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Abstract. A three-dimensional variational data assimilation
(3-DVAR) algorithm for aerosols in a WRF/Chem model is
presented. The WRF/Chem model uses the MOSAIC (Model
for Simulating Aerosol Interactions and Chemistry) scheme,
which explicitly treats eight major species (elemental/black
carbon, organic carbon, nitrate, sulfate, chloride, ammonium,
sodium and the sum of other inorganic, inert mineral and
metal species) and represents size distributions using a sec-
tional method with four size bins. The 3-DVAR scheme is
formulated to take advantage of the MOSAIC scheme in pro-
viding comprehensive analyses of species concentrations and
size distributions. To treat the large number of state vari-
ables associated with the MOSAIC scheme, this 3-DVAR al-
gorithm first determines the analysis increments of the total
mass concentrations of the eight species, defined as the sum
of the mass concentrations across all size bins, and then dis-
tributes the analysis increments over four size bins accord-
ing to the background error variances. The number concen-
trations for each size bin are adjusted based on the ratios
between the mass and number concentrations of the back-
ground state. Additional flexibility is incorporated to further
lump the eight mass concentrations, and five lumped species
are used in the application presented. The system is evaluated
using the analysis and prediction of PM2.5 in the Los Ange-
les basin during the CalNex 2010 field experiment, with as-
similation of surface PM2.5 and speciated concentration ob-
servations. The results demonstrate that the data assimilation

significantly reduces the errors in comparison with a simula-
tion without data assimilation and improved forecasts of the
concentrations of PM2.5 as well as individual species for up
to 24 h. Some implementation difficulties and limitations of
the system are discussed.

1 Introduction

Aerosols are airborne suspensions of minute particles and
have fundamental impacts on the earth’s environment and
climate and on human health. To understand the physi-
cal, chemical, radiative and dynamical processes associated
with aerosols, a variety of sophisticated atmospheric chem-
istry models have been developed and coupled with atmo-
spheric models (Seinfeld and Pandis, 2006; Fast et al., 2006;
Binkowski and Roselle, 2003). Parallel to the model devel-
opment, the last decade has witnessed great progress in the
technology for observing aerosols, ranging from in-situ spe-
ciated measurements to satellite- and surface-based remote
sensing, leading to the establishment of a variety of observ-
ing networks (e.g., Diner et al., 2004).

The progress in both aerosol models and observing net-
works facilitates the development and implementation of
aerosol data assimilation. Data assimilation is a methodol-
ogy for the integration of all available observations into mod-
els to produce aerosol fields, which can be used to provide
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model initial conditions to improve forecasts, perform diag-
nostic analyses, and for other applications. The meteorologi-
cal community has employed data assimilation for more than
three decades to provide optimal initial conditions for nu-
merical weather prediction models and to develop reanalysis
products for a wide spectrum of applications (Kalnay, 2003).
In recent years, data assimilation has increasingly been ap-
plied to aerosol analysis.

Here we present an aerosol three-dimensional variational
data assimilation (3-DVAR) scheme. This 3-DVAR scheme
is developed for the WRF/Chem (Grell et al., 2005), with
the comprehensive aerosol scheme known as the Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC)
(Zaveri et al., 2008). MOSAIC was first implemented in the
Weather Research and Forecasting (WRF) model coupled
with Chemistry (WRF/Chem) by Fast et al. (2006). Leverag-
ing the generality of MOSAIC, this 3-DVAR system is used
to estimate multi-species concentrations and their size distri-
butions, and to assimilate observations of not only total con-
centrations, but also speciated concentrations.

The outline of this paper is as follows: in Sect. 2, some
challenges faced by aerosol data assimilation and the strate-
gies for meeting those challenges are described. In Sect. 3,
a brief description of the MOSAIC scheme is given, and the
analysis variables used in the 3-DVAR scheme are defined;
Sect. 4 presents the 3-DVAR scheme and explains in detail
the relationship between the observed and modeled variables.
In Sect. 5, the method used to estimate the background error
covariance is detailed, with an emphasis on the vertical cor-
relations. In Sect. 6, the 3-DVAR system is applied to the
prediction of PM2.5 in the Los Angeles basin during the Cal-
Nex (California Research at the Nexus of Air Quality and
Climate Change) 2010 field experiment, and assessments of
the performance of the data assimilation methodology and
forecasts are presented. Finally, a summary and discussion
are given in Sect. 7.

2 Challenges and strategies

Aerosol data assimilation faces some fundamental difficul-
ties beyond those encountered in meteorological data assimi-
lation. The difficulties arise primarily in treating a large num-
ber of state variables. A sophisticated model may explicitly
treat more than a dozen species, which involve not only mass
concentrations, but also number concentrations. In particular,
a large number of state variables are required to represent the
wide range of aerosol size distributions, ranging from a few
nanometers to around 100 µm in diameter. A modal method
represents the size distributions by fitting the size distribu-
tion to a set of log-normal functions (Whitby, 1978). Four
log-normal functions, known as the nucleation, Aitken, accu-
mulation and coarse particle modes, are often used (Seinfeld
and Pandis, 2006). Another method uses a set of bins of in-
creasing size, and is referred to as a sectional or bin method

(Gelbard et al., 1980; Jacobson, 1997). With either of these
two methods, scores of state variables are then needed. A
third method is to track the moments of the aerosol popula-
tion (McGraw, 1997; Bauer et al., 2008). Although the mo-
ment method has been shown to be quite efficient, it still can
lead to a large number of variables.

The large number of state variables poses multiple chal-
lenges in the practical implementation of data assimila-
tion. Data assimilation is computationally demanding by na-
ture. For generic formulations of different data assimilation
schemes and their relationships, readers are referred to Da-
ley (1991), Courtier et al. (1994), Ide et al. (1997), Cohn
(1997), Ḿenard and Daley (1996) and Li and Navon (2001).
Among the widely used data assimilation schemes, the three-
dimensional variational data assimilation (3-DVAR) scheme
– the type used here – is the most computationally efficient.
A 3-DVAR scheme iteratively minimises a cost function
that depends on error covariance matrices. Its demands on
computational and memory resources increase rapidly as the
number of state variables increases (see Sect. 4). A greater
challenge is related to the limited number of observations.
There are only a few hundred aerosol measuring surface sta-
tions in the United States, one of most dense networks in the
world, and the measurements are limited to a few parame-
ters and to the surface. Instrumented-aircraft measurements,
which often provide aerosol profiles, are even more limited in
space and time. Satellite measurements provide global cover-
age, and the most common satellite observations are aerosol
optical depths (AODs). The available observations are in-
sufficient to constrain all the variables at spatial and tempo-
ral scales dictated by the inhomogeneity of aerosol emission
sources and their relatively short atmospheric residence time.

