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Abstract. High-resolution mapping of fuel combustion and 0.598 Mg C/(capx yr)), but not in developed countries (3.55
CO; emission provides valuable information for modeling vs. 3.41 Mg C/(capx yr)). This implies that rapid urbaniza-
pollutant transport, developing mitigation policy, and for in- tion of developing countries is very likely to drive up their
verse modeling of C® fluxes. Previous global emission emissions in the future.

maps included only few fuel types, and emissions were
estimated on a grid by distributing national fuel data on
an equal per capita basis, using population density maps.

This process distorts the geographical distribution of emis-1 Introduction

sions within countries. In this study, a sub-national disag-

gregation method (SDM) of fuel data is applied to estab- The combustion of carbon-containing fuels emits Cind

lish a global 0.1 x 0.1° geo-referenced inventory of fuel Pollutants (BP, 2008; Solomon et al., 2007; Bond et al.,
combustion (PKU-FUEL) and corresponding £@nissions 2004). Global emission inventories of @@nd air pollutants
(PKU-COy) based upon 64 fuel sub-types for the year 2007.were developed years ago (Marland et al., 1985; Andres et
Uncertainties of the emission maps are evaluated using &l-» 1996; Penner et al., 1993). In view of data compilation
Monte Carlo method. It is estimated that €@mission difficulties, only a few major fuel types could be consid-
from combustion sources including fossil fuel, biomass, andered (Rayner et al., 2010; Oda and Maksyutov, 2011). For
solid wastes in 2007 was 11.2 Pg C¥1(9.1 Pg Cyr! and example, it can be important for policy makers to know the
13.3Pg Cyr?! as 5th and 95th percentiles). Of this, emis- guantities of CQ emitted only from diesel fuel used by in-
sion from fossil fuel combustion is 7.83 Pg Cgtr which is dustry and vehicles (Da.ViS et a.l., 2010) Moreover, the emis-
very close to the estimate of the International Energy Agencysion factors (EFs; the ratio of pollutant emitted per unit of
(7.87 Pg CyrY). By replacing national data disaggregation fuel burned) of pollutants can differ by orders of magnitude
with sub-national data in this study, the average 95th minuggmong fuels or facilities (Bond et al., 2004; Zhang et al.,
5th percentile ranges of G@mission for all grid points can  2007). In addition to fossil fuels, information on biomass
be reduced from 417 to 68.2 Mgkryr—L. The spread is and solid waste fuels is also desirable since they are among
reduced because the uneven distribution of per capita fudmportant sources of many pollutants (Bond et al., 2004;
consumptions within countries is better taken into accountAndreae and Merlet, 2001). Emission inventories in adminis-
by using sub-national fuel consumption data directly. Signif- trative units (countries, provinces) are usually geo-referenced
icant difference in per capita GGmissions between urban into gridded maps using population density as a proxy for

and rural areas was found in developing countries (2.08 vsWhere emissions are located (Bond et al., 2004; Andres et
al., 1996; JRC/PBL, 2009) This method can create a spatial
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5190 R. Wang et al.: High-resolution mapping of combustion processes and implications

