
Atmos. Chem. Phys., 13, 675–692, 2013
www.atmos-chem-phys.net/13/675/2013/
doi:10.5194/acp-13-675-2013
© Author(s) 2013. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Assessment of the Level-3 MODIS daily aerosol optical depth in the
context of surface solar radiation and numerical weather modeling

J. A. Ruiz-Arias1,2,3, J. Dudhia3, C. A. Gueymard4, and D. Pozo-V́azquez1,2

1Solar Radiation and Atmosphere Modeling Group, Physics Department, University of Jaén, Jáen, Spain
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Abstract. The daily Level-3 MODIS aerosol optical depth
(AOD) product is a global daily spatial aggregation of the
Level-2 MODIS AOD (10-km spatial resolution) into a regu-
lar grid with a resolution of 1◦ × 1◦. It offers interesting char-
acteristics for surface solar radiation and numerical weather
modeling applications. However, most of the validation ef-
forts so far have focused on Level-2 products and only rarely
on Level 3. In this contribution, we compare the Level-3
Collection 5.1 MODIS AOD dataset from the Terra satel-
lite available since 2000 against observed daily AOD val-
ues at 550 nm from more than 500 AERONET ground sta-
tions around the globe. Overall, the mean error of the dataset
is 0.03 (17 %, relative to the mean ground-observed AOD),
with a root mean square error of 0.14 (73 %, relative to the
same), but these errors are also found highly dependent on
geographical region. We propose new functions for the ex-
pected error of the Level-3 AOD, as well as for both its mean
error and its standard deviation. Additionally, we investigate
the role of pixel count vis-̀a-vis the reliability of the AOD es-
timates, and also explore to what extent the spatial aggrega-
tion from Level 2 to Level 3 influences the total uncertainty in
the Level-3 AOD. Finally, we use a radiative transfer model
to investigate how the Level-3 AOD uncertainty propagates
into the calculated direct normal and global horizontal irra-
diances.

1 Introduction

Aerosols play a major role in the earth’s energy budget. Pre-
dicting the climate system invariably requires an evaluation
of the aerosol’s radiative forcing, and this, in turn, requires
knowledge of the spatial distribution, temporal evolution and
optical properties of atmospheric aerosols (Kiehl and Ra-
manathan, 2006). Currently, the scientific understanding of
the aerosols effect on climate is limited (IPCC, 2007), and
the climatic perturbations they produce are a source of major
uncertainty.

Aerosols are mainly generated at sources near the ground
but also in the atmosphere (by clouds and gas-to-particle
conversion). A detailed description of the different emitting
sources of aerosols can be found inJaenicke(1993). Near
the ground, aerosols are advected into the lower layers of
the atmosphere from many different sources such as bio-
genic emissions, oceans, deserts or human activities. The
largest concentrations generally occur in urban and desert ar-
eas. These concentrations rapidly decrease with height in the
troposphere (Liou, 2002) and can experience abrupt changes
in their spatial distribution. Due to their short tropospheric
residence times, aerosols generated near the ground mainly
act at regional or local scales, albeit their influence can be
also extended to broader scales when they are advected into
upper layers of the atmosphere (e.g,Chen et al., 2010).

The mesoscale variations of tropospheric aerosols have
been studied byAnderson et al.(2003). Based on aerosol
optical data, they showed that mesoscale variability (specif-
ically, for horizontal scales of 40–400 km and temporal
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scales of 2–48 h) is a common and perhaps universal fea-
ture of lower-tropospheric aerosol light extinction. Very re-
cently, based on empirical measurements gathered from the
AERONET network (AEosol RObotic NETwork;Holben
et al., 1998), Gueymard(2012) showed that, on average,
monthly aerosol optical depth data captures only about half
of the day-to-day variability. The use of monthly data, which
is a common practice, is becoming a limiting factor for many
current solar applications, such as solar energy utilization in
power plants, which require an accurate determination of the
available solar resource for optimal sizing of the production
facilities, annual production estimates, and plant operation.
Moreover, most current research in solar energy focuses on
concentrating technologies (both concentrating photovoltaics
and concentrating solar thermal). These rely completely on
direct normal irradiance (DNI), which is highly sensitive to
aerosol optical depth (AOD). In particular, some studies have
concluded that both the demonstrated large inter-annual vari-
ability in DNI (Lohmann et al., 2006; Pozo-V́azquez et al.,
2011) and the large differences between the current DNI
databases (Šúri et al., 2009) can be partially explained by
a misrepresentation of the aerosol optical properties (Cebe-
cauer et al., 2011; Gueymard, 2011), particularly when they
are represented by monthly climatologies. In fact,Gueymard
(2012) also showed that to correctly reproduce the daily vari-
ations in DNI over areas strongly impacted by desert dust or
smoke, where the induced effect on the inter-annual variabil-
ity in DNI is estimated to reach 10–30 %, irradiance predic-
tions with radiative models should rely on daily AOD rather
than on the more usual monthly-averaged AOD data.

Kaufman et al.(2000) used 7 yr (1993–1999) of AOD data
from 50–70 AERONET ground stations to check to what ex-
tent measurements acquired at specific times of the day (such
as current measurements from satellites Terra and Aqua)
could represent the daily average aerosol forcing of climate.
For all these stations, they calculated the ratio of the averaged
AERONET AOD for the virtual overpass of the satellites
(10:00–11:30 LT for Terra’s overpass, and 12:00–13:30 LT
for Aqua’s overpass) to the daily averaged AERONET AOD.
They concluded that measurements at these specific times of
the day could represent the annual average value within 2 %,
independently of the particle size and range of AOD.

In the last few years, the number and time span of the
available worldwide aerosol databases have considerably in-
creased, and rapid progress has been made in aerosol science.
These developments have been boosted mostly by global
ground measurement networks, such as AERONET, and by
satellite sensors, such as the MODerate-resolution Imag-
ing Spectroradiometer (MODIS) or the Multi-angle Imag-
ing SpectroRadiometer (MISR), aboard the Terra and Aqua
satellites. The length of the MODIS database and the number
of AERONET stations worldwide make it possible to address
a similar question to that ofKaufman et al.(2000) by a direct
validation of the daily MODIS AOD retrievals using ground
measurements.

In this contribution, we present a global validation of the
combined land and ocean Level-3 (L3) MODIS AOD prod-
uct (Collection 5.1) at 550 nm from the Terra satellite. Small
differences are expected with respect to the Aqua satellite
(Levy et al., 2010). The motivations of this study will become
clearer in Sect.1.2 after a brief introduction to the MODIS
dataset in Sect.1.1. The dataset evaluated here spans all the
available daily AOD data from the Terra launch (February
2000) to December 2011. For ground truth, we use the com-
plete dataset of daily AOD observations from all possible sta-
tions of the AERONET network (Level 2.0; see Sect.2.2)
that have reported data during the 12-yr period of the satel-
lite observations. The dataset thus encompasses a total of 525
stations, but the number of available stations operating any
given day is variable.

1.1 MODIS aerosol optical depth

The L2 MODIS dataset is a collection of aerosol opti-
cal properties, particularly including the spectral AOD at
550 nm, as well as particle size information. The aerosol
is evaluated at the time of the satellite overpass with an
un-gridded 10-km nominal resolution. It is derived from
MODIS radiances using either one of three different algo-
rithms: one over ocean (Remer et al., 2005) and two over
land, the Dark-Target (Levy et al., 2007) and the Deep-Blue
(Hsu et al., 2004) algorithms – the latter for brighter surfaces.
MODIS data are divided into 5-min granules with a swath of
≈ 2330 km. The L2 MODIS product is provided with a qual-
ity assurance system that flags those pixels that reach excep-
tional values or reach some error threshold in the interme-
diate steps of the retrieval algorithm. Lastly, these flags are
summarized into a quality assurance confidence (QA) flag,
with values from 0 (no-confidence) to 3 (best quality). Prior
to the Terra and Aqua satellites launch, some sensitivity stud-
ies (Kaufman et al., 1997; Tanŕe et al., 1997) estimated the
expected error of MODIS AOD retrievals as±(0.03+0.05τ)

over ocean and±(0.05+ 0.20τ) over land, whereτ is the
AOD. (By τ and AOD we mean the AOD at 550 nm, un-
less otherwise stated). Subsequently,Chu et al.(2002) sug-
gested that the expected error over land could be reduced to
±(0.05+ 0.15τ). This has been globally confirmed byLevy
et al. (2010) for the Collection 5 and the Dark-Target algo-
rithm.

