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Abstract. Warm rain in real clouds is produced by the 1 Introduction

collision and coalescence of an initial population of small

droplets. The production of rain in warm cumulus clouds Whether the formation of large droplets trigger the produc-
is still one of the open problems in cloud physics, and a|_ti0n of rain in warm cumulus clouds remains one of the
though several mechanisms have been proposed in the pagen problems in cloud physics. Although several mecha-
at present there is no complete explanation for the rapidlisms have been proposed (Pruppacher and Klett, 1997), at
growth of cloud droplets within the size range of diameterspresent there is no complete explanation for the rapid growth
from 10 to 50 um. By using a collection kerrsthanced by  Of cloud droplets within the size range of diameters from 10
turbulenceand a fully stochastic simulation method, the for- t0 50 pm.

mation of a runaway droplet is modeled through the turbulent Some existing hypotheses try to explain the formation
collection process. When the runaway droplet forms, the tra0f these large droplets by condensation of water vapor
ditional calculation using the kinetic collection equation is molecules onto droplet embryos (Khain et al., 2000). Many
no longer valid, since the assumption of a continuous distri-other studies include droplet coalescence as an important fac-
bution breaks down. There is in essence a phase transitiofpr, mainly through two mechanisms: (i) the collision of large
in the system from a continuous distribution to a continu- droplets growing on giant and ultra-giant nuclei, and (ii) the
ous distributionplus a runaway droplet. This transition can Self-broadening of the droplet spectra by collisions between
be associated tgelation(also calledsol-gel transitiopand  cloud droplets. Regarding this second mechanism, it has been
is proposed here as a mechanism for the formation of larg@mphasized by experimental (Vohl et al., 1999) and theoret-
droplets required to trigger warm rain development in cumu-ical (Pinsky et al., 1999, 2000) studies that there is a signif-
lus clouds. The fully stochastic turbulent model reveals gelaicant acceleration of droplet growth rate by collisions in a
tion and the formation of a drop|et with mass Comparab|e tothbU'Gﬂt flow, with collision efficiencies that may reach val-
the mass of the initial system. The time when the sol-gelues 10 times larger than in the pure gravity case.

transition occurs is estimated with a Monte Carlo method In this study we focus on a model for the growth of cloud
when the parametes (the ratio of the standard deviation droplets by a fully stochastic turbulent collision—coalescence
for the largest droplet mass over all the realizations to theProcess and we will show that this model reveals a sol-
averaged value) reaches its maximum value. Moreover, w@€l transition in the system and the formation of runaway
show that the non-turbulent case does not exhibit the sol-gefiroplets. The term sol-gel transition (also known as gela-
transition that can account for the impossibility of producing tion) is not very familiar in the context of cloud physics, and
raindrop embryos in such a system. In the context of cloudcan be defined as a change from a system with a continuous
physics theorygelationcan be interpreted as the formation droplet distribution to one with a continuous distribution plus
of the “lucky droplet” that grows at a much faster rate than & massive (runaway) droplet.

the rest of the population and becomes the embryo for run-

away raindrops.
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1.1 Approach of previous studies 1975a), which ignores fluctuations in the droplet mass spec-
trum.

The kinetic collection or coagulation equation (hereafter The full stochastic approach was used by Bayewitz et

KCE) has long been used to model the time evolution ofg|. (1974) and Gillespie (1975b), using a constant collection

droplet size distributions due to collection events. The dis-kernel. The stochastic completeness of the KCE was revisited

crete version of this equation can be written as (Pruppachefmore recently by Wang et al. (2006) for realistic collection

and Klett, 1997) kernels, resulting in a novel deduction of a master equation.
NG 11t They demonstrated that, for a system of finite liquid mass
at’ =5 ZK(;‘ — . )ONG — jHIN(j) and narrow initial size distributiorhoth stochastic correla-
j=1 tions and fluctuationare important.
o0
—N(@) ZK(i, HNG) (1) 1.2 Approach of this study
j=1

where N (i, 1) is the average number of droplets with mass W€ @Pply the pure stochastic model (Gillespie, 1975a) to per-
x;, andK (i, j) is the coagulation kernel related to the prob- form a fully stochastic collision—coalescence calculation (see
ability of coalescence of two drops of massesand.;. In Appendix A) following Laurenzi et al. (2002), that inherently

