Supplemental material

Content

S1. Field evidence of HO ₂ uptake and its product	1
S2. Other suggested mechanisms for HO ₂ uptake	2
S3. Gas-phase diffusion limitation	3
S4. Measurements of aerosol Cu and Fe	3
S4.1 Size distribution of Cu and Fe mass in ambient aerosols	3
S4.2 Measurements in PM2.5	4
S4.3 Aqueous measurements of dissolved Cu and Fe	4
S5. Activity coefficient for aerosol chemistry	4
Tables	6
Figures	17

S1. Field evidence of HO₂ uptake and its product

The importance of HO_2 uptake on HO_x radical budget depends not only on aerosol surface area, but also on ambient HO_x and NO_x concentrations. Gas phase HO_x loss is in general dominated by three pathways:

 $HO_2 + HO_2 \rightarrow H_2O_2 + O_2 \tag{RG1}$

$$RO_2 + HO_2 \rightarrow ROOH + O_2$$
 (RG2)

$$NO_2 + OH + M \rightarrow HNO_3 + M$$
 (RG3)

In particular, HO_x loss through (RG1) and (RG2) is quadratic on HO_x concentrations, while HO_x loss through HO₂ uptake is only first-order on ambient HO_x. Therefore HO_x loss by HO₂ uptake can only be significant at relatively low level of both HO_x and NO_x concentrations.

We summarize previous field evidence of HO_2 uptake in Table S1. We find that field evidence of HO_2 uptake are mainly from the locations where the gas-phase photochemistry controlling HO_x levels is slow (HO_2 is typically less than 10 ppt) or aerosol loading is high. In fact, a recent study by Fuchs et al. (2011) found a significant interference (up to 50%) in HO₂ measurements by laser-induced fluorescence technique, further supporting the previously unrecognized role of HO₂ uptake.

Three previous studies suggest that the product from HO₂ uptake is unlikely to be H₂O₂. The first study is TOPSE aircraft campaign, in which both overestimates of total peroxy radicals (HO₂ + RO₂) and H₂O₂ were found when comparing box model calculations to observations (Cantrell et al., 2003; Wang et al., 2003). In particular, the overestimate of H₂O₂ cannot be attributed to wet scavenging (Wang et al., 2003). The second study is the measurements of total peroxy radical and H₂O₂ in dust events, in which H₂O₂ observations can be explained by the box model with HO₂ uptake with no formation of H₂O₂ and a reactive uptake for H₂O₂ (de Reus et al., 2005). The third study is the ARCTAS aircraft campaign, in which joint atmospheric observations of HO₂ and H₂O₂ suggest that HO₂ uptake by aerosols may not produce H₂O₂ (Mao et al., 2010).

S2. Other suggested mechanisms for HO₂ uptake

Several mechanisms have been proposed for the fate of HO_2 in aerosol phase. Although these mechanisms are not catalytic, they may still facilitate HO_2 loss in the aerosol phase.

The first mechanism is proposed by Copper and Abbatt (1996), suggesting that HO_2 could react with HSO_4^- , and form the peroxymonosulfate radical SO_5^- :

$$HO_2 + HSO_4^- \rightarrow SO_5^- + H_2O$$
 (RA8)

Mao et al. (2010) suggests that SO_5^- can then react with O_2^- , HCOO⁻, and HSO₃⁻, to produce the peroxide HSO₅⁻ (peroxymonosulfate), followed by (RA9) and (RA10) (Jacob, 1986), leading to the conversion to water:

$$HSO_5^- + OH \rightarrow SO_5^- + H_2O \tag{RA9}$$

$$HSO_{5}^{-} + HSO_{3}^{-} + H^{+} \rightarrow 2SO_{4}^{2-} + 2H^{+}$$
 (RA10)

The second mechanism involves the formation of an HO_2 complex. Miller and Francisco (Miller and Francisco, 2001) found from quantum chemical calculations that a stable HO_2 -H₂SO₄ complex can be formed in both gas and aerosol phase. But the fate of this complex is unknown.

 HO_2 can be also consumed by reactive halogen species in the aerosol phase (Matthew et al., 2003)

$$\mathrm{HO}_2 + \mathrm{Br}_2^- \to \mathrm{Br}_2^- + \mathrm{HO}_2^- \tag{RA11}$$

$$HO_2 + Br_2^- \rightarrow 2Br_2 + O_2 + H^+$$
(RA12)

This mechanism may be efficient for sea salt aerosols.

S3. Gas-phase diffusion limitation

Gas uptake by aerosols can be represented as a first-order uptake rate constant k (Jacob, 2000) :

$$k = -\left(\frac{r_e}{D_g} + \frac{4}{v\gamma}\right)^{-1}A\tag{1}$$

where v is the mean molecular speed of the gas, D_g is the gas-phase molecular diffusion coefficient, γ is the reactive uptake coefficient for the gas, and A is the aerosol surface area per unit volume of air.

We here address the importance of gas-phase diffusion limitation on the resulting HO₂ uptake rate calculated by Eq. (1). With γ (HO₂) closer to 1, gas-phase diffusion, the first term on the right-hand side of Eq.(1), becomes comparably important as the interfacial mass transport, i.e., the second term on the right-hand side of Eq. (1).

Figure S1 shows the ratio of interfacial mass transport to gas-phase diffusion, as a function of $\gamma(\text{HO}_2)$ and aerosol effective radius (corrected by hygroscopic growth factor). For example, when $\gamma(\text{HO}_2) = 1$, gas-phase diffusion rate is equivalent to the interfacial mass transport rate at $r_e = 0.3 \,\mu\text{m}$, suggesting that gas-phase diffusion then becomes the limiting step for any aerosol with effective radius larger than 0.3 μm . The gas-phase diffusion limitation has to be taken into account for evaluating the impact of HO₂ uptake on a global scale.

S4. Measurements of aerosol Cu and Fe

S4.1 Size distribution of Cu and Fe mass in ambient aerosols

Cu and Fe have been extensively measured in ambient aerosols. Table S2 and S3 show the measured mass fraction of aerosol Cu and Fe in ambient aerosols.

