
 

 

Supplementary Material 

 

 

 

Chemical Insights, Explicit Chemistry and Yields of Secondary Organic Aerosol 

from OH Radical Oxidation of Methylglyoxal and Glyoxal in the Aqueous Phase 

 

Yong Bin Lim, Yi Tan, and Barbara J. Turpin 
 
 
The supporting information contains 11 pages with following information: the chemical 

model (Table S1); the simulated concentration of dissolved oxygen during an experiment 

(Fig. S1); atmospheric CSTR simulated SOA yields (Fig. S2); oligomer distributions for 

simulated SOA yields (Fig. S3). 



Table S1.  Reactions and rate/equilibrium constants used in the full kinetic model of 

unified glyoxal/methylglyoxal + OH 

 Reactions Rate constants 
(M1-n s-1) Ref 

1 H2O2 → 2OH 1.1e-4×Transa T, e 
2 OH + H2O2 → HO2 + H2O 2.7e7 T 
3 HO2 + H2O2 → OH + H2O + O2 3.7 T 
4 2 HO2 → H2O2 + O2 8.3e5 T 
5 OH + HO2 → H2O + O2 7.1e9 T 
6 HO2 + O2

- + H+ → H2O2 + O2 1e8 T 
7 2OH → H2O2 5.5e9   T 
8 OH + O2

- → OH- + O2 1e10 T 

9 O2g ↔ O2 
Keq = 1.3e-3 
kr = 5.3e2 T, W 

10 CO2g ↔ CO2 
Keq = 3.4e-2 
kr = 5.3e2 T, W 

11 CO2 ↔ H+ + HCO3
- Keq = 4.3e-7 

kr = 5.6e4 T 

12 HCO3
- → H+ + CO3

-2 Keq = 4.69e-11 
kr = 5.0e10 T 

13 CO2
- + O2 → O2

- + CO2 2.4e9 T 
14 HCO3

- + OH → CO3
- + H2O 1e7 T 

15 CO3
- + O2

- → CO3
-2 + O2 6.5e8   T 

16 CO3
- + HCO2

- → HCO3
- + CO2

- 1.5e5   T 
17 CO3

- + H2O2 → HCO3
- + HO2 8e5 T 

18 GCOLAC + OH → GCOLAC* + H2O 6.0e8   T 
19 GCOLAC* + O2 → GCOLACOO* 1e6 G, L’ 
20 GCOLACOO* → GLYAC + HO2 5e1 C 
21 2GCOLACOO* → 2GCOLACO* + O2 3e8*0.95 L’, e 
22 2GCOLACOO* → GLYAC + OXLAC + O2 3e8*0.05 L’, e 
23 GCOLACO* → HCO2H + CO2 I Gi, e 
24 GCOLACO* → GLYAC* 1e7 Gi, e 

25 GCOLAC ↔ H+ + GCOLAC- Keq = 1.48e-4 
kr = 2.0e10 T 

26 GCOLAC- + OH → GCOLAC*- + H2O 6.0e8   T 
27 GCOLAC*- + O2 → GCOLACOO*- 1e6 G, L’ 
28 GCOLACOO*- → GLYAC- + HO2 5e1 C 
29 2GCOLACROO*- → 2GCOLACO*- + O2 3e8×0.95 L’, e 
30 2 GCOLACROO*- → GLYAC- + OXLAC-+ O2 3e8×0.05 L’, e 
31 GCOLACO*- → HCO2H + CO2

- I Gi, e 
32 GCOLACO*-→ GLYAC*- 1e7 Gi, e 
33 GLY + OH → GLY* + H2O 1.1e9 T 
34 GLY* + O2 → GLYOO* 1e6 G, L’ 
35 GLYOO* → GLYAC + HO2 5e1 C 
36 2GLYOO* → 2*CHOHOH + 2CO2 + O2 + 2H2O  3e8 L’ 
37 *CHOHOH + O2 → HCO2H + HO2 5e6 G, L’ 
38 GLYAC + OH → GLYAC* + H2O 3.62e8   T 
39 GLYAC* + O2 → GLYACOO* 1e6 G, L’ 
40 GLYACOO* → OXLAC + HO2 5e1 C 
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41 2GLYACOO* → 2CO2 + 2COOH  3e8 L’ 
42 *COOH + O2 → CO2 + HO2 5e6 G, L’ 

43 GLYAC ↔ H+ + GLYAC- Keq = 3.47e-4 
Kr = 2.0e10 T 

44 GLYAC- + OH → GLYAC*- + H2O 1.28e7 T 
45 GLYAC- + OH → GLYAC* + OH- 2.9e9 T 
46 GLYAC*- + O2 → GLYACOO*- 1e6 G, L’ 
47 GLYACOO*- → OXLAC- + HO2 1e2 C, L’ 
48 2GLYACOO*-  → 2CO2