The L3 MODIS product (Hubanks et al., 2008) is a global
daily aggregation of L2 MODIS data into an equal-angle
latitude-longitude grid with a spatial resolution of 1◦

× 1◦.
Each L3 MODIS grid cell value is calculated from the L2
MODIS pixels that fall into its cell boundaries, the number
of which is known as pixel count. (Note that several 1◦

× 1◦

cells are covered by a single L2 MODIS swath.) The actual
area of each 1◦ × 1◦ grid cell shrinks when moving from the
equator (≈ 12 321 km2) to the poles (≈ 107 km2). Besides,
there is a change in the size of the L2 MODIS pixels due to
the viewing distortion at high sensor scan angles. As a result,
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there are fewer pixels to include in the computation of each
L3 MODIS cell over regions swept with high sensor scan an-
gles and/or near the poles. In addition, mostly due to overlap-
ping orbits toward the poles, but also to viewing distortion at
high sensor scan angles, the L3 MODIS values poleward of
23◦ actually become a time average. Between approximately
23◦ S and 23◦ N, the reported values are rather a spatial aver-
age of all L2 MODIS values obtained during a single satellite
overpass every day. Finally, we want to note that there is no
minimum pixel count to derive the L3 MODIS product statis-
tics. Typically, for the aerosol products considered here, the
pixel count varies from 0 to 121, although even more pixels
may be eventually used.

1.2 Motivations and objectives

The relatively high spatio-temporal resolution, and the large
(near-global) coverage of the L3 MODIS dataset make it es-
pecially suitable for use with Numerical Weather Prediction
(NWP) models (Lara-Fanego et al., 2011; Ruiz-Arias et al.,
2010, 2011, 2012). We will focus here only on AOD because
it is the most important aerosol optical property driving so-
lar extinction, and thus the incident surface shortwave irradi-
ance – most importantly the direct irradiance. In particular,
at the end of this paper we analyze how the uncertainty in
the L3 MODIS AOD estimates propagates into the uncer-
tainty in modeled values of GHI and DNI. To this end, we
conduct an initial global evaluation of the L3 MODIS AOD
uncertainty based on ground measurements. The Angström
exponent, an important parameter in determining the AOD
spectral dependence, is also provided within the L3 MODIS
dataset. However, it is not considered here, since its use has
been discouraged byLevy et al.(2010).

So far, most of the MODIS validation exercises only in-
volved the L2 MODIS dataset (Mishchenko et al., 2008; Re-
mer et al., 2008; Hoelzemann et al., 2009; Jethva et al.; Levy
et al., 2010; Li et al., 2010; Mei et al., 2012, to mention just a
few). But the L3 MODIS dataset has a number of peculiari-
ties that differentiate it from the L2 MODIS dataset. Usually,
L2 MODIS AOD (hereafter, also referred to as L2 AOD) val-
idation studies employ the Ichoku approach (Ichoku et al.,
2002) to verify collocation, i.e. when a ground measurement
matches a satellite observation. The Ichoku approach com-
pares the spatial average of a grid of 5× 5 L2 MODIS pix-
els (in the middle of which the ground station stands) to the
temporal average of the data collected by the ground sta-
tion within ±30 min of the satellite overpass. At least 5 L2
MODIS pixels and 2 ground observations are required to ac-
cept the collocated data pair. This approach intrinsically as-
sumes a notable time-space correlation between hourly tem-
poral averages and the spatial averages in a region of roughly
50× 50 km.Kaufman et al.(2000) showed that a single mea-
surement of AOD every day can be used to approximate the
annual average daily AOD value. Since the L3 MODIS prod-
uct is updated daily, it makes sense to validate the L3 MODIS

AOD dataset (hereafter, also referred to as L3 AOD) using
daily AOD averages acquired at ground stations. In such
a case, the validation time window widens to the daylight
hours (and cloudless conditions) relative to the ground sta-
tion, and the spatial average spreads over a region of 1◦

× 1◦,
i.e., roughly 4 times coarser than for the validation of the L2
AOD product following the Ichoku approach. It is important
to know to what extent this broadened time-space correlation
assumption affects the performance of the L3 AOD data, and
whether the expected error (EE) of the L2 AOD also holds
for the L3 AOD data.

In this respect, it is also important to note that the use of
point-wise observations may not be the ideal validation ref-
erence for the 1◦ × 1◦ L3 AOD values. Strictly speaking, the
results of this validation should not be categorized as “er-
rors” because they also encompass differences regarding the
coarser spatial aggregation of the L3 AOD, thus neglecting
the natural spatial variability of AOD at smaller scales than
1◦

× 1◦. However, from a large-scale application standpoint,
the validation of the L3 AOD product with point-wise ob-
servations is sufficiently informative and convenient, and is
the only practical global validation that can be done anyway.
Therefore, although for the sake of language clarity we re-
fer to the result of the validation in the present framework as
“error” (including the term “expected error”), we explicitly
acknowledge that it is only a first guess or proxy to the actual
L3 AOD error. Section5 presents an extended discussion on
this topic.

We also explore the influence of the L2 AOD pixel counts
on the L3 AOD reliability and address the relative impor-
tance of the spatial uncertainty caused by the 1◦

× 1◦ AOD
sub-pixel variability, also known as spatial representativeness
uncertainty. More specifically, the question here is how the
spatial representativeness uncertainty compares to the total
L3 AOD error. The outcome of this analysis is important be-
cause it might suggest the use of an increased spatial res-
olution in future releases of the L3 MODIS AOD product.
Based on the results obtained in the validation exercise, we
finally explore how the L3 AOD uncertainty propagates into
the irradiance prediction (of GHI and DNI). This result is im-
portant to determine the usability and possible benefits of the
L3 AOD dataset for surface solar resource assessments, in
particular.

In Sect.2, we describe the L3 MODIS AOD and observa-
tional datasets used to conduct this study, as well as the col-
location approach to match pairs of data. We also present a
brief exploratory analysis of the datasets. Section3 shows the
results of the validation, both globally and constrained by ge-
ographical region. In Sect.3.3we provide a simple model to
estimate the mean error and uncertainty of the L3 AOD mea-
surements. Section4 investigates the role of pixel count in
the reliability of the L3 AOD, whereas Sect.5 focuses on the
contribution of the AOD variability at sub-grid scale to the
L3 AOD uncertainty. Finally, Sect.6 presents a study on the
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Fig. 1. (a)Mean AOD over the entire validation period;(b) mean pixel count. White areas are the regions without data.

propagation of the L3 AOD uncertainty into the surface solar
irradiance. The main conclusions are summarized in Sect.7.

2 Data

Here, we describe both the L3 MODIS and the AERONET
AOD datasets used in the study. Additionally, we offer a brief
description of the collocation approach and some comments
on the spatial distribution of the experimental stations used
from the AERONET network.

2.1 Level-3 MODIS AOD dataset

This validation covers the period since the deployment
of the MODIS instrument aboard Terra satellite (Febru-
ary 2000) to the end of Dec. 2011. The dataset be-
longs to the Collection 5.1 combined land and ocean
L3 MODIS AOD at 550 nm from the Terra satellite
(variable name “OpticalDepthLand And OceanMean”,
available from ftp://ladsweb.nascom.nasa.gov/allData/51/
MOD08 D3/). The documentation states that the dataset was
derived only from the best quality data (flagged as QA= 3
in the MODIS quality assurance system) for both ocean and
land data. However, we were noticed by one reviewer during
the revision of the manuscript that there is in fact an error in
the documentation. This product was apparently derived in-
cluding also data with QA= 1 and 2 over land and QA= 0, 1
and 2 over ocean. Nonetheless, a noticeable difference in the
results with respect to the use of only QA= 3 data is unlikely.