We find in Table S2 that Cu mass is mainly in submicron aerosols, indicating that combustion is indeed the major source of aerosol Cu. In fact, previous measurements in remote and urban sites both show that a large fraction of aerosol Cu is in ultrafine particles (<0.1 um) (Lannefors et al., 1983; Li and Winchester, 1993). The Cu concentrations we use here assume 0.56 ng m⁻³ in the size bin of 0.5-1 um, only accounting for 22% of Cu mass in submicron aerosols.

In contrast, aerosol Fe may largely originate from dust, but Table S3 still suggests a significant portion in submicron aerosols.

S4.2 Measurements in PM2.5

We show from Table S4 the measurements of Cu and Fe in PM2.5 aerosols. Cu/Fe ratio is typically below 0.1 for aerosols in urban, rural and remote conditions. Similar results are found from the long-term measurements from IMPROVE sites over continental US (Fig S4).

S4.3 Aqueous measurements of dissolved Cu and Fe

Table S5 shows the aqueous measurements of dissolved Cu and Fe from cloud and rain droplets. We find that dissolved Cu/Fe molar ratio is typically 0.01-0.1.

S5. Activity coefficient for aerosol chemistry

Activity coefficient must be taken into account for calculation of aerosol chemistry. We follow Ross and Noone (1991) to calculate the activity coefficient for the ions in our simulation. For an ion(x) of change z, the activity coefficient (A_x) is

$$\log(A_x) = -z_x^2 D - \sum_y \varepsilon(x, y, l) m_y$$

where

$$D = \frac{0.5109\sqrt{l}}{1 + 1.5\sqrt{l}}$$

_

Here *l* is ionic strength, m_y is molality of the solution, and ε is the interaction coefficient for the correction in concentrated solutions.

$$\varepsilon(x, y, l) = \frac{(\log(A_{\mp}) + z_x z_y D)(z_x + z_y)^2}{4l}$$

The activity coefficient for free ion Cu^{2+} can be written as:

$$\log(A_{Cu^{2+}}) = -4D - \varepsilon(Cu^{2+}, SO_4^{2-})[SO_4^{2-}]$$

 $\varepsilon(Cu^{2+}, SO_4^{2-})$ was calculated using the mean activity coefficients tabulated in Robinson and Stokes (2002), which varies at different ionic strength. When ionic strength is greater than 1.4m, the mean activity coefficient is adopted from Baes et al. (1993).

The activity coefficient is implemented for example as:

$$K = \frac{A(CuSO_4)[CuSO_4]}{A(Cu^{2+})[Cu^{2+}]A(SO_4^{2-})[SO_4^{2-}]}$$

Here *K* is the equilibrium constant for $Cu(SO_4)(aq)$ at indefinite dilution. A(CuSO₄) is the mean activity coefficient for CuSO₄.

We also correct the Henry's law constant of O_2 , O_3 , HO_2 and H_2O_2 , by the activity coefficient A as a result of salting out effect (Millero and Sohn, 1992):

$$H^* = \frac{H}{A}$$

where H is the Henry's law constant at zero ionic strength.

Tables

	Туре	<1.0	1.0-2.5	2.5-10.0	>10.0	Reference
		μm	μm	μm	μm	
Central England,	rural	48%	24%	24%	4%	Allen et al.
UK						(2001)
Auchencorth, UK	rural	28%	15%	45%	22%	Allen et al.
						(2001)
New York City,	urban	25%	50%	15%	10%	Bernstein and
USA						Rahn (1979)
Birmingham, UK	urban	71%	16%	13%		Birmili et al.
-						(2006)
Suburban Vienna,	rural	58%				Horvath et al.
AT						(1996)
Central Vienna,	urban	57%				Horvath et al.
AT						(1996)
Ponce South, PR	urban	52%	28%	16%	4%	Infante and
						Acosta (1991)
Ponce West, PR	urban	58%	11%	22%	9%	Infante and
						Acosta (1991)
Ponce East, PR	urban	26%	33%	20%	20%	Infante and
						Acosta (1991)
Ponce North, PR	urban	100%				Infante and
						Acosta (1991)
Ponce Center, PR	urban	29%	45%	17%	9%	Infante and
						Acosta (1991)
Kola Peninsula,	remote	46%			10%	Kelley et
Russia						al.(1995)
Thessaloniki,	urban	46%	14%	25%	15%	Samara and
Greece						Voutsa (2005)
Southeastern US	rural	99%				Goforth and
						Christoforou
						(2006)
Sweden	rural	80%	9%	11%		Lannefors et al.
						(1983)

Table S1 Mass fraction of Cu in four size bins in ambient aerosols

	Туре	<1.0	1.0-2.5	2.5-10.0	>10.0	Reference
		μm	μm	μm	μm	
Central England,	rural	15%	30%	40%	15%	Allen et al.
UK						(2001)
New York City,	urban	21%	1%	46%	32%	Bernstein and
USA						Rahn (1979)
Birmingham, UK	urban	35%	32%	32%		Birmili et al.
						(2006)
Suburban Vienna,	rural	50%				Horvath et al.
AT						(1996)
Central Vienna,	urban	36%				Horvath et al.
AT						(1996)
Ponce South, PR	urban	28%	32%	15%	25%	Infante and
						Acosta (1991)
Ponce West, PR	urban	29%	7%	23%	41%	Infante and
						Acosta (1991)
Ponce East, PR	urban	20%	41%	21%	18%	Infante and
						Acosta (1991)
Ponce North, PR	urban	42%	36%	0	22%	Infante and
						Acosta (1991)
Ponce Center, PR	urban	28%	17%	21%	34%	Infante and
						Acosta (1991)
Thessaloniki,	urban	25%	12%	34%	29%	Samara and
Greece						Voutsa (2005)
Southeastern US	rural	22%				Goforth and
						Christoforou
						(2006)

