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Table S1. Reactions and rate/equilibrium constants used in the full kinetic model of

unified glyoxal/methylglyoxal + OH

Rate constants

Reactions (ME" 57) Ref
1 H,0, —» 20H 1.1e-4xTrans® T, e
2 OH + H202 —> H02 + Hzo 2.7e7 T
3 H02 + H202 — OH + Hzo + 02 3.7 T
4 2HO, » H,0, + O, 8.3e5 T
5 OH + HOZ —> Hzo + Oz 7.1e9 T
6 HOZ + Oz_ + H+ —> HzOz + Oz 1e8 T
7 20H — H,0, 5.5e9 T
8 OH+0, > 0OH + 0, 1el0 T
9 0y > 0, Kﬁf:_ 51.';’:23 T, W
10 COy <> CO, Kﬁf:‘ S;‘gzz T, W
11 CO, <> H* + HCO5 Kﬁfz‘é gfj T
12 HCO; — H* + CO5? Kf(qr;é'_%zibll T
13 CO, + 0, »> O, + CO, 2.4e9 T
14 HCO; + OH —» CO3 + H,0 le7 T
15 CO; +0, — C032+ 0, 6.5e8 T
16 CO;3 + HCO,” - HCO5 + CO, 1.5e5 T
17 CO3_ + H202 —> HCOg_ + HOZ 8e5 T
18 GCOLAC + OH —» GCOLAC* + H20 6.0e8 T
19 GCOLAC* + O, - GCOLACOO* le6 G, L
20 GCOLACOO* —» GLYAC + HO, 5el C
21 2GCOLACOO* — 2GCOLACO* + O, 3e8*0.95 L’ e
22 2GCOLACOO* - GLYAC + OXLAC + O, 3e8*0.05 L’ e
23 GCOLACO* — HCO,H + CO, I Gi, e
24 GCOLACO* —» GLYAC* le7 Gi, e
25 GCOLAC <& H' + GCOLAC Kﬁf;;’gjfodf T
26 GCOLAC + OH — GCOLAC* + H,0 6.0e8 T
27 GCOLAC* + O, > GCOLACOO* 1le6 G, L’
28 GCOLACOO* —» GLYAC + HO, 5el C
29 2GCOLACROO* — 2GCOLACO* + O, 3e8x0.95 L', e
30 2 GCOLACROO* — GLYAC + OXLAC+ 0O, 3e8x0.05 L’ e
31 GCOLACO* — HCO,H + CO, I Gi, e
32 GCOLACO*— GLYAC* le7 Gi, e
33 GLY + OH —» GLY* + H,0 1.1e9 T
34 GLY* + O, - GLYOO* 1e6 G, L
35 GLYOO* - GLYAC + HO, 5el C
36 2GLYOO* —» 2*CHOHOH + 2CO, + O, + 2H,0 3e8 L’
37 *CHOHOH + O, - HCO,H + HO, 5e6 G, L
38 GLYAC + OH — GLYAC* + H,0 3.62e8 T
39 GLYAC* + O, -» GLYACOO* 1le6 G, L
40 GLYACOO* - OXLAC + HO, 5el C
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41 2GLYACOO* — 2C0O, + 2COOH 3¢8 L’

42 *COOH + 0, — CO, + HO, 5¢6 G, L’
43 GLYAC <> H" + GLYAC Klg‘: N g:ggf;" T

44 GLYAC + OH — GLYAC* + H,0 1.28e7 T

45 GLYAC + OH — GLYAC* + OH" 2.9e9 T

46 GLYAC* + O, - GLYACOO* 1e6 G, L’
47 GLYACOO* —> OXLAC + HO, 1e2 cL
48 2GLYACOO* —» 2CO, + 2*COOH 3¢8 L

49 MGLY + OH — MGLY* + H,0 7.068x0.92 T

50 MGLY + OH — *MGLY + H,0 7.0e8x0.08 T

51 MGLY* + O, — MGLYOO* 166 G, L’
52 MGLYOO* — PYRAC + HO, 5el C

53 2MGLYOO* —» 2CO, + 2CHsCO,H + O, 3¢8 L’