Overall, the dataset spans 12 yr, totaling data over 4209
days. On average, about 33 % of the earth’s surface is tiled
every day with AOD measurements. But if the surface is re-
stricted to only latitudes between 60◦ S and 60◦ N (higher
latitudes are typically covered with snow and thus prone to
missing values), the dataset covers about 46 % of the sur-

face. Missing tiles are mostly caused by clouds and high re-
flectance surfaces, such as deserts or snow.

Figure1 shows the mean AOD value and the mean pixel
count at each grid cell over the entire validation period. The
mean AOD over the whole grid is 0.18 and the standard de-
viation is 0.09 (i.e., 50 % relative to the mean value). There
exists a large difference between the minimum and maximum
mean AOD,−0.05 and 2.78, respectively (negative AOD
values are non physical for solar radiation applications, and
therefore are not considered further). Interestingly, 95 % of
all the AOD values are smaller than 0.35, due to the gener-
ally low aerosol burden over oceans. The remaining 5 % of
all cases, where AOD can be considerably larger than 0.5,
mostly corresponds to land areas over Asia, north or central
Africa, and eastern South America. In Asia, AOD is partic-
ularly high in eastern China (presumably due to industrial
aerosols in large part), the Hymalayas and the Indus river
basin. In Africa, the mean AOD is specially high in the cen-
tral rain-forests and the Gulf of Guinea, due to the seasonal
burning of biomass, and the Sahel area, due to the dust drag
from the desert. Figure1a shows a deep intrusion of African
aerosol into the central Atlantic Ocean that extends up to
the Caribbean Sea. Seasonally high values of mean AOD are
also found in the Amazonian region, due to biomass burn-
ing. Finally, a hot spot appears over the southwestern USA.
The high AOD values there completely disagree with the
low values of ground truth, as will be discussed in more de-
tails in Sect. 3. The incorrect MODIS retrievals in this re-
gion are likely due to a misrepresentation of the land surface
and/or assumed aerosol properties in the Dark-Target algo-
rithm (Levy et al., 2010).

Figure1b shows the mean L2 pixel count used in the com-
putation of the L3 AOD values. The mean pixel count over
the entire grid is 24.9. On average, 20 % of the L3 AOD val-
ues were calculated using no more than 15 pixel counts, and
90 % of them were derived using less than 35 pixel counts. At
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very high latitudes (poleward of about± 60◦) the pixel-count
number is generally less than 10. A very reduced number of
L2 pixels is also found over highly reflective surfaces such as
deserts and mountains (for instance, central Australia, central
Asia, Middle-East or Sahara) or regions with high cloudi-
ness (northern South-America, Alaska or British Isles). The
regions with the highest pixel count are mainly distributed
along the equatorial belt area and the Southern Hemisphere.

2.2 Observational dataset: AERONET network

The ground truth dataset is part of the AERONET feder-
ated network (http://aeronet.gsfc.nasa.gov). AERONET pro-
vides optical and microphysical properties of aerosols at high
temporal resolution and three data quality levels: Level 1.0
(raw, unscreened), Level 1.5 (cloud-screened), and Level 2.0
(cloud screened and quality-assured). In this work we have
used all available Version 2.0, Level 2.0 daily AOD data cov-
ering the same period as the L3 AOD dataset. Daily aver-
ages are calculated only when at least three (cloudless) mea-
surements are available during a day. Direct-sun AOD re-
trievals are done routinely for (normally) eight different spec-
tral bands, but none of them is centered at 550 nm. There-
fore, the AOD at 550 nm is calculated here from the AOD
at 675 nm and the Angström exponent derived from the 440
and 870 nm channels. The AOD uncertainty is about 0.01–
0.02 (Eck et al., 1999). The collocation between one ground
measurement and satellite is assumed to occur only when the
ground measurement is within the boundaries of a satellite
grid cell that has a non-missing value. In the rare cases where
two or more AERONET sites exist inside the same MODIS
grid cell, all the ground observations are considered indepen-
dently.

The total number of stations with at least one collocation
during the analyzed period is 525. The availability of ground-
truth data changes every day for several reasons, such as
cloud-screening, temporary campaigns, experimental prob-
lems, or regular off-site calibration. As a result, the average
number of collocations per day is 65.8; 90 % of the days have
at least 34 collocations, and 44.6 % of the 525 stations have
at least one year of collocations.

Many validation studies have found regional differences
in the performance of the L2 AOD (e.g.,Levy et al., 2010).
Consequently, the results of any validation will be invariably
bound to the spatial distribution of the experimental stations.
In this dataset, up to 290 stations are located in North Amer-
ica and Europe, whereas South America, Africa and Asia
have only a total of 164 stations. The remainder (71 stations)
is located in Australia and small islands. These regional dif-
ferences mean that our global results will be more represen-
tative of the North American and European regions. How-
ever, we have also conducted a regional validation in order to
achieve meaningful results for each region (Sect.3.2). Over-
all, the use of the entire dataset of available AERONET sta-

tions during the complete period of L3 AOD data from Terra
guarantees the maximum possible significance of the results.

3 Comparison against AERONET observations

Figure2 shows some statistical scores calculated from all the
AERONET and L3 AOD collocations during the entire study
period. Figure2a and b show that the mean AERONET and
L3 AOD values at 550 nm, respectively, have very similar
spatial patterns in general. The most striking difference oc-
curs over the southwestern US, where L3 AOD mean val-
ues are significantly larger than AERONET’s, as mentioned
earlier. Figure2c and d, respectively, show the residual (L3
AOD minus AERONET) and the residual standard deviation
(STDe). Overall, most of the European, African and eastern
US locations have a bias below 0.12 (≈ 20–30 %). MODIS
overestimates over the southwestern US, Middle East and
some central and coastal Asian locations. The overestimation
is high in relative terms (≈ 100 %, not shown here) over the
southwestern US, since the measured AOD in this region is
very small (0.10–0.15). As suggested byLevy et al.(2010),
this could result from a misrepresentation of the surface re-
flectance. The overestimation over the Middle East and Asia
is more likely related to deficiencies in the aerosol model, as
also reported byLevy et al.(2010). Some occasional over-
estimation is found over other regions as well. For instance,
over Hawaii and some other coastal areas, some representa-
tiveness problems of the local topography at the (relatively
coarse) L3 AOD spatial resolution might exist. In Asia and
southern Africa, there are areas with large underestimations,
up to≈ 50 %.

The regions with higher AOD (Asia, central Africa and
South America) are also those with higher STDe (above
0.16). This can be explained by the known fact that MODIS
estimates do not cover all the AOD dynamic range for high
values. However, when STDe is normalized by the mean
AERONET AOD value (not shown here), the result is about
40–50 %, which is not the highest relative STDe. The high-
est values are actually reached over the southwestern US and
Australia, where they are close to 100 % because of the very
small measured AOD. Figure2e shows the Pearson’s corre-
lation coefficient for all those locations with more than 365
collocations. Overall, the correlation between AERONET
sites and the L3 AOD is greater than 0.7, except over some
oceanic and coastal locations, central Asia and the western
US, where it is less. Interestingly, sites with high AOD and
STDe (Fig.2b and d) have also a high correlation coefficient,
which means that changes in AOD are concomitant in sign
but not in magnitude.