- + 2*COOH  3e8 L’ 
49 MGLY + OH → MGLY* + H2O   7.0e8×0.92 T 
50 MGLY + OH → *MGLY + H2O 7.0e8×0.08 T 
51 MGLY* + O2 → MGLYOO* 1e6 G, L’ 
52 MGLYOO* → PYRAC + HO2 5e1 C 
53 2MGLYOO* → 2CO2 + 2CH3CO2H + O2 3e8 L’ 
54 *MGLY + O2 → *OOMGLY 1e6 G, L’ 
55 2*OOMGLY → 2*OMGLY + O2 3e8×0.95 L’, e 
56 2*OOMGLY → HOMGLY + OMGLY + O2 3e8×0.05 L’, e 
57 *OMGLY → HCHO + GLY* I Gi, e 
58 *OMGLY → *HOMGLY 1e7 Gi, e 
59 HOMGLY + OH → *HOMGLY + H2O 4.10e7 M 
60 *HOMGLY + O2 → *OOHOMGLY 1e6 G, L’ 
61 *OOHOMGLY → OMGLY + HO2 5e1 C 
62 OMGLY + OH → *OMGLY + H2O 6.17e9 M 
63 *OMGLY + O2 → *OOOMGLY 5e1 C 
64 GLY* + *CHOHOH → C3D 1.3e9 G, L’ 
65 2GLY* → C4D 1.3e9 G, L’ 
66 GLY* + *COOH → C3D 1.3e9 G, L’ 
67 GLYAC* + *COOH → C3D 1.3e9 G, L’ 
68 GLYAC* + *CHOHOH → C3D 1.3e9 G, L’ 
69 2GLYAC* → C4D 1.3e9 G, L’ 
70 GLYAC* + GLY* → C4D 1.3e9 G, L’ 
71 GLYAC*- + GLY* → C4D 1.3e9 G, L’ 
72 GLYAC*- + GLYAC* → C4D 1.3e9 G, L’ 
73 2GLYAC*- → C4D 1.3e9 G, L’ 
74 GLYAC*- + *COOH → C3D 1.3e9 G, L’ 
75 GLYAC*- + *CHOHOH → C3D 1.3e9 G, L’ 
76 GLYCOL*1 + *CHOHOH → C3D 1.3e9 G, L’ 
77 GLYCOL*1 + GLY* → C4D 1.3e9 G, L’ 
78 GLYCOL*1 + *COOH → C3D 1.3e9 G, L’ 
79 GLYCOL*1 + GLYAC* → C4D 1.3e9 G, L’ 

80 GLYCOL*1 + GLYAC*- → C4D 1.3e9 G, L’ 
81 GLYCOL*2 + *CHOHOH → C3D 1.3e9 G, L’ 
82 GLYCOL*2 + GLY* → C4D 1.3e9 G, L’ 
83 GLYCOL*2 + *COOH → C3D 1.3e9 G, L’ 
84 GLYCOL*2 + GLYAC* → C4D 1.3e9 G, L’ 

85 GCOLAC* + *CHOHOH → C3D 1.3e9 G, L’ 
86 GCOLAC* + GLY* → C4D 1.3e9 G, L’ 
87 GCOLAC* + *COOH → C3D 1.3e9 G, L’ 
88 GCOLAC* + GLYAC* → C4D 1.3e9 G, L’ 
89 GCOLAC* + GLYAC*- → C4D 1.3e9 G, L’ 
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90 GCOLAC* + GLYCOL*1 → C4D 1.3e9 G, L’ 
91 GCOLAC* + GLYCOL*2 → C4D 1.3e9 G, L’ 
92 GCOLAC* + GCOLAC* → C4D 1.3e9 G, L’ 
93 GCOLAC*- + *CHOHOH → C3D 1.3e9 G, L’ 
94 GCOLAC*- + GLY* → C4D 1.3e9 G, L’ 
95 GCOLAC*- + *COOH → C3D 1.3e9 G, L’ 
96 GCOLAC*- + GLYAC* → C4D 1.3e9 G, L’ 
97 GCOLAC*- + GLYAC*- → C4D 1.3e9 G, L’ 
98 GCOLAC*- + GLYAC*- → C4D 1.3e9 G, L’ 

