simulations including ag-
gregation with maximum strength are represented by blue lines and
simulations with temperature-dependent aggregation are indicated
by green lines. All simulations starts atT = 240K,p = 300hPa and
are driven by a constant vertical updraught ofw = 0.05 ms−1.

4.2.3 Lower initial temperatures

The box model simulations at 240 K have shown that aggre-
gation generally has a weak effect on the evolution of crys-
tal number concentrations. Since the collision efficiency de-
creases exponentially with decreasing temperature, we there-
fore expect a negligible effect of aggregation at lower tem-
peratures, for all choices offsed and both aggregation sce-
narios. This is indeed what we found from our box model
simulations: the curves for the cases with and without aggre-
gation do not differ drastically, thus we refrain from showing
the simulations in detail.

4.2.4 Maximum impact of aggregation as derived from
box model simulations

For determining the maximum impact of aggregation for dif-
ferent temperature and velocity regimes, we investigate the
box model simulations with sedimentation factorfsed= 1,
i.e. no sedimentation is allowed. In order to determine the
maximum impact of aggregation we define an aggregation
factorfagg: the factor is given by the ratio of ice crystal num-
ber concentrations of the aggregation run and the reference
run (without aggregation):

fagg=
n(t)aggregation

n(t)no aggregation
(24)

with t = end of simulation, and for temperature-dependent
simulations the analogon is formed. In Fig.7 the aggregation
factor is shown for maximum aggregation (top panel) and
temperature-dependent aggregation (bottom panel).

Figure7 can be interpreted as follows:

– For low vertical velocities at warm temperatures, ho-
mogeneous nucleation does produce just low number
concentrations (see, e.g., Fig. 12 inSpichtinger and
Gierens, 2009a, for a relationship betweenw andN ).
Since there is only few competition on the available wa-
ter vapour, these few ice crystals can grow to large sizes;
thus aggregation is quite effective as we know from
timescale analysis in Sect.3.5. This can be seen in an
aggregation factor approaching values atfaggr∼ 0.01–
0.1

– As soon as we proceed to colder temperatures and/or
higher vertical velocities the picture changes. Under
such conditions, many more ice crystals are produced
in homogeneous nucleation events. Thus, although the
ice crystals still live in a highly supersaturated envi-
ronment, they have to compete for the available wa-
ter vapour. Thus, they grow, but only to smaller sizes.
Since for the efficiency of aggregation the size is much
more important than the number concentration, in this
regimes aggregation is less efficient. This leads to larger
aggregation factors. For very cold temperatures, when
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Fig. 7. Maximum impact of aggregation for box simulations using
a constant updraught (i.e. cooling rate) at different initial tempera-
tures. The impact of aggregation is determined by the aggregation
factor defined in eq. (24). All simulations are without sedimentation
in order to give the maximum impact. Top panel: Aggregation fac-
tor for different realistic vertical velocities (0.01≤w ≤ 5m s−1)
at different inital temperatures. The collision efficiency is set to
E ≡ 1. Bottom panel: same as in top panel, but for temperature
dependent collision efficiency E = E(T ) as given by eq. (20).

Note, that the shape of the curves for different temperature
regimes is nearly the same; actually, the curve of aggregation
factor for temperature Tinit = 240K could be shifted to the
left in order to represent the curves for other temperatures
even quantitatively.

4.3 Test of aggregation within a 2D model: Simulations
of synoptically driven cirrostratus

In order to investigate the impact of aggregation in a more
realistic situation we implemented the new aggregation pa-
rameterization into the EULAG model including the al-
ready mentioned bulk microphysics scheme (Spichtinger and
Gierens, 2009a). We investigate typical formation conditions
for stratiform cirrus clouds, i.e. a synoptic scale updraught.

In the next subsection we present the setup of the simula-
tions. Then we will present and discuss the results.
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Fig. 8. Initial vertical profiles for the simulations; left: tempera-
ture, middle: pressure, right: relative humidity wrt ice for different
setups (low, middle and high altitude range, corresponding to high,
medium and low temperature range, see tab. 1).