3.1 Expected error in the L3 MODIS AOD dataset

In the literature so far, L2 MODIS AOD estimates have been
typically evaluated in relationship with the expected error
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Fig. 2.Statistical scores calculated at experimental sites from the AERONET and L3 MODIS AOD collocations over the entire study period:
(a) mean AERONET AOD at 550 nm;(b) mean L3 AOD at 550 nm;(c) mean residual;(d) standard deviation of the residual;(e) Pearson’s
correlation coefficient; and(f) frequency of data points within the L2 AOD expected error (EE) interval.
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Fig. 3. (a)L3 AOD at 550 nm against AERONET AOD at 550 nm. Data are binned by AERONET AOD value in 100 intervals with approx-
imately the same number of samples. The vertical limits of the boxes extend from the lower to the upper quartiles of every bin. The median
is indicated by the horizontal line in the middle of the box. The yellow square is the mean L3 AOD value. The whiskers extend to the most
extreme point within the (75–25 %) data range. The points beyond the whiskers limits are plotted in gray. The horizontal position of the
boxes and their width are the AERONET mean and standard deviation values, respectively. The orange line is the all-point fit. The green
shaded area delimits the region containing 66 % of the L3 AOD measurements, and the black dashed line is the L2 AOD EE. Blue lines are
the second-order polynomial fit to the green shaded area boundaries. The inset figure provides the cumulative distribution function of the L3
AOD dataset.(b) Rate of points within the L2 (dashed black line) and L3 (solid blue line) AOD expected error intervals.

(EE) defined as±(0.05+ 0.15τ) whereτ is the true AOD
value. If at least 66 % of the MODIS AOD values are concen-
trated within the interval defined above by EE, the MODIS
retrieval algorithm is considered to behave well. The ques-
tion is whether this EE still holds for the L3 AOD dataset.
Figure 2f shows the rate of points within the L2 AOD EE
interval at each experimental site, with a distinction between
overestimation and underestimation. Overall, there are many
stations over the entire dataset where the L2 AOD EE con-
tains even less than 50 % of the data, usually where MODIS
overestimates. This result justifies the necessity of a revision
of EE for the L3 AOD dataset.

Many results are summarized in Fig.3a. In particular, it
highlights the interval (green shaded area) that contains 66 %
of the L3 AOD estimates as a function of the AERONET
AOD for the entire study period and all experimental sta-
tions. The L3 AOD values were binned into 100 AERONET
AOD intervals with an approximately equal number of sam-
ples (about 1950 collocations per bin). For each interval,
Fig. 3a shows a box representing some exploratory scores of
the data: the vertical limits of the box extend from the lower

to the upper quartiles, the median is indicated by the hori-
zontal line in the middle of the box, and the yellow square is
the mean L3 AOD value in the interval. The whiskers ex-
tend to the most extreme point within the (75–25 %) data
range. That is, the whiskers are as long as the box for each
bin. The horizontal position of the box and its width are the
AERONET mean and standard deviation, respectively. By
comparing the position of the mean satellite values (yellow
squares) against the 1:1 line, it is concluded that, on average,
the L3 AOD retrievals tend to overestimate the AERONET
measurements for a ground-truth AOD below 0.4 and un-
derestimate above 0.5. This effect is also apparent in the
all-point fit (orange line). Additionally, since the (theoreti-
cal) dynamic range of AOD only sweeps positive values, the
spread of the data increases with the mean value for both the
MODIS and AERONET measurements. This is shown by the
increase of the length of the whiskers and the width of the
boxes.

In Fig. 3a, the black dashed line is the EE for the L2 AOD
dataset. If the EE limits fitted the boundaries of the green
shaded (L3) region, the L2 AOD EE would also hold for the

www.atmos-chem-phys.net/13/675/2013/ Atmos. Chem. Phys., 13, 675–692, 2013



682 J. A. Ruiz-Arias et al.: Assessment of the Level-3 MODIS AOD

Fig. 4. MBE (top), RMSE (middle) and squared Pearson correlation coefficientR2 (bottom) for each individual region over the entire study
period. The entire dataset scores are shown in the square domain over the South Pacific Ocean.

L3 AOD dataset. From Fig.3a, it is clear that the L2 AOD
EE indeed fits the L3 AOD EE interval only for AOD values
below about 0.3–0.4. For AODs greater than 0.3 the inter-
val containing 66 % of the L3 AOD measurements becomes
larger than what the L2 AOD EE predicts, meaning that the
L3 AOD product is more uncertain than the L2 AOD prod-
uct. This is also apparent in Fig.3b, which plots the amount
of points (as a percentage) within the EE limits. The reason
for the uncertainty increase at large AODs may be found in
the fact that the averaging process involved to obtain the L3
data from the L2 dataset actually removes some of the L2
spatio-temporal variability. This is particularly important for
large AODs because the departures from the mean value are
greater, and so are the errors caused by the averaging pro-
cess. Nevertheless, according to the inset plot in Fig.3a, up
to 80 % of the data points are below an AOD of 0.3, for which
the L2 AOD EE is still valid.

The observed increased uncertainty in the L3 dataset for
large AOD values cannot be accommodated with linear EE
limits over the whole AOD range. Instead, we propose a
quadratic model that fits the L3 data better overall (in the
least squares sense):±(0.29τ2

+0.06τ+0.06), which is plot-
ted as the blue line in Fig.3a. Note that the L2 AOD EE
and the L3 AOD EE match well for small AODs. In contrast,
the L3 AOD EE follows the actual EE much better for large
AODs. According to Fig.3b, the new quadratic EE described
above gives a reasonably good estimate of EE for AODs be-
low ≈ 0.7. This includes more than a 95 % of the dataset (see
inset of Fig.3a).

3.2 Regional analysis

It is instructive to study the behavior of the L3 AOD dataset
over different regions, so as to provide a more detailed and
organized general description than what is summarized in
Fig. 2. In this respect, the experimental dataset has been di-
vided into 15 different geographical regions. These are based
on previous analyses and global studies, such as those ofRe-
mer et al.(2008) and Levy et al. (2010), and are depicted
in Fig. 4. For each region, Fig.4 provides (from top to bot-
tom) the mean bias error (MBE, obtained as L3 AOD mi-
nus AERONET), the root mean square error (RMSE), both
normalized to the averaged measured value, and the squared
Pearson correlation coefficient (R2) calculated using all the
stations in each region over the entire study period. Poor re-
sults (MBE values above 20 %, RMSE values above 80 %,
andR2 below 50 %) are highlighted in red. Western North
America, Central Asia and Australia show such poor results.
Particularly, western North America has the poorest perfor-
mance, with a MBE of 76 %, a RMSE of 151 %, and aR2

of only 22 %. For all the other regions, the MBE is below
17 %, except in the Middle East, where it reaches 25 %; the
RMSE remains in the range 46–67 %, except in South Amer-
ica (123 %), whereasR2 is always around or above 60 %.

Table1 provides some additional statistics: number of ex-
perimental points (N ), MBE and RMSE (AOD unit), as well
as the rate of samples within the EE intervals of the L2 and
L3 AOD datasets. The last column displays the quadratic ex-
pression obtained for the L3 AOD EE limits of each region.
Overall, the MBE is always below 0.1 (in absolute terms),
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Table 1. Summary statistics for the entire dataset and each individual region: number of samples (N ), mean AERONET AOD, MBE and
RMSE in AOD unit, fraction of data points within the L2 and L3 AOD expected error intervals (L2 EE and L3 EE, respectively), and L3
AOD expected error limits function.

