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Abstract. In this study we present a novel approach for im- the final results (e.g., Galmarini et al., 2004; Knutti et al.,
proving the air quality predictions using an ensemble of air2010; Pirtle et al., 2010). The practice has been used in a
quality models generated in the context of AQMEII (Air wide range of applications in atmospheric and climate sci-
Quality Model Evaluation International Initiative). The de- ences (Galmarini et al., 2001; delle Monache et al., 2006;
velopment of the forecasting method makes use of modMcKeen et al.,, 2005; Van Loon et al., 2007; Mallet and
elled and observed time series (either spatially aggregate@portisse, 2006; Solazzo et al., 2012a; Riccio et al., 2012;
or relative to single monitoring stations) of ozone concentra-Potempski et al., 2008; Knutti et al., 2010; Tebaldi and
tions over different areas of Europe and North America. TheKnutti, 2007) as well as in a range of other contexts. Over
technique considers the underlying forcing mechanisms orithe years a large number of different approaches (Potemp-
ozone by means of spectrally decomposed previsions. Wittski and Galmarini, 2009) have been proposed from the very
the use of diverse applications, we demonstrate how the appopular simple averaging of the result, to the construction of
proach screens the ensemble members, extracts the best cothe median model to the application of weights derived from
ponents and generates bhias-free forecasts with improved agast skill scores or Bayesian model averaging theory (e.g.,
curacy over the candidate models. Compared to more tradibelle Monache et al., 2006; Galmarini et al., 2004; Potemp-
tional forecasting methods such as the ensemble median, theki et al., 2010; Riccio et al., 2007). In all of the aforemen-
approach reduces the forecast error and at the same time tibpned examples, MME members have been used in an all-or-
clearly improves the modelled variance. Furthermore, the renothing fashion, by considering the various model results as
sultis not a mere statistical outcome depended on the qualita complete representation of the processes or by modulating
of the selected members. The few individual cases with detheir contribution to the average by means of weights. In all
graded performance are also identified and analysed. Finallyhose practices the model results are taken as they are, with-
we show the extensions of the approach to other pollutantsput any consideration of the reasons why a model is better
specifically particulate matter and nitrogen dioxide, and pro-than others and taking the results with all the good aspects
vide a framework for its operational implementation. as well as bad ones. This approach to ensemble analysis is
motivated by the illusory conception that the statistical treat-
ment would account for the process variability and by the fa-
tal assumption that model results are independent. As illus-
1 Introduction trated by Potempski and Galmarini (2009) this assumption

is unrealistic from the start and as demonstrated by Solazzo
Multi-model ensembles (MME) is the practice according to et al. (2012a) can also lead to a deterioration of the ensem-
which results obtained from a somehow arbitrary collectionble result as the number of models increases. Recent find-
of modelling systems and applied to a common case studyings point toward a deeper and more thorough analysis of
are statistically treated in an attempt to capture more effecthe model results in an attempt to identify those that, within
tively the variability of the observational data and to improve
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the ensemble, represent real original contributions to the imical Weather Forecast performances will be based on the
provement of the ensemble result. Toward this end, analyimprovement of individual models and their representation
ses aiming at promoting true model diversity such those use@f dynamical, physical and chemical processes.” While we
by Riccio et al. (2012), Solazzo et al. (2012a), Masson anccompletely agree with the final statement, we also feel that
Knutti (2011) seem to go in that right direction. quite a lot can still be extracted from the state-of-the-art AQ
Most recently, Tchepel et al. (2012) have applied amodels even when used in forecast mode and in the current
Kolmogorov-Zurbenko filter (KZ-f) (Zurbenko, 1986) to a state of development. This would not hold true for all pollu-
set of an ensemble of model results to identify the capacity ottants with the same level of accuracy, but the ensemble prac-
the different models to simulate the various scales in whichtice and model improvement can still proceed in parallel pro-
the modelled ozone time series was decomposed. Such atucing interesting and relevant results. Ensemble results can
approach has led to the determination of weighting factorsstill be improved using the current model predictions and a
to be associated with the various models performance in th@ovel methodology is proposed here. The latter can be im-
construction of the ensemble output. The originality of this plemented straight forwardly as long as time series from sev-
approach remains in the fact that a deeper analysis of theral model results are available. The technique can be easily
model performance than the operational comparison modelimplemented and provides an important enhancement in the
observations (Rao et al., 2011) has been selected as discrimpredicting capability of modelled ozone.
nant in determining the role of members within an ensemble. The present study will take advantage of the large selec-
In the present study, we intend to take a step forward withtion of model results produced for the Air Quality Model
respect to the ensemble screening and model selection, ha®valuation International Initiative (AQMEII) (Galmarini et
ing as the final goal not only the improvement of the ensem-al., 2012a; Rao et al., 2011). The initiative aimed at collect-
ble result on hindcast application, but also the forecasting caing regional scale air quality model results applied for the
pacity of a MME for air quality applications. The intent is to year 2006 to Europe and North America.
extract from an ensemble of models the best spectral compo- The paper is structured as follows: in Sect. 2 the technique
nents to construct a new set of results that is expected to bas outlined to give a bird’s eye view of the model treatment;
have better than the ensemble members rather than to use tive Sect. 3 the case study used to develop and test the tech-
KZ-f analysis to identify in a diagnostic way the relative con- nique is presented and in addition, the monitoring and simu-
tribution of all models to the final ensemble result. KZ-f will lated data are analysed from the spectral and the KZ-f view
be used to dissect each model result, extract the “best compgeoint; in Sect. 4 the results of the application of the forecast-
nents”, and re-assemble them in a new set of model resultsng technique are presented. Last, some final considerations
In our work KZ-f is, at all counts, an operator by which a new are drawn in Sect. 5.
model set is constructed, and not just a diagnostic tool used
to identify the best model. Hence, the KZ-f generated set can
be seen as the outcome of a new model and not a combing Methodology
tion of existing weighted results as in the work of Tchepel et
al. (2012). In this respect, the ensemble of models still rep-
resents a pool of realisations from which, however we do no
extract blindly a statistically treated result, but from which
we try at best to use the best of the available information.
The ensembile is therefore exploited as the set of all availabl
information from which we expect to extract what we need,
all model results are necessary a priori, but only few will be

n1 s iteration
used in the end. KZpp = R 1[11( . { Z St } J running window @

2.1 The Kolmogorov—Zurbenko filter

LI'he Kolmogorov—Zurbenko filter (Zurbenko, 1986) was first

proposed by Kolmogorov and formalised later by Zurbenko.

ét is defined as an iteration of a moving average filter applied
on a time-serie$(z):

MME for air quality forecast is used operationally in some ! f':lén&t’j’otsl([)
context like Global and regional Earth-system (Atmosphere) '
Monitoring using Satellite and in-situ data (GEMS) and Itis a two-parameter filter controlled by the window sizé) (
Monitoring Atmospheric Composition & Climate (MACC) and the number of iterationg). The KZ-f removes high-
(http://www.gmes-atmosphere.guin MACC, air quality  frequency variations from the data (with respect to the win-
predictions at the regional scale produced by several Eurodow size) and belongs to the class of low-pass filters (since
pean institutions are gathered and treated in a classical eritfilters periods smaller than the selected cut-off period). By
semble fashion (Peuch et al., 2011). As stated in the reviewnodifying the controlling parameters:( p), different scales
paper by Kukkonen et al. (2012): “The current operationsof motion can be eliminated and others retained. In particu-
in the GEMS and MACC projects have used a more elabodar, by taking the difference between two KZ-f corresponding
rate ensemble technique, based upon the differential weightto different parametersi, p), a band-pass filter is created.
ing of the individual models according to their skill over the  The applications of KZ-f in the field of chemical weather
last few days. However, a long-term improvement in Chem-is expanding and includes, among others, the diagnosis of the
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Table 1. Definition of time scales.

