Supporting Information for:

 Towards a better understanding of the origins, the chemical composition and the aging of the Oxygenated Organic Aerosol: case study of a Mediterranean Industrialized Environment, Marseille

[^0]
S. 1 Synoptic air masses

Fig.S1 illustrates the air masses impacting the sampling site during the measurement period and shows that these air masses are mostly associated with long range transport from the Atlantic and the Mediterranean.

Fig.S1: 24h HYSPLIT air masses backward trajectories at 100m above sea level (Rolph, 2010) illustrating the overall air masses circulation occurring during the entire measurement campaign. Backward trajectories are confirmed by both MM5 modeling and local wind measurements.

S. 2 Aerosol online chemical composition

The chemical composition of fine PM was measured in 2 min averages using a compact time-of-flight (c-TOF, Tofwerk) Aerodyne Aerosol Mass Spectrometer (AMS, Aerodyne). This instrument allows real-time measurements of PM_{1} non-refractory components $\left(\mathrm{OA}, \mathrm{NH}_{4}, \mathrm{NO}_{3}\right.$ and $\left.\mathrm{SO}_{4}\right)$ combining thermal vaporization and electron ionization (Drewnick et al., 2005). Aerosol size distribution (mobility diameters from 11 to 1083 nm), was investigated using a Scanning Mobility Particle Sizer (SMPS, L-DMA and CPC5403, GRIMM). Semi-continuous hourly concentrations of elemental carbon (EC) and organic carbon (OC) $\mathrm{PM}_{2.5}$ were obtained in the field from an OC/EC Sunset field instrument (Sunset Laboratory, Forest Grove, OR, USA; Bae et al., 2004) running at $81 \mathrm{~min}^{-1}$. AMS results are all corrected for the collection efficiency by using a common
factor of 0.65 ± 0.14 estimated based on the comparison of total AMS measured mass and SMPS + EC measured mass. Fig.S2 displays EC, OA, $\mathrm{NH}_{4}, \mathrm{NO}_{3}$ and SO_{4} time series recorded over the period of study.

Fig.S2:. Time series of the main PM_{1} components ($\mathrm{EC}, \mathrm{OA}, \mathrm{NH}_{4}, \mathrm{NO}_{3}$ and SO_{4}) during the period of study. AMS data are corrected for the collection efficiency using a common factor of 0.65 ± 0.14. Due to technical issues, AMS measurements are not available between the 9 th and $10^{\text {th }}$ of July.

S. 3 Offline chemical analyses

$\mathrm{PM}_{2.5}$ collected onto 150 mm -diameter filters was comprehensively characterized. Technical description of the analysis techniques can be found in El Haddad et al., 2011a and b. A brief outline of these measurements is included here.

EC/OC, ions, WSOC, HULIS ${ }_{W S}$ and elements: The carbonaceous content was analyzed for EC and OC using a Thermo-Optical Transmission method on a Sunset Lab analyzer (Birch and Cary, 1996), following both NIOSH (Schmid et al., 2001) and EUSAAR-2 (Cavalli et al., 2010) protocols. It is well established that different protocols result in very different values for EC (Schmid et al., 2001). We based our analysis (i.e., Chemical Mass Balance analysis and multiple regression analysis, see below sections S. 4 and S.9) on concentrations determined following NIOSH protocol, as source profiles were determined based on this protocol. Biases arising from discrepancies between the two protocols are all discussed in S.9.2 of the supporting material.

Sample fractions of $11.34 \mathrm{~cm}^{2}$ taken from the sample filter were extracted into 15 mL ultrapure Milli-Q water by 30 min short vortex agitation for the analyses of major ions $\left(\mathrm{NH}_{4}{ }^{+}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{NO}_{3}{ }^{-}\right)$, water-soluble organic carbon (WSOC) and water-soluble humic like substances (HULIS). HULIS analysis was performed following the method described in

Baduel et al. $(2009,2010)$. This method involves extraction of HULIS by adsorption onto DEAE resin (GE Healthcare®, HiTrapTM DEAE FF, 0.7 cm ID $\times 2.5 \mathrm{~cm}$ length) and its subsequent quantification with an OI Analytical 700 total organic carbon analyzer.

Finally, fifty elements were measured using ICP-MS (Agilent 7500ce) following the complete dissolution of filter aliquots in a mixture of high-purity concentrated HF and HNO_{3}. Element concentrations were then calculated using the rock reference material BR (Chauvel et al., 2010).

Radiocarbon measurements: Radiocarbon $\left({ }^{14} \mathrm{C}\right)$ measurements were conducted on high volume quartz filter fractions ($\sim 40 \mathrm{~cm}^{2}$) using ARTEMIS Accelerator Mass Spectrometry. Each sample was first packed into a prefired quartz tube containing CuO and Ag powder to be combusted at $850^{\circ} \mathrm{C}$ in a muffle furnace for 4 hours. Carbon dioxide was collected and purified before its conversion into graphite by hydrogen reduction at $600^{\circ} \mathrm{C}$ using an Fe catalyst. The modern fraction (f_{m}) was determined as the ratio of ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ in aerosol sample to ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ in the NBS Oxalic Acid standard (NIST-SRM4990B).

In order to account for the thermonuclear weapon tests of the late 1950s and early 1960s (Levin et al., 1985), the modern fraction (f_{m}) is divided by a ratio of 1.1 to get a corrected non-fossil fraction (f_{nf}) (Levin and Hesshaimer, 2000). This value is subsequently subtracted from one to obtain the fossil fraction $\left(\mathrm{f}_{\mathrm{f}}\right)$.

Organic speciation: A chemical derivatisation/gas chromatography-mass spectrometry (GC-MS) approach was used to quantify primary and secondary organic markers, including α-pinene oxidation products, a major focus of this study. The approach is fully described in El Haddad et al., 2011b and will be only outlined in the following.

Prior to extraction, filters were spiked with known amounts of two isotope-labelled standards: tetracosane-d50 and cholesterol-d6. Organic species were extracted from filters with a dichloromethane/acetone mix ($1 / 1 \mathrm{v}: \mathrm{v}$) using an accelerated pressurized solvent extraction device (ASE, Dionex 300). Extracts were then reduced to a volume of $500 \mu \mathrm{~L}$ using a Turbo Vap II concentrator. The remainder was split into two fractions. The first fraction was directly injected, whilst the second fraction was subjected to derivation for 2 h at $70^{\circ} \mathrm{C}$, using N,O-Bis(trimethylsilyl)-trifluoroacetamide containing 10% trimethyl-chlorosilane ,before GC-MS analysis. The two fractions were analyzed
following the same GC-MS conditions: Aliquots of $2 \mu \mathrm{~L}$ were analyzed using a Thermo Trace GC chromatograph interfaced to a Polaris Q ion trap mass spectrometer fitted with an external electron ionization source. The chromatographic separation was accomplished on a TR-5MS capillary column (Thermo Electron, $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ i.d. $\times 0.25 \mu \mathrm{~m}$ film thickness). Field blank filters were also treated with the same procedure and none of the target compounds were detected in these field blanks.