Mean
Region N AERONET MBE RMSE L2 EE L3 EE L3 EE limits

Globe 195 238 0.20 0.03 0.14 62 % 65 %±(+0.29τ2
+ 0.06τ + 0.06)

West North America 29 451 0.10 0.07 0.14 51 % 66 %±(+0.98τ2
− 0.23τ + 0.11)

East North America 24 767 0.17 0.03 0.11 70 % 66 %±(−0.05τ2
+ 0.24τ + 0.03)

Tropical North Atlantic 12 268 0.21 0.03 0.14 55 % 67 %±(+0.11τ2
+ 0.14τ + 0.07)

Amazonas 3966 0.34 0.04 0.21 66 % 67 %±(+0.08τ2
+ 0.13τ + 0.05)

South America 7014 0.15 0.02 0.18 63 % 68 %±(+0.22τ2
+ 0.15τ + 0.05)

North Europe 25 886 0.20 0.03 0.11 68 % 66 %±(−0.00τ2
+ 0.21τ + 0.04)

Mediterranean 35 477 0.17 0.03 0.10 70 % 66 %±(+0.01τ2
+ 0.20τ + 0.04)

Saharan Africa 4304 0.53 −0.07 0.24 47 % 65 % ±(−0.02τ2
+ 0.35τ + 0.02)

South Africa 6358 0.20 −0.01 0.10 72 % 66 % ±(−0.04τ2
+ 0.25τ + 0.03)

Middle East 4057 0.36 0.09 0.22 64 % 66 %±(+0.42τ2
− 0.07τ + 0.07)

Central Asia 2960 0.19 0.04 0.16 49 % 66 %±(+0.43τ2
− 0.09τ + 0.11)

East Asia 11 706 0.41 0.04 0.25 53 % 65 %±(+0.01τ2
+ 0.31τ + 0.04)

South Asia 4728 0.42 −0.02 0.20 49 % 66 % ±(+0.17τ2
+ 0.03τ + 0.11)

West Asia 5162 0.46 0.01 0.21 56 % 66 %±(+0.27τ2
− 0.04τ + 0.10)

Australia 4643 0.10 0.02 0.09 72 % 66 % ±(+0.24τ2
+ 0.23τ + 0.03)

whereas RMSE exceeds 0.20 only in those regions with a
mean AERONET AOD above 0.30, such as over the Ama-
zon, Sahara, Middle East, or some Asian regions. Note that,
compared to the mean AERONET AOD, the RMSE is high
over western North America, South America, Australia and
Central Asia. More particularly, over western North America
and Australia, the very small mean measured AOD drasti-
cally increases the relative RMSE shown in Fig.4. The L2
AOD EE, ±(0.15τ + 0.05), does not represent the interval
that contains 66 % of the L3 samples for any region but the
Amazon. Conversely, the newly proposed L3 AOD EE al-
ways defines an interval encompassing between 65 % and
68 % of the data, for all regions. Overall, and for all regions,
the L3 AOD EE indicates a higher EE of the L3 AOD dataset
for large AODs. However, for small AODs in some regions,
the EE is less than for the L2 AOD dataset, such as over east-
ern North America, Europe, Africa or Australia. Globally,
the EE for small AODs is about 0.06, in similarity with the
L2 AOD EE (0.05).

3.3 Uncertainty as a function of the L3 AOD value

For some applications the uncertainty associated with the
AOD data is needed. However, a description based on EE
(Table1) is not always useful because it is based on the “true”
AOD value (in practice, in ground sunphotometric measure-
ments), which is rarely known. It is possible to follow a sim-
ilar approach to that in the previous section, this time ex-
pressing the uncertainty as a function of the retrieved L3
AODs. To that effect, the L3 AOD residuals (L3 AOD mi-
nus AERONET AOD) have been grouped in 100 equal-sized

intervals of L3 AOD. In each bin, their mean and standard
deviation have been calculated and normalized by the mean
L3 AOD for that bin. Figure5a shows the relative mean error
(blue points) and the uncertainty interval defined as the rela-
tive mean error plus or minus one relative standard deviation
of the error (shaded region), for the entire dataset, as a func-
tion of the L3 AOD value. A justification for characterizing
the uncertainty with the standard deviation of the error rather
than the EE as in Sect.3.2 is offered in Sect.5.

Both the relative mean error and relative standard devia-
tion of the error can be modeled using a fifth-order polyno-
mial, such as:

1L3 = a0 + a1η + a2η
2
+ a3η

3
+ a4η

4
+ a5η

5, (1)

where1L3 is either the relative mean error or the relative
standard deviation of the error, andη = 1/τ , with τ being
the L3 AOD value. The coefficientsai are listed in TablesA1
andA2 separately for the relative mean error and the relative
standard deviation of the error, and for each geographical
region. All the fits have correlation coefficients (R2) above
92 %. For the case of Fig.5, i.e., the entire dataset, the fit-
ted curves (orange lines) are very close to those experimental
points whose L3 AOD is below 0.5, thus representing≈ 90 %
of the dataset (inset of Fig.5a).

Figure5a shows a rapid increase of the relative underesti-
mation when the L3 AODs are below 0.1. Above that thresh-
old, a fairly constant relative overestimation is typical in the
satellite retrievals. This is also true for the relative standard
deviation of the error. In Fig.5b, this translates into a linear
increase of both the mean error and the standard deviation
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Fig. 5. (a)Relative mean error (L3 AOD minus AERONET AOD) for the whole dataset (blue dots), and uncertainty range as relative mean
error plus or minus one relative standard deviation of the error (dashed area).(b) Same as(a) but now the mean error and uncertainty are
given in AOD unit. The orange lines are the fitted curves using Eq. (1). Coefficients for the “Globe” region are given in TablesA1 andA2.

for L3 AODs larger than 0.1. For smaller values, the satel-
lite retrievals tend to be too low compared to ground truth.
This underestimation increases when AOD decreases. This
behavior is general, even for the western US. In this partic-
ular case (not shown here), the overestimation becomes no-
ticeable above≈ 0.05, whereas the asymptotic relative error
exceeds 50 % beyond 0.2.

4 The role of pixel count

Section1.1 describes how the L3 AOD dataset is derived
from the L2 AOD data. This procedure intrinsically defines
the number of L2 AOD points – or pixel count – used to cal-
culate each L3 AOD value.Levy et al.(2009) conducted a
detailed study on the impact that different strategies of av-
eraging could have on spatio-temporal aggregations of L2
AOD values such as for L3 AOD. They concluded that the
differences between different averaging approaches may be
greater – or, at least, of the same order – than differences be-
tween different measurement sensors. One of the cases they
analyzed was a weighting scheme based on pixel-count val-
ues. The use of pixel count as a weight is reasonable by as-
suming a higher reliability for those L3 AOD values derived
with a greater pixel-count number. However, the direct re-
lationship between pixel count and L3 AOD reliability has
apparently not been analyzed in the literature yet. Nonethe-
less, this relationship can be important for subsequent aggre-
gations of L3 AOD values. Therefore, an important question
is whether a higher pixel count necessarily means a more re-
liable L3 AOD value. If this were true, pixel counts could be
used in the data quality assurance procedure, or in a weight-

ing scheme to combine L3 AOD values, for instance. A pixel
count is provided for every grid cell in the L3 AOD dataset,
and this information is used in what follows.

Figure6 shows the joint histogram of the L3 AOD resid-
uals (L3 AOD minus AERONET AOD) binned by either a
combination of pixel count and AERONET AOD (Fig.6a),
or of pixel counts and cloud fraction (Fig.6b), for all avail-
able collocations during the studied period. The mean resid-
ual for all points forming each column bin (green line), and
the fraction of points in that bin (grey bars), both appear in
the plot above each joint histogram. Likewise, the plot to
the right of each joint histogram contains the mean resid-
ual for all the points forming each pixel-count bin (green
line) and the fraction of points in that bin (grey bars). The
joint histogram in Fig.6a, similarly to Fig.3, shows that
the L3 MODIS retrievals are too high for small AODs and
too low for high AODs. This was a known issue in the L2
AOD dataset, which therefore propagates to the L3 prod-
uct. Overall, since≈ 80 % of the data have a L3 AOD below
0.3, MODIS retrievals are too high in general. According to
Fig. 4, MODIS only underestimates in Africa and some parts
of Asia. Possible causes of these biases are discussed byLevy
et al.(2010).