Layer altitude (km) temperature (K)

low 7.5≤ z≤ 9 235.3≥T ≥ 222.3

middle 8.5≤ z≤ 10 226.8≥T ≥ 213.5

high 9.5≤ z≤ 11 217.9≥T ≥ 204.6

Table 1. Initial vertical positions and temperature ranges for ice-
supersaturated layers (low/middle/high)

4.3.1 Setup

For simulating stratiform cirrus clouds as typical for mid-
latitudes we specify vertical profiles of temperature and pres-
sure as shown in fig. 8, respectively; additionally, we pre-
scribe an ice–supersaturated layer with vertical extension of
∆z = 1.5km at different altitudes (top of layer at ztop =
9/10/11km, i.e. low/middle/high). The vertical extension
and the corresponding temperature ranges are presented in
table 1. We use a 2D domain (x-z-plane) in the troposphere
with a horizontal extension Lx = 12.7km (∆x= 100m) and
a vertical extension 4≤ z≤ 14km (∆x=50m). At initialisa-
tion the potential temperature field is superimposed by Gaus-
sian noise with standard deviation σθ = 0.025K. We choose
a moderate wind shear for horizontal wind, i.e. du/dz =
10−3s−1 with u(z = 0) = 0m s−1, leading to a maximum
wind of umax ≈ 10m s−1 at z = 14km. The whole 2D do-
main is lifted with a constant vertical velocity. In order
to investigate different synoptic conditions we choose two
values w= 5cm s−1 and w= 8cm s−1. In order to obtain
similar conditions at the end of the simulations (i.e. the
same vertical distance of lifting ∆zlift = 720m or equiva-
lently a cooling of ∆T ≈ 7.04K), the simulation time is ad-
justed; in case of w= 5cm s−1 the total simulation time is
∆t=240min, whereas for w=8cm s−1 the total simulation

Fig. 7. Maximum impact of aggregation for box simulations using
a constant updraught (i.e. cooling rate) at different initial tempera-
tures. The impact of aggregation is determined by the aggregation
factor defined in Eq. (24). All simulations are without sedimentation
in order to give the maximum impact. Top panel: aggregation factor
for different realistic vertical velocities (0.01≤ w ≤ 5 ms−1) at dif-
ferent initial temperatures. The collision efficiency is set toE ≡ 1.
Bottom panel: same as in top panel, but for temperature dependent
collision efficiencyE = E(T ) as given by Eq. (20).

ice crystals stay really at small sizes, aggregation is not
important anymore, i.e.faggr∼ 0.9–1.

– The temperature dependence of the collision efficiency
reduces the values but not the qualitative result. Thus,
the aggregation factors are closer to 1 than in the case
of E ≡ 1, however, the structure of the curves does not
change.

Note that the shape of the curves for different temperature
regimes is nearly the same; actually, the curve of aggregation
factor for temperatureTinit = 240K could be shifted to the
left in order to represent the curves for other temperatures
even quantitatively.
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Fig. 7. Maximum impact of aggregation for box simulations using
a constant updraught (i.e. cooling rate) at different initial tempera-
tures. The impact of aggregation is determined by the aggregation
factor defined in eq. (24). All simulations are without sedimentation
in order to give the maximum impact. Top panel: Aggregation fac-
tor for different realistic vertical velocities (0.01≤w ≤ 5m s−1)
at different inital temperatures. The collision efficiency is set to
E ≡ 1. Bottom panel: same as in top panel, but for temperature
dependent collision efficiency E = E(T ) as given by eq. (20).

Note, that the shape of the curves for different temperature
regimes is nearly the same; actually, the curve of aggregation
factor for temperature Tinit = 240K could be shifted to the
left in order to represent the curves for other temperatures
even quantitatively.

4.3 Test of aggregation within a 2D model: Simulations
of synoptically driven cirrostratus

In order to investigate the impact of aggregation in a more
realistic situation we implemented the new aggregation pa-
rameterization into the EULAG model including the al-
ready mentioned bulk microphysics scheme (Spichtinger and
Gierens, 2009a). We investigate typical formation conditions
for stratiform cirrus clouds, i.e. a synoptic scale updraught.

In the next subsection we present the setup of the simula-
tions. Then we will present and discuss the results.
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Fig. 8. Initial vertical profiles for the simulations; left: tempera-
ture, middle: pressure, right: relative humidity wrt ice for different
setups (low, middle and high altitude range, corresponding to high,
medium and low temperature range, see tab. 1).