Component From period To period Atmospheric Processes that contribute
to Og fluctuations

Intra-day (ID) . 12h Fast-acting local scale processes

Diurnal (DU) 12h 2.5d Diurnal (day vs. night) processes

Synoptic (SY) 2.5d 21d Changing weather patterns

Long-term (LT) 21d el Slow-acting processes

meteorological and air quality measurements and model reeomponents (off-diagonal terms). The magnitude of the co-
sults (Rao et al., 1997; Hogrefe et al., 2000), the diagnosisariance terms of the error matrix determines the degree
of trends (Wise et al., 2005; Papanastasiou et al., 2012) andf association of the spectral components derived from the
the bias adjustment of ozone forecasts (Kang et al., 2008)KZ-f.

The filter has been proven in several occasions to be capable

of capturing the fundamental time scales of regional mod-2.2 The proposed ensemble strategy and the kz model

els without having to perform a full Fourier analysis. For the

case of ground-level ozone, four separate scales of motiod "e methodology we put into place is explained as follow.
have been defined relevant, detected by means of physic&dual lengths of the observed and the time series of ozone
considerations and periodogram analysis (Rao et al., 1997)pbtained from all ensemble members are decomposed into
They are namely the intra-day component (ID), the diurnalfour components by the KZ-f. The modelled spectral compo-
component (DU), the synoptic component (SY) and the basehents are evaluated against the observed ones and the models
line or long-term component (LT). The hourly time series of Producing each one of the four best components are identi-

ozone can therefore be decomposed as: fied. Then, future time series (i.e., a time series with the same
length as the historic time series that is shifted to include
S(t) =ID (1) +DU®@) +SY(@®) + LT (?) (2) a future horizon) of the identified models are KZ-f decom-
ID (1) = S(t) —KZ33 ©) poksed and Iflor each spec&trftl(ifompgngnt relrispeé:gve orr:e is
taken. Finally, a new model (kz model) is built by adding the
DU(1) =KZ33—KZ135 () respective future components. For the historic period, if the
SY(r) = KZ135 —KZ1035 (5) spectral components were independent (i.e., the off-diagonal
LT (1) = KZ1035 (6) terms of the covariance matrix would be zero), the kz model

skill would outperform any other model skill according to
Table 1 summarises the periods associated to the componentgy. (4). However, since the components are not independent
and the parts of the time series spectra they represent. Wend in addition, the interest lies in the forecast period (that is,
shall further notice that the separation of scales does nok; forecast skill), the idea needs to be evaluated.
imply independence neither between the processes within Hence, the technique that is proposed is based on the fol-
each scale nor among the four spectral components. In othggying simple ingredients:
words, the KZ-f does not ideally separate the spectral compo-
nents, but there is some interaction especially for the neigh- — A time series of 0zone measurements at station level or
bour components (Hogrefe et al., 2003). The total error of the aggregated at regional or sub-regional scale and results
decomposed by Eg. (2) time-series is propagated through the  from a multi-model ensemble are required.
spectral components and takes the form:

— The model results can be multi-model in the wide-

RMSE (Os) = error(ID) + error(DU) + errorSY) +error(LT) most sense also using different emission inventories or

= RMSEX(ID) 4 (AID  ADUT) + (AID % ASY") + (AID * ALTT) boundary conditions.

+RMSE2(DU) + (AID % ADUT) + (ADU * ASYT) + (ADD % ALTT)  (7) — Model results should be available for a minimum of 3

+ RMSEX(SYD) + (AID % ASYT) + (ASY x ASYT) + (ASY * ALTT) months plus a week of prediction.

+RMSE(LT) + (AID % ALTT) + (ALT % ASYT) + (AID  ALTT) Given these elements, the following steps are then taken:

where A denotes the difference between the observed andHindcast step: H-Step

modelled component#" denotes the matrix multiplication

andT is the transpose operator. The error from each spectral 1. Three months (past period: fromm —90 days torg) of
component consists of four error terms: the component con-  measurements are decomposed according to the KZ-fin
tribution (diagonal terms) and its interaction with the other the four modes listed in Table 1;
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Table 2. Hindcast Ranking (provision for forecast) versus Forecast Ranking (real).

| EXTRACT week (hindcast) PREDICT week (forecast)

Model Rank withrespect ID DU SY LT ID DU SY LT
to the component RMSE;
1st 3 8 2 12 3 9 9 12
2nd 7 5 5 1 7 8 5 7
3rd 13 3 8 7 6 12 6 1
4th 11 9 7 10 12 4 2 4
5th 6 7 4 4 4 6 11 3
6th 8 6 1 13 8 3 7 6
7th 2 13 9 11 13 5 12 10
8th 5 2 11 6 2 7 10 13
9th 1 11 6 3 11 2 13 11
10th 12 4 13 9 9 10 4 2
11th 9 10 12 2 1 11 1 8
12th 10 1 3 8 10 13 8 9
13th 4 12 10 5 5 1 3 5

2. The individual ensemble members results for the samditting in this period is 175. Therefore, we have applied and
three months period are also decomposed with KZ-f; tested the methodology over a total of 175 weeks forecast.
) ) ) Figure 1 provides the scheme of how the technique was used
3. The four spectral time series derived from each member, "o 1 iteration.
are compared with the measurements four spectral ime - £, 1 sake of a better explanation of the methodology,
series, respectively, to identify the best match. The bes, o resent the calculated four spectral components of the ob-
match is based on standard statistical indicators over thg e ations and all deterministic models, using a three-month
last week (fronmo —7 days taro) such as the RMSE; time-series (fromg — 90 days tap). The one presented here
is a single case extracted from the available data; we post-
Forecast step: F-Step pone to later the statistical evaluation of all examined cases.
In Fig. 2 (left column) the calculation of the models four
1. The four spectral modes from the best-match modelscomponents of the signal together with those of the measure-
of the previous step are recalculated over a period ofments over the periog) —90, rg is shown. Figure 2 (middle
equal length that incorporates a forecast week (frgm column) zooms into the last week where the determination of
—83 days tap + 7 days) and recombined in what is de- the models producing the best four components takes place
fined here as the kz model which constitutes a brand(step 3). The results of step 4 are shown in Fig. 2 (right col-
new model set and the result of the ensemble analysis;umn) where the kz model is applied to the forecast week. In
the same figure, we also plot the real (in red) best compo-
nents of the forecast week, after validation with the observed
components. As shown in the figure for ID and LT the mod-
els selected were the same, whereas for the other two compo-
3. A new iteration is generated by shifting the time series NeNnts they turned out to be_different. The differ_ences bet_we_zen
window (from#o —90 days tao + 7 days) by one day; the compqnen_ts are marginal, however the diurnal variation
for the daily signal and the bell shape for the synoptic are
The novelty of this approach remains is that the ensemble renicely captured by the identified kz model.
sultis no longer a mere statistical treatment of the outcome of Table 2 shows the difference in model performance for the
model results, but it is diagnosed in the fundamental aspectpast (o —7, o) and future fy, o +7) week and the role of the
that constitute each member which are theensembledo models in determining the various components for these peri-
constitute the only model set used for forecasting. ods. As shown above, the kz model was obtained in the past
The technigue presented above has been applied to theeek from models 3, 8, 2 and 12, and for the future week
AQMEII phase 1 (Rao et al., 2011) case study as describethe best performance was obtained by 3, 9, 9 and 12. The
in the next section. In the case study, the one year of simulatable shows that the forecast was made with a suboptimal
tion and data (for 2006) have been used in blocks of weeklyspectral component quartet (ID, DU, SY, LT) with rankings
forecast condition for the period from 1 April to 30 Septem- of 1, 2, 4 and 1, respectively. However, even in this case,
ber (ozone reporting period). The total number of iterationsthe kz model outscores any other model (presented in the

