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Abstract. A simple formulation of aggregation for two- gregatesBailey and Hallett2009. But also in cold cirrus
moment bulk microphysical models is derived. The solutionclouds " < —40°C) aggregated ice crystals can be found
involves the evaluation of a double integral of the collec- (e.g.,Kajikawa and Heymsfieldl 989 Connolly et al, 2005
tion kernel weighted with the crystal size (or mass) distribu- Bailey and Hallett2009, indicating that aggregation might
tion. This quantity is to be inserted into the differential equa- also play a role for the cold temperature regime.
tion for the crystal number concentration which has classical The process of ice aggregation was already investigated in
Smoluchowski form. The double integrals are evaluated nuthe 19th century. From September 1842 on, Faraday made a
merically for log-normal size distributions over a large range series of experiments in order to investigate the ability of ice
of geometric mean masses. A polynomial fit of the resultsto stick onto other ice particles-éraday 1859, which was
is given that yields good accuracy. Various tests of the newcalled “regelation” byTyndall (1857. During this time, the
parameterisation are described: aggregation as stand-alomecepted explanation was the so-called pressure melting pro-
process, in a box-model, and in 2-D simulations of a cirro- posed byThomson(1859 1860); the main idea is that suffi-
stratus cloud. These tests suggest that aggregation can beient compressive forces exist at the contact region, causing
come important for warm cirrus, leading even to higher andmelting if the ice particles are brought together. However,
longer-lasting in-cloud supersaturation. Cold cirrus cloudsresults byNakaya and Matsumot(1954) show that the re-
are hardly affected by aggregation. The collection efficiencyquired pressures are far to high to be realistic under atmo-
is taken from a parameterisation that assumes a dependenspheric conditionsraraday(1859 proposed the existence of
on temperature, a situation that might be improved when rea so-called “liquid-like” layer at the ice surface, which so-
liable measurements from cloud chambers suggests the netidifies in case of contact with another piece of ice. This ap-
essary constraints for the choice of this parameter. proach was supported about 100 yr lateNVdgyl (1957) and
Fletcher(1962. Additionally, measurements byakaya and
Matsumotda1954 andHosler and Hallgre1960 indicate a
temperature dependence of the sticking ability, which could
1 Introduction be explained by the liquid layer on top of the ice crystals.
Kingery (1960 proposed a different way to explain ice ag-
Cirrus clouds, in particular at temperatures higher thangregation, namely ice sintering. Two (spherical) ice particles
—40°C, often contain very large ice crystals with maximum aitach at a single point, which is not a thermodynamically
dimensions exceeding 1 mrhi¢ymsfield and McFarquhar  staple state; in order to minimize surface free energy, a neck
2002 Fig. 4.6). These large crystals generally have complexyetween the spheres is formed, thus the two particles stick to-
shapes Rield and Heymsfield2003 Fig. 3), and many of  gether. This process of ice sintering, of course, would be sup-

them seem to be aggregates of simpler crystals, although ongorted by the “liquid-like” layer, as proposed. The details of
has to be careful in identifying irregular crystals with ag-
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9022 E. Kienast-Spgren et al.: Ice aggregation in two-moment schemes

this process are discussed Hpbbs(1965. From measure- ice aggregation has been obtained. Some authors have sim-
ments byKumai (1964 (image reprinted inHobbs 1965 ulated aggregation via spectral modethéin and Sednev
andHobbs and Maso((1964) the existence of small quasi- 1996 Cardwell et al.2003 or even by single particle track-
spherical ice crystals (diameter10 um) sticking togetheris ing (Solch and Karcher 2017).
evident, even at cold temperatures down87°C or even Field and Heymsfield2003 believe that size distribu-
below. For large ice particles mechanical interlockidigigto  tions of ice crystals are dominated by depositional growth
and Weickmann1973 may play a role, especially for large for small particles (e.g. up to 100 um) and dominated by ag-
dendritic snow flakes. In summary, it is likely that ice sinter- gregation for larger particles which they underpin by demon-
ing in combination with the “liquid-like” layer is the main strating that the crystal size distributions for large crystals
process for ice aggregation at small sizes; the modern terndisplay a scaling behaviour. “Scaling” is a modern expres-
for “liquid-like” layer is quasi-liquid-layer (QLL). At high  sion for the attainment of a self-preserving size distribution
temperatures near melting point or even down—b5°C, (SPD) (seePruppacher and Kleti997 ch. 11.7.2, see also
the existence of QLLs is quite eviderKghan et al. 2007, Sect.4.4): the SPD theory suggests that the process of co-
Sazaki et al.2012; however, it is not clear if, for the cold agulation makes a crystal population loose memory of its
temperature regim& < —40°C, the QLL still exists; also initial size distribution and attaining asymptotically a size
from a theoretical point of view, this question is still unde- distribution of a relatively simple form. The further evolu-
cided Ryzhkin and Petrenk@009. tion of the latter with time can be described simply by scal-
Although details are still unclear, it is evident that aggrega-ing transformations, that is, when the(size) andy (num-
tion can only occur when ice crystals collide. Collisions can ber) axes are transformed with two simple functions of time
be caused by a variety of processes, for instance turbulertx’(r) = x f(t), y'(r) = y f, (1)), the size distribution is rep-
motions and gravitational settling of crystals. For crystalsresented by a constant curve in this changing coordinate sys-
larger than a few pm, gravitational settling is the most effi- tem. Such scaling behaviour in ice clouds has been demon-
cient aggregation procescobsor2005 Fig. 15.7). Turbu-  strated by several researchers and traced back to a dominance
lent fluctuations in clouds can however enhance the gravitaef aggregation processes (eWigestbrook et a).2007).
tional aggregation process as a result of synergy between dy- This behaviour is also a kind of justification for the
namics and microphysicSglch and Karcher 2011): cirrus modelling aggregation processes via bulk models, i.e. us-
clouds developing in a steady uplift situation have a thin nu-ing (fixed) size-distributions and predicting general moments
cleation zone at their top. New crystals form there as soon asuch as number and mass concentration, respectively. This
the ongoing cooling drives the relative humidity over the nu- was done in some former studies (see, €2gssarellil978
cleation threshold. The number of new ice crystals is a strond.in et al, 1983 Mitchell, 1988 Levkov et al, 1992 Fer-
function of dS; /dr, the rate at which the supersaturation in- rier, 1994 Lawson et al.1998 Field and Heymsfield2003
creases at the threshold. Turbulent motions lead to variationMorrison et al, 2005. However, the main focus in all these
in dS;/dt, thus, in consequence to variations in the numbermodel studies as well as in most observational studies (see,
concentration of new crystals. I§d/dr is by chance particu- e.g.,Field et al, 2006 Connolly et al, 2012 is on the “high”
larly low, only few crystals form and they grow subsequently temperature regime, i.§. > —30°C, where precipitation is
in highly supersaturated air with only weak competition for mainly formed via the ice phase. There are only few obser-
the excess water vapour. Thus they first grow large by depovations in the cold temperature regime, mostly in convective
sition, obtain large fall speeds, and can then collect many iceutflow cirrus cloudsConnolly et al, 2005, indicating that
crystals on their way from cloud top to base. aggregation of ice crystals happens. However, even in cold
The dominance of gravitational collection has some con-cirrus clouds formed in situ, aggregates are sometimes found
sequences: (i) the importance of aggregation decreases witfiKajikawa and Heymsfield1989, thus aggregation might
altitude (thus with decreasing temperature) because the aleccur at these temperature and might have an impact on mi-
solute humidity decreases (roughly exponentially) and there€rophysical properties.
fore mean crystal dimensions decrease with altitude; (i) ag- The bulk ice microphysics scheme I8pichtinger and
gregation is more important in deep than in shallow (ice) Gierens(20093 so far did not represent ice aggregation; as
clouds; (iii) aggregation is more important in well-developed only cold cirrus clouds have been simulated, this was toler-
than in young (ice) clouds. able. However, as seen above, aggregation can be an impor-
Since for atmospheric investigations the evolution of antant process and a complete cirrus microphysics scheme must
ensemble of ice particles must be evaluated, the stochasticave a representation of it. This new treatment is described
collection equation must be investigated. This type of equa-in this study. It has to be noted that although the scheme can
tion was already investigated I9moluchowsk{1916 1917 treat multiple classes of ice (e.g. ice formed by homogeneous
in order to describe Brownian coagulation analytically. For nucleation and ice formed by heterogeneous nucleation), it is
investigating the evolution of a size distribution, the stochas-not yet possible to compute aggregation between these differ-
tic collection equation must be solved or treated in a numeri-ent classes. Therefore we describe here aggregation between
cal way. In former studies, different treatments of modelling crystals of a single class of ice.
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2 Mathematical formulation of aggregation for As stated above, in order to find the prognostic equation
two-moment bulk microphysics schemes for N we have to integrate, i.e.