Layer altitude (km) temperature (K)

low 7.5≤ z≤ 9 235.3≥T ≥ 222.3

middle 8.5≤ z≤ 10 226.8≥T ≥ 213.5

high 9.5≤ z≤ 11 217.9≥T ≥ 204.6

Table 1. Initial vertical positions and temperature ranges for ice-
supersaturated layers (low/middle/high)

4.3.1 Setup

For simulating stratiform cirrus clouds as typical for mid-
latitudes we specify vertical profiles of temperature and pres-
sure as shown in fig. 8, respectively; additionally, we pre-
scribe an ice–supersaturated layer with vertical extension of
∆z = 1.5km at different altitudes (top of layer at ztop =
9/10/11km, i.e. low/middle/high). The vertical extension
and the corresponding temperature ranges are presented in
table 1. We use a 2D domain (x-z-plane) in the troposphere
with a horizontal extension Lx = 12.7km (∆x= 100m) and
a vertical extension 4≤ z≤ 14km (∆x=50m). At initialisa-
tion the potential temperature field is superimposed by Gaus-
sian noise with standard deviation σθ = 0.025K. We choose
a moderate wind shear for horizontal wind, i.e. du/dz =
10−3s−1 with u(z = 0) = 0m s−1, leading to a maximum
wind of umax ≈ 10m s−1 at z = 14km. The whole 2D do-
main is lifted with a constant vertical velocity. In order
to investigate different synoptic conditions we choose two
values w= 5cm s−1 and w= 8cm s−1. In order to obtain
similar conditions at the end of the simulations (i.e. the
same vertical distance of lifting ∆zlift = 720m or equiva-
lently a cooling of ∆T ≈ 7.04K), the simulation time is ad-
justed; in case of w= 5cm s−1 the total simulation time is
∆t=240min, whereas for w=8cm s−1 the total simulation

Fig. 8. Initial vertical profiles for the simulations; left: temperature,
middle: pressure, right: relative humidity with respect to ice for dif-
ferent set-ups (low, middle and high altitude range, corresponding
to high, medium and low temperature range, see Table1).

Table 1. Initial vertical positions and temperature ranges for ice-
supersaturated layers (low/middle/high).

Layer altitude (km) temperature (K)

low 7.5 ≤ z ≤ 9 235.3 ≥ T ≥ 222.3
middle 8.5 ≤ z ≤ 10 226.8 ≥ T ≥ 213.5
high 9.5 ≤ z ≤ 11 217.9 ≥ T ≥ 204.6

4.3 Test of aggregation within a 2-D model: simulations
of synoptically driven cirrostratus

In order to investigate the impact of aggregation in a more
realistic situation, we implemented the new aggregation pa-
rameterisation into the EULAG model including the al-
ready mentioned bulk microphysics scheme (Spichtinger and
Gierens, 2009a). We investigate typical formation conditions
for stratiform cirrus clouds, i.e. a synoptic scale updraught. In
the next subsection we present the set-up of the simulations.
Then we will present and discuss the results.

4.3.1 Set-up

For simulating stratiform cirrus clouds as typical for mid-
latitudes, we specify vertical profiles of temperature and
pressure as shown in Fig.8; additionally, we prescribe an ice-
supersaturated layer with vertical extension of1z= 1.5km
at different altitudes (top of layer atztop = 9/10/11km, i.e.
low/middle/high). The vertical extension and the correspond-
ing temperature ranges are presented in Table1. We use a
2-D domain (x-z-plane) in the troposphere with a horizon-
tal extensionLx = 12.7km (1x = 100m) and a vertical ex-
tension 4≤ z ≤ 14km (1x = 50m). At initialisation the po-
tential temperature field is superimposed by Gaussian noise
with standard deviationσθ = 0.025K. We choose a moderate
wind shear for horizontal wind, i.e. du/dz= 10−3s−1 with
u(z= 0)= 0 ms−1, leading to a maximum wind ofumax ≈