Primary organic markers, including n-alkanes, hopanes, polycyclic aromatic hydrocarbon (PAH) and levoglucosan, were quantified and used as inputs in the CMB analysis to apportion primary aerosol and VOC sources. A complete list of these primary organic markers is included in El Haddad al. (2011a). α-pinene oxidation products quantified by this method were used to estimate α-pinene SOA contributions. As described in El Haddad al. (2011b), we identified and quantified 9α-pinene SOA markers, whose structures are presented in Fig.2. These included pinic (PA) and pinonic (PNA) acid, which were identified and quantified using authentic standards. Seven other multifunctional compounds (A1-A7), for which native standards are not available, were tentatively identified by examining their retention times and MS characteristics (for more details refer to El Haddad et al., 2011b). They included 3-hydroxyglutaric acid (A1), 3-(2-hydroxyethyl)-2,2-dimethylcyclobutane carboxylic acid (A2), 3-hydroxy-4,4dimethylglutaric acid (A3), 3-acetylglutaric acid (A4), 3-acetyladipic acid (A5), and 3isopropylglutaric acid (A6) and 3-methyl-1,2,3-butanetricarboxylic (A7). These compounds were quantified using the response factor of malic acid as a surrogate for all of the compounds. Relative standard deviation of the concentrations of these species based on duplicate analysis was between 5 and 15%.

S. 4 Comparison between offline and online measurements

The aim of this section is to evaluate biases and artefacts associated with the offline and online measurements of OA (e.g., AMS particle collection efficiency, adsorption artefacts onto filters). Fig.S3 conveys the comparison between AMS (PM_{1}) and filter based $\left(\mathrm{PM}_{2.5}\right)$ measurements for the two major aerosol components: SO_{4} and OA. SO_{4} is expected to primarily occur in the PM_{1} fraction and to be mostly associated with ammonium sulfate and bisulfate (with very little influence from sea salt), and thus to be quantitatively analysed by the AMS. A very good agreement was observed between the

AMS- SO_{4} and the $\mathrm{HiVol}-\mathrm{SO}_{4}\left(\mathrm{~s} \sim 1, \mathrm{i} \sim 0\right.$ and $\mathrm{R}^{2}>0.9$; Fig.S3), substantiating our AMS measurements and the particle collection efficiency factor, HiVol-OA was derived from OC concentrations measured from filter samples, corrected for differences in diameter cut-offs between the AMS and the HiVol sampler; it constitutes our best estimate of offline $P M_{1} O A$.

Fig.S3: Comparison between AMS and offline measurements for $\mathrm{SO}_{4}(\mathbf{A})$ and $\mathrm{OA}(\mathbf{B})$. HiVolOA was corrected for differences in the diameter cut-offs between the AMS and the HiVol sampler (see text); it refers to the PM_{1} fraction. Also shown are the 1:1 line and the slopes (s), intercepts (i) and coefficients of determination $\left(\mathrm{R}^{2}\right)$ obtained by linear fits of the data.

The calculation of $P M_{1} O A$ proceeded as follows: Based on size resolved EC/OC measurements performed on the LPI samples, the fraction of $P M_{1} O C$ in $P M_{2.5} O C$ was retrieved: $P M_{1} O C / P M_{2.5} O C=0.82 \pm 0.06 . P M_{1} O C$ was then scaled by an average OM/OC ratio of 1.67 ± 0.05, obtained by comparing the AMS-OA to the LPI $P M_{1} O C$. The comparison between $P M_{1} O A$ and AMS-OA shows that both fractions exhibit similar variability ($\mathrm{R}^{2}>0.7$), with a slope close to 1 . However, a negative intercept of $-1.3 \pm 0.7 \mu \mathrm{~g}$ m^{-3} was observed, implying that filter based measurements ($\mathrm{PM} \mathrm{M}_{1} \mathrm{OA}$) were systematically associated with a positive bias of $1.3 \mathrm{mg} \mathrm{m}^{-3}$ engendered by adsorption artefacts onto filter samples. As a result, filter based measurements tended to overestimate the absolute concentrations of OA by up to $28 \%^{\dagger}$. However, such artefacts would have only a minor

[^1]
S. 5 AMS/PMF2 analysis

influence on our apportionments, provided that they evenly impacted the different components of OA.

Fig.S4: Influence of varying FPEAK parameter on factors' mass spectra and time series for the 4 -factor solution and at FPEAKs between 0 and 1 .

To assess the robustness of the 4 factor solution, rotational ambiguity has been investigated by varying FPEAK from -2 to 2 with 0.1 steps. Two main groups of solutions were identified, the first one corresponding to FPEAK values below 0, for
which unrealistic zero time series values are observed for LVOOA, and the other one corresponding to "FPEAK" above 0 . Robust solutions were found for solutions at FPEAK between 0 to 1 , with very little variability in the factors' time series and mass spectra (Fig.S4). The influence of the initial conditions seed (corresponding to pseudorandom starting-points of the PMF2 algorithm) ranging from 0 to 59 (with steps of 1) was also verified. No influence of different seed was observed, which provides evidence of the robustness of the chosen solution.

Fig.S5: Factor spectral profiles derived from the 4 factor solution PMF2 analysis for FPEAK 0 and seed=0.

S. 6 Chemical Mass Balance analysis

Available data used here also included source contributions to OC, apportioned using a Chemical Mass Balance analysis (CMB) in conjunction with organic marker concentrations, as fully described in El Haddad et al. (2011a). CMB model is based on the mass conservation of individual organic markers. In the mass conservation equations, known concentrations ($C_{i k}$) of specific markers of primary sources at receptor site k are written as the product of known source profiles $a_{i j}$ and unknown primary source contributions $s_{j k}$ (Watson et al., 1998) as expressed in equation 1 :

$$
\begin{equation*}
C_{i k}=\sum_{j=1}^{m} a_{i j} s_{j k} \tag{1}
\end{equation*}
$$

where m denotes the total number of emission sources and $a_{i j}$ represents the fractional abundances of chemical species in the source emissions, expressed as marker-to-OC ratios. The set of linear equations generated by equation 1 is solved with an effective variance weighted least squares method using the Environmental Protection agency EPACMB8.2 software.