54 *MGLY + O, — *OOMGLY 166 G, L’
55 2*00MGLY — 2*OMGLY + O, 3e8x0.95 L' e
56 2*0O0OMGLY — HOMGLY + OMGLY + O, 3e8x0.05 L' e
57 *OMGLY — HCHO + GLY* | Gi, e
58 *OMGLY — *HOMGLY le7 Gi, e
59 HOMGLY + OH —> *HOMGLY + H,0 4.10e7 M

60 *HOMGLY + O, —» *OOHOMGLY 1e6 G, L’
61 *O0OHOMGLY —> OMGLY + HO, 5el C

62 OMGLY + OH — *OMGLY + H,0 6.17€9 M

63 *OMGLY + O, — *O00OMGLY 5el C

64 GLY* + *CHOHOH —> C3D 1.3¢9 G, L
65 2GLY* — C4D 1.3¢9 G, L
66 GLY* + *COOH —» C3D 1.3¢9 G, L
67 GLYAC* + *COOH — C3D 1.3¢9 G, L
68 GLYAC* + *CHOHOH —> C3D 1.3¢9 G, L’
69 2GLYAC* —> C4D 1.3¢9 G, L’
70 GLYAC* + GLY* — C4D 1.3¢9 G, L
71 GLYAC* + GLY* — C4D 1.3¢9 G, L
72 GLYAC* + GLYAC* — C4D 1.3¢9 G, L
73 2GLYAC* — C4D 1.3¢9 G, L
74 GLYAC* + *COOH — C3D 1.3¢9 G, L
75 GLYAC* + *CHOHOH —> C3D 1.3¢9 G, L
76 GLYCOL*! + *CHOHOH — C3D 1.3¢9 G, L’
77 GLYCOL*' + GLY* — C4D 1.3¢9 G, L’
78 GLYCOL*! + *COOH — C3D 1.3¢9 G, L
79 GLYCOL*! + GLYAC* — C4D 1.3¢9 G, L
80 GLYCOL*! + GLYAC* —» C4D 1.3¢9 G, L
81 GLYCOL*2 + *CHOHOH —» C3D 1.3¢9 G, L
82 GLYCOL*2 + GLY* — C4D 1.3¢9 G, L’
83 GLYCOL*Z + *COOH — C3D 1.3¢9 G, L
84 GLYCOL*2 + GLYAC* — C4D 1.3¢9 G, L’
85 GCOLAC* + *CHOHOH — C3D 1.3¢9 G, L’
86 GCOLAC* + GLY* —> C4D 1.3¢9 G, L
87 GCOLAC* + *COOH — C3D 1.3¢9 G, L
88 GCOLAC* + GLYAC* —» C4D 1.3¢9 G, L
89 GCOLAC* + GLYAC* —» C4D 1.3¢9 G, L’
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90 GCOLAC* + GLYCOL*! - C4D 1.3e9 G, L
91 GCOLAC* + GLYCOL** - C4D 1.3e9 G, L’
92 GCOLAC* + GCOLAC* —» C4D 1.3e9 G L
93 GCOLAC* + *CHOHOH —» C3D 1.3e9 G, L
94 GCOLAC* + GLY* —» C4D 1.3e9 G, L