10 ms−1 at z= 14km. The whole 2-D domain is lifted with
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9032 E. Kienast-Sj̈ogren et al.: Ice aggregation in two-moment schemes

a constant vertical velocity. In order to investigate different
synoptic conditions we choose two valuesw = 5cms−1 and
w = 8cms−1. In order to obtain similar conditions at the end
of the simulations (i.e. the same vertical distance of lifting
1zlift = 720m or equivalently a cooling of1T ≈ 7.04K),
the simulation time is adjusted; in case ofw = 5cms−1

the total simulation time is1t = 240min, whereas forw =

8 cms−1 the total simulation time is1t = 150min. As the
results turned out to be similar for the chosen vertical veloci-
ties in terms of impact of aggregation, we will concentrate on
a detailed investigation of the casew = 5 cms−1. For inves-
tigating the impact of aggregation we use three different set-
ups: in the reference case, we switch off aggregation; in sce-
nario “temperature-dependent” we use the full aggregation
parameterisation including the temperature dependency, as
described in Sect.4.1.2. In order to see the maximum effect
of aggregation, we use the scenario “maximum impact”, i.e.
here the aggregation has efficiencyE ≡ 1. We assume that
ice forms by homogeneous nucleation only, parameterised
after Koop et al.(2000). The background aerosol (sulfuric
acid) is prescribed with a log-normal distribution with (dry)
modal radiusrm = 25nm and geometrical standard deviation
of σr = 1.5.

4.3.2 Results and discussion

In general the simulations behave similar to those carried out
by Spichtinger and Gierens(2009b) for the case of pure ho-
mogeneous nucleation: as the domain is lifted it cools by
adiabatic expansion and the relative humidity increases un-
til crystals are formed at the threshold for homogeneous nu-
cleation. Figure9 shows part of the temporal evolution of
the reference simulation in time steps of 30 min, starting at
t = 60min, i.e. the state fort = 60/90/120/150min is dis-
played. The formation of a quite homogeneous cirrostratus
can be seen to occur after about 2 h simulation time by in-
creasing ice water content IWC= qc · ρair (black isolines).
Some structure is formed by the horizontal wind driving
small circulations inside the layer. In the further evolution,
the vertical depth of the cloud layer is extended due to sed-
imenting ice crystals, reaching about1z∼ 3km at the end
of the simulation att = 240min. Figure10shows the results
at the end of the simulations. Mean values of ice water con-
tent, ice crystal number concentration and relative humidity
with respect to ice are shown, averaged over the domain. As
expected, the impact of aggregation increases with temper-
ature, even in the cases withE ≡ 1 where the aggregation
efficiency itself has no temperature dependence. Obviously
the remaining factors in the collision kernel contribute sig-
nificantly to the temperature dependence and this is due to
the fact that crystals can grow larger in the higher absolute
humidity environment at higher temperatures. Thus, the geo-
metrical factor evidently grows with temperature. The factor
depending on the difference of terminal fall speeds increases
on average with mean crystal size if the width of the size
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time is ∆t= 150min. As the results turned out to be similar
for the chosen vertical velocities in terms of impact of aggre-
gation, we will concentrate on a detailed investigation of the
case w= 5cm s−1. For investigating the impact of aggrega-
tion we use three different setups: In the reference case, we
switch off aggregation; in scenario “temperature-dependent”
we use the full aggregation parameterization including the
temperature dependency, as described in sec. 4.1.2. In order
to see the maximum effect of aggregation, we use the sce-
nario “maximum impact”, i.e. here the aggregation has ef-
ficiency E ≡ 1. We assume that ice forms by homogeneous
nucleation only, parameterized after Koop et al. (2000). The
background aerosol (sulphuric acid) is prescribed with a log-
normal distribution with (dry) modal radius rm = 25nm and
geometrical standard deviation of σr =1.5, respectively.

