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Abstract. Warm rain in real clouds is produced by the
collision and coalescence of an initial population of small
droplets. The production of rain in warm cumulus clouds
is still one of the open problems in cloud physics, and al-
though several mechanisms have been proposed in the past,
at present there is no complete explanation for the rapid
growth of cloud droplets within the size range of diameters
from 10 to 50 µm. By using a collection kernelenhanced by
turbulenceand a fully stochastic simulation method, the for-
mation of a runaway droplet is modeled through the turbulent
collection process. When the runaway droplet forms, the tra-
ditional calculation using the kinetic collection equation is
no longer valid, since the assumption of a continuous distri-
bution breaks down. There is in essence a phase transition
in the system from a continuous distribution to a continu-
ous distributionplus a runaway droplet. This transition can
be associated togelation(also calledsol–gel transition) and
is proposed here as a mechanism for the formation of large
droplets required to trigger warm rain development in cumu-
lus clouds. The fully stochastic turbulent model reveals gela-
tion and the formation of a droplet with mass comparable to
the mass of the initial system. The time when the sol–gel
transition occurs is estimated with a Monte Carlo method
when the parameterρ (the ratio of the standard deviation
for the largest droplet mass over all the realizations to the
averaged value) reaches its maximum value. Moreover, we
show that the non-turbulent case does not exhibit the sol–gel
transition that can account for the impossibility of producing
raindrop embryos in such a system. In the context of cloud
physics theory,gelationcan be interpreted as the formation
of the “lucky droplet” that grows at a much faster rate than
the rest of the population and becomes the embryo for run-
away raindrops.

1 Introduction

Whether the formation of large droplets trigger the produc-
tion of rain in warm cumulus clouds remains one of the
open problems in cloud physics. Although several mecha-
nisms have been proposed (Pruppacher and Klett, 1997), at
present there is no complete explanation for the rapid growth
of cloud droplets within the size range of diameters from 10
to 50 µm.

Some existing hypotheses try to explain the formation
of these large droplets by condensation of water vapor
molecules onto droplet embryos (Khain et al., 2000). Many
other studies include droplet coalescence as an important fac-
tor, mainly through two mechanisms: (i) the collision of large
droplets growing on giant and ultra-giant nuclei, and (ii) the
self-broadening of the droplet spectra by collisions between
cloud droplets. Regarding this second mechanism, it has been
emphasized by experimental (Vohl et al., 1999) and theoret-
ical (Pinsky et al., 1999, 2000) studies that there is a signif-
icant acceleration of droplet growth rate by collisions in a
turbulent flow, with collision efficiencies that may reach val-
ues 10 times larger than in the pure gravity case.

In this study we focus on a model for the growth of cloud
droplets by a fully stochastic turbulent collision–coalescence
process and we will show that this model reveals a sol–
gel transition in the system and the formation of runaway
droplets. The term sol–gel transition (also known as gela-
tion) is not very familiar in the context of cloud physics, and
can be defined as a change from a system with a continuous
droplet distribution to one with a continuous distribution plus
a massive (runaway) droplet.
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1.1 Approach of previous studies

The kinetic collection or coagulation equation (hereafter
KCE) has long been used to model the time evolution of
droplet size distributions due to collection events. The dis-
crete version of this equation can be written as (Pruppacher
and Klett, 1997)

∂N(i, t)

∂t
=

1

2

i−1∑
j=1

K(i − j,j)N(i − j)N(j)

−N(i)

∞∑
j=1

K(i,j)N(j) (1)

whereN(i, t) is the average number of droplets with mass
xi , andK(i,j) is the coagulation kernel related to the prob-
ability of coalescence of two drops of massesxi andxj . In
Eq. (1), the time rate of change of the average number of
droplets with massxi is determined as the difference between
two terms: the first term describes the average rate of produc-
tion of droplets of massxi due to coalescence between pairs
of droplets whose masses add up to massxi , and the second
term describes the average rate of depletion of droplets with
massxi due to their collisions and coalescence with other
droplets. Although the term stochastic has been associated
with the KCE for historical reasons, it is clearly deterministic
and hasno stochastic correlations or fluctuations included.