bias, because the per capita emission ratg, is not uni- ing/developed countries based on the World Bank’s criteria
form, especially within developing countries (Zhang et al., for 2007. This is shown in Table S1 (World Bank, 2010).
2007). In this regard, sub-national fuel data are more reliableRussia was divided into two territories (European Russia and
(Gurney et al., 2009). To reduce the bias caused by downscalAsian Russia), because sub-national fuel consumption data
ing country emissions using population density, a series of efwere only available for European Russia. Due to differences
forts has been made. For example, Rayner et al. (2010) devein data sources and data processing methods, the 64 fuel sub-
oped a data assimilation method based on the distribution ofypes were further classified into 8 groups in Table 2. These
nightlights and population to produce a global emission fieldgroups are (1) wildfires, (2) aviation/shipping, (3) power sta-
(called FFDAS) at 0.25resolution, in which the distribution tions, (4) natural gas flaring, (5) agricultural solid wastes, (6)
of emission was smoother than that of traditional population-non-organized waste incineration, (7) dung cakes, and (8)
based inventories (Rayner et al., 2010). Finally, there is als@thers. Generally, fuels consumed in various sectors were
a need for high spatial (and temporal) emission maps of CO compiled at global/national level and further allocated to
and pollutants for atmospheric dispersion modeling, becaus@.1° x 0.1° grids using various proxies. The methodology
errors in dispersion modeling decrease with increasing resoand data sources used to compile fuel consumption for all
lution (Bocquet, 2005; Tie et al., 2010). Moreover, upcoming these sources are presented in Sects. 2.2 and 2.3.
atmospheric C@measurements at 10 km or finer resolutions
(GOSAT, OCO-2 satellites, and regional networks) require2.2 Compilation of fuel consumption data
detailed CQ emission inventories for the interpretation of
atmospheric gradients (Yokota et al., 2009; Lauvaux et al.For Group 1 (wildfires), global 0%5x 0.5 wildfire carbon
2009; Pillai et al., 2010). In addition, uncertainties of £0 emissions from GFED3 (van der Werf et al., 2010) were con-
emission inventories have rarely been quantified on a gridyerted to fuel consumption based on the used EFs and disag-
leading to difficulties in evaluating them (Bocquet, 2005).  gregated to 021x 0.1° using vegetation density generated in
We present a sub-national disaggregation method (SDManother dataset by Friedl et al. (2002) as a proxy. For Group
of fuel data to produce ?1x 0.1° inventories of fuel con- 2 (aviation/shipping), global fuel consumptions of aviation
sumptions and C®emissions over the globe (PKU-FUEL (IEA, 2010a, b) and shipping (Equasis, 2008) were allocated
and PKU-CQ, Peking University Fuel and GOInvento-  to 0.1° x 0.1° using CO emissions as a proxy. CO emission
ries). The product covers 64 sectors for the year 2007. Submaps from aviation (JRC/PBL, 2011) and shipping (Wang et
national fuel consumption data of the major (carbon) fuelal., 2008; Eyers, 2005) were taken from the literature. For
types were collected in 45 countries (7094°0<50.5° grids Group 3 (power stations), fuel consumptions by 26 239 ma-
for 36 European countries (EUCS-36), 7942 counties forjor power stations from the CARMA v2.0 list (covering 77 %
China, Mexico, and USA, 161 states/provinces for India, of the fuels used for power generation and 40 % of the global
Brazil, Canada, Australia, Turkey, and South Africa). Thesetotal fossil fuel emission) were allocated to individual grid
sub-national administrative units are hereafter referred tgoints where power plants are reported (Wheeler and Um-
as sub-nationally disaggregated units (SDUs). Fuel data fomel, 2008; Ummel, 2012). National fuel consumptions by
SDUs in the 45 countries where these data could be obtainedither (non CARMA) power stations were calculated by sub-
and national data in other countries were disaggregated to racting these included in the CARMA v2.0 dataset from
0.1° x 0.7° grid using various proxies to generate the PKU- the national total for each type of fuel (IEA, 2010a, b) and
FUEL and PKU-CQ emission maps. To show the improve- disaggregated to (2 0.1° using population density as a
ment gained by using SDU fuel data, a mock-up inventoryproxy (ORNL, 2008). For Group 4 (gas flaring), fuel con-
(Nat-CQ) is generated based on the national fuel data andsumptions by natural gas flaring were derived using a regres-
disaggregation (like in previous global emission maps) andsion model (Elvidge et al., 2009) based on nightlight satel-
compared to PKU-C@ The PKU-CQ emission maps also lite measurements from the Defense Meteorological Satel-
compared against two previous inventories: VULCAN (over lite Program (NOAA, 2011). For Group 5 (agricultural solid
the US) and ODIAC (over the globe). Finally, the PKU-£0O wastes), the quantities of agricultural wastes burned in indi-
inventory is used to calculate the difference in per capita CO vidual countries (provinces in China) were derived from crop
emission between urban and rural areas. production statistics (MAC, 2008; FAO, 2010), production-
to-residue ratios (Bond et al., 2004; Streets et al., 2003; Cao
et al., 2005; Zhang et al., 2009; Yevich and Logan, 2003),

2 Data and methodology and percentage of field burned residues (Bond et al., 2004).
For Group 6 (non-organized waste burning), quantities of
2.1 Combustion sources non-organized wastes combusted were calculated from total

guantities of wastes generated (UNSD, 2010) and incinera-
PKU-FUEL and PKU-CQ were constructed around 64 fuel tion rates (Bond et al., 2004; Zhang et al., 2009). For Group
sub-types in 5 categories and 6 sectors (Table 1). A to-7 (dung cakes), dung cake consumption data in India were
tal of 223 countries/territories are classified into develop-compiled (TERI, 2008) and extrapolated to 12 other South
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Table 1. Classification of the 64 fuel sub-types included in the inventory. The fuels are classified into 5 fuel categories and 6 sectors. They
are also divided into 8 groups (as marked by the superscripts) depending on data sources and data processing methods. Percentages of fi
consumption data collected from the literature are listed in parentheses, while consumptions of the remaining fuels were calculated using the
regression models listed in Table S3.

Sector Coal Petroleum Natural gas Solid wastes Biomass
Energy pro- anthracite (100 %) gas/diesel (98.7 %) drynaturalgas  municipalwaste  solid biomass
duction bituminous coal (97.3 %) residue fuel oil (96.7 %) (95.9 %P (99.9 %P (85.3 %P
lignite (99.4 %% natural gas liquids (99.9 %)  natural gas flarinfy industrialwaste  biogas (100 %
coking coal (100 %) (99.3 %P
peat (100 %3
Industry anthracite  excluding  alu- gas/diesel (99.4 %) drynaturalgas  municipalwaste  solid biomass
minum production (98.1 %)  residue fuel oil (95.7 %) (88.5 % (99.7 %P (99.2 %P
bituminous coal excluding crude oil used in petroleum re- industrial waste biogas (100 %
coke and brick production finery (96.6 %$ (99.5 %
(98.0 %P natural gas liquids (98.6 %)

lignite (99.4 %$

coking coal (100 %

peat (100 %

bituminous coal used in coke
production (99.1 %)
bituminous coal used in brick
production®

anthracite used in aluminum
productior?