2. The prediction for the coming week (from to 1o+ 7
days) of the kz model are used as a forecast and com
pared with measurements (when available);

Atmos. Chem. Phys., 13, 7153182 2013 www.atmos-chem-phys.net/13/7153/2013/
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Table 3. Participating models and their features. The presented order does not correspond to the numbers presented in the figures/tables a

the models are used anonymously throughout the text.

Model

Domain Res (km) No. Vertical layers  Emissions Chemical BC
Met AQ
MM5 DEHM 50 29 Global emission databases, EMEP Satellite measurements
MM5 Polyphemus 24 9 Standdrd Standard
PARLAM-PS EMEP 50 20 EMEP model From ECMWF and forecasts
WRF CMAQ 18 34 Standard Standard
WRF WRF/Chem 22.5 36 Standard Standard
WRF WRF/Chem 22.5 36 Standard Standard
ECMWF SILAM 24 9 Standard anthropogenic In-house biogenic Standard
European MM5 Chimere 25 9 MEGAN, Standard Standard
ECMWF Lotos-EUROS 25 4 Standdrd Standard
COSMO Muscat 24 40 Standdrd Standard
MM5 CAMx 15 20 MEGAN, Standard Standard
GEM GEM-AQ 25 28 Standard over AQMEII region; Global EDGAR/  Global variable grid setup
(up to 10 mb) GEIA over the rest of the global domain (no boundary conditions)
COSMO-CLM  CMAQ 24 30 (up to 100hPa)  Standérd Standard
GEM AURAMS 45 28 Standarti Climatology
WRF Chimere 36 9 Standard LMDZ-INCA
MM5 CAMXx 24 15 Standard LMDZ-INCA
North? WRF CMAQ 12 34 Standard Standard
American WRF CA_Mx 12 26 Standard Standard
WRF Chimere 36 9 Standard standard
MM5 DEHM 50 29 global emission databases, EMEP Satellite measurements
COSMO-CLM CMAQ 24 30 (upto 100hPa) Standard Standard

1 standard anthropogenic emission and biogenic emission derived from meteorology (temperature and solar radiation) and land use distribution implemented in the

meteorological driver (Guenther et al., 1994; Simpson et al., 1995).
2 standard inventory for NA includes biogenic emissions (see text).

3 standard anthropogenic inventory but independent emissions processing, exclusion of wildfires, and different version of BEIS (v3.09) used.

No of Days in the timeseries of each case
12345678910.. .86 87 8 89 90 91 92 93 94 95 96 97 98 99

P ASTTFUTUTRE

EXTRACT

F PREDICT

Fig. 1. Chart on computational strategy. Each examined case con
sists of two steps, a/-step and anF-step. H-step: H denotes
the past period (last three-month time-series: figm-90 days to

tg) where each modelled time-series is decomposed into its spectral

components and EXTRACT denotes the last 7-day period (fgpm
—7 days tag) of H where the spectral ensemble is validated against

the observed spectral components, with respect to the RMSE, to
identify the models that produced the optimal spectral components.

F-step:F denotes the shifted-by-one-week-period including a fore-
cast week at the end (fromy —83 days torg +7 days) where the
spectral components of the model id’s identified in fiestep of

next paragraph). This shows how the methodology captures
in essence the model behaviours and is conservative with re-
spect to the quality of the results.

Finally, to conclude the explanatory part of the technique,
in Fig. 3 the kz model ozone time series for one of the 175
weeks of forecast is shown, as example (Table 2). The panels
show the individual model results (panel 1-13) together with
the results of the kz model as well as the following ensemble
products:

— the median model (mm): defined as the median values
obtained considering the complete distribution of model
results

— the spectral median model (sm): the model assembled
by combining the components (ID, DU, SY and LT) like
in the case of the kz model the difference being that the
four selected in this case are the median value of all
model components rather than the best

the case are re-calculated and summed up (kz model) and finallyVe Will refrain here from judging the quality of this result,

the kz model prevision during the PREDICT week (fragnto 7o

though apparent, postponing it to a systematic analysis of the

+7 days) is validated against the observations over the future 7-dagiuality of the methodology to Sect. 4.

period.

www.atmos-chem-phys.net/13/7153/2013/

In the sections that follow, we investigate and address the
guestions:

— Do the observed and modelled KZ-f decomposed time-
series have similar properties?

Atmos. Chem. Phys., 13, 717882 2013
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Fig. 2. lllustrative example of the computational strategy for one case (of the 175). Left column: the spectral components of the observations

and all deterministic modelg{-step). Middle column: the spectral components of the observations and all deterministic models during the
EXTRACT week (H-step). In this example, the model id’s that produced the least RMSE (shown in thick blue) in the spectral components
are: ID(3), DU(8), SY(2), LT(12). Right column: the spectral components of the deterministic models identified in the EXTRACT week are
re-calculated for thé period and shown for the PREDICT week (in blue) together with the actual (in red) optimal compaFiestep].

Table 4. The characteristics of the working domains.

Sub-Region Longitude Latitude Ensemble  Number of receptors
Members in the aggregation
from to from to U S R

EU1 -10 5 42 60 13 205 117 85

EU2 5 25 46 56 13 202 176 260

EU3 7 15 43 46 13 47 19 24

EU4 -2 22 37 42 13 14 25 29

NA1 —-125 -112 31 42 8 45 79 59

NA2 —-104 —-90 25 37 8 22 52 37

NA3 -85 —-69 365 485 8 38 53 80

— Which spectral component dominates the error? quality models. Within the initiative the two-continent model

evaluation exercise was organised which consisted in having
— Can the best spectral components be forecasted from he two communities to simulate the air quality over north
multi-model ensemble? America and Europe for the year 2006 (full detail in Gal-
marini et al., 2012b). Data of several natures were collected
, and model evaluated (Galmarini et al., 2012c). The com-
3 The case study: observations and the ensemble mem- munity of the participating models is presented in Table 3,

bers which forms a multi-model set in terms of meteorological
. driver, air quality model, emission and chemical boundary
3.1 The data and study domains conditions. The models of Table 3 have been subject of eval-

The test case for the kz model is ozone simulation at a relation against measurements in terms of individual model

gional scale over four European and three North-Americart0d€l-to-observation) as well as of ensemble (ensemble-to-

sub-regions, and uses the outcomes of the AQMEII activityObseNat.ion) _comparison, for a range of pol.lutants and me-
(Rao et al., 2011), as mentioned in the introduction. teorologlﬁal fle(ljdsl (Sqlazzo edt .al., 2812a, b; C}/autggd ;t atlj"
AQMEIl was started in 2009 as a joint collaboration of 2012). The model settings and input data are described in de-

the EU Joint Research Centre, the US-EPA and Environ-ta” in Solazzo et al. (2012a, b), Schere et al. (2012), Pouliot
ment Canada with the scope of bringing together the Northet al. (2012), where references about model development and

American and European communities of regional scale air\Story are aiso provided.