95 GCOLAC* + *COOH — C3D 1.3e9 G, L
96 GCOLAC* + GLYAC* —» C4D 1.3e9 G, L
97 GCOLAC* + GLYAC* —» C4D 1.3e9 G, L
98 GCOLAC* + GLYAC* —» C4D 1.3e9 G, L
99 GCOLAC* + GLYCOL*! - C4D 1.3e9 G, L
100 GCOLAC* + GLYCOL** — C4D 1.3e9 G, L
101 GCOLAC* + GCOLAC* —» C4D 1.3e9 G, L
102 2 GCOLAC* — C4D 1.3e9 G, L
103 2MGLY* — C6D 1.3e9 G, L
104 MGLY* + *CHOHOH — C4D 1.3e9 G, L
105 MGLY* + GLY* —» C5D 1.3e9 G, L
106 MGLY* + *COOH — C4D 1.3e9 G, L’
107 MGLY* + GLYAC* —» C5D 1.3e9 G, L’
108 MGLY* + GLYAC* —» C5D 1.3e9 G, L
109 MGLY* + GLYCOL*! - C5D 1.3e9 G L
110 MGLY* + GLYCOL** - C5D 1.3e9 G, L
111 MGLY* + GCOLAC* —» C5D 1.3e9 G, L
112 MGLY* + GCOLAC* —» C5D 1.3e9 G, L
113 MGLY* + CH;CO* —» C5D 1.3e9 G, L
114 MGLY* + *HOPYRAC — C6D 1.3e9 G, L’
115 2*HOPYRAC — C6D 1.3e9 G L
116 MGLY* + *HOPYRAC — C6D 1.3e9 G L
117 *HOPYRAC + *HOPYRAC — C6D 1.3e9 G, L
118 *HOPYRAC + *HOPYRAC — C6D 1.3e9 G, L
119 CH3;CO* + *HOPYRAC — C6D 1.3e9 G L
120 CH3;CO* + *HOPYRAC — C6D 1.3e9 G, L
121 2LA* —» C6D 1.3e9 G, L
122 LA* + MGLY* —» C6D 1.3e9 G, L’
123 LA* + *CHOHOH — C4D 1.3e9 G L
124 LA* + GLY* > C5D 1.3e9 G, L
125 LA* + *COOH — C4D 1.3e9 G, L
126 LA* + GLYAC* —» C5D 1.3e9 G, L
127 LA* + GLYAC* —» C5D 1.3e9 G, L
128 LA* + GLYCOL*! - C5D 1.3e9 G, L
129 LA* + GLYCOL** - C5D 1.3e9 G, L
130 LA* + GCOLAC* —» C5D 1.3e9 G, L’
131 LA* + GCOLAC* —» C5D 1.3e9 G, L
132 LA* + CH;CO* —» C5D 1.3e9 G, L
133 2CH,;CO* —» C4D 1.3e9 G, L
134 LA* + *HOPYRAC — C6D 1.3e9 G, L
135 LA* + *HOPYRAC — C6D 1.3e9 G, L
136 OXLAC + OH —» COOH + CO, + H,0 1.4e6 T