4.3.2 Results and discussion

In general the simulations behave similar to those carried
out by Spichtinger and Gierens (2009b) for the case of pure
homogeneous nucleation: As the domain is lifted it cools
by adiabatic expansion and the relative humidity increases
until crystals are formed at the threshold for homogeneous
nucleation. Fig. 9 shows part of the temporal evolution of
the reference simulation in time steps of 30 min, starting at
t= 60min, i.e. the state for t= 60/90/120/150min is dis-
played. The formation of a quite homogeneous cirrostratus
can be seen to occur after about 2 h simulation time by in-
creasing ice water content IWC = qc ·ρair (black isolines).
Some structure is formed by the horizontal wind driving
small circulations inside the layer. In the further evolution,
the vertical depth of the cloud layer is extended due to sedi-
menting ice crystals, reaching about ∆z∼ 3km at the end of
the simulation at t=240min. Fig. 10 shows the results at the
end of the simulations. Mean values of ice water content, ice
crystal number concentration and relative humidity wrt ice
are shown, averaged over the domain. As expected, the im-
pact of aggregation increases with temperature, even in the
cases with E ≡ 1 where the aggregation efficiency itself has
no temperature dependence. Obviously the remaining factors
in the collision kernel contribute significantly to the temper-
ature dependence and this is due to the fact that crystals can
grow larger in the higher absolute humidity environment at
higher temperatures. Thus, the geometrical factor evidently
grows with temperature. The factor depending on the differ-
ence of terminal fall speeds increases on average with mean
crystal size if the width of the size distribution does so. In the
formulation of Spichtinger and Gierens (2009a) the width of
the mass distribution (i.e. the square root of the second cen-
tral moment) is proportional to the mean mass. Therefore
higher temperatures lead to more aggregation also via the ter-
minal velocities in this model.

Aggregation increases the average mass of ice crystals and
so leads to stronger sedimentation which has an effect on
ice mass and number concentration in the simulated clouds.

Fig. 9. Time evolution of reference simulation with a time incre-
ment of ∆t = 30min, starting at t = 60min (shown are states for
t = 60/90/120/150min, respectively). Black isolines indicate ice
water content (IWC = qc ·ρair , increment ∆IWC = 2mgm−3),
grey lines indicate isentropes (increment ∆θ = 4K).

Mean crystal number concentrations and ice water contents
are strongly (up to and partly exceeding a factor 2) reduced
by aggregation in the simulation using the highest tempera-
ture. The effects are of similar quality in the colder cases, but
smaller. Effects on the mean profiles of relative humidity are

Fig. 9. Time evolution of reference simulation with a time in-
crement of1t = 30min, starting att = 60min (shown are states
for t = 60/90/120/150min, respectively). Black isolines indicate
ice water content (IWC= qc ·ρair, increment1IWC = 2mgm−3),
grey lines indicate isentropes (increment1θ = 4K).

distribution does so. In the formulation ofSpichtinger and
Gierens(2009a) the width of the mass distribution (i.e. the
square root of the second central moment) is proportional to
the mean mass. Therefore higher temperatures lead to more
aggregation also via the terminal velocities in this model.

Aggregation increases the average mass of ice crystals
and therefore leads to stronger sedimentation which has an
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E. Kienast-Sjögren et al.: Ice aggregation in two-moment schemes 9033
E.Kienast–Sjögren et al.: Ice aggregation in 2-moment schemes 13

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0  25000  50000  75000  100000  125000  150000

al
tit

ud
e 

(k
m

)

mean ice crystal number concentration (m-3)

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0  1  2  3  4  5  6  7  8  9  10

al
tit

ud
e 

(k
m

)

mean ice water content (mg/m3)

reference
aggregation, temperature dependent

aggregation, maximum impact

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 20  30  40  50  60  70  80  90  100 110 120 130 140 150 160

al
tit

ud
e 

(k
m

)

mean relative humidity wrt ice (%)

reference
aggregation, temperature dependent

aggregation, maximum impact

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0  10000  20000  30000  40000  50000  60000  70000

al
tit

ud
e 

(k
m

)

mean ice crystal number concentration (m-3)

reference
aggregation, temperature dependent

aggregation, maximum impact

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0  1  2  3  4  5  6  7  8  9  10

al
tit

ud
e 

(k
m

)

mean ice water content (mg/m3)

reference
aggregation, temperature dependent

aggregation, maximum impact

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 20  30  40  50  60  70  80  90  100 110 120 130 140 150 160

al
tit

ud
e 

(k
m

)

mean relative humidity wrt ice (%)

reference
aggregation, temperature dependent

aggregation, maximum impact

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0  5000  10000  15000  20000

al
tit

ud
e 

(k
m

)

mean ice crystal number concentration (m-3)

reference
aggregation, temperature dependent

aggregation, maximum impact

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0  1  2  3  4  5  6  7  8  9  10

al
tit

ud
e 

(k
m

)

mean ice water content (mg/m3)

reference
aggregation, temperature dependent

aggregation, maximum impact

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 20  30  40  50  60  70  80  90  100 110 120 130 140 150 160
al

tit
ud

e 
(k

m
)

