

1 **Supplement for "Wavelength- and NO_x-dependent complex refractive index of**
2 **SOA generated from photooxidation of toluene" by T. Nakayama et al.**

3

4 **T. Nakayama¹, K. Sato², Y. Matsumi¹, T. Imamura², A. Yamazaki³, A. Uchiyama³**

5

6 1 Solar-Terrestrial Environment Laboratory and Graduate School of Science, Nagoya University,
7 Furocho, Chikusa-ku, Nagoya 464-8601, Japan

8 2 National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba 305-8506, Japan

9 3 Meteorological Research Institute, Japan Meteorological Agency, 1-1, Nagamine, Tsukuba 305-0052,
10 Japan

11

12 Correspondence to: T. Nakayama (nakayama@stelab.nagoya-u.ac.jp)

13

14

15 **S1. Calibration procedure for the PASS-3**

16 Detailed descriptions of the performance of the 3 λ -photoacoustic spectrometer (Droplet
17 Measurement Technologies, PASS-3) are in preparation in a separate paper (Nakayama et al.
18 manuscript in preparation). Here, only a brief description of the calibration procedures used for the
19 present study is given.

20 The $b_{\text{sca}}(\lambda)$ obtained using the PASS-3 was calibrated with monodisperse polystyrene latex
21 (PSL) particles. PSL particles with diameters of 203, 299, or 400 nm (Duke Scientific), generated by
22 an atomizer, were dried using a diffusion dryer with silica gel and then passed through a differential
23 mobility analyzer (DMA) (TSI, model 3081) and an aerosol particle mass analyzer (APM) (Kanomax,
24 model 3601). The generated aerosols were supplied to the PASS-3 instrument and a condensation
25 particle counter (CPC) (TSI, model 3772). The calibration factors for $b_{\text{sca}}(\lambda)$ were estimated by
26 comparing the $b_{\text{sca}}(\lambda)$ data obtained using the PASS-3 with those calculated based on Mie theory by
27 using the particle diameter, particle number density, and literature refractive index (Nikolov and Ivanov
28 2000). As a result, a strong particle size dependence of the calibration factor for $b_{\text{sca}}(532 \text{ nm})$ was
29 found, while no significant size dependence was observed for $b_{\text{sca}}(405 \text{ nm})$ and $b_{\text{sca}}(781 \text{ nm})$. The
30 results may be explained by the difference in the truncation errors, because the polarization plane of the
31 532 nm laser beam is perpendicular to the view plane, while those of the 405 and 781 nm laser beams
32 are parallel. Therefore, the $b_{\text{sca}}(532 \text{ nm})$ data obtained using the PASS-3 were not used in this work.

33 The $b_{\text{abs}}(405 \text{ and } 781 \text{ nm})$ obtained using the PASS-3 were calibrated with polydisperse
34 propane soot particles. Calibration factors for the $b_{\text{abs}}(\lambda)$ were estimated by comparing the $b_{\text{sca}}(\lambda)$
35 obtained using the PASS-3 with those obtained from subtraction of the corrected $b_{\text{sca}}(\lambda)$ from the $b_{\text{ext}}(\lambda)$
36 determined by changing the laser power passing through the cell in the presence and absence of the
37 soot particles. The $b_{\text{abs}}(532 \text{ nm})$ obtained using the PASS-3 was calibrated with monodisperse nigrosin

38 particles. Similar to the experiments for the PSL described above, nigrosin particles (Wako Chemicals)
39 generated by an atomizer, were passed through a diffusion dryer, DMA, and APM to obtain
40 monodisperse particles. Monodisperse nigrosin particles with diameters of 200, 250, or 300 nm were
41 then supplied to the PASS-3 and the CPC. The $b_{\text{abs}}(532 \text{ nm})$ obtained using the PASS-3 was
42 compared with those calculated based on Mie theory using the particle diameter, particle number
43 density, and literature refractive index (Dinar et al. 2008, Garvey and Pinnick 1983, Lack et al. 2006).
44 The $b_{\text{abs}}(532 \text{ nm})$ was also calibrated using gaseous light absorption by NO₂. Gaseous mixtures of
45 NO₂/air (1-6 ppmv) were prepared by diluting 10 ppmv NO₂ (Japan Fine Products) in air with synthetic
46 air and then supplied to the PASS-3. The $b_{\text{abs}}(532 \text{ nm})$ obtained using the PASS-3 was compared with
47 those determined by changing the laser power passing through the cell in the presence and absence of
48 NO₂. The uncertainties associated with the calibration were then estimated from a combinations of the
49 statistical and estimated systematic uncertainties (including the uncertainties in the particle size and
50 refractive index of the PSL particles) to be 8, 10, 8, 10, and 10% for $b_{\text{abs}}(405 \text{ nm})$, $b_{\text{abs}}(532 \text{ nm})$,
51 $b_{\text{abs}}(781 \text{ nm})$, $b_{\text{sca}}(405 \text{ nm})$, and $b_{\text{sca}}(781 \text{ nm})$, respectively.

52

53

54 **References**

55 Dinar, E. Abo Riziq, A., Spindler, C. Erlick, C. Kissc, G., and Rudich, Y., The complex refractive
56 index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down
57 aerosol spectrometer (CRD-AS), Faraday Discuss., 137, 279-295, 2008.

58 Garvey, D. M. and Pinnick, R. G, Response characteristics of the particle measuring systems Active
59 Scattering Aerosol Spectrometer Probe (ASASP-X). Aerosol Sci. Technol., 2, 477-488, 1983.

60 Lack, D. A., Lovejoy, E. R., Baynard, T., Pettersson, A., and Ravishankara, A. R., Aerosol absorption
61 measurement using photoacoustic spectroscopy: sensitivity, calibration and uncertainty
62 developments, Aerosol Sci. Technol., 40, 697–708, 2006.

63 Nakayama, T., Matsumi, Y., Sato, K., Imamura, T., Yamazaki, A., and Uchiyama, A., Laboratory
64 studies on optical properties of secondary organic aerosols generated during the photooxidation of
65 toluene and the ozonolysis of α -pinene, J. Geophys. Res., 115, doi:10.1029/2010JD014387, 2010.

66 Nikolov, I. D., Ivanov, C. D., Optical plastic refractive measurements in the visible and the near-
67 infrared regions, Appl. Opt., 39, 2067-2070, 2000.