Due to the afore-mentioned computational and observa-
tional requirements, it will be practically impossible for
many years to establish a data assimilation system that can
simultaneously and reliably estimate mass and number con-
centrations of all the major species at the size bins. We must,
therefore, judiciously choose a limited number of variables
to estimate, based on the aerosol treatment schemes, the de-
sired accuracy for a given application, the geographical re-
gions (urban, remote continental areas, oceans, etc.), the ef-
fectiveness of the use of observations available, and the com-
putational feasibility.

Along this line, two types of schemes have been im-
plemented. One scheme can be traced back to Collins et
al. (2001), who assimilated AODs in a three-dimensional
chemical transport model. This scheme uses AODs as the
only data assimilation analysis variable and estimates their
increments. Then the estimated AOD increments are trans-
formed into species mass concentration increments, which
are in turn added to the model forecast. Following Collins
et al. (2001), a number of studies assimilated AODs in
global and regional chemical transport models (Yu et al.,
2003; Generoso et al., 2007; Adhikary et al., 2008; Zhang
et al., 2008; Sandu and Chai, 2011). Another scheme first
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estimates the total aerosol mixing ratio increment and then
distributes the total increment to mass concentrations of
individual species. This type of scheme was presented in
Benedetti and Janiskova (2008), Benedetti et al. (2009) and
Mangold et al. (2011). In air quality oriented applications,
the total mass concentration, which is often the concentra-
tions of PM2.5 (sizes smaller than 2.5 µm) and PM10 (size
smaller than 10 µm), is used as the analysis variable (Denby
et al., 2008; Tombette et al., 2009; Pagowski et al., 2010).

The aerosol data assimilation methods described above
can be characterised as two-step schemes (Liu et al., 2011).
The first step is to estimate the increments of lumped vari-
ables, such as AODs, PM2.5 and PM10; the second step is
to calculate the increments of individual species at specified
sizes from the lumped variable increments. These two-step
schemes are suboptimal. The optimal scheme would be to
directly estimate all the prognostic variables in the forecast
model. When a relatively simplified aerosol scheme is used,
the number of state variables may be limited so that all the
state variables can be estimated simultaneously (e.g., Liu et
al., 2011; Sekiyama et al., 2010). We envision that for many
years to come, two-step schemes will inevitably be used
for most comprehensive and sophisticated aerosol schemes,
which treat scores of variables to represent mass concentra-
tions and number concentrations with multiple size distribu-
tions, but the number of lumped variables should gradually
increase as the number of observations increases and compu-
tational technology advances.

3 Aerosol scheme and analysis variables

When a two-step data assimilation scheme is chosen, differ-
ent data assimilation analysis variables are generally required
to define for different aerosol schemes. Here we use the MO-
SAIC scheme in WRF/Chem.

MOSAIC treats eight aerosol species, including elemen-
tal/black carbon (EC/BC), organic carbon (OC), nitrate
(NO−

3 ), sulfate (SO2−

4 ), chloride (Cl−), ammonium (NH+4 ),
sodium (Na+). Other unspecified inorganic species such
as silica (SiO2), other inert minerals, and trace metals are
lumped together as “other inorganic mass” (OIN). A sec-
tional approach is adopted to represent aerosol size distri-
butions. The size bins are defined by their lower and upper
dry particle diameters. Each bin is assumed to be internally
mixed so that all particles within a bin have the same chem-
ical composition, while particles in different bins are exter-
nally mixed. The number of size bins, denoted asNbin here,
can be specified as appropriate for different applications. In
MOSAIC, hence, the state variables consist of mass concen-
trations of as many as 8Nbin, along with the number concen-
trations of as many asNbin. While MOSAIC offers flexibility
in specifying the number of size bins, four or eight bins are
commonly used. Here 4 bins are used. Accordingly, the state

variables consist of 32 mass concentrations and 4 number
concentrations.

To proceed to formulate a two-step scheme, we first de-
fine a set of lumped variables based on the aforementioned
state variables. As in previous studies (Denby et al., 2008;
Benedetti et al., 2009; Tombette et al., 2009; Pagowski et
al., 2010), we may use PM2.5 or PM10 as the analysis vari-
ables. In this study, four bins used are located between
0.039–0.1 µm, 0.1–1.0 µm, 1.0–2.5 µm, and 2.5–10 µm. The
total mass concentration of PM2.5 or PM10 can be expressed
as a summation across according size bins. Here we in-
troduce more analysis variables and form lumped variables
consisting of the total mass concentrations of the aforemen-
tioned eight species. Specifically, one data assimilation anal-
ysis variable is the total mass concentration of one aerosol
species, that is, the sum of the mass concentrations across
the size bins used. We note that the data assimilation is de-
signed to allow further lumping some of these eight variables
for particular applications, as well as using the first two, three
or all four bins.

Once the lumped variables are formed, the two-step
scheme is first to obtain the analysis increment of these
lumped variables by solving a 3-DVAR problem, and then to
partition these increments into increments for the individual
species in each of the size bins. These partitioned increments
are added to the model forecast to produce the final analysis.
Accordingly, the number of aerosols for each bin is adjusted.

4 Data assimilation scheme

Here we describe the basic framework and then address the
partition of the increments of the lumped variables into the
increments for the individual species in each of the size bins.

4.1 Basic formulation

We consider five analysis variables,xEC, xOC, xNO3, xSO4 and
xOTR , which are the total mass concentrations of EC, OC,
NO−

3 , SO2−

4 , and OTR. The chloride, ammonium, sodium
and other inorganic aerosol concentrations are lumped into
one single variable OTR. Here we do not use eight species,
but only five species as analysis variables for simplicity and
also because the speciated measurements that are assimilated
later correspond to these five species. Following the notation
suggested by Ide et al. (1997), we express these five vectors

asx, that is,xT
=

(
xT

EC,xT
OC,xT

NO3
,xT

SO4
,xT

OTR

)
, where “T”

stands for transpose. The incremental form of the 3-DVAR
cost function is written as:

J (δx) =
1

2
δxTB−1δx +

1

2
(Hδx − d)TR−1(Hδx − d). (1)

Hereδx is theN vector, known as the incremental state vari-
able, which is defined asδx = x − xb, wherexb is the fore-
cast or background state generated by the MOSAIC scheme
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in WRF/Chem.B is the N × N matrix, denoting the error
covariance associated withxb. TheM vectord = y − Hxb

is known as the observation innovation, wherey is an ob-
servation vector and theM × M matrix R is the observa-
tion error covariance associated with the observationy. The
M × N matrix H is an observational operator that maps the
state variable to the observation and is assumed to be linear
here. The minimisation solution is the so-called analysis in-
crementδxa, and the final analysis isxa

= xb
+ δxa. This

analysis is statistically optimal as a minimum error variance
estimate (e.g., Jazwinski, 1970; Cohn, 1997) or a maximum
likelihood (Bayesian) estimate if both forecast and observa-
tion errors have Gaussian distributions.