Transpor- vehicles gasoline (98.0 %) liquid biofuels
tation vehicles diesel (98.1 98) (100 %P

aviation gasoline (99.6 %)

jet kerosene (99.5 %)

ocean tankér

ocean containér

ocean bulk and combined

carrie€

general cargo vesséls

non-cargo vesseds

auxiliary engine$

military vessel$

Residential  anthracite (94.4 %) kerosene (99.2 %) drynaturalgas  non-organized firewood (90.1 %

and commerciabituminous coal (97.3 °/§) liquid petroleum gas (96.0 %)9 waste incineration straw (98.8 %§
lignite (100 %% (94.9 %P (86.2 %P dung cake/
coking coal (100 % natural gas liquids (96.0 %) biogas (100 %)
peat (100 %

Agriculture gas/diesel (99.9 %) open burning of
agriculture solid
waste (98.5 %)

Natural forest firé
deforestation fir
woodland fird
savanna fire
peat firé

and Southeast Asian countries by assuming equal per capita3 Sub-national fuel data disaggregation (PKU-FUEL)
consumption of that fuel. Then, consumptions data for all

solid wastes were disaggregated t0°0<10.1° using a pop-

ulation proxy from a global 0.& 0.8 kn? dataset (ORNL, For Group 8 (other fuel types), national fuel consumptions of
2008). EUCS-36 (IEA, 2010a, b) were disaggregated t¢ &B.5

grids using CO emission proxies from the European Monitor-
ing and Evaluation Programme by sector (Table S2) (CEIP,
2011). National fuel consumption of Mexico (IEA, 2010a)
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Table 2. Schematic methods for converting raw data intd®1.1° gridded fuel consumption database. For the 8 groups using different
disaggregation approaches, the numbers of fuel sub-types are shown in parentheses.

No. Group Coverage Raw data Resolution Conversion and prediction ° x@1° disaggregation
1 wildfire (5) globe CO emissions 0.5 0.5° converted to 0.5x 0.5 fuel consumptions biomass (grass/trees) proxy
using CO emission factors
2 aviation and shipping (9) globe fuel consumption global none CO emission proxy
3 power stations (13) globe fuel consumptions of 26 23®cations none allocated directly to grids
major stations
globe fuel consumptions of other national predicted for the other 84 small countries/territories national population proxy
stations in 139 countries using region-specific models
4 natural gas flaring (1) globe nighttime lights 010.1° converted to 0.1x 0.1° fuel consumptions allocated directly to grids
for gas flaring based on a regression model
5 agricultural solid China crop productions provincial converted to provincial fuel consumptions based sub-national population proxy
wastes (1) on crop-specified production-to-residue ratios and
province-specific percentages of crop residues burned in the field
other crop productions of 206 national converted to national fuel consumptions based national population proxy
countries countries/territories on crop-specified production-to-residue ratios

and region-specific percentages of crop residues burned
in the field (those for the remaining 17 small
countries/territories were omitted)

6 non-organized waste globe municipal waste of 102 national converted to national fuel consumptions national population proxy
incineration (1) countries/territories using 1 % and 5 % incineration rates for developed
and developing countries, respectively, and predicted for the other
111 small countries/territories using region-specific models

7 dung cakes (1) SEA®3 India consumption national predicted for other 12 countries assuming national population proxy
the same per capita consumption

8 other fuels (33) EUCS-$6 (1) fuel consumptions ex- national converted to 0°5x 0.5° fuel consumptions using CO emission proxy  sub-national population/roadfproxy
cept for aluminum, coke, and
brick productions. National
data for 132 countries and
state/provincial data for
USA, China and C-6
(2) coke, aluminum, and
brick productions for 132,
83, and 113 countri€s

Mexico national converted to county fuel consumptions sub-national population/road proxy
using CO emission proxy

USA state converted to county fuel consumptions sub-national population/road proxy
using CO emission proxy

China provincial predicted for 2373 counties sub-national population/road fpr0><y
using region-specific models

c-6° provincial/state  none sub-national population/road p?oxy

c-17¢ national predicted for other 84 small countries/territories national population/roadf proxy

using region-specific models in Table S3
(aluminum and brick productions for 140 and 110
small countries/territories not included were omitted).