As a matter of fact, the average spectrum obtained from
Eq. (1) and the ensemble averaged spectrum obtained over
different realizations of the stochastic collection process are
different. The solution to the KCE and the expected val-
ues calculated from the stochastic process are only equal if
the covariances are omitted from the probabilistic model, as
shown in Bayewitz et al. (1974) and Tanaka and Nakazawa
(1993). It is only when this condition is fulfilled that the de-
terministic solution provided by Eq. (1) corresponds to the
average value ofnk over many realizations of the stochastic
process.

The relevance of fluctuations compared to mean particle
growth was discussed many years ago by Telford (1955),
Robertson (1974) and Young (1975) and more recently by
Kostinski and Shaw (2005). Telford (1955) introduced the
probabilistic interpretation assuming that the concentration
of droplets available for collection remains unchanged, and
that the collecting droplets do not interact among themselves.
Robertson (1974) basically follows the same approach as in
Telford (1955), using a Monte Carlo procedure to calculate
the collection process, also considered an idealized cloud of
constant volume and assumed that only drop–droplet inter-
actions are permitted. However, the method for selecting the
time between coalescence events is not completely stochas-
tic. Kostinski and Shaw (2005) adopted a version of Telford’s
approach to illustrate the influence of stochastic fluctuations,
which can lead to a factor-of-10 acceleration in the growth of
a few lucky drops. However, all these studies follow aquasi-
stochastic approach(see the complete analysis in Gillespie,

1975a), which ignores fluctuations in the droplet mass spec-
trum.

The full stochastic approach was used by Bayewitz et
al. (1974) and Gillespie (1975b), using a constant collection
kernel. The stochastic completeness of the KCE was revisited
more recently by Wang et al. (2006) for realistic collection
kernels, resulting in a novel deduction of a master equation.
They demonstrated that, for a system of finite liquid mass
and narrow initial size distribution,both stochastic correla-
tions and fluctuationsare important.

1.2 Approach of this study

We apply the pure stochastic model (Gillespie, 1975a) to per-
form a fully stochastic collision–coalescence calculation (see
Appendix A) following Laurenzi et al. (2002), that inherently
incorporates all stochastic correlationspresent in the col-
lection process. This computational procedure is rigorously
based on the probability distribution instead of using the ki-
netic collection equation.

As the collection process is stochastic in nature, it is, there-
fore, more accurately described by the master equation for
the joint probability distributionP(n1, n2, ..., nk, ..., t) for
the occupation numbers̄n = (n1, n2, ...,nk, ...) at timet . This
equation can be written as (Bayewitz et al., 1974)

∂P (n̄)

∂t
=

N∑
i=1

N∑
j=i+1

K(i,j)(ni + 1)(nj + 1)

P (...,ni + 1, ...,nj + 1, ...,ni+j − 1, ...; t)

+

N∑
i=1

1

2
K(i, i)(ni + 2)(ni + 1)P (...,ni + 2, ...,n2i − 1, ...; t)

−

N∑
i=1

N∑
j=i+1

K(i,j)ninjP(n̄; t)

−

N∑
i=1

1

2
K(i, i)ni(ni − 1)P (n̄; t). (2)

Note that the KCE can be recovered from Eq. (2) by consid-
ering the mean value ofnk:

〈nk〉 =

∑
n̄

nkP(n̄; t), (3)

and assuming, as in Bayewitz et al. (1974), that
〈
ninj

〉
=

〈ni〉
〈
nj

〉
.

The first moment of the distribution ofN(i, t) corresponds
to the total mass in the system (M1); the second moment
(M2) for a number of droplet categories or sizes of the dis-
crete distribution (Nd), is defined as
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M2(t) =

Nd∑
i=1

x2
i N(i, t). (4)

Note thatM2 may become undefined if the initial number
of droplets is small or if the kernelK(i,j) increases suffi-
ciently rapidly withxi andxj . In that case, the total mass
in the system (M1) starts to decrease. This is usually in-
terpreted to mean that a macroscopic runaway droplet has
formed (known as agel) and the system exhibits a phase sol–
gel transition (also calledgelation). After this point in time,
the average calculated from the stochastic process will differ
from the average obtained from the KCE (Eq. 1), and there
is a transition from a system with a continuous droplet dis-
tribution to one with a continuous distributionplusa massive
runaway droplet.