Bulk microphysics schemes do not explicitly resolve the sizeg N () 9 T Ooan(m, 1)

spectrum of the modelled hydrometeors as spectral modelS 5, = 3; /”(’"*’)dm =/ drm

(also known as bin models) or even models following single 0 0

particles do. Instead, bulk models use only some low order 1 oo

moments of the a priori assumed size distribution and pre- = _// dmdm'K(m',m —mYn(m',t)n(m —m’, t)

dict their temporal evolution subject to microphysical pro- 2 o

cesses as nucleation, depositional or condensational growth

(and evaporation or sublimation), sedimentation, and aggre- =h

gation. All these processes can be formulated by first consid- ®

ering the process for a single particle (or two particles in the —//dm dm'K (m,m"yn(m,tyn(m’, 1). (2
case of aggregation) and then computing integrals over the 0

assumed size distribution. Two-moment schemes consider

the evolution of the zeroth and another low-order moment,

which are proportional to the particle number concentrationlt is easy to see that every combinationmefandm’ in the

(N) and mass concentrationg]. We use a crystal mass dis- first integral occurs as well in the second one. Thus, both

tribution f (m) instead of a size pdf, thus we use the zerothintegrals are equall{ = I2), apart from the factor /2, so

and first moment off (m). In the following we present the that the resultis

theory for an assumed mass distribution, which we use in 00

two versions, namely(m)dm is the number concentration of IV () _ —}//K(m,m/)n(m,t)n(m’,t)dm/dm. ()

particles having masses betweerandm +dm, and f (m)dm ot 2

is the normalised version of this, namefy(m) = n(m)/N 0

where N = [n(m)dm (the total number concentration irre- The derivation of this result is as follows: first we interchange

spective of particle mass). This impligsf (m)dm = 1. the order of integration in the first integrdh{, resulting in
Evidently, aggregation does not change the mass concen- 0

tration, thus the prognostic equation fgris simply L= /dm/n(m/ 0 /dm K(m'.m—m'yn(m —m'.1)
0 0

=:I>

(31) _
9 Jagg Now we substituter for m —m’ in the inner integral, with

As this paper deals with aggregation alone, we will drop in @ = dm. The integral limits can still be set to zero and in-
the following the lower index referring to the process. In or- finity, because: vanishes for negative arguments. Therefore

der to formulate the differential equation fof we start by

o o0

writing down the following master-equation (eRyuppacher I = /dm’n(m’ Z)/de(m/ )nx.6)

and Klett 1997 ' ' T
0 0

m

on(m,1) 1 / / / / / Since it does not matter whether we write the integration
=— | Km' ,m—m)Hn(m',t)n(m—m',t)dm ) : . .
ot 2 variable asc or asm and because the integrand is symmetric
0 in its two variables, we see that equals the second integral
° ) ) ) from above, and this completes our proof of ER). (
—/K(m,m yn(m,t)yn(m’,t)dm’. 1) Now we go on using the normalised mass distribution. In
0 this form, Eq. 8) reads

Here, K (m,m’) is the so-called coagulation kernel (i.e. the IN (1) 1 ?
rate at which the crystal concentration changes due to aggrea— = —ENZ // K(@m,m') f(m,t) f(m’,t)dm’dm. (4)
gation per unit concentration of crystals of massand per ! 0

unit concentration of crystals of mass). The first rhs in- . .
In a mathematical sense, the double integral over the ker-

tegral describes the formation of particles of mas$érom | function i thi lse than it tati lue for th
aggregation of two smaller particles, and the second rhs jn]€! Tunction 1 nothing eise than its expectation vaiue for the

tegral describes the aggregation of particles of massth given distribution (m, 7). This is usually notated as') (1)

other crystals of arbitrary mass, which leads to a loss of parti—W here we have retained the time dependence for clarity. The

cles of mas#:. Note that we can extend the 1st integral upperprOgnOStIC equation fol (¢) is therefore
limit to infinity without changing its value becausén —m’) AN () N(t)2
is zero for negative arguments. This fact will be used below. —-— = == (K)(@) (5)
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A similar formulation was already given burakami wolm], gc = n1[m], respectively, with a mean massmaf=
(1999, however for the conversion from ice to snow and ./ = m,, exp(3 (logo,,)?).

without the statistical interpretation ¢K). Assuming that
(K)(t) is a constant during a single time stap in the bulk
scheme, there is a formal analytical solution of the form

Aggregation would tend to lead to a deviation from the
log-normal distribution towards an exponential one. This ef-
fect cannot be taken into account in our model and would re-

N(t) guire some development, for instance introduction of an ice
/2N O)(K) A +1° (6) class “aggregates” Wlth exponential distribution a'nd devel-

opment of an aggregation scheme between small ice crystals

wherer* is any appropriate time within the time step. The (log-normally distributed) and aggregates. All this is future
form of this solution has already been obtainedSwiolu-  work.
chowski (1916 1917 for Brownian coagulation (see also
Pruppacher and Kletl997 Sect. 11.5). It is seen that for 3.2 Choice of an aggregation kernel
long timesteps such thats > 1/[N(¢)(K)(t*)] the final ) ) )
N(t 4+ At) becomes independent of the initidlz). With the We assume that ice crystals aggregate in particular when

new value ofV and the (here unchanged) valuegefve can large crystals fall through an ensemble of small crystals,
compute the updated mean masgof, 1 + Ar), i.e. we can when they collide and stick together. This particular mech-
compute the updated mass distributi(;n. anism is called gravitational collection and can be described

The prognostic equation fa¥ is the desired result, and the by the following form of a collection kernePfuppacher and
solution can in principle be computed for arbitrary forms of Klett, 1997 p. 569)
the mass distribution and for _arbitrary coagulation kernels.K (R.r) =7 (R+7r)2[v(R) — v(r)|E(R.r). 9)
Nevertheless, the necessary integrations are tedious and it
may be justified to construct a look-up table where the re-Here, R andr are the “radii” (see below) of the larger and
quired values ofK)(¢) can be read off. The computation of smaller colliding ice crystals, respectively, such that the first
the integrals for special choices ¢fim) and the kernel is  factor on the rhs is the geometric cross section for the colli-
demonstrated next. sion. The second factor is the absolute difference of the fall
speeds of the two crystals, that is, the speed of their relative
motion. Because of hydrodynamic (and potentially other) ef-
fects it is not just the geometric cross section that determines
whether two crystals collide, and even if they collide they
do not need to stick together. Therefore a correction factor