4.2 Construction of background error covariance

For a given set of observations, the performance of a 3-DVAR
scheme is dictated by the specified background error covari-
anceB and the observational error covarianceR in Eq. (1).
R can generally be specified in a straightforward way and
will not be discussed in detail here. Statistically, an accurate
estimate ofB is required to render the analysisxa the maxi-
mum likelihood estimate. More specifically,B plays the role
of spreading out observational information contained iny to
nearby model grid-points, smoothing out small scale noise
and enforcing basic dynamic balance constraints.

In practice, however,B is incorporated in a suboptimal
way. The primary reason is thatB is too large to handle nu-
merically. For a high resolution model such as that used here,
the number of model grid points is on the order of 106. The
number of elements inB is, therefore, 1012 multiplied by the
square of the number of analysis variables. With this size,B
cannot be explicitly manipulated. A simplification or param-
eterisation ofB is required.

To pursue simplifications, we use the following factorisa-
tion

B = DCDT, (2)

whereD is the root-mean-square error (RMSE) matrix, a di-
agonal matrix whose elements are RMSEs, andC is the cor-
relation matrix. With this factorisation, the RMSE and cor-
relation matrices can be described and prescribed separately.
SinceD has an effective dimension the same as that ofδx, it
is computationally treatable. The simplification applies pri-
marily toC.

To simplify C, we use a three step procedure. The
Cholesky factorisation is first applied. SinceC is symmetric
and positive definite, the Cholesky factorisation is

C = C
1
2 (C

1
2 )T, (3)

where the matrixC
1
2 is a lower triangular matrix. This

Cholesky factorisation is used to ensure the symmetry and
positive definiteness ofC and reduce the computational cost.

Using this Cholesky factorisation, we can transform the anal-
ysis variableδx to δz through

δx = DC
1
2 δz. (4)

Substituting Eq. (4) into Eq. (1), we obtain the desired form
of Eq. (1) as

J (δz)=
1

2
δzTδz+

1

2

(
HDC

1
2 δz−d

)T
R−1

(
HDC

1
2 δz−d

)
. (5)

The transformed cost function is generally better condi-
tioned and, thus, this transformation expedites the conver-
gence when it is iteratively minimised.

We here assume that the background errors of different
types of aerosols are not correlated. This is an ad hoc as-
sumption and is used simply to circumvent the computational
complexity of treating the cross-correlations between differ-
ent types of aerosols. Using this assumption,C becomes a
block diagonal matrix, with the main diagonal blocks being
the correlation matrices of individual types of aerosols, and
we have

C =


CBC

COC
CNO3

CSO4

COTR

 , (6)

whereCBC, COC, CNO3, CSO4 andCOTR are the background
error correlation matrices associated with the five types of
aerosols.

Finally, a fundamental simplification ofC can be achieved
following Li et al. (2008a, b), in which a Kronecker product
method is used to constructC. LetCS denote the background
error correlation matrix of one species, whereS stands for
EC, OC, NO−

3 , SO2−

4 or OTR. We can then approximately
expressCS as

CS = CSx ⊗ CSy ⊗ CSz, (7)

where⊗ denotes Kronecker product, which is also known
as vector or tensor product (Graham, 1981). Herex, y andz
stand for the three coordinate directions in longitude, latitude
and the vertical.CSx is, thus, annx × nx correlation matrix
in thex direction. Accordingly,CSy is anny ×ny correlation
matrix in they direction, andCSz annz ×nz correlation ma-
trix in the z direction. Herenx , ny andnz are the numbers
of grid points in thex,y andz directions, respectively. The
most desirable property of Eq. (7) is that these three one-
dimensional correlation matrices are computationally treat-
able sincenx , ny andnz are on the order of 102 to 103 in size
in present atmospheric chemical models.

Another desirable property of Eq. (7) is that we have the
Cholesky factorisation

C
1
2
S = C

1
2
Sx ⊗ C

1
2
Sy ⊗ C

1
2
Sz. (8)
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Because of their treatable dimensions,C
1
2
Sx , C

1
2
Sy andC

1
2
Sz are

always pre-computed and saved, which renders this 3-DVAR
scheme particularly efficient computationally. As showed in
Li et al. (2008a, b), Eqs. (7) or (8) allows incorporating some
forms of inhomogeneity and anisotropy in the correlations,
while a particular desirable advantage of Eq. (7) is the ca-
pability of representing complex vertical correlations, which
will be further discussed when the estimates ofCSx , CSy and
CSz are described in Sect. 5.

4.3 Increments of lumped variables to species

The data assimilation scheme formulated above estimates
five lumped variables formed from the mass concentrations
of the aerosol species treated in MOSAIC, but the ultimate
analysis solution is concerned with the mass concentrations
of those individual species. By definition, the increment of a
lumped variable can be expressed as

δxS =

L∑
l=1

δmSl, (9)

whereS again stands for EC, OC, NO−3 , SO2−

4 , or OTR. Here
δmSl is the mass concentration increment of one MOSAIC
species for a single size bin. Since EC, BC, NO−

3 and SO2−

4
are MOSAIC species, the summation is across all the size
bins, andL equalsNbin, the number of the size bins used.
Since OTR includes four MOSAIC species, the summation
is for the four species and across all the size bins andL, thus,
becomes 4Nbin for OTR. We calculate the analysis increment
of mass concentration for one MOSAIC species and one size
bin as

δma
Sl =

σ 2
Sl

L∑
i=1

σ 2
Sl

δxa
S, (10)

whereσSl are the root-mean-square (RMS) of the mass con-
centration background error for each species and size bin.
Equation (10) is used since it can be derived as a minimum
error variance estimation with the constraint (Eq. 9) and un-
der the assumption thatδxa

S has no error and the background
errors associated withmSl are uncorrelated.

With δma
Sl at our disposal, we can obtain the final analysis

mass concentrations for each MOSAIC species and size bin
as

ma
Sl=


mb

Sl + δma
Sl if δma

Sl ≥ 0
mb

Sl + δma
Sl if δma

Sl < 0; mb
Sl + δma

Sl ≥ crSl

mb
Sl if δma

Sl < 0; mb
Sl + δma

Sl < crSl

,

(11)

wherecrSl is a positive value. We usecrSl to ensure thatma
Sl

is non-negative, and no reduction is made to the background
state when the background concentration is lower than the

observational errors. In practice, aerosol observational errors
are often not well characterised. In the current application,
we empirically specifycrlS = 0.1σSl .