Note that whengelationoccurs, mass conservation is ex-
pected to break down. The gelation time,Tgel, is defined as
as the largest time such that the discrete model (1) has a so-
lution with M1(t) ≡ M1(0) for t < Tgel andM1(t) < M1(0)

for t > Tgel, whereM1 is the total mass of the system.
Since analytical expressions for the gelation time only ex-

ist for very simple kernels, Inaba et al. (1999) proposed that it
could be estimated numerically by Monte Carlo simulations
(an approach followed in Alfonso et al., 2008, 2010).

The gelation time,Tgel, is the point in time when the max-
imum of the ratioρ (see Eq. 5) is reached:

ρ = σ(ML1)
/
ML1, (5)

whereML1 is the ensemble mean of the mass of the largest
droplet andσ(ML1) is the standard deviation for the largest
droplet mass (σ) over all the realizations. This standard de-
viation is calculated as

σ(ML1) =

√√√√ 1

K

K∑
i=1

(M i
L1 − ML1)2 (6)

In Eq. (6),M i
L1 is the largest droplet mass for each realiza-

tion andK is the number of realizations of the Monte Carlo
algorithm.

The gelation time, estimated as described above, can be
interpreted as the expected time of formation of the “lucky
droplet” that becomes the embryo for runaway raindrops, and
in this study, it is estimated from Monte Carlo simulations
under turbulent conditions.

2 Results

It is well known that the KCE (Eq. 1) only has analytical so-
lutions for a few selected kernels such as the product kernel
K(i,j) = Cxixj . Note that the validity of the KCE will break
down once gelation occurs, since the underlying assumption

of a continuous distribution is no longer true. We demon-
strate that the time when the parameterρ (Eq. 5) reaches its
maximum value is a good estimate of the gelation timeTgel.
We first present our results using the fully stochastic model
for a mono-dispersed initial droplet distribution (Sect. 2.1),
then compare the results from the fully stochastic simula-
tion with the results from the KCE with turbulence for a bi-
dispersed distribution, and (Sect. 2.2) and (Sect. 2.3) present
the results for the non-turbulent case. Finally, in Sect. 2.4
we calculate the time evolution of sol concentration, evalu-
ate the performance of the stochastic algorithm and calculate
the Monte Carlo errors.

2.1 Results for the product collection kernel using a
fully stochastic model

The calculations were performed for an initial mono-disperse
distribution of 100 droplets of 14 µm in radius (droplet mass
1.15× 10−8g), with C = 5.49× 1010 cm3 g−2 s−1 (Alfonso
et al., 2008) in a volume of one cubic centimeter. This
initial concentration is typical of maritime cumulus clouds
and corresponds to a liquid water content (LWC) of about
1.15 g m−3. The time evolution of the parameterρ was es-
timated from 1000 realizations (K = 1000) of the Gillespie
(1976) Monte Carlo algorithm. The results of this simula-
tion are displayed in Fig. 1 and we observe that the maxi-
mum ofρ (solid line) was obtained atτ = 1335 s. Indepen-
dently, the gelation time can be obtained analytically (Drake
and Wright, 1972) from

M2(τ ) =
M2(0)

1− C × M2(0)τ
(7)

Tgel = [C × M2(t0)]
−1 (8)

and was found to be 1379 s, very close (less than 5 % differ-
ence) to the time whenρ reaches its maximum value. After
this time, the largest droplet continues to grow by accretion
of smaller droplets and the total massM1 predicted by the
KCE starts to decrease (Wetherill, 1990), as seen in Fig. 1.
Thus, the numerical method provides a reliable approxima-
tion of the gelation time.