Atmos. Chem. Phys., 13, 7153182 2013 www.atmos-chem-phys.net/13/7153/2013/
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Fig. 3. The skill of the weekly provision of the kz model is validated, with respect to the RMSE, against the observations over the PREDICT
period (fromzq to g + 7 days). Numbers 1-13 correspond to the id of the deterministic models, mm is the median model and sm is the
spectral median model.
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Fig. 4. Visualisation of the working domains.

The European and North American sub-regions used formain have been generated as the spatial average of the model
analysis are shown in Fig. 4, and extensions are given in Taeutputs interpolated at each receptors/grid points. The evalu-
ble 4, where the number of the selected monitoring stationstion period (forecast mode) is from 1 April to 30 September
(selection criterion: availability of at least 75 % of measure- 2006, for a total of 4392 h). An analysis of the kz model per-
ments over the analysed period, grouped according to ruraformance will also be presented at individual stations.
urban, and sub-urban categories, as described by the meta-
data provided by the monitoring networks (Solazzo et al.,3.2 Extraction and analysis of the temporal components
2012c)) are also reported. These regions were chosen to cor-  of ozone: observations
respond to those used in the other AQMEII evaluation studies
dealing with the ensemble of models of Table 3. They repre-The analysis of the observations starts from a detailed Fourier
sent a variety of conditions in terms of emissions (Pouliot ettransformation to which the KZ-f will be associated in an at-
al., 2012), weather (Vautard et al., 2012), chemical regimegempt to identify the relevance of the components splitting in
(Solazzo et al., 2012a, b), boundary conditions (Schere et althe power spectrum. We analyse hourly data over a 6-month
2012) that constitute an important bench test for the techperiod. Hence, the resolved periods range from 2 h to 60-90
nique proposed. The hourly time series for each working do-days. The results presented here relate to EU1 only but also

apply to all other sub-regions. The power spectrum of the
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Table 5. ldentification numbers of the deterministic models contributing most frequently to the kz model.

\ URBAN \ SUBURBAN \ RURAL
\ ID DU SY LT \ ID DU SY LT \ ID DU SY LT
EULl | 3 8 5 8 7 8 5 8 3 8 5 4
EU2 | 3 5 5 5 3 5 5 8 6 5 5 4
EU3 | 10 5 7 8 1 5 12 131 5 12 6
EU4 | 7 8 12 9 3 8 12 12| 7 6 12 3
NA1 | 7 2 7 2 7 2 3 2 6 3 3 2
NA2 | 8 5 1 5 1 5 1 1 1 1 1 1
NA3 | 2 5 1 5 2 5 1 5 2 2 1 8
8 T T T T T T
ID DU sY LT
6 . . . |
2 4r n
g
T 7
& oL |
2+ _
45 1‘.5 é 2{5 3

’ log(days)

Fig. 5. Periodogram of the observed ozone concentrations (aggregated over rural stations) in the EU1 subdomain.

observations (Fig. 5) indicates that the largest forcing in thethe inter-diurnal variability of emission precursors can also
time series has a 24 h period (diurnal range). Other frequenbe a contributing factor to the determination of the total vari-
cies with high energy lay in the intra-day, synoptic and long- ance.

term range. Many peaks are particularly evident for small As explained earlier, the spectral components are com-
periods, with the most intense at 12:00 and 08:00 LT. Thoseosed by three signals with zero mean (ID, DU and SY) and
peaks clearly identify an intra-day and a diurnal cycle. A syn-one slow varying signal (LT). The ID, DU, and SY signals
optic cycle is also added to the analysis, to distinguish theare zero mean fluctuations about the smoothed time series
changing weather patterns from the slow acting processegLT). In terms of their relative strength, the amplitude of the
As explained in Sect. 2, the selected cycles and their physzero mean signals is highest for the DU component and low-
ical interpretation are given in Table 1. Clearly the forcing est for the ID component. Figure 6 shows how the variance is
identified by the power spectrum relates to the periodicity ofdistributed across the four components of the KZ-f measure-
the meteorological phases that regulate the dispersion of thments aggregated in the seven sub-regional domains over the
emissions in the boundary layer and the exchanges from thewo continents. The variance distribution has been calculated
latter to the free atmosphere. Superimposed to that, the largior urban, sub-urban and rural monitoring stations. The total
scale forcing which relates to the transport of ozone fromexplained variance from the four (ID, DU, SY, LT) spectral
other areas according to the timescale represented on the tiremponents (single contributions interactions) identified
axis. As typically occurs with scalar tracers (gasses, heat andenerally similar importance rankings across the sub-regions
moisture) (Galmarini et al., 2000) the power spectrum showsand aggregation types. From Fig. 6 it can be inferred the fol-
monotonically increasing variance for large scales indicatinglowing:

the absence of clear scale separation between the synoptic,

meso, and boundary layer scales as it happens for dynamic , —

variables (e.g., the vertical velocity). This is due to concur- — The DU component drives thg ozone variability and ac-
fing contributions of processes of different nature and scale. ~ counts for more than half of its variance. Generally, its
At short scale, the diurnal variation of the boundary layer ~ importance is weakened (but still dominating) moving

growing and collapsing regulates most of the variance and  [fom the urban to the rural aggregation possibly due to
the reduction in photochemical activity.
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Fig. 6. The explained variance from the four (ID, DU, SY, LT) spectral components (single contributions + interactions) for the observation
time series, for all seven subdomains and three ozone aggregation types.