In principle we could use any probability density function on E(R,r)is app”,e‘?' which accoqnts for. these effedf;is usu-
R* for f(m). Following Spichtinger and Gieren€0093, ally called collision or collection efficiency. Choices @f

we use here a log-normal distribution, i.e. will be presented below. _ _
The next problem to solve is to formulate the collection

1 1 (log(m/mm) 271 kernel for_non—spherical ice cr;_/stals instead of spheres. Here
= \/Z_I—o exp 5\ T 000 — (7) we do this for hexagonal cylinders, a common shape for
77 1090m ice crystals as used for instanceSpichtinger and Gierens

Here, log denotes natural logarithm. The normaligée) (20093. For <_:onvenience, the_size is replacec_i by the parti-
has two parameters. The first parameter is the modal mas¥€€ mass. This can be done since maspdnd size () are

(or geometric mean),,, which is updated after every time 'elated (see e.gdeymsfield and laquint2000), usually ex-
step by the prognostic values of number and mass concer/€Ssed via power laws (e.g. = O‘Lﬁ); Using these rela-
tration, respectively; the second parameter is the geometriiOnS, we obtain the following expression for the surface of a
standard deviatiom,,, which is usually fixed or formulated hexagonal ice crystal of mass

as a function of the mean mass. The mass distribution is .
then given by normalisation with number concentration, i.e. 1 g1 1 208 B+l
n(m) = N- f(m). The general kth moment of the mass distri- A(m)=—-afm 7 +6- ENENS m (10)
bution is denoted by, [m] and for log-normal distributions o

we obtain wherepp = bulk density of ice = B1 x 103 kg m3.

Assuming randomly oriented columns (analogous to the
usual approximation for radiation parameterisatiorfcbert
and Curry 1992 we obtainr? = % by replacing the ice
crystals surface by the surface of a sphere, such that

Number and mass concentration are prognostic variables 1
in our scheme, represented by the general momanis (R+r)?= y™ (2\/ A(M)A(m) + A(M) +A(m)>. (11)

N(t+At) =

3 Computation of the double integrals

3.1 Choice of a mass distribution

fm logo, m’

SRR

wilm) := /mkn(m)dm =N -mk exp<% (klogom)z). (8)

Atmos. Chem. Phys., 13, 9028037, 2013 www.atmos-chem-phys.net/13/9021/2013/
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We replace the radi{R, r) with the corresponding masses

. 0.0001 T T T T T T
(M, m) and obtain
1 ~ e il i -
K(M,m) = Z(ZN/A(M)A(m)+A(M)+A(m))- o e -
E
lv(M) — v(m)|E(M,m). (12) ¢ e o
. . . . T -~
The terminal velocity of each of the falling particles can be § *** -
described using the following power law é le-14 ¥ L~
g L e
v(m) =ym® - (T, p). (13) g e /
le-18
The parameters, 8, y ands needed to translat€ (R, r) into Les0
K (M, m) are given inSpichtinger and Gierer{f20093. Note “Te16 1015 1014 1e13 1e12 le-1l 1010 1609 1608 1e.07 1e-06
that the parameters usually are constants for valuesinfa modal mass (kg)

certain mass interval. Thus, this leads to a generic splitting of . N .

the integrals, as can be seen in the next section. A correctiof'd- 1- §Ki('”te$r?]| values E'” S J as_l? fg”Ct'Or(‘j of the 2rn£;3;|a|
factor for the terminal velocity is added in order to consider mass (in kg) o the crystal mass distribution an dor = 2.85.
density changes, leading to different aerodynamic drag. Th The corresponding sizes range between a modal length of 0.6 and

ion f . d foll field and 000 um. Exact values from a numerical integration are shown as
correction factor is represented as followegmsfield an squares. The solid lines represent polynomial fits in 4 different mass

laquinta 2000 ranges, indicated by the black lines.
a b
p T
cn=(2) () (14) _
Po To 3. 4x10% ng < m,, < 1x10*ng: the sedimentation veloc-
with constants po = 300hPa, Tp = 233K, a = —0.178, ity gets larger.

b= —0.394. Since the correction fgctor .depends only on 4. 1x 10° ng < m,,: even larger columns.
temperature and pressure, respectively, it can be treated as

a constant for the calculations of the integrals. As can be seen in Fidl, the polynomial fits to the exact
integral values are very good; the maximum deviation is less
than 10 % and the mean deviation even less than 2 %. Thus
the polynomials can be used as an accurate solution while
saving computing time.

These fits were calculated for a whole range of log-normal
size distributions with geometric standard deviations in the

Fig. 1. The calculation was done faf — 233K and 300hPa, range g, = 1.90-5.29. The coefficients for these fits are

. S : . given in the appendix, Tablal. In Fig. 2 the kernels for
I.e.c(T, p) = 1in Eq. (4). For other choices of atmospherlc_ these vales are displayed against modal mas®f the dis-

$fbution (upper panel) as well as against mean mass of the
]distribution m = m,, exp(0.5- (logo,,)?) (lower panel). As
expected by theory, the kernels are larger for a wider distri-

1P ng = 10 %kg (equivalent to a length- 8mm) as this is bution: this behavi b learlv in th |
the upper limit for an aggregated particle, which will be used unqn, this behaviour can be seen ceary in the upper pane
' of Fig. 2. In fact, the kernels for a fixed modal mass vary

in the later parameterisation. The calculated integral values . .

. : over more than one order of magnitude for different geomet-

were divided into four ranges because of mass dependent cg- . LS .

- ) . Tic standard deviations. This indicates that the width of the
efficientse, 8, y ands. For each range a polynomial was fit-

ted through the calculated values. The combination of thesc‘a‘:'Ize distribution is very important for the strength of the ag-

polynomials is displayed as solid line in Fi@l. The four gregation process.

polynomial ranges correspond to changes in the growth ang 4 comparison with other model parameterisations
sedimentation behaviour of ice crystals (e.g. changes of the

parameters, ..., ) as indicated irBpichtinger and Gierens  For testing our new parameterisation, we first compare

3.3 Computation of the integrals

The integral values(K ) in m®s~1) were calculated using an
adaptive Simpson quadrature (e.gness 1969 for different
values of the geometrical standard deviatign The calcu-
lated integral results far,, = 2.85 are indicated as squaresin

below we compute the integrals with a collision efficiency of
unity. The integration was conducted up to a modal mass o

(20093: the derived kernels with already existing parameterisations.
1. 1x 1074 ng < my < 2.5 x 10-3 ng: mainly hexagonal There were some former attempts in denvmg aggregation
ice crystals with aspect ratio 1. parameterisations for hydrometeors, especially snow and

ice crystals.Passarelli(1978 derived an analytical kernel
2. 25x 1073 ng < m,, < 4x 107 ng: columns with aspect for aggregating ice crystals, leading to an unhandy expres-
ratio larger than 1. sion of hypergeometric functions. However, he assumed an

www.atmos-chem-phys.net/13/9021/2013/ Atmos. Chem. Phys., 13, 9®R7, 2013
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0.0001 ' scribed parameterisations (e.jlorrison et al, 2005 using
Passarelli's parameterisation), maybe with modifications.
e ———= . °
- %//— For the low temperature regimé (< —40°C) only one

108 / recent parameterisation ychumann(2012 is available.