2.2 Comparison with KCE results under turbulent
conditions

In many models, it is usual to model collisions between
droplets under idealized, pure gravity conditions with a col-
lection kernel of the form

Kg(xi,xj ) = π(ri + rj )
2
∣∣V (xi) − V (xj )

∣∣E(ri, rj ). (9)

This hydrodynamic kernel under pure gravity conditions
(Kg) does not take into account the turbulence effects, and
considers that droplets with different masses (xi andxj , and
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Fig. 1. Time evolution of the parameterρ defined in Eq. (5)
(dashed line and right axis) and the total mass (solid line and left
axis) calculated from the numerical solution of the KCE. The re-
sults were obtained for the product kernelK(x,y) = Cxy, (C =

5.49× 1010cm3 g−2 s−1).

corresponding radiiri andrj ) have different settling veloci-
ties.

In turbulent air, the hydrodynamic kernelKg (Eq. 9) can
be enhanced due to (a) an increase in relative velocity be-
tween droplets (transport effect) and (b) an increase in the
collision efficiency (the droplet hydrodynamic interaction ef-
fect). These effects were considered by implementing the
turbulence-induced collision enhancement factorPTurb(xi ,
xj ) as calculated in Pinsky et al. (2008) for a cumulonimbus,
with dissipation rateε = 0.1 m2 s−3 and Reynolds number
Reλ = 2 × 104, and for cloud droplets with radii≤ 21 µm.
Consequently, the turbulent collection kernel has the form

KTurb(xi,xj ) = PTurb(xi,xj )Kg(xi,xj ). (10)

The simulation of collisions in a turbulent cloud was per-
formed considering a cloud volume of 1 cm3 and an initial
bi-dispersed droplet distribution: 150 droplets of 10 µm in
radius, and another 150 droplets of 12.6 µm in radius, corre-
sponding to a LWC of 1.9 g m−3. Collision efficienciesE(ri ,
rj ) in Eq. (9) are calculated according to Hall (1980).

The evolution of the total mass obtained by solving the
KCE (Eq. 1) numerically under these conditions is shown in
Fig. 2 (solid line). Note that the total mass (expressed in %
of the initial total mass) is no longer conserved after 1000 s.
The behavior of the parameterρ (Eq. 5) evaluated from 1000
realizations of the Monte Carlo algorithm is also shown in
Fig. 2 (dashed line), indicating a maximum at 1055 s, again
very close (about 5.5 % difference) to the time when the nu-
merical solution of Eq. (1) breaks down. These results clearly
indicate that the sol–gel transition and the formation of a run-
away droplet took place around 1000 s and that the parame-
terρ (Eq. 5) can be used as an estimator of the gelation time
when realistic turbulence collection kernels are used.
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Fig. 2. Time evolution of total mass calculated from the numerical solution of the kinetic collection 

equation (KCE) for turbulent collision coalescence (solid line and left axis) and the parameter ρ 

(dashed line and right axis) estimated from the Monte Carlo algorithm.  

Fig. 2. Time evolution of total mass calculated from the numeri-
cal solution of the kinetic collection equation (KCE) for turbulent
collision–coalescence (solid line and left axis) and the parameterρ

(dashed line and right axis) estimated from the Monte Carlo algo-
rithm.

2.3 Comparison with KCE results under non-turbulent,
pure gravity conditions

To emphasize the importance of the turbulence enhancement
in the collection process, an additional simulation was per-
formed for non-turbulent flow under the Earth’s gravitational
field with the same initial conditions as in Sect. 2.2. The total
mass from the numerical integration of the KCE after 2000 s
was found to be equal to 99.88 % of the initial mass (see
Fig. 3), illustrating mass conservation for this case. Further-
more, the parameterρ (Eq. 5) estimated from the stochas-
tic model never reaches its maximum, confirming that the
sol–gel transition does not take place under these conditions.
Therefore, the results suggest that the collision–coalescence
process under non-turbulent conditions does not show a sol–
gel phase transition for time intervals relevant to the problem
under discussion (warm rain initiation), with no generation
of a runaway droplet.