Primary markers and source profiles selection is detailed in El Haddad et al., 2011a. Primary markers include: levoglucosan as a specific marker for biomass burning (BBOC), EC and three hopanes (i.e., 17(H),21(H)-norhopane, 17(H),21(H)-hopane and $22 \mathrm{~S}, 17(\mathrm{H}), 21(\mathrm{H})$-homohopane) as key markers for vehicular emissions. In addition, a series of C27-C32 n-alkanes was selected since this range demonstrates high odd-carbon preference, specific to primary biogenic sources. In order to apportion industrial emissions, four PAH (benzo[b,k]fluoranthene, benzo[e]pyrene, indeno[1,2,3-cd]pyrene, and benzo[ghi] perylene), V, Ni and Pb were included as fitting species. Source profiles comprise vehicular emissions derived from a tunnel study held in Marseille (El Haddad et al., 2009), biomass burning emissions (Fine et al., 2002), vegetative detritus (Rogge et al., 1993a) and natural gas combustion (Rogge et al., 1993b). Three industrial-emissionrelated profiles were chosen, including metallurgical coke production (Weitkamp et al., 2005), HFO combustion/shipping (Agrawal et al., 2008), and steel manufacturing (Tsai et al., 2007).

In this study, emissions from the three industrial processes were lumped together under the term "industrial OA". Biomass burning, vegetative detritus and natural gas combustion contributed very little OC during the period of measurements (El Haddad et al., 2011a) and were not considered in the comparison between CMB and AMS/PMF results. CMB technique is unable to directly apportion secondary sources; however, the fraction of OC not attributed to primary sources is considered to be an upper limit estimate of secondary OC (SOC).

In order to compare CMB and AMS/PMF results, primary OA associated with vehicular and industrial emissions were calculated by applying an OM-to-OC ratio of 1.2 (based on Aiken et al., 2008). SOA was considered as the difference between the total OA,
determined by scaling the total OC by an OM-to-OC ratio of 1.67^{\ddagger}, and the primary OA. An OM-to-OC ratio of 1.82 can be inferred for SOA (i.e. SOA-to-SOC), consistent with an overwhelmingly secondary origin of this fraction (Aiken et al., 2008).

S. 7 Tracers' diurnal profiles

Fig.S6: Tracers' diurnal profiles. Solid lines denote average profiles and shaded areas represent [P25-P75] range.

S. 8 HOA vs. EC

Fig.S7 presents a scatter plot of HOA vs. EC, from which it is possible to ascertain more thoroughly the sources of this fraction. As HOA and EC mainly arise from the same source (i.e., vehicular emissions (El Haddad et al., 2011a)), it was expected that the data point cluster around one line with a slope corresponding to the HOA/EC ratio at the point of emission. However, more scatter was observed with three different clear patterns:

[^2]Most of the data scattered around one line characterised by a ratio of HOA/EC of ~ 0.4, representative of average vehicular emissions at typical ambient concentrations (see for e.g. Chirico et al., 2011 and references therein). This is a clear indication that HOA was mostly related to traffic. A second part of the data scattered around another line characterised by a lower ratio of HOA/EC (<0.25), concomitant with the dilution of the emissions as the boundary layer developed in the afternoon and with the enhancement of the photochemical activity, which would increase the oxidation of HOA. The depletion of traffic emission markers with respect to EC due to photochemistry was previously demonstrated to occur during this field mission (El Haddad et al., 2011a). The third part of the data presents more scattering, with higher HOA/EC ratios (around 0.75), occurring mostly during meal hours, especially during the evening. This suggests that the HOA factor was contaminated by cooking emissions that had a similar spectral profile as HOA. Based on the comparison between EC and HOA, this contamination can be estimated as 20%, in agreement with the very low concentrations of cholesterol ($0.13-3.32 \mathrm{ng} \mathrm{m}^{-3}$, El Haddad et al., 2011a).

Fig.S7: HOA vs. EC. Color scale: hour of the day

S. 9 Apportionment of fossil and non-fossil OOA and related uncertainties

S.9.1 Multiple regression model

AMS/PMF apportionments and ${ }^{14} \mathrm{C}$ measurements were combined using a multiple regression model to estimate the fossil and the non-fossil contributions to both SVOOA and LVOOA. It is worthwhile to note that such a combination is not straightforward, involving a certain number of assumptions that result in considerable uncertainties.

Firstly, ${ }^{14} \mathrm{C}$ measurements were conducted on $\boldsymbol{P} \boldsymbol{M}_{2.5} \boldsymbol{O C}$ onto filter samples that are subjected to well-known but non systematic adsorption artefacts of gas phase organic compounds. In contrast, AMS provides real-time measurements of $\boldsymbol{P M}_{\boldsymbol{I}} \boldsymbol{O A}$ with little interference from gas phase organics. However, particle collection efficiency (CE) of the AMS, estimated in this dataset to be 0.65 ± 0.14, can be highly variable and is dependent on the aerosol chemical nature and mixing state (Middlebrook et al., 2012).

Secondly, ${ }^{14} \mathrm{C}$ measurements conducted in this study relate to the total carbon (TC) mass that can be oxidized at $850^{\circ} \mathrm{C}$ under oxygen, i.e., organic carbon (OC) and elemental carbon (EC), whereas AMS quantifies OA that consists of OC and the associated heteroatom (H, N, O, S ...). This fundamental difference engenders two major limitations for the assessment of fossil and non-fossil contributions of the OOA fractions. First, as the TC apportioned by ${ }^{14} \mathrm{C}$ measurements also included EC , assumptions related to the origins of the latter must be made. Furthermore, since the separation between EC and OC measured using the OC/EC instrument is method-dependent, biases associated with EC determination can impact the estimations. Second, the AMS measurement of OA includes heteroatom that can be unevenly distributed between the fossil carbon and the non-fossil carbon. Here also, this distribution was not empirically accessible and assumptions have to be made to calculate our estimations. Further uncertainties can arise from PMF calculations and residuals and from variability in the biomass ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio. The assumptions made to achieve the apportionment are explicitly presented in this section and the resulting biases and uncertainties are thoroughly discussed in section S.9.2.2.

The procedure went as follows: First, in order to estimate the fossil and non-fossil fractions of OC, EC was assumed to be entirely related to fossil carbon (assumption founded on Chemical Mass Balance calculations reported in El Haddad et al., 2011a). This is described in equations (2) and (3):

$$
\begin{align*}
& O C_{f}=T C_{f}-E C_{f}=T C_{f}-E C\left(E C_{f}=E C \| E C_{n f}=0\right) \tag{2}\\
& O C_{n f}=T C_{n f}-E C_{n f}=T C_{n f}\left(E C_{f}=E C \| E C_{n f}=0\right) \tag{3}
\end{align*}
$$

Where $T C_{f}, O C_{f}$ and $E C_{f}$ correspond to the fossil TC, OC and EC, respectively, and $T C_{n f}, O C_{n f}$ and $E C_{n f}$ to the non-fossil TC, OC and EC, respectively.