mean relative humidity wrt ice (%)

reference
aggregation, temperature dependent

aggregation, maximum impact

Fig. 10. Vertical profiles of mean ice crystal number concentration (left), ice water content (middle) and relative humidity wrt ice (right) at
the end of the simulation (t = 240min, w = 5cm s−1) for different temperature regimes. Top row: low temperature conditions, middle row:
medium temperature conditions, bottom row: high temperature conditions
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Fig. 11. Statistics of ice crystal number concentrations (top row) and relative humidity wrt ice (bottom row) for different temperature regimes
(left: low temperature conditions, middle: medium temperature conditions, right: high temperature conditions).

Fig. 10. Vertical profiles of mean ice crystal number concentration (left), ice water content (middle) and relative humidity with respect to
ice (right) at the end of the simulation (t = 240min,w = 5 cms−1) for different temperature regimes. Top row: low temperature conditions,
middle row: medium temperature conditions, bottom row: high temperature conditions.

effect on ice mass and number concentration in the simulated
clouds. Mean crystal number concentrations and ice water
contents are strongly (up to and partly exceeding a factor 2)
reduced by aggregation in the simulation using the highest
temperature. The effects are of similar quality in the colder
cases, but smaller. Effects on the mean profiles of relative hu-
midity are present, but here it is more instructive to look at
the statistics (see below, Fig.11). The pdfs of number concen-
tration of ice crystals display in our simulations broad max-
ima at aroundNi ∼ 100L−1. Whereas there is hardly any ef-
fect on the statistics of number concentration in the low tem-
perature case, aggregation shifts the peaks to lower values
and broadens them. As expected, this effect becomes more
prominent at higher temperatures. This is clearly a signature
of the aggregation-enhanced sedimentation (see also discus-
sion in Spichtinger and Gierens, 2009a). The high number
concentration tails of the distributions are merely little af-
fected by aggregation; this is quite plausible because high
number concentrations are usually coupled with small ice
crystals, thus aggregation is weakly effective in this range.

Also the total surface area of the ice crystals decreases by
aggregation. This and the above mentioned increase of sed-
imentation fluxes diminish the sink for supersaturation and
higher relative humidities are maintained over longer periods
of time compared to the reference cases without aggregation.
The statistics of relative humidities typically peak at values
slightly above 100 %. This is best seen in the cold case where
aggregation has hardly any effect on the pdf of RHi . At the
higher temperatures, where aggregation becomes more effi-
cient we see the peaks shifted to higher values (i.e. more sig-
nificant “quasi equilibrium” supersaturation), clearly an ef-
fect of the less effective sink for water vapour in a cloud af-
fected by aggregation (see also the discussion inSpichtinger
and Cziczo, 2010). This effect is most pronounced in those
regions of a cloud that otherwise approach ice saturation
most quickly, typically the middle part of the cloud. Thus ag-
gregation contributes to ice supersaturation within relatively
warm cirrus clouds. Cold cirrus is hardly affected by aggre-
gation according to our simulations (and under the condition

www.atmos-chem-phys.net/13/9021/2013/ Atmos. Chem. Phys., 13, 9021–9037, 2013
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Fig. 10. Vertical profiles of mean ice crystal number concentration (left), ice water content (middle) and relative humidity wrt ice (right) at
the end of the simulation (t = 240min, w = 5cm s−1) for different temperature regimes. Top row: low temperature conditions, middle row:
medium temperature conditions, bottom row: high temperature conditions
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Fig. 11. Statistics of ice crystal number concentrations (top row) and relative humidity wrt ice (bottom row) for different temperature regimes
(left: low temperature conditions, middle: medium temperature conditions, right: high temperature conditions).
Fig. 11.Statistics of ice crystal number concentrations (top row) and relative humidity with respect to ice (bottom row) for different temper-
ature regimes (left: low temperature conditions, middle: medium temperature conditions, right: high temperature conditions).

that the gravitational collection kernel is the only relevant
one for cirrus clouds).

In the simulations with stronger updraught we can see dif-
ferences in details, but qualitatively they behave similar to
the simulations shown. Therefore, we do not deem it neces-
sary to present them here.