After the mass concentration increments are added to
the background state, the number concentration increments
should be added accordingly. For simplicity, we assume that
the ratio of the number concentration to the mass concentra-
tion for each size bin remains to the same as it was in the
background state. Let us denote this ratio asγ . γ is calcu-
lated from the background state. The analysis of the number
concentrations is

na
k = nb

k + γ
(
ma

k − mb
k

)
, k = 1, · · · ,Nbin (12)

wherenb
k is the background number concentration within one

size bin, andma
k is the total mass concentration summed for

all the species within one size bin and computed fromma
Sl

given by Eq. (11).

4.4 Observational operators

In present observing networks, in-situ observations primar-
ily consist of total surface concentrations of particular mat-
ter, such as PM1.0, PM2.5 or PM10, and speciated concentra-
tions of EC, OC, NO−3 , SO2−

4 and others. In this study, mass
concentrations of PM2.5 from Air Resources Board (ARB)
of California Environmental Protection Agency (available at
http://www.arb.ca.gov/aqmis2/aqdselect.php), and the daily
mean speciated mass concentrations from the IMPROVE
(Interagency Monitoring of Protected Visual Environments)
network (http://vista.cira.colostate.edu/improve/) are assimi-
lated.

The total concentrations of particular matter are indirect
observations, and the observational operatorsH represent the
summation of the concentrations of all the species across the
appropriate size bins. The observational operator for the con-
centration of PM2.5 represents the summation of the concen-
trations of all the species across the first three size bins (see
Sect. 3). The observational operator often involves both hor-
izontal and vertical interpolations from the model grid to ob-
servation locations. Here we assume that the lowest model
level is at the surface and, thus, no vertical interpolation is
applied for surface observations like ARB PM2.5.

The observational operator for IMPROVE observations is
more complicated. IMPROVE observations are not concen-
trations at a given time but daily mean concentrations. To
assimilate them, we first compute the daily mean observa-
tion innovation for the period of time 12 h before and after
the data assimilation time. The computed innovation is then
assumed to be constant during the period of time and, thus,
assimilated as the innovation at the given time. The assump-
tion used here is similar to that used in the First-Guess at
the Appropriate Time (FGAT) method, which has been em-
ployed in several meteorological data assimilation systems
(e.g., Simmons, 2000; Lorenc et al., 2000).

www.atmos-chem-phys.net/13/4265/2013/ Atmos. Chem. Phys., 13, 4265–4278, 2013
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dots) operated by the California Air Resources Board (ARB) and one super observing 

station (red square), which was located on the campus of the California Institute of 

Technology and collected speciated aerosol concentrations during the CalNex 2010 

field experiment. 
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Fig. 1.Model domains, topography and location of observations. The three nested model domains are shown in the left panel. The right panel
gives the topography in the small domain along with the locations of the 42 PM2.5 monitoring stations (black dots) operated by the California
Air Resources Board (ARB) and one super observing station (red square), which was located on the campus of the California Institute of
Technology and collected speciated aerosol concentrations during the CalNex 2010 field experiment.

5 WRF/Chem configuration and background error
covariance estimate

The WRF/Chem model is configured as a nested set of three
spatial domains (Fig. 1). The large domain encompasses the
western United States and adjacent coastal region (36 km
grid), the middle domain a smaller portion of the western
states and the California coast (12 km grid), and the small do-
main the Los Angeles Basin (4 km grid). The nesting is two-
way for both interior domains. Each domain has 40 vertical
levels with the top at 100 hPa. The vertical grid is stretched
to place the highest resolution in the lower troposphere. The
analyses presented here will be primarily confined to the
4 km domain.

We use version 3.3 of WRF/Chem. In WRF/Chem, the
chemistry (both aerosol and gas-phase) and meteorological
components are fully coupled (Grell et al., 2005; Fast et
al., 2006). The parameterisations of physical processes used
that are most relevant to aerosols are summarised as fol-
lows: the Monin-Obukhov surface layer scheme, the Yon-
sei University (YSU) boundary-layer scheme, the Morri-
son 2-moment microphysics scheme, the Noah land surface
model and the Dudhia radiation scheme for longwave and
shortwave interactions with clear-air and clouds (Skamarock
et al., 2008 and references therein). For the chemical pro-
cesses, the MOSAIC (4 bin) aerosol scheme is used. The
Carbon Bond Mechanism (CBM-Z) scheme is used for the
Gas-phase chemistry processes. The emissions were derived
from National Emission Inventory 2005 (NEI’05) for both
aerosols and trace gases (McKeen et al., 2002).

In Sect. 4.2, we developed an approximate expression
for the background error covariance. According to Eqs. (2)
and (7), we need to estimate the RMSE matrixD and one-
dimensional correlation matrices for each analysis variable.

To estimate these matrices, we follow a methodology used
in meteorology. An overview of methods to diagnose back-
ground error statistics for application in Numerical Weather
Prediction (NWP) is provided in Bannister (2008). The main
approaches are based on either statistics of observations mi-
nus model differences at observation locations, or on model
fields generated on the model grid that can be used statisti-
cally as a proxy of the background error; this second method
is known as the NMC method (Parrish and Derber, 1992).
The observation innovation method cannot be used in aerosol
data assimilation because of the lack of three-dimensional
speciated observations and, hence, the NMC method is used
here.

The NMC method has been used for estimating the aerosol
concentration background error covariance (Benedetti and
Fisher, 2007; Kahnert, 2008). In the European Centre for
Medium-Range Weather Forecasts (ECMWF) 4-DVAR sys-
tem (Benedetti and Fisher, 2007), the differences between
48 h and 24 h forecasts of aerosol mixing ratios for sea salt,
desert dust and continental particulates are assumed to be
a proxy of the background error. While the NMC method
has not yet been fully justified in the context of aerosol
data assimilation, the ECMWF 4-DVAR system indicates
that it can be useful at least in some circumstances. We esti-
mate the aforementioned error covariance matrices following
Benedetti and Fisher (2007).

We generate one month of the 48 h and 24 h forecast dif-
ferences from 15 May 2010 to 14 June 2010. The forecast
is initialised using the North American Regional Reanaly-
sis (NARR) (Mesinger et al., 2006). The interior boundary
conditions and sea surface temperatures are updated at each
initialisation, with the lateral boundary conditions updated
continuously throughout the forecast. Note that the NARR
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Figure 2. Vertical distribution of the root-mean-square of the background errors in 

mass concentration for five species, estimated using the differences between 24 

and 48 h forecasts valid at the same time.   
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Fig. 2. Vertical distribution of the root-mean-square of the back-
ground errors in mass concentration for five species, estimated us-
ing the differences between 24 and 48 h forecasts valid at the same
time.

fields do not include any aerosol variables. The initial con-
ditions for the aerosol species are simply from the forecast
without being updated. Hence, the forecast difference arises
from the difference in the meteorological fields, which in
turn give rise to differences in vertical and horizontal trans-
ports, dry and wet depositions, and chemical processes that
are sensitive to temperature, moisture and cloud water con-
tent. It is assumed that these differences are representative of
the short-term forecast errors in transport-related aerosol pro-
cesses and can be used to calculate background error statis-
tics. We note that the forecast differences for one month have
been used, but a longer time series could be beneficial for ro-
bust statistics.