The second step involved the transition from $P M_{2.5} O C$ measured on filter samples to $P M_{l} O A$ determined by the AMS. This conversion was achieved for each of the samples by scaling $O C_{f}$ and $O C_{n f}$ to fossil $\mathrm{OA}\left(O A_{f}\right)$ and non-fossil $\mathrm{OA}\left(O A_{n f}\right)$, respectively, by a factor α :

$$
\begin{align*}
& O A_{f}=\alpha \times O C_{f}\left(\alpha=P M_{1} O A / P M_{2.5} O C\right) \tag{4}\\
& O A_{n f}=\alpha \times O C_{n f}\left(\alpha=P M_{1} O A / P M_{2.5} O C\right) \tag{5}
\end{align*}
$$

where α is the ratio between AMS $P M_{1} O A$ and filter $P M_{2.5} O C . \alpha$ is variable depending on the considered sample, but has an average of 0.92 ± 0.21. The assumption underlying this scaling is that $P M_{2.5} O C$ and $P M_{1} O A$ were associated with the same proportions of fossil and non-fossil mass (i.e. the ratio fossil/total was the same for $P M_{2.5} O C$ and $\left.P M_{l} O A\right)$. Biases arising form this assumption are discussed in the section S.9.2.2.
$O A_{f}$ and $O A_{n f}$ obtained in equations 4 and 5 can be accordingly expressed as a linear combination of the AMS/PMF OA fractions derived from fossil $\left(f O A_{i}:\right.$ POA $_{f}$, SVOOA $_{f}$ and $\left.L V O O A_{f}\right)$ and non-fossil ($n f O A_{i}: P O A_{n f}, S V O O A_{n f}$ and $L V O O A_{n f}$) sources, respectively:

$$
\begin{align*}
& O A_{f}=\sum_{i}^{l} f O A_{i}=P O A_{f}+\text { SVOOA }_{f}+\text { LVOOA }_{f} \tag{6}\\
& O A_{n f}=\sum_{i}^{m} n f O A_{i}=P O A_{n f}+\text { SVOOA }_{n f}+\text { LVOOA }_{n f} \tag{7}
\end{align*}
$$

where l and m are the total numbers of $f O A_{i}$ and $n f O A_{i}$ fractions, respectively. As $f O A_{i}$ and $n f O A_{i}$ are not directly accessible, equations 6 and 7 can be written in terms of the OA factors $\left(O A_{i}\right)$ determined by AMS/PMF analysis and the respective share of fossil and non-fossil fractions to these factors such that

$$
\begin{align*}
& O A_{f}=\sum_{i}^{l} a_{i} \times O A_{i}=a_{1} \times P O A+a_{2} \times S V O O A+a_{3} \times L V O O A\left(a_{i}=\frac{f O A_{i}}{f O A_{i}+n f O A_{i}}\right) \tag{8}\\
& O A_{n f}=\sum_{i}^{m} b_{i} \times O A_{i}=b_{1} \times P O A+b_{2} \times S V O O A+b_{3} \times L V O O A\left(b_{i}=\frac{n f O A_{i}}{f O A_{i}+n f O A_{i}}\right) \tag{9}
\end{align*}
$$

where a_{i} and b_{i} denote the relative share of fossil and non-fossil fractions to $O A_{i}$ factors, respectively (a_{1} for POA_{f}, a_{2} for $\mathrm{SVOOA}_{f}, a_{3}$ for $L V O O A_{f}, b_{1}$ for $P O A_{n f}, b_{2}$ for $S V O O A_{n f}$ and b_{3} for $L V O O A_{n f}$). This system of linear equations can be visualised as the following matrix equation:
$\left[\begin{array}{cccccc}\text { POA } & \text { SVOOA } & \text { LVOOA } & 0 & 0 & 0 \\ 0 & 0 & 0 & P O A & \text { SVOOA } & \text { LVOOA } \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{c}a_{1} \\ a_{2} \\ a_{3} \\ b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\left[\begin{array}{c}O A_{f} \\ O A_{n f} \\ 1 \\ 1 \\ 1\end{array}\right]$

As POA was assumed to be strictly related to fossil sources (i.e. $P O A_{f}=P O A=H O A+F 4$), the parameter a_{1} can be assumed to equal 1 , implying that b_{1} equals 0 (i.e. $P O A_{n f}=0$, the sensitivity of the results to this assumption is assessed in section S.9.2.2). Equation 11 can be then simplified as follows:

$$
\left[\begin{array}{cccc}
\text { SVOOA } & \text { LVOOA } & 0 & 0 \tag{11}\\
0 & 0 & \text { SVOOA } & \text { LVOOA } \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \times\left[\begin{array}{c}
a_{2} \\
a_{3} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
S O A_{f} \\
S O A_{n f} \\
1 \\
1
\end{array}\right]
$$

With $S O A_{f}$ and $S O A_{n f}$ denoting the fossil and non-fossil fractions of SOA, respectively, calculated as: $S O A_{f}=O A_{f}-P O A_{f}$ and $S O A_{n f}=O A_{n f}-P O A_{n f}$. The equations of the resulting linear system (equation 11) are not independent and thus the system has no solution. For that reason, a multiple linear regression analysis was applied instead to solve equation 11 , which found the average values for a_{i} and b_{i} that fit best the equation, in the sense of solving the quadratic minimization problem. In equation 11 $\mathrm{AMS} / \mathrm{PMF} O A_{i}$ vectors were included as independent variables and $O A_{f}$ and $O A_{n f}$ as dependant variables.

It should be noted that the apportionment procedure followed here is not unique. As this study mainly focuses on AMS measurements, the chosen method is AMS data oriented in that the resulting apportionments would exhibit the same variability as the AMS/PMF
factors (e.g. $S V O O A_{f}+S V O O A_{n f}=S V O O A$). This is the result of the equation 11, in which AMS/PMF $O A_{i}$ vectors were chosen as independent variables. As this equation is a self-consistent system (i.e. $O A_{f}+O A_{n f}-P O A=S V O O A+L V O O A$), another approach is also possible; by considering $O A_{f}$ and $O A_{n f}$ as independent variables, this second approach yields the same average results but orients the variability towards ${ }^{14} \mathrm{C}$ measurements.

S.9.2 Output quality control, uncertainty assessments and potential biases

S.9.2.1 Output quality control and residual analyses

One of the major drawbacks of the multiple regression analysis applied here is that it considers a constant contribution of fossil and non-fossil sources to each of the $O A_{i}$ factors (i.e., constant a_{i} and b_{i} ratios), while these contributions may significantly vary over the course of the measurements. Accordingly, a_{i} and b_{i} ratios should be regarded as average contributions of fossil and non-fossil sources to $O A_{i}$. These ratios are reported in Tab.S1.

Tab.S1: $\quad a_{i}$ and b_{i} ratios for the POA,
SVOOA and LVOOA fractions.