Eq. (1), the time rate of change of the average number 0f'ncqrporates all sto_chastic corr_elatior;sresent in_ th_e col-
droplets with mass; is determined as the difference between €Ction process. This computational procedure is rigorously
two terms: the first term describes the average rate of produd22S€d on the probability distribution instead of using the ki-
tion of droplets of mass; due to coalescence between pairs Netic collection equation. o o
of droplets whose masses add up to masand the second As the collection process is stochastic in nature, itis, 'there—
term describes the average rate of depletion of droplets witt{C"€; more accurately described by the master equation for
massyx; due to their collisions and coalescence with other € joint probability distribution? (ny, n2, ..., ni, ..., 1) for
droplets. Although the term stochastic has been associatel!® 0ccupation numbefs= (n1, nz, ...,n, ...) at imer. This
with the KCE for historical reasons, itis clearly deterministic €duation can be written as (Bayewitz et al., 1974)
and hasho stochastic correlations or fluctuations included 8P (i) N N

As a matter of fact, the average spectrum obtained from = Z Z K@, )H)(ni+D@n;+1)
Eg. (1) and the ensemble averaged spectrum obtained over ot i=1j=i+1
different realizations of the stochastic collection process arep(... n; +1, cotj+ 1 oni =150
different. The solution to the KCE and the expected val- 1
ues calcu_lated from the_ stochastic process are _only equal |f+Z SKG i) +2) (i D Py +2, i — 1,0 1)
the covariances are omitted from the probabilistic model, as = 2
shown in Bayewitz et al. (1974) and Tanaka and Nakazawa »
(1993). It is only when this condition is fulfilled that the de- _Z Z K (i, jynin; P(it; 1)

terministic solution provided by Eq. (1) corresponds to the =1 =+1
average value of; over many realizations of the stochastic
process. = 5K G.Dni(ni = D PGz 2)

The relevance of fluctuations compared to mean particle ;=1
growth was discussed many years ago by Telford (1955)Note that the KCE can be recovered from Eq. (2) by consid-
Robertson (1974) and Young (1975) and more recently byering the mean value of;:
Kostinski and Shaw (2005). Telford (1955) introduced the '
probabilistic interpretation assuming that the concentration<nk> _ anp(ﬁ; 0, A3)
of droplets available for collection remains unchanged, and =
that the collecting droplets do not interact among themselves.
Robertson (1974) basically follows the same approach as imnd assuming, as in Bayewitz et al. (1974), t{mtnj) =
Telford (1955), using a Monte Carlo procedure to calculate(ni)(nj).
the collection process, also considered an idealized cloud of The first moment of the distribution &f (i, r) corresponds
constant volume and assumed that only drop—droplet interto the total mass in the systenM(); the second moment
actions are permitted. However, the method for selecting th€M>) for a number of droplet categories or sizes of the dis-
time between coalescence events is not completely stochasrete distribution &y), is defined as
tic. Kostinski and Shaw (2005) adopted a version of Telford’s
approach to illustrate the influence of stochastic fluctuations,
which can lead to a factor-of-10 acceleration in the growth of
a few lucky drops. However, all these studies folloeymsi-
stochastic approacksee the complete analysis in Gillespie,
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of a continuous distribution is no longer true. We demon-
strate that the time when the parameddiEq. 5) reaches its
maximum value is a good estimate of the gelation tifpg.

We first present our results using the fully stochastic model
for a mono-dispersed initial droplet distribution (Sect. 2.1),
Note thatM> may become undefined if the initial number then compare the results from the fully stochastic simula-
of droplets is small or if the kernek (i, j) increases suffi- tion with the results from the KCE with turbulence for a bi-
ciently rapidly withx; andx;. In that case, the total mass dispersed distribution, and (Sect. 2.2) and (Sect. 2.3) present
in the system ¥) starts to decrease. This is usually in- the results for the non-turbulent case. Finally, in Sect. 2.4
terpreted to mean that a macroscopic runaway droplet hawe calculate the time evolution of sol concentration, evalu-
formed (known as gel) and the system exhibits a phase sol- ate the performance of the stochastic algorithm and calculate
gel transition (also calledelation). After this point in time,  the Monte Carlo errors.

the average calculated from the stochastic process will differ

Ng
Ma(t) =Y xZN(i.1). 4)
i=1

from the average obtained from the KCE (Eq. 1), and there2.1 Results for the product collection kernel using a

is a transition from a system with a continuous droplet dis-
tribution to one with a continuous distributigusa massive
runaway droplet.