1e-10 Schumann(2012 estimated the aggregation kernel (his
Eqg. 52, translated into our formulation) to be
le-12

GrELg0 T
Om=2.23 o

le-14 =285 —— K=E-16-7r“v(r) (15)
=381

le-16 0=4.23 ——

7 / 0=5.29 3 3
1e-18 /

using the volume mean radids= (—)é with a bulk ice
1le-20

47 pps
density of 917 kgm?®. For comparison we used our termi-
le-16 le-15 1le-14 1e-13 1le-12 le-11 le-10 1le-09 1e-08 1e-07 1e-06
modal mass (kg)

A\

aggregation kernel <K> (m3 5‘1)

nal velocity formulation, the volume mean radius was de-

0,000 rived from the mean mass of an ice crystal; the efficiency

—] is set to beE =1. In Fig. 2 (lower panel) some kernels
e =] for our formulation §,, = 1.9/2.85/5.29, representing nar-
Yo 1e0s / = row/medium/broad size distributions) are shown in compar-
€ Lo10 = ison with the kernel as derived ychumann(2012. The
2 kernels are plotted against the mean mas#t least in the
g v = 0,190 —— mass range 10" < m < 10 kg, the qualitative agreement
§ e - =~ on=381 — is quite good, although the kernel [8chumann(2012 is
£ et ) Schumann'(2012) about 5 times higher than our parameterisations. In the mass
g rangesn < 10~ 1%kg andm > 10-9kg there is a larger over-
le18 / estimation compared to our parameterisations. These overes-
timations are not crucial, since (1) the larger masses do not

1e-20
le-16 le-15 le-14 1e-13 le-12 1le-11 1e-10 1le-09 1e-08 1e-07 1le-06 . . . .
TR sk apply for the parameterisation iSchumanr{2012 which is

used for contrails, where small to moderate crystal masses
Fig. 2. Fits on calculated aggregation kernels for different geomet-Prevail, and (2) for the very small masses the aggregation
ric standard deviations. Upper panel: aggregation kernels vs. moddimescales are much larger than cloud and contrail lifetimes
mass. The change due to the width of the distribution can be see(see below).
clearly. Lower panel: aggregation kernels vs. mean mass. Since the
mean mass depends on the geometric width of the distribution, th.5 Timescale analysis
variation of the kernels due to different width is smaller. Addi-

tionally, the aggregation kernel as derived ghumann(2012 is In order to estimate the possible impact of aggregation on ice
shown for comparison. The corresponding sizes range between grystal number concentrations, we estimate the timescales of
modal length of 0.6 and 8000 pm. aggregation
—zNYK)=—=—& —1= 16
2 (K) ot T N - (K) (16)

exponential size distribution, because he was interested iin Fig. 3 the timescales of aggregation are displayed for
aggregation of snow, i.e. aggregation at warm temperaturesa typical size distribution with geometric standard devia-
The assumption of exponential distributions simplified thetion value of o, = 2.85 and for typical ice crystal num-
expressions. This procedure is not viable in our case beber concentrations in cirrus clouds (see, egdmer et al.
cause we use log-normal distributions for ice crystals (as2009 in the range betweeN = 10* m—3 =10L"1andN =
justified inSpichtinger and Gieren20093. Mitchell (1988 10’ m—3 =10 cnt3, respectively. Since aggregation is a
derived an aggregation kernel in a similar wayPassarelli  pure sink for ice crystal number concentrations, the timescale
(2978, using exponential distributions and, similar to our is negative; however, in Fi@ we show absolute values of
treatment, power laws for terminal velocities. Again, the ag-for a better representation.

gregation parameterisation was derived for the warm tem- Itis evident that only in a very narrow range set by param-
perature range, with the special assumption of an exponeneter number concentration and ice crystal size, aggregation
tial distribution.Ferrier(1994 used an approach similarly to might play a role. Since the life time of cirrus clouds might
ours, using gamma size distribution. He evaluated the doube in the order of one day (e.8pichtinger et al.2005), this

ble integrals numerically in order to create a look-up table.time interval might serve as an upper limit for the impact
However, again this parameterisation was made for the warnof aggregation on cirrus clouds. Since in clouds with only a
temperature regime. Many other models rely on these defew ice crystals (e.gV = 10* m~3) the ice crystals can grow
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4.1 Test of aggregation only

le+18 T T T

ler1s N=10¢ m’3
o lesld N=103m 3 ] 4.1.1 Maximum aggregation
= =10" m® ——
o o \ 0,=2.85
T 1ev10 " The new formulation of the aggregation process was tested
£ 1ew0s in MATLAB with different start values for the particle num-
= \ . . .
£ 1ei0s ¥ ber density ranging from f0to 5x 10* particles per cu-
€ 10000 . bic metre. We let aggregation occur as the only process.
100 — 1 min We setE =1 for these tests, that is, the following results

1 \\\\ show a maximum effect of aggregation. The aggregation was

0.01 run for 1000s, i.e. approximately 17 min. If aggregation oc-
le-16 le-15 le-14 1e-13 1le-12 le-11 le-10 1e-09 1e-08 1e-07 1e-06 . . .
mean mass (kg) curs, the particle number density will decrease and the
mean massif = gc/N) increase. Using the expressions for
Fig. 3. Timescales of aggregation for a medium width of the ice the log-normal distribution we compute then a new modal
crystal size distribution,, = 2.85) and for typical ice crystalnum- mass and the corresponding ngm) is used in the next
ber concentrations as found in cirrus clouds at cold temperaturesime step. For the calculations, we set an upper boundary for
(see, e.g.Kramer et al.2009. The corresponding sizes range be- the mass of the aggregated particles at®ly, which corre-
tween a modal length of 0.6 and 8000 um. sponds to a particle size of 8 mm. Larger ice crystals will not
occur in the model.
to large sizes — at least at high temperatures — this regime Figure4 shows the results of these tests. For small initial

can be effectively influenced by aggregation. Cirrus cloudsmOdaI masses (e.g. 18kg, green line) and starting with,

containing many ice crystals are usually dominated by smallfs?ir”i):\‘/rgglg’ frtﬁ:?éts'cﬁz Thﬁsgler;cfgpg:)agngréogtci)osnv(\;ec-
crystals. Thus, although ice crystal number concentration is P ) ggred

able to reduce the aggregation timescales by orders of mag?tL)JILSé Ilfi:::): Ivr\]/lr?i?cl. n;glclia'lsltzr;fili; 'jv:?stfgdm'ggrzaafggetfl%e
nitudes, an upper limit in crystal size due to thermodynamic . ’
PP y y only have about 1 m~2 particles left after 1000s. Thus

constraints leads to less effective aggregation. We will see bout 90 % of th icles h ted
later that this very simple estimation from timescale analysisa ou o ot the particies have aggregated.
will be corroborated by detailed tests. As expected, 'When smgll crystals (i.e. small m.odal
masses) predominate, nothing happens. The probability for
collision is negligible and the relative fall speeds are low.
4 Various tests The larger the particles get, the more they aggregate. For the
largest initial modal masses (i.e. 1%kg) the particles stick
The change in particle number density per time step is detogether very fast so that the iteration has to be stopped be-
scribed in Eq.§) as fore reaching 1000s.
AN () N2 _Timesteps from ﬂg (timescale for_ microphysics) to _103
=— (K)(1). (timescale for dynamics) gave very similar results, that is, the
ot 2 parameterisation is consistent and convergent with different
The solution of this can either be achieved through an exactimesteps. We chose to use a time step of 1 s.
solution involving separation of variables with the following
result 4.1.2
N(1)