	POA	SVOOA	LVOOA
a_{i}	1.0	0.33 ± 0.11	0.082 ± 0.085
b_{i}	0.0	0.67 ± 0.11	0.92 ± 0.08

Fig.S8: Scatter plots of modelled vs. measured data for the fossil (A) and non-fossil (B) fractions. Measured fossil fraction $=\mathrm{EC}+0.92 \mathrm{xOC}_{\mathrm{f}}$, modelled fossil fraction=EC $+\mathrm{HOA}+\mathrm{F} 4+$ $\mathrm{SVOOA}_{\mathrm{f}}+\mathrm{LVOOA}_{\mathrm{f}}$, Measured non-fossil fraction= $0.92 \mathrm{xOC}_{\mathrm{f}}$, and modelled fossil fraction= $\mathrm{SVOOA}_{\mathrm{nf}}+\mathrm{LVOOA}_{\mathrm{nf}}$. The 0.92 value is the average value of the factor α used in equations 6 and 7. The comparison between filter measurements and AMS measurements is shown in panel C.

For all panels, the slope of the linear regression (s), its intercept (i) and its coefficient of determination (R) are also indicated ($\mathrm{n}=28$ samples for each plot).

Fig.S8 compares the measured and the modelled concentrations for the total fossil and non-fossil fractions. It shows that the model captured quite well the amounts and the variability of the measured concentrations, especially in the case of the fossil fraction (Fig.S8a). In the case of the non-fossil fraction, the model tended to slightly underestimate (overestimate) the measured levels at low (high) concentrations (Fig.S8b). It should be noted though that most of the variability observed in panels A and B of Fig.S8 arose from discrepancies between the AMS $P M_{I} O A$ and filter-based $P M_{2.5} O C$, as shown in panel C of the same figure. Differences between the 2 measurement techniques were accounted for in equations 4 and 5 prior to the multiple regression analyses by the coefficient α that encompasses various conversion factors. Overall, these comparisons validated the representativeness of a_{i} and b_{i} obtained in the multiple regression analyses.

Fig.S9: Residuals' normal distributions (modelled - measured) derived from the multiple regression approach applied above for the fossil (\mathbf{A}) and the non-fossil (B) fractions. Residuals are fitted using a Gaussian fit, from which the mean (\bar{X}) and the standard deviation (σ) are calculated for both fractions.

Assumptions underlying the residuals' distributions were examined for the fossil and non-fossil fractions in Fig.S9. Residuals followed normal distributions with mean values statistically equal to zero, implying that errors are homoscedastic (variance $=0$) and are not correlated. From Fig.S9, it is possible to estimate the uncertainties related to the total fossil and non-fossil OA fractions. Fossil and non-fossil OA were accordingly estimated
to contribute $1.52 \pm 0.31 \mu_{\mathrm{g} \mathrm{m}^{-3}}$ (implying 20% of errors) and $2.52 \pm 0.78 \mathrm{~g} \mathrm{~m}^{-3}$ (implying 31% of errors), respectively. These uncertainties included: (1) measurement differences between filter-based $\mathrm{PM}_{2.5} \mathrm{TC}$ and $\mathrm{AMS} \mathrm{PM}_{1} \mathrm{OA}+\mathrm{EC}$ (Fig.S8c) and (2) variability in a_{i} and b_{i} obtained in the multiple regression analyses (see the related uncertainties in Tab.S1).

S.9.2.2 General assessment of uncertainties and biases

It is worthwhile to note that a great part of the uncertainties assessed for the absolute concentrations of fossil and non-fossil OA arose from discrepancies between AMS and filter measurements and hence is not representative of the statistical significance of each of the fractions. The statistical significance of the relative contributions of HOA, F4, $\mathrm{SVOOA}_{f}, \mathrm{LVOOA}_{f}, \mathrm{SVOOA}_{n f}$ and $\mathrm{LVOOA}_{n f}$ were assessed through a sensitivity test using a random selection technique. Inputs to the calculation are the PMF factor mass concentrations, ${ }^{14} \mathrm{C}$ data, and $\mathrm{OC} / \mathrm{EC}$ measurements. The calculation was performed based on equations (2-11) and proceeded as follows:

- For each of the input parameters a range was assigned, within which these can vary (see Tab.S2). The criteria on which we based our assessment of these ranges are developed below, in Appendix A.
- The parameters were then allowed to randomly vary within the range predetermined in the previous step, assuming a normal distribution. This approach is somewhat similar to Monte Carlo calculations and allows vast numbers of combinations of input parameters to be computed (McKay et al., 1979). A Monte Carlo simulation would involve testing all possible combinations of input parameters, which would be prohibitive in terms of processing time. In contrast, random sampling is much more effective and for our purposes provided essentially the same results as a full Monte Carlo analysis (McKay et al., 1979).
- Following the approach described above, 50 sets of parameters were generated randomly and used subsequently in the equations 2-11 to calculate the inputs for the multiple linear regression analysis (i.e. $S O A_{f}, S O A_{n f}, S V O O A$ and $L V O O A$). This provided for each set of parameters average values for a_{i} and b_{i} plus the corresponding uncertainties.
- For each set of the coefficients a_{i} and b_{i} previously generated, the average values of these coefficients were varied assuming a binomial distribution, derived based on the corresponding uncertainties provided by the multiple linear regression analyses. In this step and for each set of parameters, ten values were generated for a_{i} and b_{i} and used to compute the contributions of $\mathrm{SVOOA}_{\mathrm{f}}, \mathrm{LVOOA}_{\mathrm{f}}, \mathrm{SVOOA}_{\mathrm{nf}}$ and $\mathrm{LVOOA}_{n \mathrm{n}}$. This gave in total 500 different solutions.

A great advantage of this approach is that combinations of parameters which are very unlikely (e.g., that only the minimum-possible values from each parameter were used) will represent only a small percentage of the output. The obtained 500 solutions are presented graphically as a probability density (frequency distribution) of possible solutions to the source apportionment problem we have set up, as shown in Fig. 7 in the manuscript.

This analysis provided strong support for our results, allowing the assessment of the uncertainties underlying our measurements and assumptions and offering a measure of our ability to separate the different components (statistical significance of each component). It showed that the uncertainties of our estimations depend on the component considered. Depending strictly on the PMF analysis errors, the uncertainties associated with the contributions of POA (HOA and F4) were less than 10%. Conversely, for OOA components the uncertainties were less homogenous. For non-fossil OOAs the uncertainties were around 10% as these were well resolved by the regression model, whereas for fossil OOAs uncertainties are higher ($\sim 36 \%$ and $\sim 58 \%$ for SVOOA_{f} and $\mathrm{LVOOA}_{\mathrm{f}}$, respectively), as these were poorly resolved by the regression model and strongly dependant on the EC measurements and the assumptions made for POA. All 6 fractions were statistically significant with contributions higher than 0 (Z equal 23, 7.4, $2.8,1.7,9.2,12$ for $\mathrm{HOA}, \mathrm{F} 4, \mathrm{SVOOA}_{f}, \mathrm{LVOOA}_{f}, \mathrm{SVOOA}_{n f}$ and $\mathrm{LVOOA}_{n f}$ respectively, with $\mathrm{Z}=$ average/uncertainty).