Note that whergelationoccurs, mass conservation is ex-
pected to break down. The gelation tinfge), is defined as

as the largest time such that the discrete model (1) has a s&t al.

lution with M;(t) = M1(0) for ¢ < Tgej and My (1) < M1(0)
for t > Tyel, WhereMy is the total mass of the system.

Since analytical expressions for the gelation time only ex-- o , >
gimated from 1000 realizationsk(= 1000) of the Gillespie

ist for very simple kernels, Inaba et al. (1999) proposed that i
could be estimated numerically by Monte Carlo simulations
(an approach followed in Alfonso et al., 2008, 2010).

The gelation time7gel, is the point in time when the max-
imum of the ratiop (see Eq. 5) is reached:

p=0o(My1)/M1, )

M
whereM, 1 is the ensemble mean of the mass of the largest

droplet ands (M| 1) is the standard deviation for the largest
droplet massd) over all the realizations. This standard de-
viation is calculated as

1&
o(Mu)= |2 (M{; —Mi1)? 6)
i=1

fully stochastic model

The calculations were performed for an initial mono-disperse
distribution of 100 droplets of 14 um in radius (droplet mass
1.15x 10-8g), with € =5.49x 10*°cm?g~2s~1 (Alfonso
2008) in a volume of one cubic centimeter. This
initial concentration is typical of maritime cumulus clouds
and corresponds to a liquid water content (LWC) of about
1.15gnT3. The time evolution of the parametgrwas es-

(1976) Monte Carlo algorithm. The results of this simula-
tion are displayed in Fig. 1 and we observe that the maxi-
mum of p (solid line) was obtained at = 1335s. Indepen-
dently, the gelation time can be obtained analytically (Drake
and Wright, 1972) from

M>(0)

D= T e 07 "

Tgel=[C x MZ(I?O)]_l 8

and was found to be 1379s, very close (less than 5 % differ-
ence) to the time whep reaches its maximum value. After
this time, the largest droplet continues to grow by accretion
of smaller droplets and the total ma&g predicted by the

In Eq. (6), M{ is the largest droplet mass for each realiza- KCE starts to decrease (Wetherill, 1990), as seen in Fig. 1.
tion andK is the number of realizations of the Monte Carlo Thus, the numerical method provides a reliable approxima-
algorithm. tion of the gelation time.

The gelation time, estimated as described above, can be
interpreted as the expected time of formation of the “lucky 2.2 Comparison with KCE results under turbulent
droplet” that becomes the embryo for runaway raindrops, and conditions
in this study, it is estimated from Monte Carlo simulations

under turbulent conditions. In many models, it is usual to model collisions between

droplets under idealized, pure gravity conditions with a col-
lection kernel of the form
2 Results
Kg(xi,x)) =m(ri +r)?|Vxi) = V)| EGrinry).  (9)
It is well known that the KCE (Eg. 1) only has analytical so-
lutions for a few selected kernels such as the product kerneThis hydrodynamic kernel under pure gravity conditions
K (i, j) = Cx;x;. Note that the validity of the KCE will break  (Kg) does not take into account the turbulence effects, and
down once gelation occurs, since the underlying assumptioronsiders that droplets with different massgsandx ;, and
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Fig. 2. Time evolution of total mass calculated from the numeri-

Fig. 1. Time evolution of the parametes defined in Eq. (5) . S . .
(dashed line and right axis) and the total mass (solid line and IeftCal _sc_)lutlon of the kinetic (_:oll_ectlon equaﬂo_n (KCE) for wrbulent
axis) calculated from the numerical solution of the KCE. The re- collision—coalescence (solid line and left axis) and the parameter

sults were obtained for the product kerrfélx, y) = Cxy, (C = (dashed line and right axis) estimated from the Monte Carlo algo-
5.49x 100cmig—2s1). rithm.