4.4 Scaling size distribution

The log-normal crystal mass distribution is used in the
scheme ofSpichtinger and Gierens(2009a) and the ques-
tion arises whether this is an appropriate choice in situations
where aggregation dominates ice growth. In such cases the
evolving crystal size distribution apparently can be mapped
onto a universal shape:

f (m,t)=

(
mm(t)

m0

)−θ

ψ

(
m

mm(t)

)
,

wherem0 is a mass unit (to make the prefactor dimension-
less) andψ(x) is a function that depends on time only via
the ratiom/mm(t) (Field and Heymsfield, 2003; Westbrook
et al., 2004, 2007; Sölch and K̈archer, 2011). The tempo-
ral evolution of the size distribution can thus be captured by
scaling both axes with a function of the time-varying modal
mass, them axis with its inverse and thef axis with itsθ -th
power. Although the log-normal distribution can be treated
in this way (withθ = 1 for constant geometric width), it is
not a true solution for gravitational aggregation. Researchers,
guided by numerical simulations, tend to use forψ(x) func-
tions with an exponential upper tail (e.g.Field and Heyms-
field, 2003, use a gamma distribution), however, it is not

mathematically proven that the gravitational collection ker-
nel has a scaling solution at all (Aldous, 1999). One condition
for this is the homogeneity of the kernel functionK(m,M).
From the mass-length and length-fall speed relations we can
see that the kernel can only be a homogeneous function if the
exponents in these relations are constant over all sizes. This
is only so for spheres. The exponents change, however, with
size for ice crystals and the shape of the crystals, for instance
expressed by the aspect ratio, changes with size (see, for
instance,Heymsfield and Iaquinta, 2000). In our case with
hexagonal columns it is the functionA(m), the surface of
the crystal, wherem appears with two different exponents
(for the basal and prism faces, respectively);A(m) is non-
homogeneous. Hence, for ice the collection kernel is not a
homogeneous function and therefore there is no true scaling.
If it is nevertheless possible to match observed size distribu-
tions to a universal scaling function, this suggests that there is
an approximate scaling for large (� 100 µm) crystals, which
requires that the mentioned exponents are mainly constant
in this range. The upper tail of a log-normal distribution is
slightly bent upward on a semilog plot, that is, it does not
have a perfect exponential; but it might be possible to fit the
observed size distributions of large crystals with log-normals
as well as with gamma-distributions (in particular, given the
noise in the data). Unless there is a mathematical proof that
ice aggregation leads to a specific size distribution other than
the log-normal there is no need to abandon it.
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5 Conclusions

We have derived from the master-equation for coagulation a
simple formulation of aggregation for two-moment bulk mi-
crophysical models. So far we developed the formulation for
aggregation of crystals belonging to the same class only (the
microphysics scheme ofSpichtinger and Gierens(2009a) al-
lows more than one class of ice). A more general formu-
lation with aggregation of crystals from different classes is
rather a numerical than a mathematical problem, but a diffi-
cult one; thus, it is beyond the scope of our study. The core of
the present formulation is a double integral of the collection
kernel weighted with the crystal size (or mass) distribution,
which is the expectation value of the kernel. This quantity
is to be inserted into the differential equation for the crystal
number concentration which is of a form that was already de-
rived by Smoluchowski(1916, 1917). The double integrals
are evaluated numerically for log-normal size distributions
over a large range of geometric mean masses. The direct eval-
uation of the integrals within a cloud simulation run takes a
lot of computing time and is not recommended. Instead the
pre-calculated results can either be read from a look-up table
or – even better – a polynomial fit of the results can be used
that yields good accuracy.

We have tested the new parameterisation in various envi-
ronments: stand-alone (to see how the solution of the differ-
ential equation behaves and to test the polynomial fits), in
a box-model (where aggregation occurs simultaneously with
other microphysical processes and where a first check can be
made, whether and when aggregation is important), and in
a 2-D simulation of a cirrostratus cloud (where additionally,
cloud dynamics can enhance or dampen the effects of ag-
gregation). Overall these tests suggest that aggregation can
become important at (relatively) warmer cirrus temperatures,
affecting not only ice number and mass concentrations, but
leading also to higher and longer-lasting in-cloud supersat-
uration. Sedimentation fluxes are increased when aggrega-
tion is switched on. Cold cirrus clouds are hardly affected
by aggregation. The temperature dependence originates not
only from an assumed temperature dependence of the col-
lection efficiency but also from the other factors in the col-
lision kernel: Higher temperatures imply larger ice crystals
and larger spread in terminal velocities (if the assumed type
of size distribution is such that the width of it increases with
increasing mean size). From timescale analysis the impor-
tance of aggregation can be derived depending on number
concentration and size of the ice crystals. For cold clouds it
is often justified to ignore aggregation when the research fo-
cus is on ice mass and number densities. However, when the
focus of research is crystal habits and their effect on radia-
tion, aggregation should not be ignored since cirrus clouds
usually contain complex, irregular and imperfect ice crystals
as reported byBailey and Hallett(2009). The authors have
shown that even cold cirrus contains complex ice crystals that
may be the result of aggregation. They occur predominantly