2.4 Time evolution of sol concentration and
performance of the Monte Carlo algorithm

In order to check the performance of the Monte Carlo al-
gorithm for the turbulent collection kernel (Eq. 10), the en-
semble averages (at each time) for the sol concentration over
1000 realizations were compared with the numerical solution
of the KCE. As can be observed in Fig. 4, the time evolution
of the sol concentration predicted by the two models was al-
most identical until the sol–gel transition approaches and the
breakdown of the KCE takes place.

Although this is a good check of the Monte Carlo algo-
rithm, a formal statistical test (Z-test) test was applied to
check whether the solution obtained from the deterministic
KCE and the averages over 1000 realizations of the Monte

Atmos. Chem. Phys., 13, 521–529, 2013 www.atmos-chem-phys.net/13/521/2013/
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Fig. 3.Same as Fig. 2 but for the pure gravity case.

Carlo method are equal. The null hypothesis would be H0:
〈N〉 = NKCE, whereNKCE is the sol concentration calculated
from the KCE, and〈N〉 is the true stochastic average calcu-
lated using the Monte Carlo method (Eq. 11)

〈N〉 =
1

K

K∑
i=1

N i (11)

In Eq. (11),N i is the sol concentration for each Monte Carlo
realization. As expected, at a 5 % significance level, the null
hypothesis H0: 〈N〉 = NKCE is rejected only after approxi-
mately 900 s due to the breakdown of the deterministic KCE
as the sol–gel transition approaches.

Following Gillespie (1975b), the errors of the Monte Carlo
algorithm were calculated in order to check the accuracy in
the calculation of Eq. (11). They were estimated as the rms
(root mean square) of the fluctuations that may be expected
to occur about the average (Eq. 11). Then, for the rms fluctu-
ations we have

σ(N(t)) =

 1

K

K∑
i=1

[
N i(t)

]2
−

[
1

K

K∑
i=1

N i(t)

]2


=

〈
N2

〉
− 〈N〉

2 , (12)

where〈N〉 is the ensemble average calculated according to
Eq. (11). The fluctuations about the average are displayed
in Fig. 5 as vertical bars together with the time evolution of
the sol concentration obtained from the Monte Carlo simula-
tions. If the condition

σ(N(t))
/
〈N(t)〉 � 1 (13)

is fulfilled, then the results found in separate realizations will
be practically identical (Gillespie, 1975b) and the estimate
〈N〉 will be sufficiently accurate. The ratio (13) was calcu-
lated in the time interval [0, 1000] and the condition was al-
ways fulfilled (See Fig. 5), corroborating the accuracy of the
calculations of〈N〉 for the turbulent collection kernel.
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Fig. 4. Time evolution of the sol concentration obtained from the numerical solution of the kinetic 

collection equation (solid line) and from the Monte Carlo algorithm (crosses).  

 

 

 

 

 

 

 

Fig. 4. Time evolution of the sol concentration obtained from the
numerical solution of the kinetic collection equation (solid line) and
from the Monte Carlo algorithm (crosses).
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Fig. 5. Time evolution of the sol concentration obtained from Monte Carlo algorithm (crosses and 
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Fig. 5.Time evolution of the sol concentration obtained from Monte
Carlo algorithm (crosses and left axis) fluctuations about the aver-
age (vertical bars and left axis) and the ratioσ(N(t))

/
〈N(t)〉 (solid

line and right axis).

3 Discussion and conclusions

One of the outstanding problems in cloud physics is to ex-
plain how raindrops can grow by condensation and collision–
coalescence in times as short as 20 min. In order to form a
raindrop with a radius of 1mm in a warm cloud, a total of
105 droplets with radius of 10 µm must collide and coalesce.
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Fig. 6. Time evolution of the ensemble means over all the realiza-
tions for the largest (solid line) and second largest (dashed line)
droplet masses (expressed in multiples of a 10 µm droplet mass) for
the turbulent case.

When droplets are small and of uniform size, collisions be-
tween them are not very efficient and collision events do not
occur with the required rate to produce raindrops until some
of the droplets grow to a radius of about 20 µm.