2.3 Comparison with KCE results under non-turbulent,

corresponding radit; andr;) have different settling veloci- > "
pure gravity conditions

ties.
In turbulent air, the hydrodynamlc k_ernKlg (Eq. 9) can To emphasize the importance of the turbulence enhancement
be enhanced due to (a) an increase in relative velocity be-

. . in the collection process, an additional simulation was per-
tween droplets (transport effect) and (b) an increase in th , o

- - - . ormed for non-turbulent flow under the Earth’s gravitational
collision efficiency (the droplet hydrodynamic interaction ef-

fec) These effecs were conscered by mplemening tnd% 16 eSS il conen oo oo 22 The ol
turbulence-induced collision enhancement fackm(x;, 9

S . was found to be equal to 99.88% of the initial mass (see
x;) as calculated in Pinsky et al. (2008) for a cumulommbus,Fi 3), illustrating mass conservation for this case. Further-
with dissipation rates = 0.1nm?s-3 and Reynolds number ' '9° °) 9 '

Re, =2 x 10%, and for cloud droplets with radii 21 pum. more, the parameter (Eq. 5) estimated from the stochas-

. tic model never reaches its maximum, confirming that the
Consequently, the turbulent collection kernel has the form . .
sol—gel transition does not take place under these conditions.

Kub(xi, Xj) = Prum(xi, xj) Kg(xi, x;). (10)  Therefore, the results suggest that the collision—coalescence
) i o ) process under non-turbulent conditions does not show a sol—

The simulation of collisions in a turbulent cloud was per- ye| phase transition for time intervals relevant to the problem

formed considering a cloud volume of 1emnd an initial _under discussion (warm rain initiation), with no generation

bl-d_lspersed droplet distribution: 150 drople_ts of _10 MM in of o runaway droplet.

radius, and another 150 droplets of 12.6 um in radius, corre-

sponding to a LWC of 1.9 gm®. Collision efficienciesE(r;, 2.4 Time evolution of sol concentration and

rj) in Eq. (9) are calculated according to Hall (1980). performance of the Monte Carlo algorithm

The evolution of the total mass obtained by solving the

KCE (Eg. 1) numerically under these conditions is shown inIn order to check the performance of the Monte Carlo al-

Fig. 2 (solid line). Note that the total mass (expressed in %gorithm for the turbulent collection kernel (Eq. 10), the en-

of the initial total mass) is no longer conserved after 1000 s.semble averages (at each time) for the sol concentration over

The behavior of the parametei(Eq. 5) evaluated from 1000 1000 realizations were compared with the numerical solution

realizations of the Monte Carlo algorithm is also shown in of the KCE. As can be observed in Fig. 4, the time evolution

Fig. 2 (dashed line), indicating a maximum at 1055 s, againof the sol concentration predicted by the two models was al-

very close (about 5.5 % difference) to the time when the nu-most identical until the sol—gel transition approaches and the

merical solution of Eq. (1) breaks down. These results clearlybreakdown of the KCE takes place.

indicate that the sol—gel transition and the formation of arun-  Although this is a good check of the Monte Carlo algo-

away droplet took place around 1000 s and that the paramedthm, a formal statistical test (Z-test) test was applied to

ter p (Eq. 5) can be used as an estimator of the gelation timecheck whether the solution obtained from the deterministic

when realistic turbulence collection kernels are used. KCE and the averages over 1000 realizations of the Monte

Atmos. Chem. Phys., 13, 521529 2013 www.atmos-chem-phys.net/13/521/2013/
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(N} = Nkce, WhereNKC_E is the sol concent_ratlon calculated Fig. 4. Time evolution of the sol concentration obtained from the
from the KCE, and V) is the true stochastic average calcu- nymerical solution of the kinetic collection equation (solid line) and

lated using the Monte Carlo method (Eqg. 11) from the Monte Carlo algorithm (crosses).
1&
—_ 1
(N)= K ZlN (11) 350 = 0.12 =
i=

Monte Carlo errors (Turbulent Collection)
Monte Carlo averages
rms fluctuation/N

In Eq. (11),N' is the sol concentration for each Monte Carlo
realization. As expected, at a 5% significance level, the null .,
hypothesis IJ: (N) = Nkce is rejected only after approxi-
mately 900 s due to the breakdown of the deterministic KCE
as the sol—gel transition approaches.

