1 Supplementary Material:

2

3	Mixing state of individual submicron carbon-containing particles
4	during spring and fall season in urban Guangzhou, China: a
5	case study
6	
7	Guohua Zhang ^{1, 2} , Xinhui Bi ^{1,*} , Lei Li ³ , Lo Yin Chan ¹ , Mei Li ³ , Xinming Wang ¹ ,
8	Guoying Sheng ¹ , Jiamo Fu ^{1,3} , Zhen Zhou ³
9	
10	1. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of
11	Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
12	2. Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R.
13	China
14	3. School of Environmental and Chemical Engineering, Shanghai University,
15	Shanghai 200444, P. R. China
16	
17	Correspondence to: Xinhui Bi (bixh@gig.ac.cn)
18	Tel: +86-20-85290195

19 Fax: +86-20-85290288

21

22 **Fig. S1.** Box-whisker plots of SPAMS scaling factor using SMPS + C for Spring

period 2010 in Guangzhou. The median (line in the box), quartile (box), 10% and 90%

24 percentile (whiskers) were shown. The size-dependence pattern of the scaling factor is

similar to those described in earlier studies with single particle mass spectrometry

26 (Healy et al., 2012; Jeong et al., 2011).

27 Scaling procedure for SPAMS data: firstly, the conversion of d_m to d_{va} was 28 performed according to the methodology described by (DeCarlo et al., 2004):

29
$$d_{\rm va} = \rho_{\rm p}/\rho_0 \times d_{\rm ve}/\chi$$

30 where ρ_p is the particle density, ρ_0 is standard density (1 g cm⁻³), d_{ve} is particle 31 volume equivalent diameter, and χ is the dynamic shape factor (assumed to be 1). All 32 particles were assumed to be spherical with no internal voids, thus d_m is equal to d_{ve} .

33	A single density value of 1.7 g cm ⁻³ (Cheng et al., 2006) was chosen to convert the d_m
34	to d_{va} . Certain error might also be introduced based on the usage of an assumed
35	density for scaling process, while previous work has attained satisfactory results
36	(Healy et al., 2012; Reinard et al., 2007). Secondly, the particle size range from
37	SPAMS was divided into seven size bins (0.2-0.3, 0.3-0.39, 0.39-0.49, 0.49-0.63,
38	0.63-0.73, 0.73-0.83 and 0.83-0.95 μm), corresponding to seven size bins from SMPS
39	+ C created by merging adjacent pairs of size bins, approximately covering a d_m size
40	range of 124-521 nm (mid-point). Thirdly, scaling factor was calculated for each size
41	bin through dividing the size-segregated hourly average number concentration from
42	SMPS + C by the simultaneously observed hourly total SPAMS particle number count
43	in the corresponding size bin (Rehbein et al., 2012). The hourly scaling factors in each
44	size range were utilized in scaling the number concentration of particles by directly
45	multiplying SPAMS counts of each single particle type of the exactly same size range
46	in that hour.

Fig. S3. Fire maps from MODIS on board the Terra and Aqua satellites during 61

2010/05/01-2010/05/10 (left), and 2010/11/07-2010/11/16 (right). The fire map 62

accumulates the locations of the fires over a 10-day period. Each colored dot indicates 63

a location where MODIS detected at least one fire during the compositing period. The 64

star marker signifys the location of sampling site. 65

Fig. S4. Comparison of relative intensity for different species in smaller (0.2-0.4 μ m)

70 respectively.

66

67

71 **References**

72	Cheng, Y. F., Eichler, H., Wiedensohler, A., Heintzenberg, J., Zhang, Y. H., Hu, M.,
73	Herrmann, H., Zeng, L. M., Liu, S., and Gnauk, T.: Mixing state of elemental carbon and
74	non-light-absorbing aerosol components derived from in situ particle optical properties
75	at Xinken in Pearl River Delta of China, J. Geophys. Res., 111, D20204, 2006.
76	DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle
77	morphology and density characterization by combined mobility and aerodynamic
78	diameter measurements. Part 1: Theory, Aerosol Sci. Tech., 38, 1185-1205, doi:
79	10.1080/027868290903907, 2004.
80	Healy, R. M., Sciare, J., Poulain, L., Kamili, K., Merkel, M., Müller, T., Wiedensohler, A.,
81	Eckhardt, S., Stohl, A., Sarda-Estève, R., McGillicuddy, E., O'Connor, I. P., Sodeau, J.
82	R., and Wenger, J. C.: Sources and mixing state of size-resolved elemental carbon
83	particles in a European megacity: Paris, Atmos. Chem. Phys., 12, 1681-1700, doi:
84	10.5194/acp-12-1681-2012, 2012.
85	Jeong, C. H., McGuire, M. L., Godri, K. J., Slowik, J. G., Rehbein, P. J. G., and Evans, G. J.:
86	Quantification of aerosol chemical composition using continuous single particle
87	measurements, Atmos. Chem. Phys., 11, 7027-7044, doi: 10.5194/acp-11-7027-2011,
88	2011.
89	Rehbein, P. J. G., Jeong, CH., McGuire, M. L., and Evans, G. J.: Strategies to Enhance the
90	Interpretation of Single-Particle Ambient Aerosol Data, Aerosol Sci. Tech., 46, 584-595,
91	doi: 10.1080/02786826.2011.650334, 2012.
92	Reinard, M. S., Adou, K., Martini, J. M., and Johnston, M. V.: Source characterization and

- 93 identification by real-time single particle mass spectrometry, Atmos. Environ., 41,
- 94 9397-9409, doi: 10.1016/j.atmosenv.2007.09.001, 2007.