— The LT and SY components are ranked in the 2nd and i. increased variability in the ID and DU components;
3rd position in terms of their explained variance. The
SY component has a directional dependence that is gen- I
erally stronger in the NA and weaker in the EU. The jji increased strength and decreased variability in the LT
opposite is true for the LT component that is probably component.
explained by the existence of a prevailing direction for
the large-scale transport patterns. Hence, the distinction between episodic and non-episodic

ozone conditions could be clustered through the relative

magnitude of the SY and LT components.

increased strength in the SY component;

— The ID component explains the least amount of the
ozone variability due to the small magnitude of its fluc-

tuations. 3.3 Extraction and analysis of the temporal components

The explained variance from the single contributions of the of 0zone: models vs. observations

four components accounts for roughly 80 % of the total vari- The k7. components extracted from all ensemble members
ability, implying an imperfect separation and higher-order in- yg from the observations are compared in Fig. 7. Overall,
teractions between the different scales. Specifically, the exihe observed scale separation and the accounted variance of
plained variance by single contributions of the four spectralihq individual components was replicated satisfactory by the

components accounts for approximately 74-81 % of the (0nsemple members. In Fig. 7a, the variance captured by the

tal variance lumping the rest to the interactions between the,ncemble of models for the four components of the time se-

components. Although different sets of sub-region specificijgg js presented in coloured lines, where each colour repre-

parameters for the KZ-f optimised the explained variance, forsents 4 different model. The variance of the median model is

the sake of comparison the same values identified by Hogref@jspjayed with an unfilled square while the red circles indi-
etal. (2000) were selected and applied to all sub-regions in5te the variance of the observation. Finally, the filled square
Europe and North America. _ illustrates the variance of the kz model, built from the least
Finally, the analysis of the magnitude of the spectral com-gy\SE spectral components over the entire 6-month period.
ponents with respect to the ozone levels (not shown) yieldedrhe jecomposed observed and modelled time-series gener-
results similar to Hogrefe et al. (2000). In particular, the 41y reveal similar patterns. Spectral decomposition does not
probability of high ozone concentrations is related to: distort the allocation of variance between the components
and hence maintains their relative importance. Moreover, this
decomposition results at equal amounts of explained by in-
dividual components variance as seen in the last column of

www.atmos-chem-phys.net/13/7153/2013/ Atmos. Chem. Phys., 13, 717882 2013
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Fig. 7a.Properties of the spectrally decomposed modelled time-series of ozone, into four (ID, DU, SY, LT) components, versus their observed
counterparts. Results are shown for all seven subdomains and three ozone aggregation types. For all plots, the square marker reflects tt
mm, the filled square the kz, the red circle the observations and the coloured lines the individual (adp&aiplained variance: the total
explained variance is similar between models and observations, despite the dissimilar allocations seen for many models that tend to allocate
less variance into the DU component, especially in the EU domain, and more variance to the LT component.
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Fig. 7b. Properties of the spectrally decomposed modelled time-series of ozone, into four (ID, DU, SY, LT) components, versus their observed
counterparts. Results are shown for all seven subdomains and three ozone aggregation types. For all plots, the square marker reflects the mi
the filled square the kz, the red circle the observations and the coloured lines the individual fhyd@isance ratio: the modelled explained
variance is expressed in terms of the observed explained variance by the use of their ratio. The variance ratio for the mm (squares) is variable
and in many cases far from unity. Using the least RMSE spectral component results in a clear improvement of the variance ratio.
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Fig. 7c.Properties of the spectrally decomposed modelled time-series of ozone, into four (ID, DU, SY, LT) components, versus their observed
counterparts. Results are shown for all seven subdomains and three ozone aggregation types. For all plots, the square marker reflects the mi
the filled square the kz, the red circle the observations and the coloured lines the individual f@)dRMSE: spectral RMSE for all
ensemble members and total time series RMSE (TS). Building a model from different spectral components (filled square) results in lower
RMSE than the documented ensemble mean (unfilled square).
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Fig. 7d. Properties of the spectrally decomposed modelled time-series of ozone, into four (ID, DU, SY, LT) components, versus their observed
counterparts. Results are shown for all seven subdomains and three ozone aggregation types. For all plots, the square marker reflects the mi
the filled square the kz, the red circle the observations and the coloured lines the individual ft)ddiSE fraction: the decomposition

of the mean square error of the modelled time-series in terms of the fraction each of the four spectral components accounted for. For mm,
LT represents the principal error driver followed by DU (only exception is EU3). Using optimal components, kz has more balanced error
distribution.
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Fig. 7e.Properties of the spectrally decomposed modelled time-series of ozone, into four (ID, DU, SY, LT) components, versus their observed
counterparts. Results are shown for all seven subdomains and three ozone aggregation types. For all plots, the square marker reflects the mi
the filled square the kz, the red circle the observations and the coloured lines the individual (e)t#éBs.decomposition of the mean bias

error of the modelled time-series. For all models, the bias error equals the LT component bias. In comparison to mm, kz simulations have
lower absolute bias.
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Fig. 7f. Properties of the spectrally decomposed modelled time-series of ozone, into four (ID, DU, SY, LT) components, versus their observed
counterparts. Results are shown for all seven subdomains and three ozone aggregation types. For all plots, the square marker reflects the mr
the filled square the kz, the red circle the observations and the coloured lines the individual fipd@iaidor diagrams of the modelled ID,

DU, SY, LT spectral components (rural stations). Modelled ID is less successful in capturing the pattern (correlation), followed by SY. The
amplitude (variance ratio, error) is generally conceived by the spectral components, with regional variability of the modelled skill.
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each graph. There exist individual models however, whose kavhere the measurements fall at the edge of the distribution.
decomposition entails similar total explained variance to theThese elements will reflect in the distribution of the modelled
observations but with a systematical apportionment of dis-time series and in the spread of the ozone values. The selec-
similar to the observed pattern allocations between short antion of the best component of the signal on the other hand
long scales. While this should be of interest to the model depreserves and contains all the models behaviours and cap-
velopers, to investigate which process in their model is nottures only the one closest to the observed component. The
represented accurately, here we do not filter out those modfact that mode-wise model performance seems much poorer
els as aresult of an ensemble pre-processing, but rather leathan the case when the model complete signal is analysed
this task to the extraction algorithm presented in Sect. 2.2. (Solazzo et al., 2012a), indicates tleherry pickingthe best

The portion of the observed range of spectral fluctuationsmodes from the model distribution and recomposing it into
captured by the models is explored through the modelledthe kz model signal should produce better results than the sta-
to-observed variance ratio (Fig. 7b) and the component ertistical treatment of all model results as averages or medians.
ror graph (Fig. 7c). In the NA sub-regions the average vari-Figure 7 also reveals the interesting feature that the mode for
ance falls very closely to the measured one, while in the EUwhich the models show the widest distributions of values are
sub-regions, a variance ratio close to unity is only for a fewDU and LT. These in fact are controlling most of the pro-
models. Overall, the variance ratio of the kz model is usuallycess variance and reflect the variety of the model results in
close to unity, demonstrating a clear improvement over thedetermining the ozone time variation.
mm model that exhibits a variable behaviour with a tendency
towards the underestimation of the ratio. Similar is the dom-
inance of kz over mm in view of the RMSE. In addition, we
can identify:

4 Operational evaluation of the spectral model

4.1 Sub-regional level

1. the dominant scales in the observations; ) .
As explained in Sect. 2, all ensemble members are decom-

2. whether individual models as well as the ensemble areposed into their KZ-f components, compared with the rela-
able to capture the variance at the right scale; tive component obtained from the observations and the best
ones are then composed to produce the kz model. In this sec-
tion, we will evaluate, for a number of cases (175 week fore-
4. information to improve the use of the ensemble. casts), the performance of the kz model against each individ-
i ual ensemble members, the classical ensemble product mm,
The fraction of the mean-square-error (MSE), decomposeghe sm and observation. As shown in Fig. 1, the best com-
in the first order terms (ID, DU, SY, LT) as well as their in- 5hents for the kz model are obtained by comparing the in-
teractions (ho) is shown in Fig. 7d. For the majority of the g;iqual model spectral results (what with abuse of language

cases, LT (i)s the dominal.f]t error component of mm accountingy e normally defined as deterministic results) with the obser-
for 40-80 % of the MSE; DU follows with accounted errorin  ations. Evaluation metrics are used to determine the level of

the order 10-50 %. The kz model, besides achieving & lowep greement between the results and the observations.