2 SEA13: 13 South and Southeast Asian countries including India, Bangladesh, Bhutan, Brunei, Cambodia, Laos, Maldives, Myanmar, Nepal, Pakistan, Sri Lanka, Timor-Leste, and
Vietnam.? EUCS-36: 36 European countries including Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark,

Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Italy, Latvia, Lithuania, Macedonia, Moldova, Netherlands, Norway, Poland, Portugal, Romania, Russia, Serbia

and Montenegro, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, and United KiNgtiéin6 countries with state/province data collected, including India, Brazil,

Canada, Australia, Turkey, and South Afri€aC-178: 178 countries other than EUCS-36, C-6, USA, China, or MegKi@mnsumptions of bituminous (coke and bricks

productions) and anthracite (aluminum production) were converted from the production volumes (1.25, 1.06, and 3 ton coal/ton coke, bricks, and aluminum produced,

respectively).f Population proxy was applied to disaggregate fuel consumptions (the 15197 SDUs for the 45 countries and remaining 178 courftrie§) 1o ¢ritls (ORNL,

2008) except for on-road gasoline and diesel vehicles, for which»0@1° CO emission from road transportation in EDGAR v4.2 (JRC/PBL, 2011) was used as a proxy.

and state fuel consumptions of USA (USEIA, 2008) were al-plied to disaggregate fuel consumption (15197 SDUs in 45
located to counties using CO emissions by county as a proxgountries and 178 remaining countries where no SDU data
within Mexico or USA states by sector (Table S2) (USEPA, were available) to 0°1x 0.1° grids (ORNL, 2008). On-road
2006, 2011). County-level fuel consumptions in China weregasoline and diesel vehicles fuel data were disaggregated at
determined based on the provincial fuel consumption (NBS,0.1° x 0.1° resolution from CO emission of the road trans-
2008) and a set of provincial-data-based regression modelgortation sector in EDGAR v4.2 (JRC/PBL, 2011). The
(Zhang et al., 2007). State/province fuel consumptions inmethods of disaggregation for the different fuels and re-
India, Brazil, Canada, Australia, Turkey, and South Africa gions are summarized in Table 2. For the countries with no
were directly compiled from the literature (TERI, 2008; fuel data available, a set of region-specific regression models
Statistics South Africa, 2009; Brazil Energy Ministry, 2010; were developed to predict their fuel consumptions based on
TSI, 2010; Environment Canada, 2010; ABES, 2008). Na-data from other countries in the same region (Table S3). Ru-
tional fuel consumptions for countries without sub-national ral population, total population, and/or gross domestic pro-
fuel data were taken from the International Energy Agencyduction were used as independent variables (World Bank,
(IEA) (IEA, 20104, b) and other energy statistics (USGS, 2010) in those regressions. In processing the sub-national
2010a; UNID, 2008). Finally, a population proxy was ap- data for these sectors in Group 8 (others), the sub-national
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fuel data compiled in our local database are listed in Tableadjacent to the one listed in CARMA v2.0. This suggests
S2. The fuel sub-types in Group 8 with detailed sub-nationalthat the accuracy of the CARMA v2.0 power plant loca-
consumption data available are marked with a # superscriptions is satisfactory for 021x 0.1° resolution mapping, ex-

For fuel sub-types without detailed data, the shares of theseept for China. Spatial localization errors in China are rela-
sub-types in sub-nationally disaggregated units (SDUs) werdively large. Yet, for 87 and 95 % of Chinese power stations,

assumed to be equal to the national shares. the differences between the CARMA v2.0 reported locations
and actual locations found by Google imagery are no more
2.4 Development of PKU-CQ emission maps than 2 (20km) and 3 (30 km) grids, respectively. Although

CARMA v2.0 was the best global power station dataset avail-
Based on PKU-FUEL data, G@missions (PKU-C@ were  able for the year of 2007, the location of power plants is ex-
calculated using C@®emission factors (EF) and the com-  pected to be updated when the new CARMA version product
bustion rates for the different fuel types. &For all com- is published or a new dataset is available.
bustion processes were derived as the means of data col-
lected from the literature. Specially, EFor oil consumedin 2.6 Fuel and CQ, emission-map uncertainties from
petroleum refinery industry was from Nyboer et al. (2006), Monte Carlo simulations
and ER- for oil consumed by 7 ship types and 5 types of
biomass burning were collected from Wang et al. (2008) andvionte Carlo ensemble simulations of the PKU-FUEL and
van der Werf et al. (2010). For the remaining fuel types, PKU-CO, emission models were calculated 1000 times on
EFc were collected from URS (2003), IPCC (1996), US De- all grids. We randomly varied input data given an a priori
partment of Energy (2000), API (2001), and USEPA (2008). uncertainty distributions with a coefficient of variation (CV).
Fixed combusted rates of 0.990, 0.980, 0.995, 0.980, 0.901CVs of fuel consumptions from ships/aviation and wildfires
0.887, 0.789, 0.919, and 0.901 were applied to petroleumare set to be 20 and 18 %, respectively, with normal distri-
coal, natural gas, solid municipal and industrial waste fuel,butions (Wang et al., 2008; van der Werf et al., 2010). A
biomass burned in the field, firewood burned in cook stovesCV of 10 % was adopted for all other fuel data, with a uni-
firewood burned in fireplaces, crop residue burned in cookform distribution (Ciais et al., 2010; Marland et al., 2008).
stoves, and open burning of agriculture waste, respectivelyfo consider the uncertainty associated with spatial disaggre
(Johnson et al., 2008; Lee et al., 2005; Oda and Maksyutowation of fuel data, a CV was defined for each SDU (sub-
2011; Zhang, et al., 2008). Although our study focuses onnationally disaggregated unit) or country (where no sub-
fuel and CQ emissions from fuel burning, CCemissions  national data exist) according to their size. The formula is
from cement production were also compiled. These are base@V; = 1000 %x N;/225 829, where Nis the number of grid
on cement production data in 155 countries (USGS, 2010bpoints in a certain SDU/country, and 225 829 is the number
and CQ emission factors from the literature (Andres et al., of grid points in Asian Russia, the largest SDU of the world.
1996). Country-level reported GCGemissions from cement A CV of 1000 % was assigned to this latter region. The CVs
production were disaggregated to0x10.1° grids using in-  of literature-reported Efrange from 3.8 % to 5.1 %. Thus,
dustrial coal consumption maps from PKU-FUEL as a proxy, a constant value of 5% was adopted with a normal distribu-
hence making the assumption that cement manufactures at®n. The CVs of combustion rates were set to be 20 % with