Interestingly, a trend in the residual is also observed for
the pixel counts (right plot in Fig.6a). L3 AODs calculated
with less than 50 pixel counts (about 90 % of the dataset)
tend to overestimate, whereas they underestimate in the case
of larger pixel counts. According to Fig.6b, there is no L3
grid point with both a high cloud fraction and a large pixel
count. Thus, the underestimation for points calculated with
a large pixel count is dominated by cloudless conditions,
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Fig. 6. Joint histograms of the L3 AOD residuals (L3 AOD minus AERONET AOD). (a) AERONET AOD

in the X-axis and pixel counts in the Y-axis. Colors of the joint-histogram bins indicate the mean residual of

the collocations within that bin. (b) Cloud fraction in the X-axis and pixel counts in the Y-axis. Colors of the

joint-histogram bins indicate the mean residual of the collocations within that bin. In both panels, the top plot

contains the mean residual for all points forming each column bin (green line) and the fraction of points in that

column bin (grey bars). The plot to the right of each histogram contains the mean residual for all the points

forming each row bin (green line) and the fraction of points in that row bin (grey bars).

cloud fraction (Fig. 6b), for all available collocations during the studied period. The mean residual

for all points forming each column bin (green line), and the fraction of points in that bin (grey bars),

both appear in the plot above each joint histogram. Likewise, the plot to the right of each joint

histogram contains the mean residual for all the points forming each pixel-count bin (green line) and

the fraction of points in that bin (grey bars). The joint histogram in Fig. 6a, similarly to Fig. 3, shows395

that the L3 MODIS retrievals are too high for small AODs and too low for high AODs. This was a
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≈80% of the data have a L3 AOD below 0.3, MODIS retrievals are too high in general. According
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Interestingly, a trend in the residual is also observed for the pixel counts (right plot in Fig. 6a).

L3 AODs calculated with less than 50 pixel counts (about 90% of the dataset) tend to overestimate,

whereas they underestimate in the case of larger pixel counts. According to Fig. 6b, there is no
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for points calculated with a large pixel count is dominated by cloudless conditions, whereas the405

low pixel count in the other L3 grid points is partly caused by the cloud screening algorithms. It
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Fig. 6. Joint histograms of the L3 AOD residuals (L3 AOD minus AERONET AOD).(a) AERONET AOD in the x-axis and pixel counts in
the y-axis. Colors of the joint-histogram bins indicate the mean residual of the collocations within that bin.(b) Cloud fraction in the x-axis
and pixel counts in the y-axis. Colors of the joint-histogram bins indicate the mean residual of the collocations within that bin. In both panels,
the top plot contains the mean residual for all points forming each column bin (green line) and the fraction of points in that column bin (grey
bars). The plot to the right of each histogram contains the mean residual for all the points forming each row bin (green line) and the fraction
of points in that row bin (grey bars).

whereas the low pixel count in the other L3 grid points is
partly caused by the cloud screening algorithms. It is known
that clouds cause an overestimation of AOD in the MODIS
algorithm retrievals. This can partially explain the overesti-
mation of L3 AODs when derived with a low pixel count.
In contrast, the underestimation observed in the case of large
pixel counts could be related to image distortion at high sen-
sor scan angles, and to unresolved surface reflectance vari-
ability. This trend relating the residual to pixel count can be
observed over almost all regions, but with more or less mag-
nitude depending on regional climatic conditions. A simple
third-order polynomial could be used to remove the trend.
However, the regional variability of the trend prevents the
use of a unique function. Instead, we suggest to analyze the
dataset at hand to derive a correction function for that specific
dataset or region. For instance, using the entire dataset in this
study, the L3 AOD EE after the pixel-count trend correction
becomes±(0.21τ2

+ 0.12τ + 0.05), which slightly reduces
the EE error for AODs below 0.25 and above 0.5. The cor-
rection could be better if applied, as mentioned, at a regional
scale. When aggregating L3 AOD values, another possibility
is to discard all AODs corresponding to pixel counts larger
or smaller than certain limits.

The consequence of the pixel-count trend just described is
that great care must be taken when the pixel count is used
as a weighting parameter to combine L3 AOD values. In
particular, it is interesting to examine the use of the pixel-
count weighting average as method to aggregate L3 AOD
over time. As discussed earlier, the L3 AOD dataset tends to
underestimate for large pixel counts. The use of pixel count

as weight would therefore assign more relative importance
to AOD values that are systematically smaller than ground-
truth. Furthermore, since the MODIS AOD retrievals gener-
ally tend to overestimate ground-truth (Fig.4), the overall
overestimation happens to be corrected just by cancellation
of errors. However, this general MODIS overestimation does
not occur over all regions. In particular, over any specific re-
gion where the satellite retrievals tend to underestimate, the
use of the pixel-count weighting scheme would result in less
accurate AODs than those from an unweighted average.

5 Spatial representativeness uncertainty

Section 3.3 provided an estimate of the total mean bias
and uncertainty of L3 AODs by comparison with daily
AERONET measurements. This uncertainty is mainly caused
by uncertainties in both measurements and retrieval algo-
rithm, but also by the unconsidered AOD variability that oc-
curs at finer spatial and temporal scales than the spatial and
temporal resolutions of the L3 MODIS dataset. These errors
are also known as spatial and temporal representativeness un-
certainties, respectively. One particular aspect of this issue is
that L3 AOD values representative of a 1◦

× 1◦ grid cell are
compared to spot ground-truth measurements. It can be ex-
pected that the importance of this issue increases with topo-
graphic complexity and average cell elevation. It is important
to know how much these representativeness errors contribute
to the overall uncertainty, and whether the spatio-temporal
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Fig. 7. Intra-pixel variability index (IPVI), defined as the ratio of the standard deviation of the intra-pixel L2 AOD values,σs, provided as
part of the L3 AOD product, to the standard deviation of the L3 AOD error as compared to ground AERONET measurements,σε (Sect.3.3);
(a) regions with relatively stable IPVI and,(b) regions with decreasing IPVI for increasing L3 AOD.

resolution of the L3 AOD product is a limiting factor in
achieving a smaller uncertainty.

Kaufman et al.(2000) showed that, for any single location,
the instantaneous retrievals at overpass times could be used
to represent the daily AOD average at that location within
reasonable accuracy. Here, we compare the (daily) L3 AOD
product at a 1◦ × 1◦ spatial resolution against daily aver-
ages at specific AERONET sites (i.e., spot measurements).
Can such a large pixel size represent the spatial variability
of AOD, and be appropriate for the comparison with spot
ground measurements?

Along with the AOD at 550 nm and pixel count, the L3
AOD product provides the standard deviation of the L2 AOD
values used in the aggregation leading to the L3 product.
This standard deviation can be used as an estimate of the
intra-pixel variability of AOD. By doing this, we are intrinsi-
cally assuming that the L2 AOD retrievals capture the intra-
pixel variability of AOD, even though this does not neces-
sarily mean a negligible overall mean error. Figure7 shows
the “intra-pixel variability index” (IPVI), i.e., the ratio of the
standard deviation of the intra-pixel L2 AOD values,σs, pro-
vided as part of the L3 AOD product, to the standard devia-
tion of the L3 AOD error as compared to ground AERONET
measurements,σε, (Sect.3.3). Note that this ratio should
never be larger than unity, because the spatial representative-
ness uncertainty is part of the total uncertainty.

IPVI appears to obey two possible (and very different) pat-
terns, depending on the region. On the one hand, regions with
typically high aerosol load, usually dominated by the coarse
mode, have a relatively constant IPVI, in the range 30–60 %
(Fig. 7a). One exception is western North America, where
IPVI amounts to more than 80 % of the spatial representative-

ness uncertainty. This might be a consequence of the prob-
lems of the Dark-Target MODIS retrieval algorithm over that
region, discussed earlier. On the other hand, in those regions
with lower aerosol load and high relative importance of the
fine aerosol mode (Fig.7b), such as eastern North America,
Europe, South America and southern Africa, IPVI decreases
from ≈ 80 % down to≈ 50 % when the L3 AOD increases.
The entire dataset, as a region (Globe), is also in this group.
Australia, however, seems to be a notable exception to this
pattern.

In rough terms overall, the spatial representativeness un-
certainty contributes≈ 50 % to the total uncertainty of the
L3 AOD. The remaining≈ 50 % is attributable to other er-
rors. The only exception to this rule is for AODs below 0.1
over fine-mode-dominated regions, where the importance of
the spatial representativeness error increases.