at high supersaturation, but supersaturation does not directly
appear in the formulation of the kernel function. One might
test whether an extension of the formulation of the collection
efficiency (i.e.E = E(T ,S)) yields better results; however,
this kind of further development as well as sensitivity stud-
ies is far beyond the scope of this study and is left for future
work. Rather it is desirable to measure collection efficiencies
in big cloud chambers. By doing so, one should simultane-
ously test whether aggregation is the only process that leads
to complex forms of ice crystals. This is not probable since
rosette shaped crystals are too regular to be formed by ran-
dom collisions. There is obviously a gap in our understand-
ing and much occasion remains for further experimental re-
search before we should develop our numerical formulations
into unjustified detail.

Appendix A

Fit parameters

In TableA1 the coefficients for the fitting polynomials are
given. For each log-normal distribution with a certain width,
as given by the geometric standard deviation, the numerical
values are fitted by four polynomials for the four mass inter-
vals. The polynomialsPi (i = 1. . .4) are of the form

Pi(x)=

3∑
k=0

akx
k. (A1)
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Table A1. Coefficientsak,k = 1, . . . ,4 for the fitting polynomials
as given by Eq. (A1) for different geometric standard deviationsσm
of the underlying ice crystal mass distribution of log-normal type.

σm = 1.9

polynomial a3 a2 a1 a0

P1(x) 0.161743 1.944540 7.225331−25.574820
P2(x) 0 0.006629 1.250592 −26.587122
P3(x) 0.063897 −1.500559 12.517525 −53.800911
P4(x) 0.018204 −0.583488 6.744979 −42.659445

σm = 2.23

polynomial a3 a2 a1 a0

P1(x) 0.093471 1.062465 4.185680−26.554164
P2(x) 0 0.004782 1.255352 −26.213817
P3(x) 0.039604 −0.937555 8.213213 −42.654474
P4(x) 0.011304 −0.346037 4.069962 −32.510841

σm = 2.85

polynomial a3 a2 a1 a0

P1(x) 0.047997 0.508658 2.484682−26.254489
P2(x) 0 0.001689 1.261169 −25.66479
P3(x) 0.011625 −0.301539 3.433380 −30.376550
P4(x) −0.000954 0.055933 −0.268175 −16.747973

σm = 3.25

polynomial a3 a2 a1 a0

P1(x) 0.035623 0.366723 2.099524−25.904090
P2(x) 0 −0.000604 1.262784 −25.352383
P3(x) 0.003945 −0.130459 2.165867 −27.047191
P4(x) −0.007756 0.275873 −2.610739 −8.349591

σm = 3.81

polynomial a3 a2 a1 a0

P1(x) 0.026046 0.264208 1.875774−25.334124
P2(x) 0 −0.003465 1.262705 −24.968373
P3(x) 0.000967 −0.065920 1.690159 −25.608373
P4(x) −0.011432 0.378891 −3.540836 −5.453425

σm = 4.23

polynomial a3 a2 a1 a0

P1(x) 0.021865 0.224846 1.839392−24.833040
P2(x) 0 −0.005474 1.261214 −24.705781
P3(x) 0.003797 −0.125940 2.100785 −26.349780
P4(x) −0.014204 0.454091 −4.193066 −3.503260

σm = 5.29

polynomial a3 a2 a1 a0

P1(x) 0.016174 0.182345 1.927033−23.518787
P2(x) 0 −0.010140 1.253076 −24.113388
P3(x) 0.005342 −0.151146 2.193905 −25.950771
P4(x) −0.012141 0.357770 −2.867059 −8.842166
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