Additionally, the sensitivity test offered the assessment of the biases on the apportionments presented in the manuscript. The sensitivity test results suggest that we might underestimate the contributions of $\mathrm{F} 4, \mathrm{HOA}, \mathrm{SVOOA}_{\mathrm{nf}}$ and LVOOA_{f} by $9 \%, 6 \%$, 5% and 23%, respectively and overestimate the SVOOA_{f} and $\mathrm{LVOOA}_{\text {nf }}$ by 34% and 5%, respectively. The main conclusion to be derived from this analysis is the robustness of the
results presented and discussed in the manuscript. For example, $\mathrm{OOA}_{\mathrm{nf}}$ was clearly the biggest contributor to OA. It is also clear that LVOOA was derived predominately from non-fossil precursors $\left(\mathrm{LVOOA}_{\text {nf }} / \mathrm{LVOOA}=89 \pm 7 \%\right)$, whereas SVOOA included a larger fraction of fossil $\mathrm{SOA}\left(\mathrm{SVOOA}_{\mathrm{nf}} / \mathrm{SVOOA}=75 \pm 8 \%\right)$. Given the wide range of uncertainties used in the sensitivity test, these results demonstrate that, in general, we can clearly identify the contribution from different components.

S. 10 Distribution of the α-pinene oxidation products in the 2D-VBS

PNA

A2

A5

Fig.S10: 2D-framework for α-pinene SOA aging adapted from Jimenez et al., 2009, representing OA oxidation state (approximated by O:C) vs. OA volatility $\left(\log _{10}\left(\mathrm{C}^{*}\right)\right.$ at 298 K). The ambient OOA factors are represented in this 2D space by the 2 green squares, with LV-OOA being less volatile and more oxidized than SV-OOA (Jimenez et al., 2009). First generation products from α-pinene (yellow pentagon) + ozone reaction are distributed according to the blue contour. Products derived from subsequent OH oxidation (1.5 OH lifetimes) of first generation products are represented with purple contour (Jimenez et al., 2009). This oxidation reproduces a substantial shift toward ambient LV-OOA volatility and oxidation state. We added on this 2D space α-pinene first and subsequent generation oxidation products measured in this study by GC/MS (PNA, PA
and A1-A7). The volatilities of these compounds were calculated using the approach proposed by Donahue et al., 2011. O:C ratios of pure SV-OOA and LV-OOA retrieved by AMS/PMF2 analysis were calculated following the parameterization proposed in Aiken et al. (2009) and indicated by the orange and dark red lines, respectively. Following the same methodology, the range of $\mathrm{O}: \mathrm{C}$ ratios $\left(0.48<\mathrm{O}: \mathrm{C}_{\mathrm{OOA}}<0.72\right)$ of total OOA encountered during the measurement period was determined and indicated by the dotted area.

434 Appendix A: Calculations of the different parameters entered as inputs in the sensitivity test

For the parameters in Tab.S2, the ranges were established as follows:

- For EC/OC measurements, the range was designed to encompass biases and uncertainties associated with the separation between EC and OC. This range was bounded by measurements determined following NIOSH and EUSAAR2 protocols, respectively. For EC and OC, a constant bias between the 2 protocols was determined to be $40 \pm 8 \%$ and $6 \pm 5 \%$.
- The average uncertainty for the discrimination between fossil and non-fossil TC was 4%, including uncertainties in ${ }^{14} \mathrm{C}$ measurements and errors due to the correction for ${ }^{14} \mathrm{C}$ inputs from the bomb testing.
- An assumption made in equations 4 and 5 relates to the origin of EC, which was estimated to only pertain to the fossil fraction. This assumption would bias high the contributions of fossil sources to the secondary OC fractions. As there was little influence from biomass burning, we assumed an upper limit contribution of non-fossil sources to EC to be 15%, (based on Minguillón et al., 2011 and references), and varied this contribution between 0 and 15%.

Tab.S2: Ranges [Low, High] of the different parameters entered as inputs to the uncertainty calculation. E* denotes equations 2-11.

E*	Parameters	Variables	Low	High	Remarks
2, 3	$O C_{f}, O C_{n f}$	OC/EC	NIOSH	EUSAAR2	
		F_{f}	$0.96 \times F_{n f}$	$1.04 \times F_{n f}$	Uncertainties on measurements of ${ }^{14} \mathrm{C}$ in TC
		$E C_{f}$	$0.85 \times E C$	EC	Origin of EC: $E C=E C_{f}+E C_{n f}$
4,5	$\begin{aligned} & \alpha=P M_{1} \mathrm{OA} / P M_{2.5} O C \\ & \text { see Tab.S3 } \end{aligned}$	$\alpha_{1}{ }^{O C}$	0.76	0.88	Diameter cut-offs: $\alpha_{1}{ }^{O C}=P M_{1} O C / P M_{2.5} O C$
		$\alpha_{2}{ }^{O C}$	CI(-)	$\mathrm{CI}(+)$	Positive artefacts based on Fig.S3: $\mathrm{CI}(-)$ and $\mathrm{CI}(+)$ are the upper and lower bounds of the confident interval on the linear regression
8,9	AMS/PMF2 OA	Factors	FPEAK0	FPEAK1	AMS/PMF2 results obtained for FPEAKs between 0 and 1.
10,11	$P O A_{f} \mathrm{POA}_{n f}$	$a_{1} \times P O A$	$0.75 \times H O A+F 4$	$0.9 \times H O A+F 4$	$a_{1} \times P O A$ is the fraction of fossil POA. Its uncertainty is constrained based on Fig.S7