co-located with coal consumption. a normal distribution. The results of the Monte Carlo simu-
lations are presented using the two metiieg (95th minus
2.5 Accuracy of the location of the power plants 5th percentile range) anlgo/ M (Rgp/median) that provide

absolute and relative errors on a map, respectively.
Fuel consumptions of 26 239 major power plants from the
CARMAV2.0 contribute 77 % of the fuels used for power 2.7 Urban-rural per capita emissions contrast
generation (Wheeler and Ummel, 2008; Ummel, 2012). Be-
ing the important point sources of G@mission, the posi- For each country, a population density threshold value was
tions of these power plants were tested before being used idefined to separate between urban and rural grid points,
PKU-FUEL and PKU-CQ. The locations for 350 randomly based on urbanization degree data (World Bank, 2010) and
selected power plants were checked one by one in Googléhe spatial distribution of population density in 2007 (ORNL,
imagery for all countries except the USA where the geo-2008). The sensitivity of the result to the threshold value was
locations have been proved to be accurate (Wheeler and Untested by re-calculatingcap of urban and rural grid points,
mel, 2008). The results are shown in Fig. S1. It was foundwith this threshold value multiplied by a factor varied from
that 45 % (China) and 89 % (countries other than China and.8 to 1.2 at a 0.1 interval. It was found that, witRt40 %
the USA) of the stations are located in the same grid pointschange in the threshold, the calculat&g, changes only by
(0.1° x 0.1° ) as reported in the CARMA v2.0 database, and 0.3—0.5% (0.4-1.2 %) in rural areas and by 5.5-5.8% (0.6—
that the remaining 42 % (China) and 9% (countries other0.8 %) in urban areas for developing (developed) countries.
than China and USA) of stations are actually located in gridsThis sensitivity test suggests that our classification method is
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3 Results

3.1 Global fuel consumption and CQ emission map in
2007

According to PKU-FUEL, oil (154EJyr), coal
(133EJyrl), and natural gas (124EJy%) domi-

Unit: Mg ClkanPlyr nated global fuel consumptions, followed by biomass
a0 T 5 10 0 100 200 400 10000 “& (11.4EJ yrl) and solid waste (3.59 EJSA‘) fuels. Glob-
180°W 150°W 120°W 90°W 60°W 30°W  0° 30°E  60°E 90°E 120°E 150°E 180°E a”y' Fcap was 00733 TJ/(Can yr), Wh|Ch was primarily

“i; fo iﬁ:%ﬁ Z,:; j;gvﬁ%%% ‘7;1’2%‘%ﬂ@ﬁi@jﬁﬂ%‘,@%yﬂ%gE’:Wudie(:,ﬂm fossil fuel (0.0650 TJ/(capx yr)), while energy-related
:% 5"%‘%/ 1}%,,‘ %{ ) W e Ty, am oo e | biomass (0.00829TJ/(cap.yr)) and solid waste fuels
EasmNAmian B A ameia Ame s Amg o O (0.000611 TJ/(capx yr)) contributed relatively small frac-

90N tions. The mearfcqp for fossil fuels in developed countries
(0.172 TJ/(capx yr)) was approximately 4 times of that of
« = developing countries (0.0414 TJ/(capyr)).
30°N e PKU-CQO, was developed based on PKU-FUEL using
o S YN EF¢, and combustion rates of various fuel types. GlobahCO
' emission from all combustion sources was 11.2 PgCyr
< in 2007. The largest contribution was from energy produc-
60°s Unit: Mg Cleaplyr tion (33.8%), followed by industry (18.0%), transporta-
s T 10 20 w0 D tion (15.2 %), residential/commercial (14.8 %), and agricul-
180°W 150°W 12°W S0°W 60°W 30°W  0°  30°E 60°E 90°E 120°E 150°E 180°F ture (2.1%). Wildfires contributed 16.1 % of the total. Fos-