N@+An = (1/2)N(1)(K)(t*)Ar + 1 (47

or through the following Euler approximation

Introducing temperature dependency

Experience from field measurements suggests that aggrega-
tion occurs more efficiently in warmer than in colder air (e.g.
Kajikawa and HeymsfieldL989. This behaviour is also con-

IN(t i i i i i
N(t+ A1) = N(t) + () Ar (18) sistent with the possible existence of a QLL on top of ice
crystals, even at low temperatures. The temperature depen-
N (1)? dence is expressed by the following parameterisation for the
=N(t)— (K)(t) - At. (29)

collision efficiency of ice crystalsL{n et al, 1983 Levkov
Tests have shown that both methods give practically identi-et al, 1992 which is independent of the crystal masses and

cal results. The following tests have been performed with thedependent only on temperature (the original papers do not

Euler approximation. Further tests have shown that the poly-" ention whether the parameterisation is based on measure-
. N . .- ments)

nomial approximation of théK) integrals was a sufficient

approximation (see above), so the following tests have been

performed using the polynomial approximation. E(T) =exp0.025- (T —27316)). (20)

www.atmos-chem-phys.net/13/9021/2013/ Atmos. Chem. Phys., 13, 9®R7, 2013
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. Number density after 1000 s Number density after 1000 s, mm=10_9 kg
10 T 6
—m =107k 10
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Fig. 4. Particle number densityo at the start of the iteration( Fig. 5. Particle number densitiyg at the beginning of the iteration

axis) and after 1.0003 of |terat|or1\_f( v axis). For small modal .(x axis) and after 1000 s of iteratiotv( y axis) for a modal mass of
masses, the particle number density hardly changes during the ity g . ) )
. - . : 10~ kg, which corresponds to a particle with modal length 345 pm.
eration and the plot is almost a straight line. As reference for no ag- - L .
As a reference for no aggregation, a black line is plotted. Adding a

gregation, a black line is plotted. As expected, larger modal massetsemperature dependency shows a weakened aggregation effect with

result in increased aggregation. Thus the particle number densit)é1 .
T ) S . ecreasing temperatures. The lower the temperatures the more par-
decreases during integration, which is shown in the graph. The cor:.

responding size to the modal masses plotted ranges between 6 aﬁ'&les are present at the end of the simulation.
345 um. Note that the tests have been performed with 1, that

is, the maximum effect of aggregation is seen here. The red line is - . I d d
almost equal to the black line, thus can hardly be seen in the plot, UM efficiencyE =1 as well as a temperature dependent

efficiency E(T) in order to see a realistic impact of aggrega-
tion on cirrus clouds.

With this parameterisatiork can be taken out fromtheinte- 421  Model description and set-up
gral calculation and treated as a prefactor. Note here that ex-
perimental evidence of the exact form of the temperature detn this section we test the effect of aggregation on the ice
pendence is not given. Nevertheless, this is the only temperaerystal number concentration in the framework of a box
ture dependence we found from literature, which also seemsodel Spichtinger and Gieren20093 which we con-
to be reasonable. sider a more realistic test in that various microphysical
The temperature dependent collision efficiency .&10< processes can act simultaneously. The box is thought to
E(T) < 0.44 for typical temperatures in ice clouds (220  represent an initially cloud free air parcel which is lifted
T < 240K). Thus we expect reduced aggregation effects onwith a constant vertical velocity. During the cooling pro-
N compared to the previous tests when we introduce thecedure, homogeneous freezing of agueous solution droplets
new factor. Figureés shows the final crystal concentrations (short “homogeneous nucleation”, parameterised &ftep
as before for aggregation without temperature dependencgt al, 2000 will occur, i.e. ice crystals are formed. In
(E =1) and for different temperatures. As expected, with the supersaturated environment the ice crystals grow by
decreasing temperature aggregation becomes less importanfiffusional growth (based on approximations Bpenig,
Even at the highest considered temperature (240 K) the re1971) to larger sizes. The parameterisations for both pro-
duction of the aggregation effect is considerable, in particularcesses are described in detail $pichtinger and Gierens
for high initial number densities. This finding is a good argu- (20094. For determining the impact of aggregation for dif-
ment for ignoring aggregation in simulations of cold cirrus ferent temperature and velocity regimes, many idealised
clouds where not only is small but also the median crystal box simulations were carried out. Each simulation starts

masses are smaller than in warm cirrus. at p =300hPa. The initial temperature is given By=
210/220/230/240K, the vertical velocity range is given
4.2 Test of aggregation within a box model by w = 0.01/0.02/0.05/0.1/0.2/0.5/1/2/5 ms L. The total

simulation time is calculated by = 720myw; this proce-
For investigating the impact of aggregation idealised boxdure ensures that at the end of the simulation the same en-
model simulations were carried out. Here, we use a maxivironmental conditions(, p) are reached for each initial

Atmos. Chem. Phys., 13, 9028037 2013 www.atmos-chem-phys.net/13/9021/2013/
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temperature run (or equivalently, an altitude difference of
Azsim= 720m is reached). For each set-up three scenar

9029

In the following we discuss a typical scenario of a steady
updraught ofv = 0.05 ms 1 at high temperatures (i.e. initial

ios were calculated: without aggregation, with temperaturetemperatureg’ = 240K).

dependent aggregation and with maximum aggregation. Fo

r

deriving the maximum impact of aggregation, the box is a4.2.2 Results for an initial temperature of 240 K

closed system, i.e. ice crystals stay in the box. However, for

more realistic treatment, we have to consider sedimentatio

The process of sedimentation is treated in the box model a§

described irBpichtinger and Czicz(2010. Here, we repeat

As a baseline experiment we consider first a case without the
ffect of sedimentation, that is, witfyeq= 1. The temporal
variation of the crystal number density in the box is shown

some key features of this treatment. Time and space is dish Fig- 6. As the box is cooled down from 240K, the thresh-

cretized by time stepAt and space incrementsz, respec-
tively; 1" := n-At. Generally, the sedimentation process for a
quantityy (e.g. ice mass mixing ratig or ice crystal num-
ber concentratiomV) can be described in the following way

top
F
YY) = Y (") expi—ay) + ﬁ (1—exp—ay)) (22)
with the terminal velocity,, for the quantityy; oy = ”‘”Af’
denotes the respective Courant number Eﬁ’cﬁ’ is the flux

old supersaturation for homogeneous nucleation is reached
about 120 min later, and the nucleation burst leads to a high
crystal concentratiorr¢ 2 x 10* m=2). The further develop-
ment depends strongly on whether we include aggregation or
not. Without aggregation, the crystal concentration stays es-
sentially constant (a weak reduction is caused by the expan-
sion of the lifting box). With aggregation, however, the crys-
tal concentration decreases strongly (by about 95 %) within
two hours. In the scenario with a temperature-dependent ag-
gregation the reduction of the number concentration is less
drastic, but still of the order 85%. This happens in this aca-
demic case because the large crystals effectively stay within

through the top of the layer. For our purpose, we use fluxegpg poy (the crystals leaving the box are replaced by identical

for quantities ice mass mixing ratig and ice crystal number
densityN; the mass and number weighted terminal velocities
are then given by the following expressions

Vg, = i/n(m)m v(m)dm (22)
qc 5

N = (23)

17 .
N/n(m)v(m) m
0

whereas:(m) denotes the mass distribution. SinEéOp is

crystals entering from above) and aggregate over the whole
simulation time.