We directly estimate the RMSE matrixD. The domain av-
erage RMSEs for five species are shown in Fig. 2. The RM-
SEs differ among the species. The largest RMSE is associ-
ated with NO−

3 , while the smallest RMSE is associated with
OC. The vertical distributions of the RMSE for all the species
display a relatively rapid decrease with height.

The fine structures of the RMSE vertical distribution are
related to boundary layer heights. In Fig. 3, the boundary lay-
ers primarily consist of marine layers with depths of less than
400 m, and inland boundary layers with depths of around
1000 m. There is a noticeable increase in the SO2−

4 RMSEs
at the boundary layer height.

The three-dimensional correlation matrixCS has been ap-
proximately factorized and expressed as the Kronecker prod-
uct of three one-dimensional correlation matricesCSx , CSy

and CSz for each species in Eq. (7), and these three one-
dimensional matrices need to be estimated. Although the
horizontal correlation matricesCSx andCSy can be directly
computed using the proxy of the background error (Li et al.,
2008b), we here use Gaussian functions to represent then cor-
relation functions for constructingCSx and CSy , and also 44 
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Figure 3. Boundary layer heights (m) at 11 UTC, 18 October, 2011 generated by 3 

WRF/Chem, initialized at 00 UTC, 16 October, 2011 with the North America Regional 4 

Reanalysis (NARR).   5 
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Fig. 3. Boundary layer heights (m) at 11:00 UTC, 18 October 2011
generated by WRF/Chem, initialised at 00:00 UTC, 16 October
2011 with the North America Regional Reanalysis (NARR).

assume that the correlations are isotropic. With these two
assumptions, a correlation function between two pointsr1
and r2 in the horizontal can be expressed ascS(r1, r2) =

e
−

(r2−r1)2

2L2
S , whereLS is the horizontal correlation scale. The

correlation length scaleLS becomes the only parameter that
need to be estimated. This correlation length scale is esti-
mated using the proxy of the background error. The corre-
lation cS reduces to the value ofe−1/2 when the distance of
two pointsr1 andr2 is measuredLS . This distance averaged
over the model domain is used as the estimate ofLS . The es-
timatedLS are 36, 32, 20, 52, 48 km for the five species, EC,
OC, NO−

3 , SO2−

4 , and OTR, respectively.
The estimated correlation length scales are significantly

different among distinct species. The largest scale is asso-
ciated with SO2−

4 , which indicates that the background error
has relatively large scales horizontally, and the influence of
an SO2−

4 observation could spread farther than other species.
In contrast, the smallest correlation length scale is associ-
ated with NO−

3 , and it is about 2/5 of the scale associated
with SO2−

4 . Such differences among the correlation length
scales indicate a need to use multi-species concentrations as
the analysis variables.

The vertical correlation matricesCSz are computed di-
rectly from the proxy data. This can be done sinceCSz is
only annz×nz matrix. A directly-computedCSz helps repre-
sent the complicated vertical structures of the vertical corre-
lations due to the discontinuity-like transition of the vertical
distributions between the boundary layer and the free atmo-
sphere above. Such structures are difficult to represent using
analytical functions. The computed vertical correlation ma-
trices ofCSz are displayed in Fig. 4. The vertical correlation
for OC is not shown, because it is similar to that for EC. A
salient and common feature of these vertical correlations is
their strong relation to the boundary layer heights. Consis-
tent with the discontinuity-like transition in the background
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Figure 4. Vertical correlations of the background errors for EC, NO 
 , SO 

  , and OTR. 

These correlations are computed using differences between 24 and 48 h forecasts valid at 

the same time.  A localization was applied with a vertical scale of 3500 m. The contour 

interval is 0.1. 
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Fig. 4.Vertical correlations of the background errors for EC, NO−

3 ,

SO2−

4 , and OTR. These correlations are computed using differences
between 24 and 48 h forecasts valid at the same time. A localisation
was applied with a vertical scale of 3500 m. The contour interval is
0.1.

vertical RMSE around the top of the boundary layer, the ver-
tical correlations display a jump at the top of boundary layer.
Another feature worth mentioning is that the vertical corre-
lation for NO−

3 shows a relatively small vertical scale.

6 Applications to the prediction of PM2.5

The Greater Los Angeles area continues to be the most pol-
luted metropolitan region in the US, and prediction of the
spatial and temporal distributions of PM2.5 in the region re-
mains a challenge. Here the 3-DVAR system is used to assim-
ilate PM2.5 measurements along with some speciated con-
centration measurements and then predictions are performed.
This data assimilation and prediction experiment has been
carried out for a period of one month from 12:00 UTC, 15
May to 12:00 UTC, 14 June 2010. This period of time was
chosen because the CalNex 2010 field experiment took place
at this time (http://www.esrl.noaa.gov/csd/calnex/). CalNex
2010 was a major climate and air quality study in California
conducted by the National Oceanic and Atmospheric Admin-
istration (NOAA) and the California Air Resources Board
(ARB) and, thus, more observations are available for assimi-
lation and evaluation.

6.1 Implementation of data assimilation and forecast

To assess the data assimilation analyses and subsequent pre-
dictions, we compare the results from the experiments with
and without data assimilation. The experiments are carried
out as follows. The forecast is initialised at 00:00 UTC daily

using the NARR meteorological fields, and then the forecast
is run out to 36 h, that is, till 12:00 UTC on the following
day. The first 12 h of the forecast are discarded as a model
spin-up for the meteorological fields. This spin-up allows the
WRF/Chem to produce not only proper clouds and precipi-
tation, but also fine structures in the wind fields associated
with the higher resolution of the model and surface topog-
raphy. The chemical fields, including both the gaseous and
aerosol species, are updated daily at 12:00 UTC after the 12 h
spin-up of the meteorological fields, using the forecast from
the previous day. For convenience, we refer to these results
as the control analyses or forecasts.