137 OXLAC <> H" + OXLAC Kﬁf:_gggf{)z T

138 OXLAC + OH —» COOH + CO, + H,0 2.0e7 T, L
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Keq = 5.426-5

139 OXLAC <> H' + OXLAC™ k. = 5e10 T
140 OXLAC™? + OH — *COOH + CO, + OH" 4.0e7 T, L
141 LA + OH — LA* + H,0 4.3e8 H
142 LA* + O, —» LAOO* 1e6 G L
143 LAROO* —» PYRAC + HO, 5el C
144 LA < LA +H' Kke?:‘ 51.'33564 E&C
145 LA +OH —> LA* + H,0 3e8 B
146 LA* + 0, —» LAOO* 1e6 G L
147 LAOO* — PYRAC + HO, 5el C
148 PYRAC + OH — PYRAC* + H,0 6.067x0.85 T
149 PYRAC + OH — CH,CO* + CO, + H,0 6.0e7x0.15 T
150 CH,CO* + 0, — CH;C(0)00* 1e6 G L
151 CH3C(0)00* — CH;CO,H + HO, 5el C
152 2CH3C(0)00* — 2CH,C(0)0* + O, 3e8 L
153 CH,C(0)0* — CO, + HCHO 1e7 Gi
154 PYRAC* + O, —» PYRACOO* 1e6 G L
144 2PYRACOO* —> 2PYRACO* + O, 3e8x0.95 L, e
145 2PYRACOO* — HOPYRAC + OPYRAC + O, 3e8x0.15 L, e
146 PYRACO* —» HCHO + GLYAC* | Gi, e
147 PYRACO* —» *HOPYRAC 1e7 Gi, e
148 HOPYRAC + OH —» *HOPYRAC + H,0 3.6e8 H
149 *HOPYRAC + O, — *OOHOPYRAC 1e6 G L
150 *OOHOPYRAC — OPYRAC + HO, 5el C
151 OPYRAC + OH —» *OPYRAC + H,0 5e7 e
152 *OPYRAC + O, — *00(0)PYRAC 1e6 G L
153 *00(0)PYRAC — MOXLAC + HO, 5el C
. Keq = 3.26-3
154 PYRAC <> PYRAC +H k‘: = 10 T
155 PYRAC + OH — PYRAC* + H,0 6.067x0.95 T
156 PYRAC + OH — CH3CO* + CO, + OH" 6.067x0.05 T
157 PYRAC* + O, —» PYRACOO* 5el C
158 2PYRACOO* —» 2PYRACO* + O, 3e8x0.95 L, e
159 2PYRACOO* —» HOPYRAC + OPYRAC + O, 3e8x0.05 L’ e
160 PYRACO* —> HCHO + GLYAC* + O, | Gi, e
161 PYRACO* —> *HOPYRAC 1e7 Gi, e
162 HOPYRAC <> HOPYRAC + H* Kf(‘: z S’fl‘;?’ e
163 OPYRAC <> OPYRAC + H* Kf(qr; 2’31%'3 e
164 HOPYRAC + OH —» *HOPYRAC + H,0 2.6e9 H
165 *HOPYRAC + O, - *OOHOPYRAC 1e6 G L
166 *OOHOPYRAC — OPYRAC + HO, 5el C
167 OPYRAC + OH —> *OPYRAC + H,0 5e7 M
168 *OPYRAC + 02 — *00(0)PYRAC 1e6 G L
169 *00(0)PYRAC — MOXLAC + HO, 5el C
170 MOXLAC + OH —» GLYAC* + CO, + H,0 5.7e7 Gl
171 MOXLAC + OH — GLYAC* + CO, + H,0 7.85¢7 e
172 MOXLAC? + OH — GLYAC* + CO, + OH’ 1.0e8 H
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Keq = 3.160-3