RMSE (Fig. 7c), it has a more balanced error allocation due “tpg first operational assessment (Dennis et al., 2010) is
to the selection of optimal components (and especially LT).yresented in Fig. 8, where all models are directly compared
Figure 7e demonstrates another property of the KZ-f decoms, e ohservations (EU1, results are similar for the other
posed time series, namely that the mean error bias (MB) o, regions). The scatter diagram shows super-imposition of
the time series equals the mean error of the LT component. yeq cloyds pertaining to the comparison with observed con-
Figure 7f shows the combined skill (correlation, variance, cantrations at rural, sub-urban and urban stations. The indi-
error) of the individual models through Taylor plots (rural \iqual models are compared in the first 13 panels and are
stations). Compared to the other components, the ID is lesg)|owed by mm, sm and kz. The improvement of kz is evi-
successful in capturing the observed pattern (correlation), bufjen with respect to all other models. The cloud is tilted up-
there is also high spread between the members skill. Thg,arq gaining a good deal of positions even against mm and
highest corrglatlon is seen for the DU; th.e flgure also showsy, The spread of the data appears slightly larger than for
that the variance of the modelled DU signal is reasongblysm and mm because the median aggregation in those models
represented by many models. The spread of the values in they 5y s results in deterioration of their variance. Another rea-
Taylor plot is variable across the sub-regions and in generalgp, i rejated to imperfect selection of the best spectral com-
it is correlated to the variation of the modelled shortwave ra-nonents and it will be explored later in this section. However
diation (Vautard et al., 2012). kz model forecasts are homogeneous throughout the range

The plots presented in Fig. 7 also allow identifying the ot \a1yes. From a purely visual view point, the improvement
advantage of using together MME and KZ-f. At individual produced by the kz model are clear.

scale level the distribution of model results can be relatively
big and skewed. The cases for the central modes are frequent

3. the components that drive the output error;

Atmos. Chem. Phys., 13, 7153182 2013 www.atmos-chem-phys.net/13/7153/2013/
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Fig. 8. Scatterplot of all examined cases corresponding to the prediction week, for the EU1 sub-domain and all three ozone aggregation
types. Compared to the rest of the models, the cloud of the kz model scatter is tilted towards the diagonal.

Table 6. Decomposition of the kz model error into the spectral components (% of total error).

\ URBAN \ SUBURBAN \ RURAL
|ID DU SY LT |ID DU SY LT |ID DU SY LT

EUl1 | 6% 40% 27% 27%| 6% 39% 29% 26%| 5% 36% 28% 31%
EU2 | 5% 41% 25% 29%| 5% 42% 24% 28%| 2% 25% 28% 45%
EU3 | 8% 39% 31% 22%| 7% 40% 30% 22%| 8% 47% 27% 18%
EU4 | 9% 41% 27% 23%| 10% 41% 30% 18% 6% 38% 37% 19%
NAL | 7% 38% 22% 33%| 7% 43% 19% 31%| 7% 30% 23% 39%
NA2 | 7% 38% 20% 36%| 8% 43% 29% 19%| 9% 42% 28% 20%
NA3 | 5% 42% 27% 26%| 4% 38% 29% 29%| 4% 25% 30% 40%

The large amount of data and results forces us to contion and pattern match) and scores among the lower RMSE
dense the assessment in comprehensive graphical represdgelour scale). The mm and sm also behave better than the
tation. In Fig. 9 the Taylor diagram (Taylor, 2001) is pre- deterministic models, not unexpectedly. The performance of
sented for all sub-regions and stations groups. The diagrarkz model in many cases is comparable to that of mm and
relates the position of each deterministic model, mm, sm angm (with the exception of the standard deviation ratio). The
kz model to the position of the observation on the x-axis. Inadvantage is that in the case of kz model the result is ob-
all cases the kz model outscores all others: it minimises theained on the ground of a physical diagnosis of the ensemble
distance from the reference poiRt(indicating high correla-  whereas in the case of the ensemble the result is obtained

www.atmos-chem-phys.net/13/7153/2013/ Atmos. Chem. Phys., 13, 717882 2013
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Fig. 9a. Summary statistics of all examined cases corresponding to the prediction week, for all seven subdomains and three ozone aggre-
gation types(a) Taylor diagrams: despite the different deterministic model excelling at each sub-domain, the behaviour of the kz model is
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homogeneous across domains achieving the least RMSE, very high PCC and STD close to the observed one.
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Fig. 9b. Summary statistics of all examined cases corresponding to the prediction week, for all seven subdomains and three ozone aggregatior
types.(b) Mean Bias over binned observed mean ozone mixing ratios for the prediction week, for mm (blue), kz (red) and kzH (green). The
box extent is the inter-quartile range.

www.atmos-chem-phys.net/13/7153/2013/ Atmos. Chem. Phys., 13, 717882 2013



7172 S. Galmarini et al.: Ensemble air quality predictions

from a statistical treatment of an under-represented sample 1
of model result. In fact, the lack of knowledge on the mod- u
els level of dependence or correlation does not give a-priori ©
guarantees on its success and produces wrong perception ¢ 0
model agreement. In the same figure with the black circle BMSE RMSE BMSE
namedH the predictability limit (upper bound of forecast 1 1
skill) of the approach it is also plotted; it shows the forecast
skill of the kz model if the best spectral components could be o
forecasted with absolute certainty.
Figure 9b illustrates the ensemble model behaviour be- RMSE BMSE BMSE
yond summary statistics. In particular, the mean bias error 1
of the mm (blue) and kz (red) forecasts are shown as a func-
tion of the observed ozone mixing ratios. The green boxes o
correspond to the kz previsions generated with the optimal 0
spectral components. While mm replicates the tension of the AMSE AMSE AMSE
models to underestimate peaks and overestimate low concen 1
trations, kz tends to generate predictions with a symmetric
error distribution across all ozone ranges. The improvement 3
in forecast accuracy at higher mixing ratios is one of the most 0
notable properties of kz over mm. RMSE RMSE BMSE
Figure 10 shows the Cumulative Distribution Function
(CDF) for the RMSE. The predictive skill of the ensemble is
shown by the shaded area that is constructed by the RMSE o
the best and the worst deterministic models. On top of those
we superimpose the respective functions of the kz model and & os
the mm. While the CDF of the mm in most cases exhibits © NAls NAITr
higher RMSE than the best model, the CDF of the kz model 20 20
demonstrates an extreme behaviour with the least RMSE val- FM=E FMSE FMSE
ues. The forecast skill of the kz model is further enhanced by 1
the fact that the best deterministic model is generally differ-
ent at each panel. NA2S NASK
The individual model performance in reproducing at best 23 23
the scale filtered in the observation is presented in Table 5. RMSE RMSE RMSE
For all the dub-regions, station types, and components the ta 1
ble reports the identification number of the model showing T
the minimum RMSE with the filtered observed signal. Itis <
. . . . NA3uU NA3s NA3Y
interesting to notice that for each sub-region and all sets of 0 > > >
station types, a limited number of models is needed to recon- FMSE FMSE FMSE
struct the signal, almost independently to the station type.
For the EU1 sub-region, five models are sufficient, for EU3 Fig. 10. The Cumulative density function of the RMSE distribution