Following Gillespie (1975b), the errors of the Monte Carlo
algorithm were calculated in order to check the accuracy in
the calculation of Eqg. (11). They were estimated as the rms
(root mean square) of the fluctuations that may be expected
to occur about the average (Eq. 11). Then, for the rms fluctu-
ations we have

SOL CONCENTRATION (cm?)
Fluctuations / Total Concentration

1 X L2 1K i 2
s (N(D)) = E;[N 0] - [E ;N <r>}
100 — T T T T 1T T T
:<N2>— (N>2’ (12) 0 200 400 E®S) 600 800 1000

where(N) is the ensemble average calculated according tq:ig. 5.Time evolution of the sol concentration obtained from Monte

Eq. (11). The fluctuations about the average are displayeeario algorithm (crosses and left axis) fluctuations about the aver-
in Fig. 5 as vertical bars together with the time evolution of age (vertical bars and left axis) and the ratigv (¢)) /(N @) (solid
the sol concentration obtained from the Monte Carlo simula-line and right axis).

tions. If the condition
a(N@)/(N®) <1 (13)

is fulfilled, then the results found in separate realizations will

be practically identical (Gillespie, 1975b) and the estimateOne of the outstanding problems in cloud physics is to ex-
(N) will be sufficiently accurate. The ratio (13) was calcu- plain how raindrops can grow by condensation and collision—
lated in the time interval [0, 1000] and the condition was al- coalescence in times as short as 20 min. In order to form a
ways fulfilled (See Fig. 5), corroborating the accuracy of theraindrop with a radius of 1mm in a warm cloud, a total of
calculations of N) for the turbulent collection kernel. 10° droplets with radius of 10 um must collide and coalesce.

3 Discussion and conclusions

www.atmos-chem-phys.net/13/521/2013/ Atmos. Chem. Phys., 13, 329-2013
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Fig. 6. Time evolution of the ensemble means over all the realiza- _. 73 Fig. 4 but for th it
tions for the largest (solid line) and second largest (dashed Iinef'g' -=ame as Fig. 4 but for the pure gravity case.
droplet masses (expressed in multiples of a 10 um droplet mass) for

the turbulent case. 500 =

When droplets are small and of uniform size, collisions be- 400

tween them are not very efficient and collision events do not

occur with the required rate to produce raindrops until some 1

of the droplets grow to a radius of about 20 pm. s b
The fully stochastic turbulent process presented in this naway Gront

study generates a “lucky droplet” that grows faster than the

rest of the droplet population. The appearance of a runaway

droplet after gelation is a possible mechanism to explain the

formation of raindrops. To further clarify this point, we cal-

culate the time evolution of the mass of the largest droplet

and second largest droplets as ensemble averages over all 10 =

the realizations of the fully stochastic simulations. Figure 6

shows the results for the turbulent case, clearly indicating a _/'_‘_J

significant gap between the mass of the largest and second

largest droplets after 1000ss. | he difference i L

argest droplets after s. In contrast, the difference in 0 200 800 1200 1600 2000

mass in the non-turbulent, pure gravity case shown in Fig. 7 TIME (SEC)

remains much smaller and with no runaway behavior. . i . .

. . . Fig. 8. Time evolution ofMl/Mz (ratio between the largest and the
The gelation time (Eq. 5) estimated from a set of random o .
lizati . d value for the ti fth second largest droplet) for one of the realizations of the stochastic

realzgtlons constitutes an expected value for the time of t gjrocess for the turbulent case.

formation of the runaway droplet and has to be compare

with the deterministic result obtained from the KCE for a

particular system. However, the gelation time is a stochastiGjroplet in the system. When this ratio increases, the system
variable whose empirical distribution can be calculated fromis in runaway growth, otherwise it is not. We have estimated
the different realizations of the Monte Carlo algorithm. The the time evolution of the ratiMl/MZ from each realiza-
problem here is to find a criterion to assess whether a systerjon to determine the time when this ratio started to increase
(for each individual realization) is in runaway growth. For (Fig. 8 shows the time evolution of the raMl/Mz for one
example, Malyshkin and Goldman (2001) declare runawayof the realizations). Thus, an empirical distribution for the
growth when the coalescence rate of the largest particle igelation times was obtained by generating 1000 realizations
50 % of the total coalescence rate. Aldous (1997) estimate@f the Monte Carlo algorithm (Fig. 9). A similar approach

the runaway time from Monte Carlo simulations via the max- was taken to generate the distribution for the runaway parti-
imum (over time) of the size of the second largest droplet. Acles radii at the gelation time (Fig. 10).