173 MOXLAC <> MOXLAC" + H el H
_ b . Ko, = 1.56-2
174 MOXLAC <> MOXLAC? + H o 5e10 v
175 CH5CO,H + OH — *CH,CO,H + H,0 1.36e7 T
176 CHsCO,H + OH — CO, + HCHO + HO, + H,0 24066 T
177 *CH,CO,H + 0, — *00CH,CO,H 166 G.L
178 2*00CH,CO,H — 2*OCH,CO,H + O, 368%0.95 L' e
179 2*00CH,CO,H —> GLYAC + GCOLAC + O, 3¢8%0.05 L' e
180 *OCH,CO,H —> 2CO, + 2HCHO | Gi, e
181 *OCH,CO,H — GCOLAC* 1e7 Gi, e
182 CH4CO,H <> CH,CO, + H Kl(e?;;_gesle(')‘r’ T
183 CH4CO, + OH — *CH,CO, + H,0 7.23¢7 T
184 CH,CO, + OH — CO, + HCHO + HO, + OH" 1.28¢7 T
185 *CH,CO, + O, - *O0CH,CO, 1e6 G, L
186 2*00CH,CO,n1 —» 2*OCH,CO, + O, 368x0.95 L' e
187 2*00CH,CO, —> GLYAC +GCOLAC +02 368x0.05 L' e
188 *OCH,CO, — 2CO, + 2HCHO | Gi, e
189 *OCH,CO, — GCOLAC* 1e7 Gi, e
190 H,0 <> H* + OH" Klzfz_ll.f;idf T
191 HO, <> H* + O, kaq:_s%dii: T
192 HCO,H + OH — *COOH + H,0 1e8 T
193 HCO, + OH — CO, + H,0 2.4¢9 T
194 HCO,H < H' + HCO; Klzjz‘sl_'ggf(')“ T
195 GLYAC + H,0, — HCO,H + CO, + H,0 0.3 T
196 PYRAC + H,0, —> CH,CO,H + H,0 + CO, 0.11 T
197 PYRAC + H,0, — CH,CO, + H,0 + CO, 0.11 T
198 MOXLAC + H,0, — OXLAC + CO, + H,0 05 T
199 MOXLAC + H,0, —» OXLAC + CO, + H,0 05 T
200 HCO,H + OH — COOH + H,0 1e8 T
201 HCO, + OH — CO, + H,0 2.4¢9 T
202 HCO,H < H' + HCO; Klzfgsl_'ggf(')"’ T
203 2*CHOHOH — GLY 1.3¢9 G, L
204 *CHOHOH + *COOH — GLYAC 1.3¢9 G, L
205 2*COOH —> OXLAC 1.3¢9 G, L
206 C3D > MA + H20 'Ijeq: DhN L
207 2*COOH —> OXLAC 1.3¢9 G, L
208 CO, + *COOH — OXLAC 1.3¢9 G, L
209 2C0O, — OXLAC™ 1.3e9 G, L’

*Trans = Transmittance = 10

18.4 % 0.80 x
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[Hzoz]; * = radical (e.g., glyoxal* = glyoxal radical); *" = radical
type n (e.g., GLYCOLAC*! = glycolic acid radical type 1); O* (or *O) = alkoxy radical ; OO* (or *O0) =
peroxy radical; CnD = C, dimer or carboxylic acid oligomer (e.g., C4D = C, dimer or C, carboxylic acid
oligomer); Xq = X in the gas phase (e.g., Oy = O, in the gas phase); MGLY = methylglyoxal, PYRAC =
pyruvic acid, GLYAC = glyoxylic acid, GLYCOL = glycolaldehyde, GLYCOLAC = glycolic acid, LA =

lactic acid, MOXLAC = mesoxalic acid, OXLAC = oxalic acid; n = n" order; K, = the equilibrium




constant (M), k; = the reverse rate constant for corresponding K., Thus, the forward rate constant can be
calculated by Keq x ki; (g) = in the gas phase; | (= the decomposition rate constant from alkoxy radicals) =
5e6 s for ~10 uM acetic acid/methylglyoxal, 8e6 s for ~10° uM acetic acid/methylglyoxal, and 2e7 s™*
for ~10° uM acetic acid/ 3.2e7 s for ~10° uM methylglyoxal.
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Figure S1. The simulated concentration of dissolved O, during the reaction of
methylglyoxal (3000 uM) + OH
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Figure S2. Atmospheric CSTR simulations (A) for particle-phase mass yields of oxalate
(YoxLac) with increasing initial concentrations of glyoxal (JGLY]y) for aqueous-phase
OH radical reactions (YOXLAC = 119/(1+1450[GLY]0), YSOA(GLY): YOXLAC); and (B)
for particle-phase mass yields of oxalate (Yoxiac) and pyruvate (Ypyrac) With increasing
initial concentrations of methylglyoxal ([MGLY]o) for aqueous-phase OH radical
reactions(YpYRAc = 0.759/(1+495[MGLY]0); YoxLac = 0.0439/(1-127[MGLY]0);
Ysoa(MGLY) = Ypyrac + YoxLac).
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Oligomer Distribution for 1 M Glyoxal A

Oligomer Distribution for 1 M Methyglyoxal B

Figure S3. Oligomer distributions for 1 M glyoxal (A) and 1 M methylglyoxal (CnD =
Cn dimer or carboxylic acid oligomer)
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