we would need seven, while for NA2 only 3. Three conclu- of the best and worst deterministic model is illustrated by the shaded
sions can be made here: area. The RMSE distribution of kz model (magenta) is always found

in the leftmost side of the figure. The mm distribution is given in
1. the number 4-6 as minimum set of models sufficient toblue.
reproduce the result is in agreement from the finding of
Solazzo et al. (2012a) that found that the best ensem-

ble results out of 12 models available could be obtained - From Table 5 it can be seen that many models are
with 4/5 models only. needed to reproduce a comprehensively good result

across all sub-regions and, therefore having the possi-
2. That the issue of model independence is very relevant in bility of using a large pool of models is of essence.
this context too and that only a handful of original con- _ o ] o
tributions can be extracted even from a large ensemble Nis latter point is confirmed by the results in Fig. 11. The

and only that group will make the difference (Potempski histograms provide the contribution of each model in iden-
and Galmarini, 2009) tifying the best component. Only for a very limited number

of cases the dominance of one or two models is evident, es-
pecially in the NA sub-regions. A question raises: do the kz
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Fig. 11. The frequency of selection of each model's spectral components as elements of the kz model, for all seven subdomains and three
ozone aggregation types. Generally, a couple of models dominate into the ID and DU components while the SY and LT components of the
kz model make use of nearly all the ensemble members.
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Table 7.Independence of spectral components versus error. The covariance of the error is averaged over all models. Using only two spectral
components, being either (ID + DU + SY, LT) or (ID + DU, SY +LT), the decomposition achieves independent factors, but their corresponding
kz model has-5 % higher RMSE (compared to the case of four spectral components).

\ Average Error Covariance \ RMSE (kz)

DOMAIN TYPE | 4SPC 3SPC 2SPC 2SPQ 4SPC 3SPC 2SPC 2SPC

ID ID ID+DU+SY ID+DU ID ID ID+DU+SY ID+DU

DU DU LT SY+LT DU DU LT SY+LT

SY SY+LT SY SY+LT

LT LT
EU1 u 18.8% 12.9% 5.9% 6.5%| 9.3 10.5 10.7 10.7
EU1 S 19.3% 13.7% 57% 6.9% | 10.0 104 11.4 10.7
EU1 r 15.5% 9.9% 5.7% 56% | 8.6 9.6 9.4 9.8
EU2 u 17.4% 12.6% 4.9% 6.6% | 12.1 124 12.7 12.6
EU2 S 18.1% 13.1% 51% 70%| 11.9 12.8 125 13.0
EU2 r 12.9% 6.2% 6.8% 3.8% | 10.6 11.2 11.1 11.7
EU3 u 21.4% 17.5% 4.1% 85% | 15.7 16.2 16.1 16.4
EU3 S 21.5% 16.7% 4.9% 8.4% | 14.6 15.0 15.3 15.4
EU3 r 20.4% 16.4% 4.0% 86%| 15.3 15.6 15.8 15.9
EU4 u 13.0% 10.3% 2.8% 49% | 9.7 10.2 10.6 10.6
EU4 S 13.8% 10.8% 3.1% 53%| 9.9 10.2 10.5 10.4
EU4 r 17.3% 12.5% 5.0% 74%| 8.9 10.0 9.2 10.1
NA1 u 14.6 % 10.4% 4.2% 54%| 6.3 6.6 6.6 6.7
NA1 S 16.3% 12.1% 4.4% 6.3%| 5.8 6.1 6.3 6.3
NA1 r 16.0% 10.1% 5.9% 57% | 10.1 10.3 10.1 10.3
NA2 u 17.9% 12.9% 52% 6.4%| 6.7 6.7 7.0 7.0
NA2 S 20.8% 14.8% 6.0% 8.1%| 6.1 6.1 6.4 6.4
NA2 r 18.3% 12.8% 5.6% 70%| 11.0 11.0 11.0 11.0
NA3 u 16.3% 12.0% 4.5% 6.6%| 5.7 5.8 6.2 6.0
NA3 S 16.7 % 12.3% 4.6% 71%| 6.1 6.3 6.6 6.6
NA3 r 13.4% 9.1% 4.4% 56% | 124 13.6 13.2 13.6
Mean | 17.1% 123% 4.9% 6.6%| 9.9 10.3 10.4 10.5

model components shown in Fig. 11 accurately represent thenodel occur. Overall, this imperfect selection of the com-
distribution of the actual “best” components? The answer isponents caused the distance from #iepoint at the Taylor
yes, but not always with the right order. This is now explored. diagrams which however did not prevent the kz model from
It is important to examine the accurate extraction of theoutperforming other models.
best spectral components at each forecast week. In Fig. 12 We will examine now the relative contribution of each kz
the CDF at each set of station type measurements and sulprodel component to the total error. For each forecast week,
region, of how the best model components identified dur-we calculate the relative strength of the error terms of Eq. (4).
ing the past week correspond to the best ones over the neXthen we calculate the higher order error contribution of each
week, is shown. The plot shows, for example, that for com-spectral component and finally we compute the mean error
ponent ID in EU1 for urban stations the selected model comper component. The result is given in Table 6. On average,
ponent over the past week for kz model was actually thethe DU component generally entails the higher error frac-
best component of the future week in the 70 % of the casestion across all sub-regions. The only exception to this rule
was the 2nd best in the 20 % of the cases leaving the reds found for the rural aggregation of ozone in the three most
to lower rankings. For all components the hit rate is very densely populated sub-regions: EU2, NA1 and NA3 (an ex-
high. The only exception is the SY components as it clearlyplanation is given by Fig. 13 in the next paragraph). On the
appears from the Fig. 12. In almost all sub-regions the sewhole, the DU is responsible for roughly 40 % of the error,
lected SY components span linearly all the ranks indicat-the SY and LT explain around 28 % of the error each, leaving
ing that the predictability of this component is rather lim- the last 5% to the ID.
ited. Since this component is related to weather predictabil- In view of the operational applicability of the approach,
ity, this result is not unexpected. This is also a clear indi-we combine the kz model skill with the decomposition of
cation of where widespread fundamental deficiencies acrosiés spectral error in order to isolate the cases where its
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istic models was not homogeneous across the sub-regions,
resulting in different rankings. On the other hand, there ex-
p R ; 7% ist a few cases where the kz model ranking was poor. For
H= 1= N 1=V this reason, we decomposed the kz model total error for all
024681012 024681012 024 6 81012 .
ik ik - _spectra_l comp(_Jnents (z_;tveragely shown in Ta_ble 6) and rank-
ings (Fig. 13, line plot in the secondary y-axis). We clearly
observe that the low kz model rankings are caused by an im-

CDF
C
=
s
CDF

5 5 o4 : 5 proper selection of the LT component. The functioning of
“llFEies ; different selection procedures will be explored in the future.
0246 81012