450 - The conversion from $P M_{2.5} O C$ measured on filter samples to $P M_{1} O A$ determined by the 451 AMS was performed in equations 2 and 3 , using a common factor α (with $\alpha=$ $P M_{1} O A / P M_{2.5} O C$) for both fossil and non-fossil OC. This factor encompassed three key corrections related to differences between the two measurement techniques, including differences in diameter cut-offs between AMS and filter sampling (referred to
as $P M_{1} O C / P M_{2.5} O C$ ratio), the adsorption artefacts on the filters, and the OM/OC ratio. The assumption underlying the $P M_{2.5} O C$ to $P M_{1} O A$ conversion is that the aggregate of the aforementioned corrections was similar for both fossil and non-fossil OC and well represented by α. Indeed, these corrections can vary greatly between the primary and the secondary fractions, which exhibited variable contributions to the fossil and non-fossil OC. To address the biases resulting from the application of a single conversion factor α, the latter is deconvolved in equation (12) into several factors, such that
$P M_{1} O A=\alpha \times P M_{2.5} O C=\sum_{i}^{n}\left(\prod_{j}^{p} \alpha_{i j}\right) \times O C_{i}$
In this equation, $\alpha_{i j}$ denotes the factor used for a conversion (j) applied to an $O C_{i}$ fraction. n is the total number of OC fractions; in our case, it was limited to two fractions representing the primary and the secondary OC. p is the total number of α_{i} conversions applied to $O C_{i}$; in our case, p was equal to 3 , accounting for the $P M_{1} O C / P M_{2.5} O C$ ratio $(j=1)$, for the sampling artefacts $(j=2)$ and for the OM/OC ratio $(j=3)$. The following is an example performed for the campaign average value, representing the matrix of $\alpha_{i j}$ factors for primary and secondary OC (Tab.S3). Similar calculations were performed for all of the data set to complete the sensitivity test. In this calculation, $\alpha_{i j}$ were measured for the total OC $\left(\alpha_{j}^{O C}\right)$, assumed for the primary OC $\left(\alpha_{j}^{P O C}\right)$, and inferred for secondary OC $\left(\alpha_{j}^{S O C}\right)$. The different conversions include the following: - $\alpha_{1}^{O C}$ denotes the $P M_{1} O C / P M_{2.5} O C$ ratio, estimated using size resolved OC measurements, i.e., $0.82 \pm 0.06 \%$. POC was assumed to pertain entirely to the PM_{1} fraction $\left(\alpha_{1}^{P O C}=1\right)$, resulting in an $\alpha_{1}^{S O C}$ of 0.77 (i.e. 77% of the $\mathrm{PM}_{2.5}$ SOC are included in the PM_{1} fraction).
$-\alpha_{2}^{O C}$ is the ratio allowing the correction for the sampling artefacts retrieved from Fig.S3, with an average value of 0.72 . Artefacts were assumed to be evenly distributed between the primary and the secondary fractions, i.e. $\alpha_{2}^{P O C}=\alpha_{2}^{S O C}$ (Tab.S3).
$-\alpha_{3}^{O C}$ is the OM/OC ratio, obtained from the comparison between $\mathrm{PM}_{1} \mathrm{AMS}$ and LPI measurements. An average $\alpha_{3}^{O C}$ value of 1.67 was found, and assuming an $\alpha_{3}^{P O C}$ value of 1.2 for primary OC a value of 1.81 can be inferred for the $\alpha_{3}^{S O C}$.

Tab.S3: $\alpha_{i j}$ factors estimated for POC, SOC and total OC fractions.

$\alpha_{i j}$	$\alpha_{j}^{P O C}$	$\alpha_{j}^{S O C}$	$\alpha_{j}^{O C}$
$\alpha_{i 1}$	1.0	0.77	0.82
$\alpha_{i 2}$	0.72	0.72	0.72
$\alpha_{i 3}$	1.20	1.81	1.67
$\prod_{j}^{p} \alpha_{i j}$	0.84	0.98	0.95

From $\alpha_{i j}$ matrix, overall conversion factors $\prod_{j}^{p} \alpha_{i j}$ can be inferred for POC, SOC and total OC, which were equal to $0.84,0.98$ and 0.95 , respectively. Estimated $\prod_{j}^{p} \alpha_{j}^{O C}(0.95)$ is comparable to the average α empirically determined and used in equations (4) and (5) to convert from $P M_{2.5} O C$ measured on filter samples to $P M_{1} O A$ determined by the $\operatorname{AMS}(\alpha=0.92 \pm 0.21)$.

Using $\prod_{j}^{p} \alpha_{j}^{P O C}$ and $\prod_{j}^{p} \alpha_{j}^{S O C}$ obtained above, one can apply different conversion factors to POA and SOA. In the sensitivity test such a calculation has been made by considering a range of $\alpha_{1}^{O C}$ and $\alpha_{2}^{O C}$ (Tab.S3).

- In the calculation of equations 10 and 11 , we considered for the apportionments the AMS/PMF2 results, including $P O A, S V O O A$ and $L V O O A$. One approach to assess the uncertainties on the AMS/PMF2 apportionments consists of varying FPEAK within a reasonable range, in our case between FPEAK $=0$ and FPEAK $=1$.
- In the calculation of equations 10 and 11 , we considered that POA pertains only to the fossil fraction. However, we observed evidence of inputs from cooking (a non fossil primary source) to the HOA factor. To take this observation into account in the
uncertainty calculations, we considered that these cooking inputs contributed between 10% and 25% of total HOA, based on Fig.S7.

References

Agrawal, H., Welch, W. A., Miller, J. W., and Cocker, D. R.: Emission measurements from a crude oil tanker at sea, Environ. Sci. Technol., 42, 7098-7103, 2008.

Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with HighResolution Time-of-Flight Aerosol Mass Spectrometry, Environ. Sci. Technol., 42, 4478-4485, doi:10.1021/es703009q, 2008.

Baduel, C., Voisin, D., and Jaffrezo, J. L.: Comparison of analytical methods for HULIS measurements in atmospheric particles, Atmos. Chem. Phys., 9, 5949-5962, doi:10.5194/acp-9-5949-2009, 2009.

Baduel, C., Voisin, D., and Jaffrezo, J. L.: Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments, Atmos. Chem. Phys., 10, 4085-4095, doi:10.5194/acp-10-4085-2010, 2010.

Bae, M.-S., Schauer J.J., DeMinter, J.T., Turner, J.R., Smith, D. and Cary, R.A.: Validation of a semicontinuous instrument for elemental carbon and organic carbon using a thermal-optical method, Atmos. Environ., 38, 2885-2893, 2004.

Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79-89, doi:10.5194/amt-3-79-2010, 2010.

Chauvel, C., Bureau, S., and Poggi, C.: Comprehensive chemical and isotopic analyses of basalt and sediment reference materials, Geostand. Geoanalyt. Res., 35, 125-143, doi:10.1111/j.1751908X.2010.00086., 2010.

Chirico, R., A.S.H. Prevot, P.F. DeCarlo, M.F. Heringa, R. Richter, E. Weingartner, and Urs Baltensperger. Aerosol and Trace Gas Vehicle Emission Factors Measured in a Tunnel Using an Aerosol Mass Spectrometer and other On-line Instrumentation. Atmospheric Environment, 45(13), 2182-2192, 2011.

Donahue, N. M., Kroll, J. H., Pandis, S. N., Robinson, A. L.: A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution, Atmos. Chem. Phys. Discuss., 11, 24883-24931, doi:10.5194/acpd-11-24883-201, 2011.

Drewnick, F., Hings, S. S., DeCarlo, P., Jayne, J.T., Gonin, M., Fuhrer, K., Weimer, S., Jimenez, J.L., Demerjian, K.L., Borrmann, S., Worsnop, D.R.: A new time-of-flight aerosol mass spectrometer (TOF-AMS) - Instrument description and first field deployment, Aerosol Sci. Tech., 39, 637-658, 2005.

El Haddad, I., Marchand, N., Dron, J., Temime-Roussel, B., Quivet, E., Wortham, H., Jaffrezo, J. L., Baduel, C., Voisin, D., Besombes, J. L., and Gille, G.: Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France, Atmos. Environ., 43, 6190-6198, 2009.