Now we turn sedimentation on, allowing the large crys-
tals to leave the box without complete replacement from
above. For the top region of the cloudgdy= 0.5), the re-
sults are displayed in Fig. Again, nucleation occurs after
120 min and a large number of ice crystals appear. These
grow by vapour deposition and RHlecreases. Sedimenta-
tion is a much more important process now than aggregation,
which can be seen from the timescale of the decreaseé of
which occurs much faster than in the previous case where
sedimentation was switched off. The two curves represent-

usually unknown for a single box, we can assume, that thgn the cases with and without aggregation are almost identi-

flux through the top is given by a fraction of the flux through
the bottom, i.e.,F'°P = fsef$°tt°m with the sedimentation
parameterfseg Using this ansatz, it is possible to categorise
different sedimentation scenarios:

— fsed= 1.0 corresponds to no sedimentation as net ef-

fect. The flux exiting the lower part of the box has the
same magnitude as the flux entering the top of the box.

— fsed= 0.9 corresponds to regions in the middle and
lower part of the cloud. The flux leaving the region is
almost but not completely balanced by the flux entering
that region from above.

— fsedq= 0.5 corresponds to the top region of a cloud. The
flux leaving that region is only half balanced by a flux
from above.

cal, also after further nucleation bursts occur. This is possible
because RHstarts to increase again because of the ongoing
cooling whenN is sufficiently diminished.

In the middle of the cloud, where a good deal of falling ice
crystals are replaced by crystals falling from aboye.{=
0.9), aggregation is a bit more important than at the top of
the cloud. This is shown in Figg. We see that the reduc-
tion of N after the nucleation burst is slower than at the
top of the cloud because more falling crystals are replaced.
Aggregation accelerates the reductionNofsuch that a cer-
tain level of N is now reached some ten minutes earlier in
the case with aggregation than without. The scenario with
temperature-dependent aggregation lies between the two oth-
ers. Secondary nucleation bursts do not occur in either case
in the middle of the cloud until the end of the simulation.

These three scenarios are used in the simulations in order
to investigate the impact of aggregation under different, but

realistic conditions.

www.atmos-chem-phys.net/13/9021/2013/
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Fig. 6.Ice crystal number concentration as a function of time for dif-
ferent sedimentation factors. Top panglqg= 1.0, i.e. no sedimen-
tation, leading to the strongest impact of aggregation; middle panel:
fsed= 0.5, representing the upper part of a cloud; bottom panel:
fsed= 0.9, representing the lower part of a cloud. Simulations with-
out aggregation are indicated by red lines, simulations including ag-
gregation with maximum strength are represented by blue lines and
simulations with temperature-dependent aggregation are indicated
by green lines. All simulations startsAt= 240K, p = 300hPa and

are driven by a constant vertical updraught:.of= 0.05 ms™1.
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4.2.3 Lower initial temperatures

The box model simulations at 240 K have shown that aggre-
gation generally has a weak effect on the evolution of crys-
tal number concentrations. Since the collision efficiency de-
creases exponentially with decreasing temperature, we there-
fore expect a negligible effect of aggregation at lower tem-
peratures, for all choices ofseg and both aggregation sce-
narios. This is indeed what we found from our box model

] simulations: the curves for the cases with and without aggre-
gation do not differ drastically, thus we refrain from showing
the simulations in detail.

4.2.4 Maximum impact of aggregation as derived from

box model simulations

For determining the maximum impact of aggregation for dif-
ferent temperature and velocity regimes, we investigate the
box model simulations with sedimentation factfyeq= 1,

i.e. no sedimentation is allowed. In order to determine the
maximum impact of aggregation we define an aggregation
\ factor fagg the factor is given by the ratio of ice crystal num-

‘ ber concentrations of the aggregation run and the reference
p 1 run (without aggregation):

n(t)aggregation (24)

n(t)no aggregation

with ¢+ = end of simulation, and for temperature-dependent

simulations the analogon is formed. In Ffighe aggregation

factor is shown for maximum aggregation (top panel) and

temperature-dependent aggregation (bottom panel).
Figure7 can be interpreted as follows:

— For low vertical velocities at warm temperatures, ho-

mogeneous nucleation does produce just low number
concentrations (see, e.g., Fig. 12 @pichtinger and
Gierens 20094 for a relationship betweew and N).
Since there is only few competition on the available wa-
ter vapour, these few ice crystals can grow to large sizes;
thus aggregation is quite effective as we know from
timescale analysis in Se@&.5. This can be seen in an
aggregation factor approaching valuesfgjgr~ 0.01—-

0.1

— As soon as we proceed to colder temperatures and/or

higher vertical velocities the picture changes. Under
such conditions, many more ice crystals are produced
in homogeneous nucleation events. Thus, although the
ice crystals still live in a highly supersaturated envi-
ronment, they have to compete for the available wa-
ter vapour. Thus, they grow, but only to smaller sizes.
Since for the efficiency of aggregation the size is much
more important than the number concentration, in this
regimes aggregation is less efficient. This leads to larger
aggregation factors. For very cold temperatures, when

www.atmos-chem-phys.net/13/9021/2013/
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4.3 Test of aggregation within a 2-D model: simulations

vertical velocity (m/s) - A )
of synoptically driven cirrostratus

Fig. 7. Maximum impact of aggregation for box simulations using | order to investigate the impact of aggregation in a more
a constant updraught (i.e. cooling rate) at different initial tempera- o jistic situation, we implemented the new aggregation pa-
tures. The impact of aggregation is determined by the aggregatiorgameterisation into the EULAG model including the al-
factor defined in Eq.24). All simulations are without sedimentation . . . L

ready mentioned bulk microphysics scher@pithtinger and

in order to give the maximum impact. Top panel: aggregation factor . . ; ; ) .
for different realistic vertical velocities (01 < w < 5 ms™1) at dif- Gieren$20093. We investigate typical formation conditions

ferent initial temperatures. The collision efficiency is sefte= 1. for stratiform cirrus clouds, i.e. a synoptic scale updraught. In
Bottom panel: same as in top panel, but for temperature dependerthe next subsection we present the set-up of the simulations.
collision efficiencyE = E(T) as given by Eq.Z0). Then we will present and discuss the results.

4.3.1 Set-up

ice crystals stay really at small sizes, aggregation is NOtoy simulating stratiform cirrus clouds as typical for mid-
important anymore, i.€faggr ~ 0.9-1. latitudes, we specify vertical profiles of temperature and
pressure as shown in Fig.additionally, we prescribe an ice-
o o supersaturated layer with vertical extensionfaf= 1.5km
— The temperature dependence of the_ co_II|5|on efficiencyyt gifferent altitudes (top of layer a,, = 9/10/11km, i.e.
reduces the values but not the qualitative result. Thus,q/middie/high). The vertical extension and the correspond-
the aggregation factors are closer to 1 than in the Casg temperature ranges are presented in TAbM/e use a
of E =1, however, the structure of the curves does noty_n qomain (x-z-plane) in the troposphere with a horizon-
change. tal extensionL, = 12.7km (Ax = 100m) and a vertical ex-
tension 4< z < 14km (Ax = 50m). At initialisation the po-
Note that the shape of the curves for different temperaturgential temperature field is superimposed by Gaussian noise
regimes is nearly the same; actually, the curve of aggregatiomvith standard deviatiosy = 0.025K. We choose a moderate
factor for temperaturdini; = 240K could be shifted to the wind shear for horizontal wind, i.eugddz = 103s1 with
left in order to represent the curves for other temperaturesi(z =0) =0 ms1, leading to a maximum wind Qfmax ~
even quantitatively. 10 mst atz = 14km. The whole 2-D domain is lifted with

www.atmos-chem-phys.net/13/9021/2013/ Atmos. Chem. Phys., 13, 9®R7, 2013
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a constant vertical velocity. In order to investigate different
synoptic conditions we choose two values= 5cms ! and

w = 8cms L. In order to obtain similar conditions at the end
of the simulations (i.e. the same vertical distance of lifting
Azt = 720m or equivalently a cooling oAT ~ 7.04K),

the simulation time is adjusted; in case of=5cms?!