Table S2 Mass fraction of Fe in four size bins in ambient aerosols

	Туре	Fe	Cu	Cu/Fe	
Background in Edinburgh	urban	27.6	1.4	5.1%	Heal et al. (2005)
Birmingham	urban	114	30.2	26.5%	Harrison and Yin
-					(2000)
Toronto	urban	55	2.5	4.5%	Lee et al. (2003)
Background in Switzerland	urban	200	11	5.5%	Bukowiecki et al.
					(2009)
Mexico City ^a	urban	1600	57	3.6%	Mugica et al. (2009)
Background in Beijing	urban	480	20	4.2%	Sun et al. (2006)
Beijing Summer	urban	650	40	6.2%	Sun et al. (2004)
Beijing Winter	urban	1040	80	7.7%	Sun et al. (2004)
Downey, Los Angels	urban	150.9	3.5	2.3%	Singh et al. (2002)
Gosan, Korea	urban	453 ^b	4.8 ^b	1.1%	Kim et al. (2011)
Diesel transport routes in	urban	1198	67.3	5.6%	Kuo et al. (2009)
Korea					
eastern Transvaal. South	rural	101	0.62	0.6%	Maenhaut et al. (1996)
Africa ^c		-			
Fire plume in South Africa	rural	162	7	4.3%	Formenti et al. (2003)
Amazon forest dry season	remote	28.2	1.6	5.7%	Artaxo et al. (2002)
Amazon forest wet season	remote	21.4	0.33	1.5%	Artaxo et al. (2002)
Amazon pasture dry season	remote	162	2.1	1.3%	Artaxo et al. (2002)
Amazon pasture wet season	remote	26	0.22	0.8%	Artaxo et al. (2002)
Upper troposphere in Arctic	remote	185	19	10.3%	Li and Winchester
					(1993)
Middle troposphere in Arctic	remote	85	20	23.5%	Li and Winchester
					(1993)
Ground	remote	10	1	10.0%	Li and Winchester
					(1993)

Table S3 Measurements of aerosol Cu and Fe in PM2.5 (Unit: ng m⁻³)

^a Average over three periods.

^b Only measured at PM10, averaged over seven years (2000-2006).

^c Average over three sites : Skukuza, Pretoriuskop, Palmer.

^d Only measured at PM10.

	type	dissolved	dissolved	Cu/Fe	aqueous	reference
		Fe (µM)	Cu (µM)		phase	
Darmstadt,	urban	0.22	0.03	13.6%	rain	Hofmann et al.
Germany						(1991)
Gross-	rural	0.25	0.03	12%	rain	Hofmann et al.
Rohrheim,						(1991)
Germany						
Plynlimon,	rural	0.72	0.08	11%	cloud	Wilkinson et al.
Wales						(1997)
Plynlimon,	rural	0.078	0.026	33%	rain	Wilkinson et al.
Wales						(1997)
Plynlimon,	rural	1.34	0.13	10%	rain	Cawse (1980) ^a
Wales						
Tour du	coastal	0.29	0.02	6.9%	rain	Guieu et al. (1997)
Valat,						
France						
Jaipur,	urban	5.3	0.32	6.0%	rain	Manoj et al. (2000)
India						
Kota, India	urban	4.1	0.12	2.9%	rain	Manoj et al. (2000)
Paradize,	remote	0.037	0.002	0.5%	rain	Halstead et al.
New						(2000)
Zealand						
Bakersfield,	urban	0.2 - 0.4	0.008 -	3% –	fog /	Siefert et al.
CA			0.015	4%	stratus	$(1998)^{b}$
Great Dun	rural	0.06 -	0.0042 -	2% -	cloud	Sedlak et al.
Fell, UK		1.6	0.031	20%		(1997)
-						. ,

Table S4 Aqueous measurements of dissolved Cu and Fe

^a Data is from Wilkinson et al. (1997).

^b Dissolved TMI was measured by filter.

Nomenclature	Species
Fe(II)	Fe^{2+} , $Fe(OH)^+$
Fe(III)	Fe^{3+} , $Fe(OH)_2^+$, $Fe(SO_4)^+$, $Fe(OH)^{2+}$
Fe(IV)	FeO ²⁺
Cu(I)	Cu^+
Cu(II)	Cu^{2+} , $CuSO_4(aq)$

Table S5 Nomenclature of species in box model

Dry	RH	Wet	Ionic	$m(H^+)^a$	$m(NH_4^+)$	$m(SO_4^{2-})$	m(HSO ₄ ⁻)	$A(SO_4^{2-})^b$	$A(H^+)$
radii	(%)	Volume	Strength						
(µm)		$\times 10^{-13}$							
		(cm^3)							
0.35	85	7.90	7.84	1.74	4.36	1.74	2.63	0.010	1.020
0.35	85	8.65	12.2	0.102	8.43	3.90	0.32	0.0162	0.255
0.35	85	8.25	13.2	$1.14(-2)^{c}$	8.85	4.39	0.0328	0.0159	0.203
0.35	85	8.21	13.3	1.16(-3)	8.89	4.44	3.29(-3)	0.0159	0.199
0.35	85	8.20	13.3	1.37(-4)	8.90	4.45	3.89(-4)	0.0159	0.198
0.35	85	8.20	13.3	1.37(-5)	8.90	4.45	3.89(-4)	0.0159	0.198

Table S6 Activity coefficients produced from AIM for NH_4HSO_4 and $(NH_4)_2SO_4$ aerosols

^a Molality with unit mol/kg solvent.

^b Activity coefficient.

^c Read 1.14(-2) as 1.14×10^{-2} .

Table S7 Activity coefficients used in the box model

	Activity coefficient
Univalent ions	
$Cu^{+}, Fe(OH)^{+}, Fe(OH)_{2}^{+}, Fe(SO_{4})^{+}, O_{2}^{-}$	0.6
Bivalent ions	
Cu^{2+} , Fe^{2+} , $Fe(OH)^{2+}$, and FeO^{2+}	Calculated as Cu ²⁺
Trivalent ions	
Fe ³⁺	0.01 ^a
Neutral species	
HO ₂ , OH, O ₂ , O ₃ , H ₂ O ₂ , Cl	$10^{0.1*l}$ b

^a lowest estimate from Millero et al. (2009).