The fully stochastic turbulent process presented in this
study generates a “lucky droplet” that grows faster than the
rest of the droplet population. The appearance of a runaway
droplet after gelation is a possible mechanism to explain the
formation of raindrops. To further clarify this point, we cal-
culate the time evolution of the mass of the largest droplet
and second largest droplets as ensemble averages over all
the realizations of the fully stochastic simulations. Figure 6
shows the results for the turbulent case, clearly indicating a
significant gap between the mass of the largest and second
largest droplets after 1000 s. In contrast, the difference in
mass in the non-turbulent, pure gravity case shown in Fig. 7
remains much smaller and with no runaway behavior.

The gelation time (Eq. 5) estimated from a set of random
realizations constitutes an expected value for the time of the
formation of the runaway droplet and has to be compared
with the deterministic result obtained from the KCE for a
particular system. However, the gelation time is a stochastic
variable whose empirical distribution can be calculated from
the different realizations of the Monte Carlo algorithm. The
problem here is to find a criterion to assess whether a system
(for each individual realization) is in runaway growth. For
example, Malyshkin and Goldman (2001) declare runaway
growth when the coalescence rate of the largest particle is
50 % of the total coalescence rate. Aldous (1997) estimated
the runaway time from Monte Carlo simulations via the max-
imum (over time) of the size of the second largest droplet. A
very suitable indicator (Ormel et al., 2010) isM1

/
M2, i.e.

the ratio between the mass of the largest to the second largest
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Fig. 7.  Same as Fig. 4 but for the pure gravity case.  

 

 

 

 

 

 

 

 

Fig. 7.Same as Fig. 4 but for the pure gravity case.
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Fig. 8.Time evolution ofM1
/
M2 (ratio between the largest and the

second largest droplet) for one of the realizations of the stochastic
process for the turbulent case.

droplet in the system. When this ratio increases, the system
is in runaway growth, otherwise it is not. We have estimated
the time evolution of the ratioM1

/
M2 from each realiza-

tion to determine the time when this ratio started to increase
(Fig. 8 shows the time evolution of the ratioM1

/
M2 for one

of the realizations). Thus, an empirical distribution for the
gelation times was obtained by generating 1000 realizations
of the Monte Carlo algorithm (Fig. 9). A similar approach
was taken to generate the distribution for the runaway parti-
cles radii at the gelation time (Fig. 10).
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Fig. 9. Empirical distribution for the gelation times obtained for the turbulent case. The results were 

generated from 1000 realizations of the Monte Carlo algorithm. 

 

 

 

 

Fig. 9.Empirical distribution for the gelation times obtained for the
turbulent case. The results were generated from 1000 realizations of
the Monte Carlo algorithm.
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Fig.10. Empirical distribution for the radius of the runaway droplets. The results were generated 

from 1000 realizations of the Monte Carlo algorithm. 

 

 

Fig. 10. Empirical distribution for the radius of the runaway
droplets. The results were generated from 1000 realizations of the
Monte Carlo algorithm.

Kostinski and Shaw (2005) present a distribution of the
time to produce drizzle by calculating the convolution of
the exponentially distributed times between collisions. They

found the distribution ofTNc =

Nc∑
i=1

ti , with Nc fixed, where

the ti are the times between droplet collisions andNc the
number of collisions, which have an exponential distribution.

However, in our case the value ofN varies, as the number of
collisions required to form a runaway droplet is different for
each realization of the Monte Carlo process.

The fully stochastic simulations under turbulent conditions
performed here include a collision enhancement factor for
collisions between droplets with radii≤ 21 µm, so the role
of turbulence in producing the runaway droplet is likely un-
derestimated in the present study. Since the nucleation and
condensation processes are not yet included in this model,
future developments will attempt to include the combined ef-
fect of turbulent collection and condensation (McGraw and
Liu, 2003) on droplet growth.