The aerosol data assimilation is carried out every 6 h.
A time window of 6 h is used to resolve diurnal varia-
tions. Specifically, the data assimilation is carried out at
12:00 UTC, after the above-mentioned spin-up, and the 6 h
aerosol forecast initialised by the prior aerosol data assimi-
lation analysis valid at 06:00 UTC is used as the background
state. Then the aerosol analysis obtained is used as the ini-
tial condition at 12:00 UTC for the subsequent 6 h forecast,
which generates the background state for the aerosol data as-
similation at 18:00 UTC. In this way, the data assimilation
and forecast cycle can continuously advance in time. It is
worth noting that the aerosol feedback to the radiation and
cloud processes is turned off in the WRF/Chem and, thus,
the meteorological fields are exactly the same as those in the
control experiment.

The aerosol observations assimilated have been described
in Sect. 4.4. The ARB PM2.5 consists of hourly measure-
ments from a total of 42 stations in the model domain
(Fig. 1). The hourly observations are assimilated, but only
at those hours when the data assimilation is carried out.
The IMPROVE daily mean speciated mass concentrations
are assimilated at 12:00 UTC. For those observations assim-
ilated, a simple quality control is applied. First, observations
with negative values are rejected; second, the differences be-
tween the observations and 6 h forecasts (O-F) are exam-
ined, and those observations with the O-F values greater than
120 µg m−3 are rejected. The observational error is specified
as half of the background root-mean-square errors.

Additional observations of speciated concentrations are
available during the CalNex 2010 experiment (available at
http://www.esrl.noaa.gov/csd/calnex/) from one station lo-
cated on the California Institute of Technology campus (see
Fig. 1). These observations consist of the concentrations of
EC, OC, NO−

3 , SO2−

4 and others. They are not assimilated,
but are used as independent observations to assess the skill
of the analyses.

6.2 Assessment of data assimilation analyses

We first compare the analysis PM2.5 against the observa-
tions that are assimilated, which is known as “sanity check”.
To quantify the difference, we analyse biases, correlations
and root-mean-square differences between data assimilation
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Fig. 5. Scatter plots of the PM2.5 mass concentrations against observations in the analysis without(a) and with(b) data assimilation. The
observations are assimilated, and consist of the 00:00, 06:00, 12:00 and 18:00 UTC observations from the 42 ARB monitoring stations during
the period 12:00 UTC, 5 May to 12:00 UTC, 14 June 2010.

analyses and observations. For simplicity, we refer to root-
mean-square differences as root-mean-squared errors (RM-
SEs), although they are not RMSEs in a strict sense because
the observation errors can be significant. These biases, cor-
relations and RMSEs will also be used later in analysing the
forecasts.

Figure 5 presents a scatter plot of the PM2.5 concentrations
from the control and data assimilation analysis, respectively,
against the observations for a period of one month. Obser-
vations from each of the 42 stations and at all four times of
the day with data assimilation, that is, at 00:00, 06:00, 12:00
and 18:00 UTC, are used. The control PM2.5 results display
a significant underestimation. The observed mean concen-
tration of PM2.5 is 21.5 µg m−3, while that of the control
analysis is 14.9 µm, a bias of−7.6 µg m−3 and, thus, about
30 % lower than the observed. The correlation is 0.51 and
the RMSE is 11.0 µg m−3, compared with a standard devi-
ation of 26.8 µg m−3 in the observed PM2.5. In the data as-
similation analysis, the bias is greatly reduced, to as small as
−1.0 µg m−3. The correlation between the analysis and ob-
served PM2.5 is as high as 0.87, while the RMSE decreases
to 4.2 µg m−3. These results show that this 3-DVAR scheme
can effectively assimilate the PM2.5 observations.

We have introduced multi-species concentrations as analy-
sis variables, aiming to enhance the capability of the scheme
in reproducing species concentrations. The concentrations of
four major species – EC, OC, NO−3 , and SO2−

4 are evaluated
here, using the speciated observations obtained at the super
observing station (Fig. 1). We note that these speciated obser-
vations are not assimilated and, thus, are independent data.

Figure 6 shows the scatter plots of analysis species con-
centrations against the observations at the super observing

station. The concentrations of all four species are improved
in both their correlation and RMSE. Relative to the control
results, the correlation increases by 0.1 for EC to 0.2 for
NO−

3 and the RMSEs are reduced by 10 % for OC to 50 %
for SO2−

4 . The RMSE increases for EC, but this is due to the
bias. The biases in the NO−3 and SO2−

4 concentrations are
appreciably reduced, but an increase in bias occurs in the EC
and OC concentrations. The increase of these biases is worth
discussing. The EC and OC concentrations show a positive
bias in both the control and analysis results, and this bias is
opposite to that of the PM2.5 bias in sign, while the NO−3
and SO2−

4 concentrations show a negative bias. Note that the
assimilation of IMPROVE observations have relatively lit-
tle impact on the analysis at this location, because there is
no IMPROVE station in the area surrounding this location.
Thus, the assimilation of PM2.5 gives rise to increases in the
biases in the EC and OC concentrations. This increase in bias
actually indicates an inherent difficulty when only PM2.5 ob-
servations are assimilated, that is, the individual species con-
centration bias can deteriorate when the PM2.5 and species
concentration biases have opposite signs.

6.3 Assessment of forecasts

One of the ultimate goals of developing this 3-DVAR system
is to improve our capability for predicting aerosol concentra-
tions. Here we evaluate forecast skill in PM2.5 concentrations
out to 24 h. Figure 7 presents the correlations and RMSEs
as a function of forecast lead time. The 24 h forecast is ini-
tialised with the analysis at 12:00 UTC, which corresponds
to 05:00 Local Time (LT). The 0 h forecast is the data assim-
ilation analysis at 12:00 UTC. The correlations and RMSEs
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Figure 6. Scatter plots of model mass concentrations against observations with (left column) 
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Fig. 6. Scatter plots of model mass concentrations against obser-
vations without (left column) and with (right column) data assim-
ilation for the species of EC, OC, NO−3 , and SO2−

4 , respectively.
These observations are not assimilated and are, thus, independent
data. These observations are obtained hourly from the super moni-
toring station during the CalNex 2010 field experiment.

show that the forecast has consistent skill. Comparing the
correlations and RMSEs with those from the control forecast
without aerosol data assimilation, a positive impact on skill
can be seen all the way out to 24 h.

Examining all forecast durations from 6 to 24 h, one char-
acteristic seen is that there is not a monotonic decrease in
skill as the forecast duration increases. Actually, during the

period from 6 to 24 h, the forecast correlation increases. The
RMSE shows a maximum value for the 6 h forecast and is ba-
sically flat from 12 to 24 h. Relative to the control forecast,
both the correlation and RMSEs display no significant vari-
ations from 12 to 24 h. Another characteristic is the large in-
crease in correlation and decrease in RMSEs during the first
6 h. These two characteristics of the forecast skill are not of-
ten encountered in meteorological data assimilation, where
the forecast skill tends to decrease with the forecast duration
gradually and monotonically, and may suggest an inherent
challenge in aerosol data assimilation or the need for the in-
corporation of dynamic balance among aerosol components
and between aerosol and gaseous components.