^b l is the ionic strength. This calculation is following Ross and Noone (1991).

Reactants	Products	No.	k ₂₉₈	Ea/R	Reference
Fe chemistrv					
$H_2O_2 + Fe^{2+y}$	$\mathrm{Fe}^{3+} + \mathrm{OH} + \mathrm{OH}^{-}$	R1	70	5050	Christensen et al. (1993)
$H_2O_2 + FeO^{2+}$	$\mathrm{Fe}^{3+} + \mathrm{HO}_2 + \mathrm{OH}^-$	R2	9.5(3)	2800	Jacobsen et al. (1997)
$H_2O_2 + Fe(OH)^+$	$Fe(OH)^{2+} + OH + OH^{-}$	R3	1.9(6)	6200	Moffett and Zika
$H_2O_2+Fe^{3+}$	Fe^{2+} + HO ₂ + H ⁺	R4	2.0(-3)		Walling and Goose (1973)
$H_2O_2 + Fe(OH)^{2+}$	$Fe^{2+} + HO_2 + H_2O$	R5	2.0(-3)		estimated ^a
$O_2^- + Fe^{2+} + 2H^+$	$\mathrm{H_2O_2} + \mathrm{Fe}^{3+}$	R7	1.0(7)		Rush and Bielski (1985)
$O_2^- + Fe^{3+}$	$\mathrm{Fe}^{2+} + \mathrm{O}_2$	R8	1.5(8)		Rush and Bielski
$O_2^{-} + Fe(OH)^{2+}$	$Fe^{2+} + O_2 + OH^-$	R9	1.5(8)		Rush and Bielski
$O_2^{-} + Fe(OH)^{2+}$	$Fe^{2+} + O_2 + 2OH^-$	R10	1.5(8)		Rush and Bielski
$HO_2 + Fe^{2+} + H^+$	$Fe^{3+} + H_2O_2$	R11	1.2(6)	5050	(1903) Jayson et al. (1973a)
$HO_2 + FeO^{2+}$	$Fe^{3+} + O_2 + OH^-$	R12	2.0(6)		Jacobsen et al.
$HO_2 + Fe(OH)^{2+}$	$Fe^{2+} + O_2 + H_2O$	R13	1.3(5)		(1998) Ziajka et al. (1994)
$OH + Fe^{2+}$	Fe(OH) ²⁺	R14	4.6(8)	1100	Christensen and Sebested (1981)
$OH + FeO^{2+} + H^+$	$Fe^{3+} + H_2O_2$	R15	1.0(7)		Loegager et al. (1992)
$O_3 + Fe^{2+}$	$\operatorname{FeO}^{2+} + \operatorname{O}_2$	R16	8.2(5)		Loegager et al.
$FeO^{2+} + H_2O$	$\mathrm{Fe}^{3+} + \mathrm{OH} + \mathrm{OH}^{-}$	R17	1.3(-2)	4100	Jacobsen et al.
$FeO^{2+} + Fe^{2+} + H_{2}O$	$2\text{Fe}^{3+} + 2\text{OH}^{-}$	R18	7.2(4)	842	Jacobsen et al.
$Cl_2^- + Fe^{2+}$	$\mathrm{Fe}^{3+} + 2\mathrm{Cl}^{-}$	R22	1.0(7)	3060	Thornton and
$O_2^{-} + Fe(SO_4)^{+}$	$Fe^{2+} + SO_4^{2-} + O_2$	R33	1.5(8)		Rush and Bielski
$HO_2 + Fe(SO_4)^+$	$Fe^{2+} + SO_4^{2-} + O_2$ + H ⁺	R34	1.0(3)		Rush and Bielski
${\rm Fe}^{3+} + {\rm SO_4}^{2-}$	$\operatorname{Fe}(\operatorname{SO}_4)^+$	R44	3.2(3)		Jayson et al.
$\operatorname{Fe}(\operatorname{SO}_4)^+$	${\rm Fe}^{3+} + {\rm SO_4}^{2-}$	R45	2.7(1)		Jayson et al. (1973b)