99 GCOLAC*- + GLYCOL*1 → C4D 1.3e9 G, L’ 
100 GCOLAC*- + GLYCOL*2 → C4D 1.3e9 G, L’ 
101 GCOLAC*- + GCOLAC* → C4D 1.3e9 G, L’ 
102 2 GCOLAC*- → C4D 1.3e9 G, L’ 
103 2MGLY* → C6D 1.3e9 G, L’ 
104 MGLY* + *CHOHOH → C4D 1.3e9 G, L’ 
105 MGLY* + GLY* → C5D 1.3e9 G, L’ 
106 MGLY* + *COOH → C4D 1.3e9 G, L’ 
107 MGLY* + GLYAC* → C5D 1.3e9 G, L’ 
108 MGLY* + GLYAC*- → C5D 1.3e9 G, L’ 
109 MGLY* + GLYCOL*1 → C5D 1.3e9 G, L’ 
110 MGLY* + GLYCOL*2 → C5D 1.3e9 G, L’ 
111 MGLY* + GCOLAC* → C5D 1.3e9 G, L’ 
112 MGLY* + GCOLAC*-→ C5D 1.3e9 G, L’ 
113 MGLY* + CH3CO* → C5D 1.3e9 G, L’ 
114 MGLY* + *HOPYRAC → C6D 1.3e9 G, L’ 
115 2*HOPYRAC → C6D 1.3e9 G, L’ 
116 MGLY* + *HOPYRAC- → C6D 1.3e9 G, L’ 
117 *HOPYRAC- + *HOPYRAC- → C6D 1.3e9 G, L’ 
118 *HOPYRAC + *HOPYRAC- → C6D 1.3e9 G, L’ 
119 CH3CO* + *HOPYRAC → C6D 1.3e9 G, L’ 
120 CH3CO* + *HOPYRAC- → C6D 1.3e9 G, L’ 
121 2LA* → C6D 1.3e9 G, L’ 
122 LA* + MGLY* → C6D 1.3e9 G, L’ 
123 LA* + *CHOHOH → C4D 1.3e9 G, L’ 
124 LA* + GLY* → C5D 1.3e9 G, L’ 
125 LA* + *COOH → C4D 1.3e9 G, L’ 
126 LA* + GLYAC* → C5D 1.3e9 G, L’ 
127 LA* + GLYAC*- → C5D 1.3e9 G, L’ 
128 LA* + GLYCOL*1 → C5D 1.3e9 G, L’ 
129 LA* + GLYCOL*2 → C5D 1.3e9 G, L’ 
130 LA* + GCOLAC* → C5D 1.3e9 G, L’ 
131 LA* + GCOLAC*- → C5D 1.3e9 G, L’ 
132 LA* + CH3CO* → C5D 1.3e9 G, L’ 
133 2CH3CO* → C4D 1.3e9 G, L’ 
134 LA* + *HOPYRAC → C6D 1.3e9 G, L’ 
135 LA* + *HOPYRAC- → C6D 1.3e9 G, L’ 
136 OXLAC + OH → COOH + CO2 + H2O 1.4e6   T 

137 OXLAC ↔ H+ + OXLAC- Keq = 5.67e-2 
kr = 5.0e10 T 

138 OXLAC- + OH → COOH + CO2
- + H2O 2.0e7   T, L’ 
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139 OXLAC- ↔ H+ + OXLAC-2 Keq = 5.42e-5 
kr = 5e10 T 

140 OXLAC-2 + OH → *COOH + CO2
- + OH- 4.0e7   T, L’ 

141 LA + OH → LA* + H2O 4.3e8 H 
142 LA* + O2 → LAOO* 1e6 G, L’ 
143 LAROO* → PYRAC + HO2 5e1 C 

144 LA ↔ LA- + H+ Keq = 1.38e-4 
kr = 5.0e10 E&C 

145 LA- + OH → LA*- + H2O 3e8 B 
146 LA*- + O2 → LAOO*- 1e6 G, L’ 
147 LAOO*- → PYRAC- + HO2 5e1 C 
148 PYRAC + OH → PYRAC* + H2O 6.0e7×0.85 T 
149 PYRAC + OH → CH3CO* + CO2 + H2O 6.0e7×0.15 T 
150 CH3CO* + O2 → CH3C(O)OO* 1e6 G, L’ 
151 CH3C(O)OO* → CH3CO2H + HO2 5e1 C 
152 2CH3C(O)OO* → 2CH3C(O)O* + O2 3e8 L’ 
153 CH3C(O)O*  → CO2 + HCHO 1e7 Gi 
154 PYRAC* + O2 → PYRACOO* 1e6 G, L’ 
144 2PYRACOO* → 2PYRACO* + O2 3e8×0.95 L’, e 
145 2PYRACOO* → HOPYRAC + OPYRAC + O2 3e8×0.15 L’, e 
146 PYRACO* → HCHO + GLYAC* I Gi, e 
147 PYRACO* → *HOPYRAC 1e7 Gi, e 
148 HOPYRAC + OH → *HOPYRAC + H2O 3.6e8 H 
149 *HOPYRAC + O2 → *OOHOPYRAC 1e6 G, L’ 
150 *OOHOPYRAC → OPYRAC + HO2 5e1 C 
151 OPYRAC + OH → *OPYRAC + H2O 5e7 e 
152 *OPYRAC + O2 → *OO(O)PYRAC 1e6 G, L’ 
153 *OO(O)PYRAC → MOXLAC + HO2 5e1 C 