We have seen (Fig. 1) that the PM2.5 observations are
heterogeneously distributed. A related question is whether
the forecast skill is also spatially heterogeneous in associa-
tion with this heterogeneous distribution of observations. We
have analysed the spatial distribution of both the correlations
(not shown) and RMSEs for the 24 h forecast. The distribu-
tions of RMSE are shown in Fig. 8. From Fig. 8a and b, we
see that the RMSE of the 24 h forecast shows a significant
decrease in areas where the RMSE is relatively larger in the
control forecast without data assimilation, including most of
the Los Angeles area. To show this decrease in the RMSE
more clearly, the difference between the control forecast and
the 24 forecast with data assimilation is shown in Fig. 8c. A
decrease in RMSE is seen at most of the observing locations,
but there are four locations where the RMSEs increase. We
note that these four locations are located along the coast.

The forecast of individual species is more challenging
than that of the total PM2.5 concentration, but the results
are overall encouraging. Figure 9 presents forecast correla-
tions and RMSEs out to 24 h at the super observing station.
Most encouraging is that, in terms of both correlations and
RMSE, the error reduction in the analysis SO2−

4 concentra-
tion (Fig. 9) persists up to 24 h. The correlations of the OC
and NO−

3 concentrations are larger than that of the control
forecast up to 24 h, while the correlation of the EC concen-
trations is larger than that of the control forecast up to 18 h.
The RMSEs of the OC and NO−3 concentrations are reduced
comparing to that of the control forecast, but for a relatively
short period of time. The RMSE of the EC forecast is larger
than that of the control forecast because of the large bias.

7 Conclusions and discussions

A 3-DVAR data assimilation system for the MOSAIC
aerosol scheme in WRF/Chem has been developed and pre-
sented. MOSAIC provides a comprehensive representation
of aerosol species and size distributions that result from a va-
riety of pollutant emissions. This 3-DVAR scheme is formu-
lated and implemented in an attempt to take full advantage of
the MOSAIC scheme.
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Figure 7. Correlations (a) and root-mean square errors (RMSEs in µg/m
3
) (b) of the 2 

total PM2.5 concentration forecasts against observations as a function of forecast 3 

duration. The forecast is initialized at 12 UTC. Both correlations and RMSEs are 4 
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Fig. 7.Correlations(a)and root-mean-square errors (RMSEs in µg m−3) (b) of the total PM2.5 concentration forecasts against observations as
a function of forecast duration. The forecast is initialised at 12:00 UTC. Both correlations and RMSEs are calculated against the observations
from 42 stations during the period 12:00 UTC, 5 May to 12:00 UTC, 14 June 2010. The black bars are for the control forecast without data
assimilation, and the red bars for the forecast with data assimilation.

The 3-DVAR system developed can be characterised as
a two-step scheme. The total concentrations of individual
species, defined as the sum of the concentrations across all
size bins, are used as analysis variables and, thus, the analy-
sis variables consist of the eight mass concentrations of the
MOSAIC aerosol species. In the application presented here,
the eight concentrations are further lumped into five species,
and four size bins were used. The first step is to determine
analysis increments for these eight concentrations following
a 3-DVAR methodology (Sect. 4.1). The second step is to dis-
tribute the analysis increments over four size bins. The distri-
bution is inversely related to the background error variances.
The number concentrations are adjusted based on the ratio of
the mass and number concentration in the background state.

This system was applied to the analysis and prediction of
PM2.5 in the Los Angeles basin during CalNex 2010. Sur-
face PM2.5 and speciated concentration observations were
assimilated. To evaluate the performance of the scheme, we
carried out control forecasts, which were initialised with the
North America Regional Reanalysis (NARR) and used both
aerosol and trace gas emissions derived from National Emis-
sion Inventory 2005 (NEI’05). The comparison of the con-
trol forecasts and the forecasts with aerosol data assimilation
against observations demonstrated that the data assimilation
generated analyses with significantly reduced errors, which
improved the subsequent forecasts of PM2.5 up to 24 h. We
also evaluated the performance of the forecasts of elemen-
tal carbon, organic carbon, nitrate and sulfate concentrations.
The data assimilation significantly improved the forecast of
sulfate concentrations up to 24 h, while the improvement ex-
tended up to 12–18 h for the other three species.

We have emphasised the use of multi-species concentra-
tions as analysis variables. Because of this, this 3-DVAR has
the capability of simultaneously assimilating total and spe-
ciated concentrations observations, such as total PM2.5 con-
centrations and speciated concentrations from the IMPROVE

network. The use of multi-species concentrations is also de-
sirable for representations of the background error covari-
ance. In Sect. 5, we showed that both the horizontal and ver-
tical scales of the background errors correlations are signifi-
cantly different and this difference needs to be accounted for.
We carried out an experiment (not presented), in which the
background error correlation of each species was replaced by
that estimated for PM2.5 using the 48 h minus 24 h forecast
described in Sect. 5 and showed that this degraded the per-
formance.

In this study, only surface observations were assimilated,
but this 3-DVAR scheme has been developed to assimi-
late additional observations from aircraft and satellites. With
more observations assimilated, this data assimilation system
is expected not only to further improve forecasts, but also
to be of use in other applications. For example, the output
can be used to interpolate limited observations for the evalu-
ation of numerical models of aerosol-related processes such
as aerosol-cloud interactions.

Despite the promising performance of this 3-DVAR sys-
tem, a few fundamental assumptions used warrant further
examination. The most fundamental assumption is that the
background and observational errors are Gaussian. However,
the evidence shows that aerosol concentrations tend to be
non-Gaussian (Seinfeld and Pandis, 2006). While the back-
ground errors may not necessarily follow the aerosol concen-
tration distributions, there is a possibility that the background
errors are non-Gaussian. In addition, aerosol concentrations
are strictly non-negative quantities, therefore, errors in these
quantities cannot be strictly Gaussian distributed, although
they may be approximately so since the Gaussian density as-
signs positive probability to negative values of these quanti-
ties (Cohn, 1997). A systematic analysis is needed to charac-
terise the background error distribution. Another assumption
is that the background errors are uncorrelated between differ-
ent types of species and between distinct size bins. This is an
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Figure 8. Spatial distribution of RMSEs of the 24 h forecasts.  (a) shows the RMSEs of 

the control forecast, and (b) the RMSEs of the 24 h forecast with data assimilation. The 