6 Induced uncertainty in surface solar irradiance

AOD is the main variable driving DNI under cloudless skies.
Its impact is about 3 to 4 times larger on DNI than on GHI
(Gueymard, 2012). Therefore, AOD is a key element in DNI
modeling. Numerical Weather Prediction and radiative trans-
fer models are applied to vast areas, so that an accurate pre-
diction of DNI (and, to a lesser extent, GHI) requires a grid-
ded AOD dataset with sufficient spatio-temporal resolution
and geographical coverage.Gueymard(2012) indicated the
convenience of daily AOD to capture the daily DNI varia-
tions. Moreover, Sect.5 showed that the spatial representa-
tiveness uncertainty associated with the L3 AOD is about half
of the total uncertainty. Therefore, the 1◦

× 1◦ spatial resolu-
tion of the L3 MODIS product appears adequate. Besides, it
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Fig. 8. (a)Relative uncertainty in DNI for each region as a function of AOD, for the entire dataset and forθ = 30◦. (b) Magnitude (blue)
and relative DNI uncertainty (orange) for the entire dataset forθ = 30◦ andθ = 60◦. The blue-shaded area is the DNI uncertainty in Wm−2.
The blue line is for the DNI value. Also shown is the AOD’s relative uncertainty (dashed line).

Fig. 9.Same as Fig.8, but for global horizontal irradiance (GHI).

exists with a near global coverage. The remaining question
is whether it is worthy to use L3 AODs for DNI modeling,
considering how the uncertainty in AOD propagates into the
DNI predictions.

A sensitivity analysis can be conducted with the help of the
REST2 broadband solar radiation model (Gueymard, 2008),
using uncertainty propagation theory:

1Eb =

∣∣∣∣∂Eb

∂τ

∣∣∣∣1τ, (2)

whereEb is the DNI (GHI),1τ is the AOD uncertainty and
1Eb is the uncertainty in DNI (GHI) due to1τ alone.

If we assume a mean AOD value of 0.2 – referred to as
“mean global AOD value” in Table1 – and request a max-
imum uncertainty of, say, 5 % or 10 % in DNI, due only to
uncertainty in AOD, the maximum acceptable uncertainty
in AOD would be 6 % and 12 %, respectively, i.e., 0.012 or
0.024 in AOD unit. For GHI, the maximum tolerable uncer-
tainty in AOD would increase to 17 % or 34 %, respectively.

These values were obtained with the REST2 model for a so-
lar zenith angle of 30◦ and fixed atmospheric standard val-
ues: atmospheric pressure= 1013.25 hPa, precipitable wa-
ter= 1.5 cm, ozone amount= 0.35 atm cm (350 DU), nitro-
gen dioxide= 0.0002 atmcm, and Angström exponent= 1.3.

Figure8a shows the relative uncertainty in DNI (1Eb/Eb)
as a function of AOD for each geographical region. It is ob-
tained from Eq. (2), using the AOD uncertainty expressed as
the EE provided in the last column of Table1. The sensitiv-

ity term
∣∣∣ ∂Eb

∂τ

∣∣∣ was also calculated with the REST2 model for

solar zenith anglesθ = 30◦ and 60◦ and the same reference
atmospheric inputs as above, but keeping AOD as the only
variable. Forθ = 30◦, a similar relative uncertainty in DNI
is found over all regions, i.e., below 15 % for AOD smaller
than 0.5. For larger AODs, differences between regions in-
crease. In the case of western North America, a large increase
of the relative uncertainty occurs for AODs larger than 0.4.
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Fig. 10.Relative uncertainty in DNI and GHI at AERONET sites. The relative uncertainties are calculated from the mean measured AOD
values at each site (Fig.2a).

However, AOD in this region hardly exceeds 0.5, thus the
relative uncertainty is usually below 20 %.

Figure8b shows the magnitude and relative value of the
DNI uncertainty for the entire dataset and the two solar zenith
angles (30◦ and 60◦). The relative uncertainty increases by
30–40 % when the solar zenith angle increases from 30◦ to
60◦. However, the absolute uncertainty (blue-shaded region)
does not simultaneously increase.

Whereas both DNI and GHI are essential in energy appli-
cations, and particularly solar resource assessments, GHI is
the normal (if not only) radiative output of NWP, reanalysis
or climate models. Figure9 shows the same sensitivity analy-
sis as in Fig.8 but for GHI. The relative uncertainty induced
in GHI by the L3 AOD uncertainty is always smaller than
5 % for any region and a solar zenith angle of 30◦ (Fig. 9a).
But contrarily to DNI, the uncertainty now decreases as AOD
increases. This is due to the opposite effect of AOD on DNI
and diffuse irradiances: an increase of AOD reduces DNI and
simultaneously enhances diffuse irradiance. Therefore, un-
certainties in DNI and diffuse irradiance due to AOD tend
to cancel each other. The smaller relative impact of AOD
on GHI, comparatively to DNI, appears in Fig.9b: when
AOD increases from 0 to 1, GHI decreases by only≈ 13 %,
whereas DNI decreases by≈ 50 %.

Based on this analysis, Fig.10 further shows the relative
uncertainties in DNI and GHI caused by mean L3 AOD er-
rors but, this time, at AERONET sites. These results are cal-
culated from the mean measured AOD values at each site
(Fig. 2a) and with the same approach as in Figs.8 and 9.
The highest mean relative uncertainties in DNI (≈ 12–15 %)
occur in Asia, northern and southern Africa (Fig.10a), co-
inciding with the highest mean measured AODs, as could be
expected from the results in Fig.8a. Note that, according also
to Fig. 8a, the DNI relative uncertainty over western North
America is larger (per unit AOD) than in the rest of regions,

at high AODs. However, when using mean measured AODs
(Fig.10a), the relative uncertainty in DNI is only around 8 %,
far from the regions with the highest mean uncertainty. An
explanation is that the measured AOD over western North
America is typically low (with a mean of 0.10), and thus the
mean uncertainty in DNI also remains low. In parallel, the
sudden change in DNI uncertainty from the western to the
eastern North America is a direct consequence of the much
poorer L3 AODs in the former region.

Figure 10b shows the relative uncertainty in GHI, also
based on mean ground-measured AODs. Now, and contrar-
ily to the DNI case, western North America is the region with
the highest mean relative uncertainty (about 5 %). Again, this
is a consequence of the very low mean measured AODs. By
comparison with Fig.9a, it can be seen that the relative un-
certainty in GHI is maximum for an AOD value of about
0.10. The large difference between western and eastern North
America is still present in this case. Interestingly, the large
DNI relative uncertainties observed over Asia and Africa cor-
respond to low relative uncertainties in GHI, because of the
large AODs over there. As can be understood from Fig.9a,
the relative uncertainty in GHI decreases as AOD increases,
and consequently the GHI uncertainty is low in those regions.

7 Conclusions

We have presented a global validation of the combined land
and ocean Level-3 MODIS AOD product (Collection 5.1)
at 550 nm from the Terra satellite, and investigated its suit-
ability for surface solar radiation calculations in numerical
weather or radiative transfer modeling.

The study has been conducted at both global and regional
scales, based on the Terra satellite dataset (2000–2011) and
the collocated daily measurements from the AERONET
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radiometric network at 525 stations, used as ground truth.
Globally, the L3 AOD dataset overestimates by 17 %, with
a RMSE of 73 % and a squared Pearson correlation coef-
ficient of 67 %. On a regional basis (using 15 distinct ge-
ographical regions), the MBE varies between 2 % (eastern
Asia) and 76 % (western North America). In parts of north-
ern and southern Africa and Asia, the L3 AOD is too low,
whereas too large values are found over central Asia, Middle
East and (most particularly) western North America. The re-
gional RMSE is always larger than 50 %, with specially high
values for western North America (151 %), South America
(123 %), central Asia (82 %) and Australia (88 %).

The Level-3 MODIS AOD consists of a spatial aggrega-
tion of the Level-2 MODIS AOD, so a key question ad-
dressed in this study is about the L3 AOD reliability com-
pared to that of the original L2 AOD. This comparison
uses the expected error, EE, which is defined as the inter-
val around the true AOD that contains 66 % of the MODIS
AOD estimates. Overall, the aggregation from L2 AOD to L3
AOD increases EE for AODs greater than about 0.3, which
approximately correspond to 20 % of the highest values. For
the remaining 80 %, the L2 AOD EE and the L3 AOD EE are
very similar. A quadratic function is proposed to describe the
L3 AOD EE, in lieu of the conventional linear function used
for the L2 MODIS EE.