154 PYRAC ↔ PYRAC- + H+ Keq = 3.2e-3 
kr = 2e10 T 

155 PYRAC- + OH → PYRAC*- + H2O 6.0e7×0.95 T 
156 PYRAC- + OH → CH3CO* + CO2 + OH- 6.0e7×0.05 T 
157 PYRAC*- + O2 → PYRACOO*- 5e1 C 
158 2PYRACOO*- → 2PYRACO*- + O2 3e8×0.95 L’, e 
159 2PYRACOO*-  → HOPYRAC- + OPYRAC- + O2 3e8×0.05 L’, e 
160 PYRACO*- → HCHO + GLYAC*- + O2 I Gi, e 
161 PYRACO*- → *HOPYRAC- 1e7 Gi, e 

162 HOPYRAC ↔ HOPYRAC- + H+ Keq = 3.2e-3 
kr = 2e10 e 

163 OPYRAC ↔ OPYRAC- + H+ Keq = 3.2e-3 
kr = 2e10 e 

164 HOPYRAC- + OH → *HOPYRAC- + H2O 2.6e9 H 
165 *HOPYRAC- + O2 → *OOHOPYRAC- 1e6 G, L’ 
166 *OOHOPYRAC- → OPYRAC- + HO2 5e1 C 
167 OPYRAC- + OH → *OPYRAC- + H2O 5e7 M 
168 *OPYRAC- + O2 → *OO(O)PYRAC- 1e6 G, L’ 
169 *OO(O)PYRAC- → MOXLAC- + HO2 5e1 C 
170 MOXLAC + OH → GLYAC* + CO2 + H2O 5.7e7 Gl 
171 MOXLAC- + OH → GLYAC*- + CO2 + H2O 7.85e7   e 

172 MOXLAC-2 + OH → GLYAC*- + CO2 + OH- 1.0e8 H 
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173 MOXLAC ↔ MOXLAC- + H+ Keq = 3.16e-3 
kr = 5e10 H 

174 MOXLAC- ↔ MOXLAC-2 + H+ Keq = 1.5e-2 
kr = 5e10 V 

175 CH3CO2H + OH → *CH2CO2H + H2O 1.36e7   T 
176 CH3CO2H + OH → CO2 + HCHO + HO2 + H2O 2.40e6   T 
177 *CH2CO2H + O2 → *OOCH2CO2H 1e6 G, L’ 
178 2*OOCH2CO2H → 2*OCH2CO2H + O2 3e8*0.95 L’, e 
179 2*OOCH2CO2H → GLYAC + GCOLAC + O2 3e8*0.05 L’, e 
180 *OCH2CO2H → 2CO2 + 2HCHO I Gi, e 
181 *OCH2CO2H → GCOLAC* 1e7 Gi, e 

182 CH3CO2H ↔ CH3CO2
- + H+ Keq = 1.75e-5 

kr = 5.0e10 T 

183 CH3CO2
- + OH → *CH2CO2

- + H2O 7.23e7   T 
184 CH2CO2

- + OH → CO2 + HCHO + HO2 + OH- 1.28e7   T 
185 *CH2CO2

- + O2 → *OOCH2CO2
- 1e6 G, L’ 

186 2*OOCH2CO2n1 → 2*OCH2CO2 + O2 3e8×0.95 L’, e 
187 2*OOCH2CO2

- → GLYAC- +GCOLAC-+O2 3e8×0.05 L’, e 
188 *OCH2CO2

- → 2CO2
- + 2HCHO  I Gi, e 

189 *OCH2CO2
- → GCOLAC*- 1e7 Gi, e 

190 H2O ↔ H+ + OH- Keq = 1.0e-14 
kr = 1.4e11 T 

191 HO2 ↔ H+ + O2
- Keq = 1.6e-5 

kr = 5.0e10 T 

192 HCO2H + OH → *COOH + H2O 1e8 T 
193 HCO2

- + OH → CO2
- + H2O 2.4e9 T 

194 HCO2H ↔ H+ + HCO2
- Keq = 1.77e-4 

kr = 5.0e10 T 

195 GLYAC + H2O2 → HCO2H + CO2 + H2O 0.3 T 
196 PYRAC + H2O2 → CH2CO2H + H2O + CO2 0.11 T 
197 PYRAC- + H2O2 → CH2CO2

- + H2O + CO2 0.11 T 
198 MOXLAC + H2O2 → OXLAC + CO2 + H2O 0.5 T 
199 MOXLAC- + H2O2 → OXLAC- + CO2 + H2O 0.5 T 
200 HCO2H + OH → COOH + H2O 1e8 T 
201 HCO2