Table S8 Kinetic data for the simulation of TMI chemistry in aqueous aerosols

Cu chemistry OH + Cu^+	$Cu^{2+} + OH^{-}$	R48	3 0(9)	Goldstein et al
on r eu	Cu + OII	1140	5.0(7)	(1992)
$O_2 + Cu^+$	$Cu^{2+} + O_2^{-}$	R50	4.6(5)	Bjergbakke et al.
$H_2O_2 + Cu^+$	$Cu^{2+} + OH + OH^{-}$	R51	7 0(3)	(1970) Berdnikov (1973)
$HO_2 + Cu^+ + H^+$	$Cu^{2+} + H_2O_2$	R51	3.5(9)	Berdnikov (1973)
$O_2^- + Cu^+ + H^+$	$Cu^{2+} + H_2O_2$	R53	9.4(9)	Piechowski et al. (1993)
$HO_2 + Cu^{2+}$	$Cu^+ + O_2 + H^+$	R54	1.0(8)	Rabani et al. (1973)
$O_2^- + Cu^{2+}$	$Cu^+ + O_2$	R55	8.0(9)	Rabani et al. (1973)
$HO_2 + Cu(SO_4)$	$Cu^+ + O_2 + HSO_4^-$	R117	1.0(7)	estimated
$O_2^- + Cu(SO_4)$	$Cu^{+} + O_2 + SO_4^{2-}$	R118	1.0(8)	estimated
Cu-Fe coupling				
$Fe^{3+} + Cu^{+}$	$Cu^{2+} + Fe^{2+}$	R87	1.3(7)	Bjergbakke et al. (1976)
$\operatorname{Fe}(\operatorname{OH})^{2+} + \operatorname{Cu}^{+}$	$\mathrm{Cu}^{2+} + \mathrm{Fe}^{2+} + \mathrm{OH}^{-}$	R88	3.0(7)	Sedlak and Hoigné (1993)
$\operatorname{Fe}(\operatorname{OH})_2^+ + \operatorname{Cu}^+$	$Cu^{2+} + Fe^{2+} + 2OH^{-}$	R89	1.3(7)	estimated ^a
$\operatorname{Fe}(\operatorname{SO}_4)^+ + \operatorname{Cu}^+$	$Cu^{2+} + Fe^{2+} + SO_4^{2-}$	R116	1.8(6)	estimated ^b
Odd hydrogen				
$OH + HO_2$	$H_2O + O_2$	R93	7.0(9)	Sehested et al. (1968)
$OH + O_2^-$	$OH^- + O_2$	R94	1.0(10)	Sehested et al. (1968)
$OH + H_2O_2$	$H_2O + HO_2$	R95	2.7(7)	Christensen et al. (1982)
$HO_2 + HO_2$	$H_2O_2 + O_2$	R99	8.6(5)	Bielski (1978)
$HO_2 + O_2^-$	$H_2O_2 + O_2 + OH^-$	R100	1.0(8)	Bielski (1978)
$O_3 + O_2^- + H_2O$	$OH + 2O_2 + OH$	R101	1.5(9)	Sehested et al. (1983)
Photolysis				
$O_3 + H_2O$	$H_2O_2+O_2$	P1	2.98(-4)	Graedel and Weschler (1981)
H_2O_2	20H	P2	4.81(-6)	Graedel and Weschler (1981)
$Fe^{3+} + H_2O$	$\mathrm{Fe}^{2+} + \mathrm{OH} + \mathrm{H}^+$	P9	6.41(-6)	Benkelberg and Warneck (1995)
				······································

					Warneck (1995)
Equilibria					
$\mathrm{Fe}^{2+} + \mathrm{H}_2\mathrm{O}$	$Fe(OH)^+ + H^+$	E1	3.22(-		Mesmer (1971)
$Fe^{3+} + H_2O$	$Fe(OH)^{2+} + H^{+}$	E2	10) 6.0(-3)		Brandt and van
					Eldik (1995)
HO_2	$O_2^- + H^+$	E14	2.05(-5)		Bielski (1978)
H_2O_2	$\mathrm{HO_2}^- + \mathrm{H}^+$	E15	1.6(-12)	-3700	Hoffmann et al.
					(1985)
$Cu^{2+} + SO_4^{2-}$	$Cu(SO_4)$	E20	2.3(2)		Casas et al. (2000)

^a Estimated following Deguillaume et al. (2004)

^b: use the lowest value measured in H_2SO_4 solution when pH=1.6, assuming Fe(III) is dominated by $Fe(SO_4)^+$.

Species	K_{298} (M atm ⁻¹)	$\Delta H^{\circ}_{298}/R$ (K)	reference
HO ₂	2.0(3)	6600	Schwartz (1984)
H_2O_2	7.4(4)	6615	Lind and Kok (1986)
O_2	1.2(-3)	1620	
O ₃	1.1(-2)	2300	Kosak-Channing and Helz (1983)

Table S9 Henry's law constants for species in box model

Note: Read 2.0 (3) as 2.0×10^{-3} . The Henry's Law constant K at temperature T is

$$K = K_{298} \exp\left[\frac{-\Delta H_{298}^{\circ}}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$
, where $T_0 = 298$ K.

Figures

Figure S1 Ratio of interfacial mass transport to gas diffusion as a function of $\gamma(HO_2)$ and aerosol effective radius (corrected by hygroscopic growth factor).

Figure S2 Probability distributions of daily 8-h max ozone concentrations in March-August 2006 for 80 CASTNet sites in the US. Obervations (black) are compared to standard GEOS-Chem simulations (red) and GEOS-Chem with updated HO_2 uptake (blue).

Figure S3 Mean concentrations of measured Cu and Fe in PM 2.5 from the IMPROVE sites in continental US during the period of 1988-2004.

Reference

Allen, A. G., Nemitz, E., Shi, J. P., Harrison, R. M., and Greenwood, J. C.: Size distributions of trace metals in atmospheric aerosols in the United Kingdom, Atmos. Environ., 35, 4581-4591, 10.1016/s1352-2310(01)00190-x, 2001.

Artaxo, P., Martins, J. V., Yamasoe, M. A., Procópio, A. S., Pauliquevis, T. M., Andreae, M. O., Guyon, P., Gatti, L. V., and Leal, A. M. C.: Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia, J. Geophys. Res., 107, 8081, 10.1029/2001jd000666, 2002.

Baes, C. F., Reardon, E. J., and Moyer, B. A.: Ion interaction model applied to the cupric sulfate-sulfuric acid-water system at 25.degree.C, The Journal of Physical Chemistry, 97, 12343-12348, 10.1021/j100149a040, 1993.

Benkelberg, H.-J., and Warneck, P.: Photodecomposition of Iron(III) Hydroxo and Sulfato Complexes in Aqueous Solution: Wavelength Dependence of OH and SO4-Quantum Yields, The Journal of Physical Chemistry, 99, 5214-5221, 10.1021/j100014a049, 1995.

Berdnikov, V.: Catalytic activity of the hydrated copper ion in the decomposition of hydrogen peroxide, Russian Journal of Physical Chemistry, 47, 1060-1162, 1973.

Bernstein, D. M., and Rahn, K. A.: NEW YORK SUMMER AEROSOL STUDY: TRACE ELEMENT CONCENTRATIONS AS A FUNCTION OF PARTICLE SIZE, Annals of the New York Academy of Sciences, 322, 87-97, 10.1111/j.1749-6632.1979.tb14119.x, 1979.

Bielski, B. H. J.: REEVALUATION OF THE SPECTRAL AND KINETIC PROPERTIES OF HO2 AND O2- FREE RADICALS, Photochemistry and Photobiology, 28, 645-649, 10.1111/j.1751-1097.1978.tb06986.x, 1978.