the total simulation time i\t = 240min, whereas fow =

8 cms?! the total simulation time is\r = 150min. As the
results turned out to be similar for the chosen vertical veloci-
ties in terms of impact of aggregation, we will concentrate on
a detailed investigation of the case= 5 cms™L. For inves-
tigating the impact of aggregation we use three different set-
ups: in the reference case, we switch off aggregation; in sce-
nario “temperature-dependent” we use the full aggregation
parameterisation including the temperature dependency, as
described in Sec#.1.2 In order to see the maximum effect
of aggregation, we use the scenario “maximum impact”, i.e.
here the aggregation has efficienEy= 1. We assume that
ice forms by homogeneous nucleation only, parameterised
after Koop et al.(2000. The background aerosol (sulfuric
acid) is prescribed with a log-normal distribution with (dry)
modal radiusy, = 25nm and geometrical standard deviation
of o, =1.5.

(PET T T T T T T T T T T T T T T T T T

z/km

g
]
~

N

z/km

4.3.2 Results and discussion

In general the simulations behave similar to those carried out
by Spichtinger and Gieren0090 for the case of pure ho-
mogeneous nucleation: as the domain is lifted it cools by
adiabatic expansion and the relative humidity increases un-
til crystals are formed at the threshold for homogeneous nu-
cleation. Figure9 shows part of the temporal evolution of
the reference simulation in time steps of 30 min, starting at
t =60min, i.e. the state far=60/90/120/150min is dis-
played. The formation of a quite homogeneous cirrostratus
can be seen to occur after about 2 h simulation time by in-
creasing ice water content IWE ¢ - pair (black isolines).
Some structure is formed by the horizontal wind driving
small circulations inside the layer. In the further evolution,
the vertical depth of the cloud layer is extended due to sed- 5 6+ 76 8 100 11z 124 136 148 160
imenting ice crystals, reaching abatt ~ 3km at the end _ _ _ ) _ _ o
of the simulation at = 240min. Figurel0 shows the results E;ghz'n:'g?ztevcggtrﬁ; Ogt;‘;ﬁge;‘;e Sé?;'ﬁ‘]t"(’:h(‘;:’/\'/t: ;etlr_:tZtg;_
'?etr:[]eic?angr;;tgenlsjlmt;jé?tfonnsée'\flzzgc:/r?lelljr?g g&igﬁfé\ﬁg _for t = 60/90/120/150 min, resp(_actively). Black isolines irlo:IJ)icate
oy . . ice water content (IWC= gc- pair, incrementAIWC = 2mgnt ),
with respect tO.ICG are shown, ave_raggd over the (_jomaln. Aarey lines indicate isentropes (incremextt = 4K).
expected, the impact of aggregation increases with temper-
ature, even in the cases wili= 1 where the aggregation
efficiency itself has no temperature dependence. Obviously
the remaining factors in the collision kernel contribute sig- distribution does so. In the formulation &pichtinger and
nificantly to the temperature dependence and this is due t&ierens(20093 the width of the mass distribution (i.e. the
the fact that crystals can grow larger in the higher absolutesquare root of the second central moment) is proportional to
humidity environment at higher temperatures. Thus, the geothe mean mass. Therefore higher temperatures lead to more
metrical factor evidently grows with temperature. The factor aggregation also via the terminal velocities in this model.
depending on the difference of terminal fall speeds increases Aggregation increases the average mass of ice crystals
on average with mean crystal size if the width of the sizeand therefore leads to stronger sedimentation which has an

z/km
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Fig. 10. Vertical profiles of mean ice crystal number concentration (left), ice water content (middle) and relative humidity with respect to
ice (right) at the end of the simulation£ 240min,w = 5 cms™1) for different temperature regimes. Top row: low temperature conditions,
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effect on ice mass and number concentration in the simulated Also the total surface area of the ice crystals decreases by
clouds. Mean crystal number concentrations and ice wateaggregation. This and the above mentioned increase of sed-
contents are strongly (up to and partly exceeding a factor 2)mentation fluxes diminish the sink for supersaturation and
reduced by aggregation in the simulation using the higheshigher relative humidities are maintained over longer periods
temperature. The effects are of similar quality in the colderof time compared to the reference cases without aggregation.
cases, but smaller. Effects on the mean profiles of relative huThe statistics of relative humidities typically peak at values
midity are present, but here it is more instructive to look at slightly above 100 %. This is best seen in the cold case where
the statistics (see below, Fid). The pdfs of number concen- aggregation has hardly any effect on the pdf of;RAt the
tration of ice crystals display in our simulations broad max- higher temperatures, where aggregation becomes more effi-
ima at aroundV; ~ 100L~1. Whereas there is hardly any ef- cient we see the peaks shifted to higher values (i.e. more sig-
fect on the statistics of number concentration in the low tem-nificant “quasi equilibrium” supersaturation), clearly an ef-
perature case, aggregation shifts the peaks to lower valueect of the less effective sink for water vapour in a cloud af-
and broadens them. As expected, this effect becomes morfected by aggregation (see also the discussiogpichtinger
prominent at higher temperatures. This is clearly a signaturend Cziczg2010. This effect is most pronounced in those
of the aggregation-enhanced sedimentation (see also discusegions of a cloud that otherwise approach ice saturation
sion in Spichtinger and Gieren20093. The high number  most quickly, typically the middle part of the cloud. Thus ag-
concentration tails of the distributions are merely little af- gregation contributes to ice supersaturation within relatively
fected by aggregation; this is quite plausible because higlwarm cirrus clouds. Cold cirrus is hardly affected by aggre-
number concentrations are usually coupled with small icegation according to our simulations (and under the condition
crystals, thus aggregation is weakly effective in this range.
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Fig. 11. Statistics of ice crystal number concentrations (top row) and relative humidity with respect to ice (bottom row) for different temper-
ature regimes (left: low temperature conditions, middle: medium temperature conditions, right: high temperature conditions).

that the gravitational collection kernel is the only relevant mathematically proven that the gravitational collection ker-
one for cirrus clouds). nel has a scaling solution at allidous, 1999. One condition

In the simulations with stronger updraught we can see dif-for this is the homogeneity of the kernel functié&(m, M).
ferences in details, but qualitatively they behave similar toFrom the mass-length and length-fall speed relations we can
the simulations shown. Therefore, we do not deem it necessee that the kernel can only be a homogeneous function if the

sary to present them here. exponents in these relations are constant over all sizes. This
_ _ o is only so for spheres. The exponents change, however, with
4.4 Scaling size distribution size for ice crystals and the shape of the crystals, for instance

o ) ) expressed by the aspect ratio, changes with size (see, for
The log-normal crystal mass distribution is used in the jhgiance Heymsfield and laquint22000). In our case with
scheme ofSpichtinger and Gieren20093 and the ques-  peyagonal columns it is the functiaf(m), the surface of

tion arises whether this is an appropriate choice in situationg;,o crystal, wheren appears with two different exponents
where aggregation dominates ice growth. In such cases th&or the basal and prism faces, respectivelgjm) is non-

evolving crystal size distribution apparently can be mapped,omogeneous. Hence, for ice the collection kernel is not a
onto a universal shape: homogeneous function and therefore there is no true scaling.