- + OH → CO2
- + H2O 2.4e9   T 

202 HCO2H ↔ H+ + HCO2
- Keq = 1.77e-4 

kr = 5.0e10 T 

203 2*CHOHOH → GLY 1.3e9   G, L’ 
204 *CHOHOH + *COOH → GLYAC 1.3e9   G, L’ 
205 2*COOH → OXLAC 1.3e9   G, L’ 

206 C3D ↔ MA + H2O Keq = 1e5 
kr = 1e-8 L’ 

207 2*COOH → OXLAC 1.3e9 G, L’ 
208 CO2

- + *COOH → OXLAC- 1.3e9 G, L’ 
209 2CO2

- → OXLAC-2 1.3e9 G, L’ 
 

aTrans = Transmittance = 10-18.4 × 0.80 × [H
2

O
2

]; * = radical  (e.g., glyoxal* = glyoxal radical); *n = radical 
type n (e.g., GLYCOLAC*1 = glycolic acid radical type 1); O* (or *O) = alkoxy radical ; OO* (or *OO) = 
peroxy radical; CnD = Cn dimer or carboxylic acid oligomer (e.g., C4D = C4 dimer or C4 carboxylic acid 
oligomer); Xg = X in the gas phase (e.g., O2g = O2 in the gas phase);  MGLY = methylglyoxal, PYRAC = 
pyruvic acid, GLYAC = glyoxylic acid, GLYCOL = glycolaldehyde, GLYCOLAC = glycolic acid, LA = 
lactic acid, MOXLAC = mesoxalic acid, OXLAC = oxalic acid; n = nth order; Keq = the equilibrium 
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constant (M), kr = the reverse rate constant for corresponding Keq., Thus, the forward rate constant can be 
calculated by Keq × kr; (g) = in the gas phase; I (= the decomposition rate constant from alkoxy radicals) = 
5e6 s-1 for ~10 µM acetic acid/methylglyoxal, 8e6 s-1 for  ~102 µM acetic acid/methylglyoxal, and 2e7 s-1 

for ~103 µM acetic acid/ 3.2e7 s-1 for ~103 µM methylglyoxal. 
 

Reference  
T = Tan et al., 2009, 2010 and 2012 
G = Guzman et al., JPCA, 2006 
C = Carter et al., JPC, 1979 
H = Herrmann et al., AE, 2005 
E = Ervens et al., PCCP, 2003 
M = Monod et al., AE, 2005, 2008 
L = Lim et al.,EST, 2005 
L’ = Lim et al., ACP, 2010 
W = Warneck, PCCP, 1999 
E&C = Eyal and Canari, Ind. Eng. Chem. Res., 1995 
B = Buxton et al., JPCRD, 1988 
Gi = Gilbert et al., 1976 and 1981 
V = Volgger et al., J. Chrom. A, 1997 
e = Estimation by fitting 
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Methylglyoxal (3000 μM) + OH
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Figure S1.  The simulated concentration of dissolved O2 during the reaction of 
methylglyoxal (3000 μM) + OH 
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Figure S2.  Atmospheric CSTR simulations (A) for particle-phase mass yields of oxalate 
(YOXLAC) with increasing initial concentrations of glyoxal ([GLY]0) for aqueous-phase 
OH radical reactions (YOXLAC = 1.19/(1+1450[GLY]0); YSOA(GLY)= YOXLAC), and (B) 
for particle-phase mass yields of oxalate (YOXLAC) and pyruvate (YPYRAC) with increasing 
initial concentrations of methylglyoxal ([MGLY]0) for aqueous-phase OH radical 
reactions(YPYRAC = 0.759/(1+495[MGLY]0); YOXLAC = 0.0439/(1-127[MGLY]0); 
YSOA(MGLY) = YPYRAC + YOXLAC).   
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Figure S3.  Oligomer distributions for 1 M glyoxal (A) and 1 M methylglyoxal  (CnD = 
Cn dimer or carboxylic acid oligomer) 
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