Birmili, W., Allen, A. G., Bary, F., and Harrison, R. M.: Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic, Environ. Sci. Technol., 40, 1144-1153, 10.1021/es0486925, 2006.

Bjergbakke, E., Sehested, K., and Rasmussen, O. L.: The Reaction Mechanism and Rate Constants in the Radiolysis of ${\rm Fe}^{2+}-{\rm Cu}^{2+}\$ Solutions, Radiation Research, 66, 433-442, 1976.

Brandt, C., and van Eldik, R.: Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides. Atmospheric-Relevant Processes and Mechanisms, Chem. Rev., 95, 119-190, 10.1021/cr00033a006, 1995.

Bukowiecki, N., Lienemann, P., Hill, M., Figi, R., Richard, A., Furger, M., Rickers, K., Falkenberg, G., Zhao, Y., Cliff, S. S., Prevot, A. S. H., Baltensperger, U., Buchmann, B.,

and Gehrig, R.: Real-World Emission Factors for Antimony and Other Brake Wear Related Trace Elements: Size-Segregated Values for Light and Heavy Duty Vehicles, Environ. Sci. Technol., 43, 8072-8078, 10.1021/es9006096, 2009.

Cantrell, C. A., Mauldin, L., Zondlo, M., Eisele, F., Kosciuch, E., Shetter, R., Lefer, B., Hall, S., Campos, T., Ridley, B., Walega, J., Fried, A., Wert, B., Flocke, F., Weinheimer, A., Hannigan, J., Coffey, M., Atlas, E., Stephens, S., Heikes, B., Snow, J., Blake, D., Blake, N., Katzenstein, A., Lopez, J., Browell, E. V., Dibb, J., Scheuer, E., Seid, G., and Talbot, R.: Steady state free radical budgets and ozone photochemistry during TOPSE, J. Geophys. Res.-Atmos., 108, 8361,10.1029/2002jd002198, 2003.

Casas, J. M., Alvarez, F., and Cifuentes, L.: Aqueous speciation of sulfuric acid–cupric sulfate solutions, Chemical Engineering Science, 55, 6223-6234, 10.1016/s0009-2509(00)00421-8, 2000.

Christensen, H., and Sehested, K.: Pulse radiolysis at high temperatures and high pressures, Radiation Physics and Chemistry (1977), 18, 723-731, 10.1016/0146-5724(81)90195-3, 1981.

Christensen, H., Sehested, K., and Corfitzen, H.: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, The Journal of Physical Chemistry, 86, 1588-1590, 10.1021/j100206a023, 1982.

Christensen, H., Sehested, K., and Løgager, T.: The reaction of hydrogen peroxide with Fe(II) ions at elevated temperatures, Radiation Physics and Chemistry, 41, 575-578, 10.1016/0969-806x(93)90022-m, 1993.

Cooper, P. L., and Abbatt, J. P. D.: Heterogeneous interactions of OH and HO2 radicals with surfaces characteristic of atmospheric particulate matter, J. Phys. Chem., 100, 2249-2254, 1996.

de Reus, M., Fischer, H., Sander, R., Gros, V., Kormann, R., Salisbury, G., Van Dingenen, R., Williams, J., Zollner, M., and Lelieveld, J.: Observations and model calculations of trace gas scavenging in a dense Saharan dust plume during MINATROC, Atmos. Chem. Phys., 5, 1787-1803, 2005.

Deguillaume, L., Leriche, M., Monod, A., and Chaumerliac, N.: The role of transition metal ions on HOx radicals in clouds: a numerical evaluation of its impact on multiphase chemistry, Atmos. Chem. Phys., 4, 95-110, 10.5194/acp-4-95-2004, 2004.

Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., and Andreae, M. O.: Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical properties, and emission data for smoke from African biomass burning, J. Geophys. Res., 108, 8488, 10.1029/2002jd002408, 2003.

Fuchs, H., Bohn, B., Hofzumahaus, A., Holland, F., Lu, K. D., Nehr, S., Rohrer, F., and Wahner, A.: Detection of HO2 by laser-induced fluorescence: calibration and

interferences from RO2 radicals, Atmos. Meas. Tech., 4, 1209-1225, 10.5194/amt-4-1209-2011, 2011.

Goforth, M. R., and Christoforou, C. S.: Particle size distribution and atmospheric metals measurements in a rural area in the South Eastern USA, Sci. Total Environ., 356, 217-227, 10.1016/j.scitotenv.2005.03.017, 2006.

Goldstein, S., Czapski, G., Cohen, H., and Meyerstein, D.: Deamination of β -alanine induced by hydroxyl radicals and monovalent copper ions. A pulse radiolysis study, Inorganica Chimica Acta, 192, 87-93, 10.1016/s0020-1693(00)83177-1, 1992.

Graedel, T. E., and Weschler, C. J.: Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys., 19, 505-539, 10.1029/RG019i004p00505, 1981.

Guieu, C., Chester, R., Nimmo, M., Martin, J. M., Guerzoni, S., Nicolas, E., Mateu, J., and Keyse, S.: Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean, Deep Sea Research Part II: Topical Studies in Oceanography, 44, 655-674, 10.1016/s0967-0645(97)88508-6, 1997.

Halstead, M. J. R., Cunninghame, R. G., and Hunter, K. A.: Wet deposition of trace metals to a remote site in Fiordland, New Zealand, Atmos. Environ., 34, 665-676, 10.1016/s1352-2310(99)00185-5, 2000.

Harrison, R. M., and Yin, J.: Particulate matter in the atmosphere: which particle properties are important for its effects on health?, Sci. Total Environ., 249, 85-101, 10.1016/s0048-9697(99)00513-6, 2000.

Heal, M. R., Hibbs, L. R., Agius, R. M., and Beverland, I. J.: Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK, Atmos. Environ., 39, 1417-1430, 10.1016/j.atmosenv.2004.11.026, 2005.