RMSE difference between the control and 24 h forecast with data assimilation is shown 

in the panel (c), in which a negative value indicates a decrease of RMSE arising from 

data assimilation. The RMSEs are in  g/m
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Fig. 8. Spatial distribution of RMSEs of the 24 h forecasts.
(a) shows the RMSEs of the control forecast, and(b) the RMSEs of
the 24 h forecast with data assimilation. The RMSE difference be-
tween the control and 24 h forecast with data assimilation is shown
in the panel(c), in which a negative value indicates a decrease of
RMSE arising from data assimilation. The RMSEs are in µg m−3.

ad hoc assumption made simply to render the problem com-
putationally manageable. The correlations between different
bins can be significant, because one species often arises from
same sources and transfers across the bins. The consequences
of this assumption should be quantified, and relaxation of this
assumption should be pursued. In the present implementa-
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Figure 9. Correlations (left) and root-mean square errors (RMSEs in µg/m3) (right) of the 

specie concentration forecasts against observations as a function of forecast duration. The 

forecast is initialized at 12 UTC. Both correlations and RMSEs are calculated against the 

observations from 42 stations during the period 12 UTC, 5 May to 12 UTC, 14 June, 2010. 

The black bars for the control forecast without data assimilation, and the red bars for the 

forecast with data assimilation. 
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Fig. 9. Correlations (left) and root-mean-square errors (RMSEs in
µg m−3) (right) of the species concentration forecasts against obser-
vations as a function of forecast duration. The forecast is initialised
at 12:00 UTC. Both correlations and RMSEs are calculated against
the observations from 42 stations during the period 12:00 UTC,
5 May to 12:00 UTC, 14 June 2010. The black bars for the control
forecast without data assimilation, and the red bars for the forecast
with data assimilation.

tion, gaseous components are not involved. However, aerosol
particles in the atmosphere contain a variety of volatile com-
pounds (ammonium, nitrate, chloride, volatile organic com-
pounds) that can exist either in the particulate or gas phase,
and these two phases are often in thermodynamic equilib-
rium. Assimilation of gaseous components may be required
to further improve the forecast of aerosol species concentra-
tions.
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Schulz, M., Ceburnis, D., O’Dowd, C., Flentje, H., Kinne, S.,
Benedetti, A., Morcrette, J.-J., and Boucher, O.: Aerosol anal-
ysis and forecast in the European Centre for Medium-Range
Weather Forecasts Integrated Forecast System: 3. Evaluation
by means of case studies, J. Geophys. Res., 116, D03302,
doi:10.1029/2010JD014864, 2011.

McGraw, R.: Description of atmospheric aerosol dynamics by the
quadrature method of moments, Aerosol Sci. Technol., 27, 255–
265, 1997.

McKeen, S. A., Wotawa, G., Parrish, D. D., Holloway, J. S., Buhr,
M. P., Hubler, G., Fehsenfeld, F. C., and Meagher, J. F.: Ozone
production from Canadian wildfires during June and July of
1995, J. Geophys. Res., 107, 4192,doi:10.1029/2001JD000697,
2002.

Ménard, R. and Daley, R.: The application of Kalman smoother the-
ory to the estimation of 4DVAR error statistics, Tellus, 48A, 221–
237, 1996.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.
C., Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery,
E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H.,
Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North Ameri-
can Regional Reanalysis, B. Am. Meteorol. Soc., 87, 343–360,
doi:10.1175/BAMS-87-3-343, 2006.

Parrish, D. F. and Derber, J. C.: The National Meteorological
Center’s spectral statistical interpolation analysis system, Mon.
Weather Rev., 120, 1747–1763, 1992.

Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and
Devenyi, D.: Three-dimensional variational data assimilation of
ozone and fine particulate matter observations: Some results us-
ing the Weather Research and Forecasting – Chemistry model
and Grid-point Statistical Interpolation, Q. J. Roy. Meteorol.
Soc., 136, 2013–2024, 2010.

Sandu, A. and Chai, T. F.: Chemical data assimilation an overview,
The Atmosphere, 2, 426–463, 2011.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and
Physics: From Air Pollution to Climate Change, 2nd Edn., J. Wi-
ley, New York, 2006.

Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., and Miyoshi, T.: Data
assimilation of CALIPSO aerosol observations, Atmos. Chem.
Phys., 10, 39–49,doi:10.5194/acp-10-39-2010, 2010.

Simmons, A.: Assimilation of satellite data for numerical weather
prediction: basic importance, concepts and issues, ECMWF sem-
inar proceedings. Exploitation of the new generation of satel-
lite instruments for numerical weather prediction, 4–8 September
2000, Reading, UK, 21–46, 2000.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Duda, M. G., Huang, X., Wang, W., and Powers, J. G.:
A description of the advanced research WRF version 3, NCAR
Tech. Note, NCAR/TN-475+STR, 8 pp., Natl. Cent. for Atmos.
Res., Boulder, Colorado,http://www.mmm.ucar.edu/wrf/users/
docs/arwv3.pdf, 2008.

Tombette, M., Mallet, V., and Sportisse, B.: PM10 data assimila-
tion over Europe with the optimal interpolation method, Atmos.
Chem. Phys., 9, 57–70,doi:10.5194/acp-9-57-2009, 2009.

Whitby, K. T.: The physical characteristics of sulfate aerosols, At-
mos. Environ., 12, 135–159, 1978.

Yu, H., Dickinson, R. E., Chin, M., Kaufman, Y. J., Geogdzhayev,
B., and Mishchenko, M. I.: Annual cycle of global distributions
of aerosol optical depth from integration of MODIS retrievals
and GOCART model simulations, J. Geophys. Res., 108, 4128,
doi:10.1029/2002JD002717, 2003.

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model
for Simulating Aerosol Interactions and chemistry (MOSAIC), J.
Geophys. Res., 113, D13204,doi:10.1029/2007JD008782, 2008.

Zhang, J., Reid, J. S., Westphal, D., Baker, N., and Hyer, E.:
A System for Operational Aerosol Optical Depth Data Assim-
ilation over Global Oceans, J. Geophys. Res., 113, D10208,
doi:10.1029/2007JD009065, 2008.

Atmos. Chem. Phys., 13, 4265–4278, 2013 www.atmos-chem-phys.net/13/4265/2013/

http://dx.doi.org/10.1029/2006JC004042
http://dx.doi.org/10.1029/2011JD016159
http://dx.doi.org/10.1029/2010JD014864
http://dx.doi.org/10.1029/2001JD000697
http://dx.doi.org/10.1175/BAMS-87-3-343
http://dx.doi.org/10.5194/acp-10-39-2010
http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
http://dx.doi.org/10.5194/acp-9-57-2009
http://dx.doi.org/10.1029/2002JD002717
http://dx.doi.org/10.1029/2007JD008782
http://dx.doi.org/10.1029/2007JD009065