Fig. 1. Geographic distributions of total and per capitaC&nis- sil, biomass, and solid waste fuels emitted 7.83, 3.18, and

sions from combustion sources at ©:10.1° resolution in 2007 ~ 0-224Pg Cyr*, respectively. The estimated fossil fuel emis-
from the PKU-CG inventory developed in this studg) Total CO,  Sion of CQ» (7.83 Pg Cyr!) is similar to the 7.87 Pg C yr
emissions from all combustion sources db)l per capita energy- reported by IEA (IEA, 2010c) but lower than the 9.06 Pg
related CQ emissions excluding shipping and aviation. For total Cyr—1 from EIA (USEIA, 2010), in which non-fuel-use oil
emission of each region, the relative contribution of each sector isproducts were included.

shown in the pie charts in the inset and the total area of each pieis For energy-related (excluding wildfires) fuel combustions,
proportional to the emission. the globalEcap Was 1.51 Mg C/(capx yr), with large vari-
ations among and within countries. For examlgsp were
0.661 for India, compared to 5.74 Mg C/(capyr) for USA.
Moreover, among the 2373 counties in Chitfgap varied
dramatically from 0.05 to 41.1 Mg C/(cag.yr), confirming
the value of sub-national data down to county level. Emis-
sions from individual fuel sub-types are listed in Table 3.
Figure 1 shows the geographical distributions of CGfnis-

For inverse modeling, the spatial distribution of terrestrial Sions andEcap, the relative contributions of the 6 sectors in
ecosystem C@fluxes, B(x) wherex denotes the spatial co- 9 regions given in the pie charts. Emissions from aviation
ordinate, can be calculated by subtracting fossil fuel,CO (91 Tg Cyr ") and shipping (181 Tg C yr') are not included
emissionsF (x), from the net land—atmosphere gfux dis- in the pie charts. Regionally, power generation was the most
tribution, N(x). The result of the CarbonTracker inversion important sector in North America (38.6 %), Western Eu-
was used asV(x) for the year 2007 (Peters et al., 2007). "Ope (46.7 %), and East Asia (50.0 %), while savanna burn-
Two maps B(x) were calculated as3(x)= N(x) — F(x), ing dominated in Africa (62.5 %), South America (59.6 %),
with F(x) being the emission maps either from PKU-£& and Oceania (40.9 %). Emissions from motor vehicles were
from NAT-CO; (regridded to 1 x 1° to match the resolution the second largest contributor in North America (28.3 %)
of N(x) from CarbonTracker). The difference between the @nd Western Europe (16.7 %). In Fig. 1sp was high in
two maps ofB(x) obtained with the twd (x) maps was cal- the western USA bgcaqse of relat_ively high fuel cconsump-
culated to illustrate the effect of using the sub-national (thistions for transportation in states with low population densi-

study) instead of national fuel data (all atmospheric inversionties: Wyoming, North Dakota and Texas (USEIA, 2008). For
studies) on terrestrial carbon fluxes. Alaska and northern Europe, more fuel was consumed for

heating in winter. CQemission maps separated by the major
fuel categories and sectors are shown in Fig. S3. Information
on both sectoral and regional G@missions is presented in

507N [

30°s

robust (Fig. S2). A CV in the threshold of 10 % (uniform dis-
tribution) was included in the Monte Carlo uncertainty char-
acterization of urban and rurél.ap calculation.

2.8 Carbon balance of terrestrial ecosystem
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90°N can be reduced by using sub-national fuel data. The larger the
i RD value, the more realistic PKU-G@s over NAT-CG.

The 45 countries with sub-national fuel data available rep-
resented 45, 61, and 69 % of the global total area, population,
and fuel consumption, respectively. Within these countries,
CO, emissions were computed from the actual fuel data of
v 15197 SDUs instead of from the national fuel data like for-
60° RD of CO, emission,% mer studies (Andres et al., 1996; Oda and Maksyutov, 2011).
a0's 200 =480==120" 80400 40 80120 160 200 Although residual errors still occurred when disaggregating
1&?;;(;\/ 150°W 120°W 90°W 60°W 30°W [0) 30°E  60°E 90°E 120°E 150°E 180°E the emissions from SDUS to the ei 0.10 gl’ldS in PKU'

1 China Mexico i S.A Australia CO,, these errors should be much smaller than the errors in-
= duced by disaggregating the emissions from a country’s total
0 0.6

60°N

"

0° ] Mexico
EC-36

China

oc | South Africa

30°S

India

RD, %

to 0.1° x 0.1° grids of NAT-CQ,. In fact, the average area of
all SDUs is only 4560 kry, compared to 1 330 108 Kivof