Hofmann, H., Hoffmann, P., and Lieser, K. H.: Transition metals in atmospheric aqueous samples, analytical determination and speciation, Fresenius' Journal of Analytical Chemistry, 340, 591-597, 10.1007/bf00322435, 1991.

Horvath, H., Kasaharat, M., and Pesava, P.: The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location, J. Aerosol. Sci., 27, 417-435, 10.1016/0021-8502(95)00546-3, 1996.

Infante, R., and Acosta, I. L.: Size distribution of trace metals in Ponce, Puerto Rico air particulate matter, Atmospheric Environment. Part B. Urban Atmosphere, 25, 121-131, 10.1016/0957-1272(91)90046-h, 1991.

Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formicacid and peroxymonosulfate, J. Geophys. Res.-Atmos., 91, 9807-9826, 1986.

Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131-2159, 2000.

Jacobsen, F., Holcman, J., and Sehested, K.: Activation parameters of ferryl ion reactions in aqueous acid solutions, Int. J. Chem. Kinet., 29, 17-24, 10.1002/(sici)1097-4601(1997)29:1<17::aid-kin3>3.0.co;2-o, 1997.

Jacobsen, F., Holcman, J., and Sehested, K.: Reactions of the ferryl ion with some compounds found in cloud water, Int. J. Chem. Kinet., 30, 215-221, 10.1002/(sici)1097-4601(1998)30:3<215::aid-kin7>3.0.co;2-v, 1998.

Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Oxidation of ferrous ions by perhydroxyl radicals, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69, 1973a.

Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Appearance of sulphatoferric complexes in the oxidation of ferrous sulphate solutions. A study by pulse radiolysis, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69, 1079-1089, 1973b.

Kelley, J. A., Jaffe, D. A., Baklanov, A., and Mahura, A.: Heavy metals on the Kola Peninsula: aerosol size distribution, Sci. Total Environ., 160–161, 135-138, 10.1016/0048-9697(95)04351-z, 1995.

Kim, N. K., Kim, Y. P., and Kang, C. H.: Long-term trend of aerosol composition and direct radiative forcing due to aerosols over Gosan: TSP, PM10, and PM2.5 data between 1992 and 2008, Atmos. Environ., 45, 6107-6115, 10.1016/j.atmosenv.2011.08.051, 2011.

Kosak-Channing, L. F., and Helz, G. R.: Solubility of ozone in aqueous solutions of 0-0.6 M ionic strength at 5-30.degree.C, Environ. Sci. Technol., 17, 145-149, 10.1021/es00109a005, 1983.

Kuo, C.-Y., Wang, J.-Y., Chang, S.-H., and Chen, M.-C.: Study of metal concentrations in the environment near diesel transport routes, Atmos. Environ., 43, 3070-3076, 10.1016/j.atmosenv.2009.03.028, 2009.

Lannefors, H., Hansson, H. C., and Granat, L.: Background aerosol composition in Southern Sweden—Fourteen micro and macro constituents measured in seven particle size intervals at one site during one year, Atmospheric Environment (1967), 17, 87-101, 10.1016/0004-6981(83)90012-4, 1983.

Lee, P. K. H., Brook, J. R., Dabek-Zlotorzynska, E., and Mabury, S. A.: Identification of the Major Sources Contributing to PM2.5 Observed in Toronto, Environ. Sci. Technol., 37, 4831-4840, 10.1021/es026473i, 2003.

Li, S.-M., and Winchester, J. W.: Aerosol silicon and associated elements in the arctic high and mid-troposphere, Atmospheric Environment. Part A. General Topics, 27, 2907-2912, 10.1016/0960-1686(93)90322-p, 1993.

Lind, J. A., and Kok, G. L.: Henry's Law Determinations for Aqueous Solutions of Hydrogen Peroxide, Methylhydroperoxide, and Peroxyacetic Acid, J. Geophys. Res., 91, 7889-7895, 10.1029/JD091iD07p07889, 1986.

Loegager, T., Holcman, J., Sehested, K., and Pedersen, T.: Oxidation of ferrous ions by ozone in acidic solutions, Inorganic Chemistry, 31, 3523-3529, 10.1021/ic00043a009, 1992.

Maenhaut, W., Salma, I., Cafmeyer, J., Annegarn, H. J., and Andreae, M. O.: Regional atmospheric aerosol composition and sources in the eastern Transvaal, South Africa, and impact of biomass burning, J. Geophys. Res., 101, 23631-23650, 10.1029/95jd02930, 1996.

Manoj, S. V., Mishra, C. D., Sharma, M., Rani, A., Jain, R., Bansal, S. P., and Gupta, K. S.: Iron, manganese and copper concentrations in wet precipitations and kinetics of the oxidation of SO2 in rain water at two urban sites, Jaipur and Kota, in Western India, Atmos. Environ., 34, 4479-4486, 10.1016/s1352-2310(00)00117-5, 2000.

Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H., Clair, J. M. S., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J. L., Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen, G., Crawford, J. H., McNaughton, C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca, R. M., Le Sager, P., and Carouge, C.: Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, 10.5194/acp-10-5823-2010, 2010.

Matthew, B. M., George, I., and Anastasio, C.: Hydroperoxyl radical (HO2 center dot) oxidizes dibromide radical anion (Br-center dot(2)-) to bromine (Br-2) in aqueous solution: Implications for the formation of Br-2 in the marine boundary layer, Geophys. Res. Lett., 30, 10.1029/2003gl018572, 2003.

Mesmer, R. E.: Hydrolysis of iron(2+) in dilute chloride at 25.deg, Inorganic Chemistry, 10, 857-858, 10.1021/ic50098a038, 1971.

Miller, C. E., and Francisco, J. S.: The formation of a surprisingly stable HO2-H2SO4 complex, J. Am. Chem. Soc., 123, 10387-10388, 2001.