EE provides an estimate of the MODIS AOD uncertainty
in terms of the AOD determined from ground truth. Since, in
general, this “true” AOD is unknown, we developed a model
for the L3 AOD uncertainty that provides both the mean er-
ror and standard deviation of the error as a function of the
L3 AOD. This model shows that, for the entire dataset and
AODs greater than 0.1, the L3 AOD overestimates. Further-
more, both the mean error and the standard deviation of the
error increase linearly with L3 AOD. For L3 AODs below
0.1, the satellite retrievals underestimate, and both this un-
derestimation and the standard deviation of the error increase
as the L3 AODs decrease. We provide error functions for the
entire dataset and for each region separately.

We have also investigated the role of the pixel count in
the reliability of the L3 AOD. Overall, the L3 AODs derived
with small pixel counts tend to overestimate whereas the L3
AODs derived with large pixel counts tend to underestimate.
This occurs in both the global dataset and for each individ-
ual region. However, each region has its peculiarities. Con-
sequently, the assumption of a higher reliability in the L3
AODs for larger pixel counts must be adopted only with cau-
tion and, ideally, should be checked for each spatio-temporal
dataset.

We have explored the relative contribution of the spatial
representativeness uncertainty to the overall uncertainty of
the L3 AOD. We used the standard deviation of the L2 AOD
values used to calculated the L3 AOD as an estimate of the
spatial representativeness uncertainty in the L3 AOD. By
comparing this against the standard deviation of the error ob-
tained in Sect.3.3 we found that, overall, the spatial repre-

sentativeness uncertainty is roughly similar to the other er-
rors associated with the L3 AOD. Therefore, the L3 AOD’
spatial representativeness uncertainty is not a limiting factor
of its reliability. However, this result suggests that, when the
quality of the AOD retrievals eventually improves (as can be
anticipated), the spatial resolution of the L3 AOD should be
enhanced.

Finally, one key issue addressed in this contribution is
the quantification of the uncertainty induced in the predicted
DNI when the L3 AOD product is used as input to radiative
transfer models. It is found that, overall, the induced uncer-
tainty in DNI is smaller than≈ 15 % for AOD values below
0.5 (90 % of the global dataset) and a solar zenith angle of
30◦. Under this same condition, the relative uncertainty in-
duced in GHI is always below 5 %. At regional scale, the
L3 AOD is therefore of sufficient overall quality to produce
good-enough GHI estimates, but, conversely, this is not gen-
erally the case for DNI. In spite of this significant AOD-
induced uncertainty in DNI, we consider the daily L3 AOD
dataset very valuable because it has the advantage to generate
a correct daily variability in DNI, which is important in so-
lar energy applications. Of course, any monthly AOD dataset
derived from the daily L3 AOD will also be affected by the
uncertainties discussed here.
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Appendix A

Coefficients for Eq. (1)

Table A1. Best fit (least-square error) coefficients of Eq. (1) for the relative mean error in each geographical region.

Region a0 a1 a2 a3 a4 a5

Globe +2.1016e-01 +1.2266e-03−2.3511e-03 +3.9770e-05 −2.6765e-07 +4.8374e-10
West North America +7.1735e-01 −4.8607e-02 +1.0321e-04 −1.5191e-06 +6.5441e-09 −7.1457e-12
East North America +2.5915e-01 −1.3513e-02 −9.8362e-04 +9.7010e-06 −3.8668e-08 +3.4472e-11
Tropical North Atlantic +5.6089e-02 +7.8105e-02−1.3864e-02 +6.4374e-04 −1.3055e-05 +7.0825e-08
Amazonas +2.4388e-01 −4.0352e-02 −4.9475e-04 +1.4915e-06 +3.6795e-09−5.8018e-12
South America +3.4466e-01 −3.2560e-02 −6.0864e-04 +4.8308e-06 −1.1458e-08 +3.0188e-12
North Europe +3.1493e-01 −3.7988e-02 −7.8874e-04 +2.2351e-05 −2.9474e-07 +9.9069e-10
Mediterranean +3.0271e-01 −3.0121e-02 +1.8079e-05 −2.4451e-05 +3.7300e-07 −1.2706e-09
Saharan Africa +2.1433e-01 −2.1029e-01 +1.4844e-02 −1.0180e-03 +2.4567e-05 −1.9690e-07
South Africa +1.1466e-01 −1.7303e-02 −1.3977e-03 +1.7575e-05 −8.3911e-08 +1.0311e-10
Middle East +3.5175e-01 −8.7605e-02 +5.7959e-03 −1.8348e-04 +0.0000e+00 +0.0000e+00
Central Asia +3.9875e-01 −2.9181e-02 −3.8358e-03 +7.7667e-05 −5.6089e-07 +1.1000e-09
West Asia +2.3061e-01 −9.6103e-02 −2.7327e-03 +3.4063e-05 +0.0000e+00 +0.0000e+00
East Asia +2.1887e-01 −5.0683e-02 −1.1754e-03 −2.0864e-04 +8.6074e-06 −8.6414e-08
South Asia +1.0831e-01 −2.8966e-02 −1.0586e-02 +4.3893e-04 −7.5255e-06 +4.1292e-08
Australia +4.6244e-01 −3.4511e-02 −1.5014e-04 +5.5557e-08 +5.6603e-10−1.3655e-13

Table A2. Best fit (least-square error) coefficients of Eq. (1) for the relative standard deviation of the error in each geographical region.

Region a0 a1 a2 a3 a4 a5

Globe +3.0673e-01 +3.3666e-02 +1.4334e-04−2.8216e-06 +2.5807e-08 −5.2532e-11
West North America +2.4489e-01 +1.9495e-02 +3.3796e-04−3.1312e-06 +9.8862e-09 −9.2615e-12
East North America +2.8104e-01 +1.7071e-02 +4.1317e-04−5.8807e-06 +3.1788e-08 −3.0771e-11
Tropical North Atlantic +2.6667e-01 +2.7871e-02 +6.1932e-03−4.4659e-04 +1.0521e-05 −5.9687e-08
Amazonas +1.1934e-01 +6.0612e-02−1.6307e-03 +2.3573e-05 −9.8376e-08 +8.7116e-11
South America +3.7705e-01 +2.7186e-02 +2.0452e-04−1.5190e-06 +3.7121e-09 −9.8225e-13
North Europe +2.5034e-01 +1.8410e-02 +1.2646e-03−4.3194e-05 +5.2326e-07 −1.6751e-09
Mediterranean +2.0632e-01 +3.4149e-02−9.3781e-04 +4.3191e-05 −5.6045e-07 +1.8361e-09
Saharan Africa +2.7400e-01 +4.8876e-02 +7.8326e-03−9.0040e-04 +3.9994e-05 −5.2303e-07
South Africa +3.2772e-01 +1.0769e-02 +1.2042e-03−1.9588e-05 +1.0685e-07 −1.3748e-10
Middle East +2.2785e-01 −4.6514e-02 +1.4682e-02 −5.9941e-04 +0.0000e+00 +0.0000e+00
Central Asia +3.3506e-01 +2.5225e-02 +1.9813e-03−5.8834e-05 +5.8103e-07 −1.2941e-09
West Asia +1.4205e-01 +8.6013e-02 +6.0449e-03−1.0170e-04 +0.0000e+00 +0.0000e+00
East Asia +2.4084e-01 +7.8624e-02 +7.9394e-04 +2.4427e-04−1.2244e-05 +1.3889e-07
South Asia +2.2528e-01 +9.9628e-02−5.5069e-03 +3.4382e-04 −8.1394e-06 +5.2737e-08
Australia +1.8743e-01 +3.8519e-02−3.3033e-04 +2.6922e-06 −5.0324e-09 +1.0540e-12
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