very suitable indicator (Ormel et al., 2010)M1/M2, ie.
the ratio between the mass of the largest to the second largest

M1/M2
Il

200 =

Atmos. Chem. Phys., 13, 521529 2013 www.atmos-chem-phys.net/13/521/2013/
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120 = However, in our case the value dfvaries, as the number of
collisions required to form a runaway droplet is different for
each realization of the Monte Carlo process.
— The fully stochastic simulations under turbulent conditions
(Eapiral Distibuton of Gelaton Times performed here include a collision enhancement factor for
20 — = collisions between droplets with radii 21 um, so the role
of turbulence in producing the runaway droplet is likely un-
derestimated in the present study. Since the nucleation and
condensation processes are not yet included in this model,
m ] future developments will attempt to include the combined ef-
fect of turbulent collection and condensation (McGraw and
Liu, 2003) on droplet growth.

FREQUENCY
L
|

40 —4

Appendix A

o 1 | The Monte Carlo algorithm

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
TIME (SEC)

The stochastic algorithm developed by Gillespie (1976) for
Fig. 9. Empirical distribution for the gelation times obtained for the Chemlf;al reactions Wf”ls reformulated to Slmulgte the kinetic
turbulent case. The results were generated from 1000 realizations g¥€havior of aggregating systems by Laurenzi et al. (2002)
the Monte Carlo algorithm. by defining species as a type of aggregate with a specific
size and composition. We have applied this formulation to
droplets of different sizes under turbulent conditions.

Within this framework, there is a unique index u for each
pair of dropletsi, j that may collide. For a system with
specieq$1,52,..., Sn), i € %ﬂ) The set{u} defines the

Empirical Distribution total collision space, and is equal to the total number of possi-
Runaway Droplets radi ble interactions. With this set the collision probability density
function P (z, u) can be determined. This quantity is defined
by

250 ==

200 =

i
15
o

]

P (z, u) dr = Probability that at timé the next collisionin

FREQUENCY
L

volumeV will occur in the infinitesimal interval

=
o
o
]

(t+ 7,t+ 7 +dr) and will be au collision.

Gillespie (1976) derived this probability density function for
a system ofV species as

50 =

N(N+1)
2

P(t,pydr =a,exp| — Y ajr. (A1)
j=1

15 20 25 30 35 40 45 50 55 60 65 70 75 80
DROPLET RADII (um)

N(N+1 - -
Fig. 10. Empirical distribution for the radius of the runaway Hereu e % The functionsy, are calculated according

droplets. The results were generated from 1000 realizations of th&0

Monte Carlo algorithm. -
a(i, j) = VYK (i, jn;n ;dr = Pr{Probability that two

Kostinski and Shaw (2005) present a distribution of the unlike particles andj with populationgnumber of particles

time to produce drizzle by calculating the convolution of _ _ o o o
the exponentially distributed times between collisions. They M andn; will collide within the imminent time intervgl  (A2)

Nc
found the distribution offy, = Y_ #;, with N¢ fixed, where
i=1
the t; are the times between droplet collisions aNg the
number of collisions, which have an exponential distribution.

www.atmos-chem-phys.net/13/521/2013/ Atmos. Chem. Phys., 13, 3292013
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1. Initialize (set initial numbers of species, set 0, set

i —1 . stopping criteria).
a(i,i):V‘lK(i,i)Lz)thPr{Probabllltythat pping )

. o ] 2. Calculate the functiom,, for all p.
two particles of the same speciesith population(number

_ _ o o o 3. Chooset according to the exponential distribution
of particleg n; collide within the imminent time interva(A3) P1(7) = aexp(—at)dr.
The collision probability density function is the basis of the
Monte Carlo algorithm. To calculate the evolution of the sys-
tem, two random numbersand, must be generated. Equa- 5. Change the numbers of species to reflect the event of a
tion (A1) leads directly to the answers of the aforementioned collision.
questions. First, we estimate the probability distribution as a

4. Calculateu according to the distributio®, (1) = %“

function of time by summing® (t, u)dr (Eq. Al) over all 6. If stopping criteria are not met, return to step 2.
possible collisionsg), which results in
N+ @D N+
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