Appendix A

The Monte Carlo algorithm

The stochastic algorithm developed by Gillespie (1976) for
chemical reactions was reformulated to simulate the kinetic
behavior of aggregating systems by Laurenzi et al. (2002)
by defining species as a type of aggregate with a specific
size and composition. We have applied this formulation to
droplets of different sizes under turbulent conditions.

Within this framework, there is a unique index µ for each
pair of dropletsi, j that may collide. For a system withN
species

(
S1,S2,...,SN

)
,µ ∈

N(N+1)
2 . The set{µ} defines the

total collision space, and is equal to the total number of possi-
ble interactions. With this set the collision probability density
functionP (τ,µ) can be determined. This quantity is defined
by

P (τ,µ)dτ ≡ Probability that at timet the next collisionin

volumeV will occur in the infinitesimal interval

(t + τ,t + τ + dτ) and will be aµ collision.

Gillespie (1976) derived this probability density function for
a system ofN species as

P (τ,µ)dτ = aµ exp

−

N(N+1)
2∑

j=1

aj τ .

 (A1)

Hereµ ∈
N(N+1)

2 . The functionsaµ are calculated according
to

a(i,j) = V −1K(i,j)ninj dt ≡ Pr {Probability that two

unlike particlesi andj with populations(number of particles)

ni andnj will collide within the imminent time interval
}

(A2)
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a(i, i)=V −1K(i, i)
ni (ni − 1)

2
dt≡Pr {Probability that

two particles of the same speciesi with population(number

of particles) ni collide within the imminent time interval} (A3)

The collision probability density function is the basis of the
Monte Carlo algorithm. To calculate the evolution of the sys-
tem, two random numbersτ andµ must be generated. Equa-
tion (A1) leads directly to the answers of the aforementioned
questions. First, we estimate the probability distribution as a
function of time by summingP (τ,µ)dτ (Eq. A1) over all
possible collisions (µ), which results in

P1 (τ )dτ =

N(N+1)
2∑

µ=1

P (τ,µ) =

N(N+1)
2∑

µ=1

aµ exp

−

N(N+1)
2∑

ν=1

aντ


= αexp(−ατ)dτ (A4)

with α =

N(N+1)
2∑

ν=1
aν .

The probability function for reactions can be obtained in
a similar way, by integrating the probability density function
(pdf) P (τ,µ)dτ over allτ from 0 to∞, which results in

P2 (µ) =
aµ

α
. (A5)

Equation (A4) shows that the probability of a collision in
time follows an exponential distribution. In order to obtain
a random pair (τ,µ), according to the probability density
functionP (τ,µ) we first generate a random numberr1 dis-
tributed uniformly in the interval (0,1); then the inversion
method to obtain random numbers is applied. In the inver-
sion method this random number is taken as the probability
of a collision in the time periodτ according toP1 (τ ). This
probability is obtained by integratingP1 (τ ) from 0 toτ :

r1 =

τ∫
0

P 1 (z)dx =

τ∫
0

αexp(−αz)dz = 1− exp(−ατ)(A6)

Considering that 1− r1 = r∗

1 is also a uniformly distributed
random number in the interval [0,1], then the timeτ can be
calculated from Eq. (9) in the form

τ =
1

α
ln

(
1

r∗

1

)
. (A7)

The collision number µ is calculated similarly. A random
numberr2 uniformly distributed in the interval (0,1) is gen-
erated. Then the pdfP2 (ν) Eq. (A5) must be integrated over
ν until the sum of the µ probability exceeds the random num-
berr2. The inequality to obtain the collision index µ has the
form (Gillespie, 1976)

µ−1∑
ν=1

aν < r2α ≤

µ∑
ν=1

aν . (A8)

The former results lead to Gillespie’s direct algorithm:

1. Initialize (set initial numbers of species, sett = 0, set
stopping criteria).

2. Calculate the functionaµ for all µ.

3. Chooseτ according to the exponential distribution
P1 (τ ) = αexp(−ατ)dτ .

4. Calculateµ according to the distributionP2 (µ) =
aµ

α
.

5. Change the numbers of species to reflect the event of a
collision.

6. If stopping criteria are not met, return to step 2.
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