El Haddad, I., Marchand, N., Wortham, H., Piot, C., Besombes, J. -L., Cozic, J., Chauvel, C., Armengaud, A., Robin, D., Jaffrezo. J. -L., Primary sources of PM2.5 particles in an industrial Mediterranean city, Marseille, Atmospheric Chemistry and Physics, 11, 2039-2058, 2011a.

El Haddad, I., Marchand, N., Temime-Roussel, B., Wortham, H., Piot, C., Besombes, J. -L., Baduel, C., Voisin, D., Armengaud, A., Jaffrezo, J. -L., Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille, Atmospheric Chemistry and Physics, 11, 20592079, 2011b.

Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Woods Grown in the Southern United States, Environ. Sci. Technol., 36, 1442-1451, doi:10.1021/es0108988, 2002.

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529, 2009.

Levin, I., Kromer, B., Schochfischer, H., Bruns, M., Munnich, M., Berdau, D., Vogel, J. C., and Munnich, K. O.: 25 Years of Tropospheric C-14 Observations in Central-Europe, Radiocarbon, 27, 1-19, 1985.

Levin, I., and Hesshaimer, V.: Radiocarbon - A unique tracer of global carbon cycle dynamics, Radiocarbon, 42, 69-80, 2000.

Minguillón, M. C., Perron, N., Querol, X., Szidat, S., Fahrni, S. M., Alastuey, A., Jimenez, J. L., Mohr, C., Ortega, A. M., Day, D. A., Lanz, V. A., Wacker, L., Reche, C., Cusack, M., Amato, F., Kiss, G., Hoffer, A., Decesari, S., Moretti, F., Hillamo, R., Teinilä, K., Seco, R., Peñuelas, J., Metzger, A., Schallhart, S., Müller, M., Hansel, A., Burkhart, J. F., Baltensperger, U., and Prévôt, A. S. H.: Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE
campaign in Northeast Spain, Atmos. Chem. Phys., 11, 12067-12084, doi:10.5194/acp-11-12067-2011, 2011.

McKay, M. D., Beckman ,R. J. and Conover, W.J.: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21, 239-245, 1979.

Middlebrook, A.M., Bahreini, R., Jimenez, J.L. and Canagaratna M.R.: Evaluation of CompositionDependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Science and Technology, DOI:10.1080/02786826.2011.620041, 46, 258-271, 2012

Rolph, G. D.: Real-time Environmental Applications and Displays Ystem (READY) Website (http://ready.arl.noaa.gov). NOAA Air Resources Laboratory, Silver Spring, MD, 2010.

Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T.: Sources of Fine Organic Aerosol .4. Particulate Abrasion Products from Leaf Surfaces of Urban Plants, Environ. Sci. Technol., 27, 2700-2711, 1993a.

Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T.: Sources of Fine Organic Aerosol.5. NaturalGas Home Appliances, Environ. Sci. Technol., 27, 2736-2744, 1993b.

Schmid, H., Laskus, L., Jurgen Abraham, H., Baltensperger, U., Lavanchy, V., Bizjak, M., Burba, P., Cachier, H., Crow, D., Chow, J., Gnauk, T., Even, A., ten Brink, H. M., Giesen, K.-P., Hitzenberger, R., Hueglin, C., Maenhaut, W., Pio, C., Carvalho, A., Putaud, J.-P., Toom-Sauntry, D., and Puxbaum, H.: Results of the "carbon conference" international aerosol carbon round robin test stage I, Atmos. Environ., 35, 2111-2121, 2001.

Tsai, J.-H., Lin, K.-H., Chen, C.-Y., Ding, J.-Y., Choa, C.-G., and Chiang, H.-L.: Chemical constituents in particulate emissions from an integrated iron and steel facility, J. Hazard. Mater., 147, 111-119, 2007.

Watson, J. G., Robinson, N. F., Fujita, E. M., Chow, J. C., Pace, T. G., Lewis, C., and Coulter, T.: CMB8 Applications and Validation Protocol for PM2.5 and VOCs, US EPA, USA, 1998.

Weitkamp, E. A., Lipsky, E. M., Pancras, P. J., Ondov, J. M., Polidori, A., Turpin, B. J., and Robinson, A. L.: Fine particle emission profile for a large coke production facility based on highly time-resolved fence line measurements, Atmos. Environ., 39, 6719-6733, 2005.

[^0]: Imad El Haddad ${ }^{\text {a,1,* }}$, Barbara D’Anna ${ }^{\text {b }}$, Brice Temime-Roussel ${ }^{\text {a }}$, Melanie Nicolas ${ }^{\text {b }}$, Antoinette Boreave ${ }^{\text {b }}$, Olivier Favez ${ }^{\mathrm{b}, 2}$, Didier Voisin ${ }^{\mathrm{c}}$, Jean Sciare ${ }^{\text {d }}$, Christian George ${ }^{\text {b }}$, Jean-Luc Jaffrezo ${ }^{\text {c }}$, Henri Wortham ${ }^{\text {a }}$, and Nicolas Marchand ${ }^{\text {a,* }}$
 ${ }^{\text {a }}$ Aix-Marseille Univ, Laboratoire Chimie Environnement, 13331, Marseille cedex 03, France
 ${ }^{\mathrm{b}}$ Université Lyon 1, Lyon, F-69626, France; CNRS, UMR5256, IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Villeurbanne, F-69626, France
 ${ }^{\text {c }}$ Universités Joseph Fourier-Grenoble 1-CNRS, UMR 5183, Laboratoire de Glaciologie et Géophysique de l'Environnement, Saint Martin d'Hères, 38402, France.
 ${ }^{\text {d }}$ Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ-IPSL, Gif sur Yvette, 91191, France.
 ${ }^{1}$ Now at Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
 ${ }^{2}$ Now at INERIS, DRC/CARA/CIME, Parc Technologique Alata, BP2, Verneuil-en-Halatte, 60550, France.

 * Corresponding authors:
 I. El Haddad - email: imad.el-haddad@psi.ch, phone: +41563102785, fax: +41563104525
 N. Marchand - email: Nicolas.Marchand@univ-amu.fr, phone: +334135510 51, fax: +33413551060

[^1]: ${ }^{\dagger}$ The following estimation of adsorption artefacts onto HiVol filter samples (positive artefacts of 28%) is obtained by assuming first no volatilisation artefacts occurred during sampling with the LPI and second a quantitative transmission and evaporation of PM_{1} organic particles in the AMS. Negative artefacts are common for sampling under low pressure and losses and slow vaporisation of large particles can be an issue in the AMS. Therefore, our estimation of positive artefacts onto the HiVol samples should be regarded as highest estimate.,

[^2]: * OM-to-OC ratio of 1.67 is calculated by comparing AMS OA with LPI OC measurements, see section S. 3 and S.4.