Millero, F. J., and Woosley, R.: The Hydrolysis of Al(III) in NaCl solutions-A Model for Fe(III), Environ. Sci. Technol., 43, 1818-1823, 10.1021/es802504u, 2009.

Moffett, J. W., and Zika, R. G.: Reaction kinetics of hydrogen peroxide with copper and iron in seawater, Environ. Sci. Technol., 21, 804-810, 10.1021/es00162a012, 1987.

Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., Aguilar, J., and Alcántara, E.: PM composition and source reconciliation in Mexico City, Atmos. Environ., 43, 5068-5074, 10.1016/j.atmosenv.2009.06.051, 2009.

Piechowski, M. V., Nauser, T., Hoignè, J., and Bühler, R. E.: O–2 Decay Catalyzed by Cu2+ and Cu+ Ions in Aqueous Solutions: A Pulse Radiolysis Study for Atmospheric Chemistry, Berichte der Bunsengesellschaft für physikalische Chemie, 97, 762-771, 10.1002/bbpc.19930970604, 1993.

Rabani, J., Klug-Roth, D., and Lilie, J.: Pulse radiolytic investigations of the catalyzed disproportionation of peroxy radicals. Aqueous cupric ions, The Journal of Physical Chemistry, 77, 1169-1175, 10.1021/j100628a018, 1973.

Robinson, R. A., and Stokes, R. H.: Electrolyte solutions, Dover Pubns, 2002.

Ross, H. B., and Noone, K. J.: A numerical investigation of the destruction of peroxy radical by Cu ion catalysed reactions on atmospheric particles, J. Atmos. Chem., 12, 121-136, 10.1007/bf00115775, 1991.

Rush, J. D., and Bielski, B. H. J.: Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2- with iron(II)/iron(III) ions. The reactivity of HO2/O2- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction, The Journal of Physical Chemistry, 89, 5062-5066, 10.1021/j100269a035, 1985.

Samara, C., and Voutsa, D.: Size distribution of airborne particulate matter and associated heavy metals in the roadside environment, Chemosphere, 59, 1197-1206, 10.1016/j.chemosphere.2004.11.061, 2005.

Schwartz, S. E.: GAS-PHASE AND AQUEOUS-PHASE CHEMISTRY OF HO2 IN LIQUID WATER CLOUDS, J. Geophys. Res.-Atmos., 89, 1589-1598, 1984.

Sedlak, D. L., and Hoigné, J.: The role of copper and oxalate in the redox cycling of iron in atmospheric waters, Atmospheric Environment. Part A. General Topics, 27, 2173-2185, 10.1016/0960-1686(93)90047-3, 1993.

Sedlak, D. L., Hoigné, J., David, M. M., Colvile, R. N., Seyffer, E., Acker, K., Wiepercht, W., Lind, J. A., and Fuzzi, S.: The cloudwater chemistry of iron and copper at Great Dun Fell, U.K, Atmos. Environ., 31, 2515-2526, 10.1016/s1352-2310(96)00080-5, 1997.

Sehested, K., Rasmussen, O. L., and Fricke, H.: Rate constants of OH with HO2,O2-, and H2O2+ from hydrogen peroxide formation in pulse-irradiated oxygenated water, The Journal of Physical Chemistry, 72, 626-631, 10.1021/j100848a040, 1968.

Sehested, K., Holcman, J., and Hart, E. J.: Rate constants and products of the reactions of e-aq, dioxide(1-) (O2-) and proton with ozone in aqueous solutions, The Journal of Physical Chemistry, 87, 1951-1954, 10.1021/j100234a024, 1983.

Siefert, R. L., Johansen, A. M., Hoffmann, M. R., and Pehkonen, S. O.: Measurements of trace metal (Fe, Cu, Mn, Cr) oxidation states in fog and stratus clouds, J. Air Waste Manage. Assoc., 48, 128-143, 1998.

Singh, M., Jaques, P. A., and Sioutas, C.: Size distribution and diurnal characteristics of particle-bound metals in source and receptor sites of the Los Angeles Basin, Atmos. Environ., 36, 1675-1689, 10.1016/s1352-2310(02)00166-8, 2002.

Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang, Z., and Hao, Z.: The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources, Atmos. Environ., 38, 5991-6004, 10.1016/j.atmosenv.2004.07.009, 2004.

Sun, Y., Zhuang, G., Tang, A., Wang, Y., and An, Z.: Chemical Characteristics of PM2.5 and PM10 in Haze–Fog Episodes in Beijing, Environ. Sci. Technol., 40, 3148-3155, 10.1021/es051533g, 2006.

Thornton, A. T., and Laurence, G. S.: Kinetics of oxidation of transition-metal ions by halogen radical anions. Part I. The oxidation of iron(II) by dibromide and dichloride ions generated by flash photolysis, Journal of the Chemical Society, Dalton Transactions, 1973.

Walling, C., and Goosen, A.: Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates, J. Am. Chem. Soc., 95, 2987-2991, 10.1021/ja00790a042, 1973.

Wang, Y. H., Ridley, B., Fried, A., Cantrell, C., Davis, D., Chen, G., Snow, J., Heikes, B., Talbot, R., Dibb, J., Flocke, F., Weinheimer, A., Blake, N., Blake, D., Shetter, R., Lefer, B., Atlas, E., Coffey, M., Walega, J., and Wert, B.: Springtime photochemistry at northern mid and high latitudes, J. Geophys. Res.-Atmos., 108, 8358, doi:10.1029/2002jd002227, 2003.

Wilkinson, J., Reynolds, B., Neal, C., Hill, S., Neal, M., and Harrow, M.: Major, minor and trace element composition of cloudwater and rainwater at Plynlimon, Hydrol. Earth Syst. Sci., 1, 557-569, 10.5194/hess-1-557-1997, 1997.

Ziajka, J., Beer, F., and Warneck, P.: Iron-catalysed oxidation of bisulphite aqueous solution: Evidence for a free radical chain mechanism, Atmos. Environ., 28, 2549-2552, 10.1016/1352-2310(94)90405-7, 1994.