0 0.08 0 010 010 018 0 04 ! . - - ; .
Frequency the 45 countries, leading to a significant reduced spatial bias

in the CQ emission distribution. Figure 2 shows the spatial

Fig. 2. Comparison of C@ emissions at the scale of sub-nationally distribution of RD for the 15197 SDUs between PKU-£0
disaggregated units (SDUs, e.g., counties, states/provinces,’or 0.5

grids) in 45 countries between the sub-nationally (PKUsCénd ?.nd thgtlr]ess act(:uratetl\ltA'/I'-Q‘@mls_s:odn rtnaps. (Ijn_thg:zsoug
nationally (NAT-CQ) disaggregated inventories. Relative differ- ries with county or staté/provincia .a ausedin %
ences (RDs) between the PKU-G@nd NAT-CG inventory are the country averages of RD values in all SDUs range from

calculated for all SDUs with sub-national fuel consumption data17-5 % (Australia) to 79.8 % (Mexico). These large RD val-
specially compiled for PKU-C®(0.5° x 0.5° grids in EUCS-36,  ues indicate that a substantial reduction of the spatial bias of

counties in China, Mexico, and USA, and states/provinces in In-CO, emission can be achieved using the sub-national data. It
dia, Brazil, Canada, Australia, Turkey, and South Africa). Mean ab-was also found that the degree of the spatial bias reduction is
solute RDs for these countries are listed at the bottom-left of thelarger in countries with highd?cap heterogeneity (e.g., large

map. A positive value indicates an underestimation by national dat?developing countries) or with smaller SDUs (e.g., countries
disaggregation. Frequency distributions of RDs for China, Mexico, yith county fuel data).

USA, India, Brazil, and Australia are shown in the bar charts at the
bot.tom. The RD cannot pe calculated for the countries where sub-3.3 Uncertainty of PKU-CO;
national data are not available or not reported, and these areas are

marked in black. . . . . .
Monte Carlo simulations were applied to estimate uncertain-

ties on CQ emission maps associated with uncertain fuel
Table S4, which is valuable for emission prediction and re-data and uncertain activity data in the spatial disaggregation
gional mitigation policy formation. process. The result is th& for global total CQ emission

in 2007 was 4.19 (range 9.11-13.3) Pg Cly(see Table 3
3.2 Comparing PKU-CO, with emission maps obtained  for Rgo of the 64 individual fuel types). For the spatial dis-

from national fuel data (NAT-CO ,) tribution of CO, emissions, the absolute and relative uncer-

tainties (Rgo and Rgp/ M) are shown as maps in Fig. 3. Mean
To quantify the improvement expected in PKU-g@mock-  Rgg and Rgo/M of gridded emissions for the 45 countries
up emission map (NAT-C§), excluding point (power sta- with sub-national data were 62.4 Mg kryr—1 and 63.2 %
tions/natural gas flaring), wildfires, and non-country-specificfor PKU-CQ,, compared to 417 Mg ki yr—1 and 364 %
sources (aviation/shipping), was established using exactljor NAT-CO». This shows that a substantial reduction in the
the same method except that nationally aggregated fuel datancertainty of CQ emission maps can be reached with the
and proxies were applied for the 45 countries where PKU-patient effort of collecting sub-national data. In Fig. 3, the
CO, uses sub-national data. Emissions calculated in thénighest Rgp values can be found in large countries where
SDUs of the 45 countries were compared between PKU-sub-national fuel data are not available, such as Indonesia
CO, and NAT-CQ by calculating a relative difference and Pakistan, and in areas with very high emission densities
RD=(E1— E2)/((E1+ E2)/2) whereE1 and E; are mean  such as northern China and Western Europe.
emissions in each SDU from PKU-G@nd from the less ac-
curate NAT-CQ, respectivelyEq is referred to as the more 3.4 Comparison of PKU-CG, with ODIAC and
accurate value (MAV), since it is derived from actual fuel VULCAN 2.2 inventories
data in each SDU without minimum proxy and disaggrega-
tion error. By comparisonk; is associated with geographic The PKU-CQ emission map is compared with the ODIAC
bias induced by the disaggregation to smaller scales. In otheone (global fossil fuel, 2007, satellite nightlight-based,
words, RD is a metric of how bias of regional @@missions 1kmx 1km, converted to 0°1x 0.1° for the comparison)
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Table 3. Energy and C@ emissions from 64 fuel sub-types and cement production in 2007. MedianBgan@5th minus 5th percentile
range) were used for estimating the emissions and characterizing the uncertainfiesnis§lon fractionsK) are listed for individual fuel
sub-types. The emission from cement production is included in the last two rows so as to provide a complete emission invergory of CO