1 e 1 e 1 4.2 Station level
0.8 0.8 0.8

5 oa SRR E-EAIE i - o The performance of the kz model has been so far evaluated at
02 jEUGEU Lo 02 ZEEJeia g zfls EJSér L sub-regional level. The performance at station level is how-
02456012 02456012 %02 46 81012 ever the only one that really matters at the end of the day.

rk rark rark A sample of stations has been selected in order to test the

validity of the approach, already seen at regional level, at
discrete point locations. Different sets of stations were se-
i 4 lected, covering all examined sub-regions, with the only cri-
S R RTIE S R EEERTEE terion of representativeness being the vicinity to well-known
rartk ravtk rartk ozonesonde sites for which observational data for ozone were
available. In view of this criterion, the stations presented are
taken from nearly all sub-regions and are namely: IE1 (Uc-
cle), CH1 (Payerne), IT1 (Motta Visconti — Po valley), ES2
(Saragossa), US1 (San Diego), US3 (Springfield). Results are
shown in Fig. 14 in the form of Taylor diagrams, CDF plots
of RMSE, scatterplots as well as time series. For the majority
of the examined rural stations, the kz model forecasts pro-
vide improved RMSE distribution over the best deterministic
model while at the same time they maintain one of the highest
correlations and account well for the observations variance.
As seen before, the scatterplot of the kz model forecasts is
again tilted towards the diagonal. At the same graph we also
plotted the time-series of ozone predictions for the Payerne
station during the week with the highest mean level between
the cases. In terms of the kz model, the persistence assump-

=
=
=

O 04 O 4

o Q
O o4 G 4

0zl Lo 0z}l
NAZL ol

ChAgs |

o2 4 5 s T O R tion was found true only for the DU component in this case.

rank rank rank

This result clearly shows that a good forecast can also be
Fig. 12. The Cumulative density function of the actual rank (vali- Produced with elements of the least skill ensemble members.
dated against observations) of the selected models in the PREDICT.ast, the kz model provisions were of high quality even at
week (F-step). In diagnostic (hindcast) mode, we only have rank 1.the urban stations in Paris and Vienna (not shown).

The persistence assumption for the best modelled spectral compo-

nents is strong for ID, DU and LT (in this order) and weaker for the 4.3  Anticipating the application to other pollutants:

SY component. NO, and PMqg

The methodology adopted and applied for ozone is extended
) ) for the case of Nitrogen Dioxide (N and coarse Particu-
performance was degraded. Flrs_t, for each examined case (?éte Matter (PMo). Although this work is ongoing, results in
the 175) we rank the forecast skill of the models (determinis-iq form of scatterplots for NEXFig. 15) and PMy (Fig. 16)

tic and kz model) with respect to their RMSE. The primary y- ¢jearly show that the presented approach is not bound by the
axis in Fig. 13 (bar plot) shows the frequency allocated to all yp,y sical, chemical and dynamical nature of 0zone formation

rankings by the kz model (rank 1 is best) while the dotted lineaq can be easily extended to other pollutants. Detailed re-

represents the cumulative probability. Generally, for moregjis for NG and PMo will be published separately.
than two thirds of the cases the kz model achieved the least

or the 2nd least RMSE, across all sub-regions. This finding is
conservative in the sense that the behaviour of the determin-
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Fig. 13.Ranking frequency of the kz model together with the average spectral error at all rankings. Top is EU, bottom is NA.

4.4 Final considerations In previous sections we have seen that the four selected
spectral components are not independent; there is roughly
. . . . . 20 % variability that is explained by their interactions (and

We will close the Results section with a discussion on tWOespeciaIIy between neighbouring spectral bands, 1D and DU,

important issues of the kz filter, in particular the componenty j and Sy SY and LT). Although the component selection
independence and the distortions. ’
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Fig. 14a.Indicative results at the station levéh) (left column) Taylor diagrams for the examined stations corresponding to the prediction
week; (middle column) the cumulative density function of the RMSE distribution of the best and worst deterministic model (shaded area)
together with the distribution of kz model (magenta) and mm (blue); (right column) scatterplot of all examined cases corresponding to the
prediction week.
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Fig. 14b.Indicative results at the station levéb) Time-series of ozone predictions for the Payerne station during the week with the highest
levels. The persistence assumption was true only for the DU component.

was done principally on the basis of physical considerations5 Conclusions and outlook
we hereby explore the properties of other combinations of

the four tral bands. Th itional Xamin - . .
e four spectral bands € additional cases examined COEI'he individual forecasts of a multi-model ensemble consist-

respond to wider spectral bands. Table 7 contains links ta . .

. ing of 13 air quality models have been spectrally decomposed
component independence and error of other spectral Comt_o ether with the respective observations over multiple Euro-
binations generated with the KZ-f. The separation between g P P

short and long term (i.e., using only two components) givespean and North American sub-regions. The modelled spec-

more independent components, but results in forecasts Witft{aI components have been evaluated against their observed

higher error (due to the negative error covariance in the Cascounterparts for coherence and accuracy. It was found that

. ?pe composite model built from the best spectral elements
of dependent components but also to the coarser grouping o
L outscores all the ensemble members as well as the ensemble
the processes replication). median. In order to check the operational implementation of
In addition, filtered values by KZ-f near the end of the : P P

time series do not have the same statistical properties as thoge]:e method, we investigated whether the best spectral com-

away from the end. This applies especially for the last half_ponents could be known in advance. A persistence criterion

length of the KZ-f. Those edge effects are responsible forvas employed on the basis of the skill of the modelled spec-

around 10 % of RMSE to the kz and arise from lower perS|s—tral componen_ts dunng the last 7 d"?‘ys-

) . The evaluation against observational ground level ozone
tence inthe SY and LT components (not shown). Such distor- . :
; ; concentration gathered in AQMEII clearly showed that the
tions particularly affect the last two forecast days of the SY ; . )

. ; forecast skill of the new model was superior to any in-
and LT signals and the last six hours of the seventh forecast: . .
) : : ividual ensemble member in terms of some of the most

day of the DU signal. For this reason, one may only COnSIdera lied error metrics (correlation coefficient, mean-square
the first 5 forecast days of the forthcoming week to minimise pp ' q

. . : . -error, variance). Overall, its forecasts were bias-free, with
such distortions. However, a combined SY + LT signal will mean-square-error not depending on the concentrations. In
limit the distortions to the DU range (i.e., last six hours). If q b 9 :

. . : : : wo-third of the examined cases across multiple sub-regions
we combine this property with the independence discusse : ) . '
; . nd aggregation types, it was ranked either first or second.
in the previous paragraph, we could argue towards the use

two components (ID + DU, SY +LT) as the envisaged exten- he do_mmance_ of the_ new model was also W|tnesse_d by
. comparing the time-series of all models vs. the observations,
sion of the presented approach.

for episodic and non-episodic conditions. Finally, following

a detailed analysis of the new model forecast errors and their
roots, it was found that there exist a few cases when its skill
is degraded due to improper selection of the long-term spec-
tral component. Different selection approaches are currently
examined to eliminate this issue.
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Fig. 15. Indicative results for N@. Scatterplot of all examined cases corresponding to the prediction week, for the rural (top) and urban
(bottom) concentrations of the EU2 sub-domain.
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