—9 If it is nevertheless possible to match observed size distribu-

f(m,t) = (m’”_(t)) ( n ) , tions to a universal scaling function, this suggests that there is
m M (1) an approximate scaling for largex100 pum) crystals, which

wheremy is a mass unit (to make the prefactor dimension- requires that the mentioned exponents are mainly constant

less) andy(x) is a function that depends on time only via in this range. The upper tail of a log-normal distribution is

the ratiom /m,, (¢) (Field and Heymsfield2003 Westbrook slightly bent upward on a semilog plot, that is, it does not
et al, 2004 2"607 Soich and Karcher 2017). The tempo- have a perfect exponential; but it might be possible to fit the

ral evolution of the size distribution can thus be captured byobserved size distributions of large crystals with log-normals

scaling both axes with a function of the time-varying modal as well as with gamma-distributions (in particular, given the
mass, then axis with its inverse and th¢ axis with itsf-th noise in the data). Unless there is a mathematical proof that

power. Although the log-normal distribution can be treated ice aggregation leads to a specific size distribution other than

in this way (withé = 1 for constant geometric width), it is the log-normal there is no need to abandon it.
not a true solution for gravitational aggregation. Researchers,

guided by numerical simulations, tend to use#qt) func-

tions with an exponential upper tail (egield and Heyms-

field, 2003 use a gamma distribution), however, it is not
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5 Conclusions at high supersaturation, but supersaturation does not directly
appear in the formulation of the kernel function. One might
We have derived from the master-equation for coagulation aest whether an extension of the formulation of the collection
simple formulation of aggregation for two-moment bulk mi- efficiency (i.e.E = E(T, S)) yields better results; however,
crophysical models. So far we developed the formulation forthis kind of further development as well as sensitivity stud-
aggregation of crystals belonging to the same class only (thées is far beyond the scope of this study and is left for future
microphysics scheme @&pichtinger and Gieren(0093 al- work. Rather it is desirable to measure collection efficiencies
lows more than one class of ice). A more general formu-in big cloud chambers. By doing so, one should simultane-
lation with aggregation of crystals from different classes isously test whether aggregation is the only process that leads
rather a numerical than a mathematical problem, but a diffi-to complex forms of ice crystals. This is not probable since
cult one; thus, it is beyond the scope of our study. The core ofosette shaped crystals are too regular to be formed by ran-
the present formulation is a double integral of the collectiondom collisions. There is obviously a gap in our understand-
kernel weighted with the crystal size (or mass) distribution,ing and much occasion remains for further experimental re-
which is the expectation value of the kernel. This quantity search before we should develop our numerical formulations
is to be inserted into the differential equation for the crystalinto unjustified detail.
number concentration which is of a form that was already de-
rived by Smoluchowski(1916 1917. The double integrals
are evaluated numerically for log-normal size distributions
over alarge range of geometric mean masses. The direct eval-
uation of the integrals within a cloud simulation run takes a it Parameters
lot of computing time and is not recommended. Instead theIn

pre-calculated results can either be read from a look-up table Table AL the coefficients for the fitting polynomials are

o iven. For each log-normal distribution with a certain width,
or — even better — a polynomial fit of the results can be use . . L .
i as given by the geometric standard deviation, the numerical
that yields good accuracy.

T : .values are fitted by four polynomials for the four mass inter-
We have tested the new parameterisation in various eNVic s The polvnomial®: (i =1...4) are of the form
ronments: stand-alone (to see how the solution of the differ- oy rY T

Appendix A

ential equation behaves and to test the polynomial fits), in 3
a box-model (where aggregation occurs simultaneously withp; (x) = Zakxk. (A1)
other microphysical processes and where a first check can be k=0

made, whether and when aggregation is important), and in
a 2-D simulation of a cirrostratus cloud (where additionally,
cloud dynamics can enhance or dampen the effects of ag-
gregation). Overall these tests suggest that aggregation can
become important at (relatively) warmer cirrus temperatures,
affecting not only ice number and mass concentrations, but
leading also to higher and longer-lasting in-cloud supersat-
uration. Sedimentation fluxes are increased when aggrega-
tion is switched on. Cold cirrus clouds are hardly affected
by aggregation. The temperature dependence originates not
only from an assumed temperature dependence of the col-
lection efficiency but also from the other factors in the col-
lision kernel: Higher temperatures imply larger ice crystals
and larger spread in terminal velocities (if the assumed type
of size distribution is such that the width of it increases with
increasing mean size). From timescale analysis the impor-
tance of aggregation can be derived depending on number
concentration and size of the ice crystals. For cold clouds it
is often justified to ignore aggregation when the research fo-
cus is on ice mass and number densities. However, when the
focus of research is crystal habits and their effect on radia-
tion, aggregation should not be ignored since cirrus clouds
usually contain complex, irregular and imperfect ice crystals
as reported byBailey and Hallet{2009. The authors have
shown that even cold cirrus contains complex ice crystals that
may be the result of aggregation. They occur predominantly
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Table Al. Coefficientsay, k =1, ..., 4 for the fitting polynomials

E. Kienast-Spgren et al.: Ice aggregation in two-moment schemes

as given by Eq.A1) for different geometric standard deviationg

of the underlying ice crystal mass distribution of log-normal type.

om =19
polynomial as ay ay ap
P1(x) 0.161743 1.944540 7.225331—-25.574820
P (x) 0 0.006629 1.250592 —26.587122
P3(x) 0.063897 —1.500559 12.517525 —53.800911
Py(x) 0.018204 —0.583488 6.744979 —42.659445
om =223
polynomial as ap ay ap
Py(x) 0.093471 1.062465 4.185680—-26.554164
P> (x) 0 0.004782 1.255352 —26.213817
P3(x) 0.039604 —0.937555 8.213213 —42.654474
Py(x) 0.011304 —-0.346037 4.069962 —32.510841
om = 2.85
polynomial as ap ag ag
Py(x) 0.047997 0.508658 2.484682 —26.254489
P>(x) 0 0.001689 1.261169 —25.66479
P3(x) 0.011625 -0.301539 3.433380 —30.376550
Py(x) —0.000954 0.055933 —0.268175 —16.747973
om =3.25
polynomial as az ay ap
Py(x) 0.035623 0.366723 2.099524 —25.904090
P>(x) 0 —0.000604 1.262784 —25.352383
P3(x) 0.003945 —0.130459 2.165867 —27.047191
Pa(x) —0.007756 0.275873 —2.610739 —8.349591
o, =3.81
polynomial as as ag ap
P1(x) 0.026046 0.264208 1.875774-25.334124
P (x) 0 —0.003465 1.262705 —24.968373
P3(x) 0.000967 —0.065920 1.690159 —25.608373
Pa(x) —0.011432 0.378891 —3.540836 —5.453425
om =4.23
polynomial as as ay ap
P1(x) 0.021865 0.224846 1.839392-24.833040
Py(x) 0 —0.005474 1.261214 —24.705781
P3(x) 0.003797 —0.125940 2.100785 —26.349780
Py(x) —0.014204 0.454091 —4.193066 —3.503260
om =5.29
polynomial as as ay ap
Py(x) 0.016174 0.182345 1.927033-23.518787
Py (x) 0 -0.010140 1.253076 —24.113388
P3(x) 0.005342 -0.151146 2.193905 —25.950771
Py(x) —0.012141 0.357770 —2.867059 —8.842166
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