Sector Type Detailed sub-type Energy, E3%r CO,, TgCyrl F, %  Rgp, TgCyr?
Energy Coal Anthracite used 0.875 22.37 0.19 18.87-25.86
production Coke used 0.765 21.00 0.18 17.72-24.29
Bituminous coal used 90.142 2147.28 18.47 1811.35-2482.87
Lignite used 20.313 512.43 441 432.28-592.53
Peat used 0.342 9.21 0.08 7.77-10.65
Petroleum  Gas/diesel used 2.806 49.75 0.43 41.98-57.50
Residue fuel oil used 7.696 136.78 1.18 115.40-158.08
Natural gas liquids used 0.001 0.01 0.00 0.01-0.02
Gas Dry natural gas used 48.821 662.63 5.70 559.04-765.87
Natural gas flaring 5.348 73.56 0.63 62.05-85.02
Biomass Solid biomass used 6.487 150.98 1.30 127.37-174.58
Biogas used 0.099 5.57 0.05 4.70-6.44
Wastes Municipal waste used 0.951 21.02 0.18 17.73-24.30
Industrial waste used 0.222 4.76 0.04 4.02-5.51
Sub-total 184.704 3800.02 32.68 3205.69-4393.50
Industry Coal Bituminous coal used in coke production 2.345 84.82 0.73 71.59-98.05
Bituminous coal used in brick production 8.895 216.89 1.87 182.96-250.79
Anthracite used in aluminum production 0.547 18.49 0.16 15.60-21.37
Anthracite used 1.098 28.42 0.24 23.97-32.86
Coke used 0.668 18.57 0.16 15.67-21.47
Bituminous coal used 15.581 374.74 3.22 316.11-433.30
Lignite used 0.659 16.73 0.14 14.11-19.35
Peat used 0.031 0.82 0.01 0.70-0.95
Petroleum Gas/diesel used 5.847 111.45 0.96 94.03-128.80
Residue fuel oil used 5.108 102.65 0.88 86.61-118.63
Crude oil consumed in petroleum refinery 15.683 216.33 1.86 182.52-249.99
Natural gas liquids used 0.059 0.97 0.01 0.82-1.12
Gas Dry natural gas used 46.100 639.56 5.50 539.58-739.27
Biomass Solid biomass used 6.487 180.80 1.55 152.53-209.07
Biogas used 0.099 1.61 0.01 1.36-1.86
Wastes Municipal waste used 0.015 0.33 0.00 0.28-0.38
Industrial waste used 0.226 5.09 0.04 4.29-5.89
Sub-total 114.379 2018.27 17.36 1702.72-2333.17
Residential/  Coal Anthracite 0.074 2.56 0.02 2.15-2.98
Commercial Coke 0.005 0.12 0.00 0.10-0.14
Bituminous coal 2.620 80.37 0.69 67.50-93.32
Lignite 0.274 10.07 0.09 8.45-11.69
Peat 0.018 0.52 0.00 0.44-0.60
Petroleum  Liquid petroleum gas 4.858 88.98 0.77 75.07-102.84
Natural gas liquids 0.003 0.05 0.00 0.04-0.06
Kerosene used 2.496 55.92 0.48 47.18-64.62
Gas Dry natural gas 20.048 393.32 3.38 331.83-454.64
Biomass Biogas 0.234 3.56 0.03 3.00-4.12
Firewood 16.255 553.45 4.76 463.80-645.48
Straw 17.879 375.88 3.23 316.15-435.55
Dung cake 2.326 54.68 0.47 45.93-63.49
Wastes Small-scale solid waste burning 2.178 48.27 0.42 40.71-55.81
Sub-total 72.346 1667.74 14.34 1402.36-1935.34
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Table 3.Continued.

Sector Type Detailed sub-type Energy, E3%r CO,, TgCyrl F, % Rgo, TgCyr!
Transport- Petroleum  Motor vehicle gasoline 41.862 755.29 6.50 637.21-872.88
ation Aviation gasoline 0.057 1.02 0.01 0.86-1.18
Jet kerosene 4.877 89.56 0.77 75.56-103.51
Motor vehicle gas/diesel 33.334 634.98 5.46 535.73-733.87
Oil used by ocean tanker 2.144 35.94 0.31 23.76-47.86
Oil used by ocean container ships 1.608 26.96 0.23 17.82-35.90
Oil used by bulk and combined carriers 1.488 25.39 0.22 16.78-33.80
Oil used by general cargo vessels 2.600 44.36 0.38 29.33-59.07
Oil used by non-cargo vessels 1.744 30.27 0.26 20.01-40.31
Oil used by auxiliary engines 0.616 10.76 0.09 7.12-14.33
Oil used by military vessels 0.355 7.93 0.07 5.25-10.56
Biomass Liquid biofuels used by vehicles 2.231 42.44 0.36 35.81-49.05
Sub-total 92.916 1704.91 14.66  1405.24-2002.31
Agriculture  Petroleum  Gas/diesel used in agriculture 6.264 85.27 0.73 71.94-98.55
Wastes Open burning of agriculture waste 4.464 145.03 1.25 121.98-168.04
Sub-total 10.728 230.30 1.98 193.92-266.59
Natural Biomass Biomass burned in forest fires 5.811 193.90 1.67 128.28-258.04
sources Biomass burned in deforestation fires 14.570 489.52 421 323.86-651.43
Biomass burned in peat fires 1.372 46.07 0.40 30.48-61.31
Biomass burned in woodland fires 8.527 286.34 2.46 189.44-381.05
Biomass burned in savanna fires 28.620 801.64 6.89 530.29-1066.92
Sub-total 58.900 1817.48 15.63  1202.36-2418.75
Fuel total 533.972 11238.72  96.65 9112.29-13349.65
Cement production 0.129 388.99 3.35 328.32-449.67
Total (fuel and cement production) 534.101 11627.71 100.00 9440.61-13799.32

(Oda and Maksyutov, 2011) (Fig. 4). 