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Abstract. Investigating the human health effects of atmo-
spheric particulate matter (PM) using satellite data are gain-
ing more attention due to their wide spatial coverage and
temporal advantages. Such epidemiological studies are, how-
ever, susceptible to bias errors and resulted in poor pre-
dictive output in some locations. Current methods calibrate
aerosol optical depth (AOD) retrieved from MODIS to fur-
ther predict PM. The recent satellite-based AOD calibration
uses a mixed effects model to predict location-specific PM
on a daily basis. The shortcomings of this daily AOD cali-
bration are for areas of high probability of persistent cloud
cover throughout the year such as in the humid tropical re-
gion along the equatorial belt. Contaminated pixels due to
clouds causes radiometric errors in the MODIS AOD, thus
causes poor predictive power on air quality. In contrary,
a periodic assessment is more practical and robust espe-
cially in minimizing these cloud-related contaminations. In
this paper, a simple yet robust calibration approach based
on monthly AOD period is presented. We adopted the sta-
tistical fitting method with the adjustment technique to im-
prove the predictive power of MODIS AOD. The adjust-
ment was made based on the long-term observation (2001–
2006) of PM10-AOD residual error characteristic. Further-
more, we also incorporated the ground PM measurement into
the model as a weighting to reduce the bias of the MODIS-
derived AOD value. Results indicated that this robust ap-
proach with monthly AOD calibration reported an improved
average accuracy of PM10 retrieval from MODIS data by
50 % compared to widely used calibration methods based on
linear regression models, in addition to enabling further spa-
tial patterns of periodic PM exposure to be undertaken.

1 Introduction

The interest in using earth observation satellites to measure
atmospheric aerosols has progressed from climate studies to
the more important topic of human health. This is due to
a satellite’s unique ability of providing a synoptic view over
large areas in a uniform, repetitive and quantitative way. At-
mospheric aerosols originate from both natural and anthro-
pogenic emission sources. The latter are considered to have
major implications on human health as they are highly re-
lated to mortality and morbidity as already shown by many
researchers around the world (Wan Mahiyuddin et al., 2013;
Sahani et al., 2011; Bell et al., 2007; Dominici et al., 2006;
Franklin et al., 2007; Gent et al., 2003, 2009; Schwartz et al.,
1996; Slama et al., 2007; Hu, 2009). Most of the recent stud-
ies highlighted PM2.5 as the main contributor towards health
effects. However, PM2.5 is a portion of PM10 and can be
estimated with a known constant (Marcazzan et al., 2001).
In many developing countries PM10 is still being measured
instead of PM2.5 due to limited resources. For example, in
Malaysia, PM10 is being measured and used in the Air Pol-
lution Index (API) to assess regional air quality.

Satellite data can be used as a surrogate to monitor re-
gional air quality due to the fact that there are limited ground
monitoring stations where many regions are left unmonitored
(Schaap et al., 2009; Engel-Cox et al., 2004b). The widely
used method of predicting PM concentration from satellite
data is by empirical analysis, where in situ PM measurement
are linearly regressed with the corresponding satellite AOD.
In order to improve the predictive power of the linear regres-
sion models, related parameters such as local meteorological
and land use information were also used as an input into PM
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prediction (Liu et al., 2009). However, these models gener-
ally predict< 60 % of the PM variability (Hoff and Christo-
pher, 2009). The latest model developed byLee et al.(2011)
uses a mixed effect model to establish daily specific AOD–
PM2.5 relationship and predicts the site mean PM2.5 con-
centrations withR2

= 0.62. Furthermore,Lee et al.(2011)
also hypothesized that the relationship between PM2.5 and
AOD varies daily due to time-varying parameters influenc-
ing the AOD–PM relationship, such as PM vertical and di-
urnal concentration profiles, PM optical properties, and oth-
ers. Therefore, a linear AOD–PM relationship in a long-term
daily monitoring is rather limited (Yap et al., 2011), and in
fact the time-varying assumption byLee et al.(2011) that
varies minimally spatially on a given day over a specific spa-
tial scale is rarely valid for humid tropical weather over the
equatorial regions, where a high probability of cloud-cover
exists and is also dependent on the surroundings maritime
environment. Thus it is more practical and efficient for the
calibration of the satellite data to be based on a monthly ba-
sis.

The monthly calibrated satellite data are useful in im-
proving the air pollution indicators of Environmental Per-
formance Index (EPI) reporting in this region. The EPI is
a system used to evaluate countries based on 22 performance
indicators that focus on environmental issues for which gov-
ernments can be held accountable (Emerson et al., 2012). At-
mospheric PM derived from monthly average satellite data is
one of the performance indicators used in EPI evaluation for
environmental health. Without the robust calibration, errors
in the datasets resulting from systematic error and local cli-
matic effects such as the monsoon and site specific error may
occur. These will lead to poor representation of PM concen-
tration and EPI derived from satellite measurements, having
consequences of misinterpretation by policy makers around
the world.

In this paper, a robust calibration approach is introduced
by incorporating a simple adjustment technique into a mixed
effects model that is developed to predict PM concentrations
using MODIS AOD monthly average datasets. The MODIS
AOD is calibrated by minimizing the inherent systematic and
random errors (i.e. from sensor and site specific ones) in or-
der to improve the AOD–PM relationship. The adjustment
in the mixed effects model was made based on a long-term
(2001–2006) analysis of the residual bias of MODIS AOD. In
addition, this mixed effects model was adjusted for site errors
which accounted for time varying parameters on a monthly
basis. From the literature search, there are no specific similar
robust calibration approaches for satellite AOD which have
been reported to date. The result of this study can provide
an improved AOD-PM prediction for an EPI and PM human
health exposure study as well as for the investigation of PM
spatial patterns.

2 Methodology

Our study is focused on Peninsular Malaysia. The air sta-
tion across Peninsular Malaysia uses Met One BAM 1020
instrument to collect in situ PM10 concentration in an hourly
basis and averaged into daily average. In order to calibrate
the MODIS AOD data for this region, PM10 was sampled at
34 air stations as shown in Fig. 1 for a period of six years
(i.e. 2001 to 2006). The monthly corresponding PM10 values
for each of the 34 air stations were averaged out from the
daily PM10 concentration measurements. On the other hand,
the calibration on MODIS AOD data was done by using the
in situ PM10 measurements. Here, the calibration was per-
formed independently for each monitoring site using multi-
ple regression method to identify the random error to be in-
cluded into the mixed effects model. Thus, this accounts for
the spatial variability of the random errors on a monthly ba-
sis. After that, a single monthly AOD–PM10 relationship was
established using all the parameters from the 31 monitoring
stations. The predicted PM10 concentration from this method
was validated independently in three sites, namely, in the
northern, central and southern part of Peninsular Malaysia.

2.1 MODIS derived AOD

MODIS is a space sensor aboard NASA’s (National Aeronau-
tics and Space Administration) Terra Earth Observing Sys-
tem (EOS) satellite launched in December 1999. Operating
at an altitude of approximately 700 km, this polar-orbiting
satellite is able to provide aerosol data on a daily basis.
MODIS Terra satellite crosses the equator at about 10.30 a.m.
(descending orbit) UTC, with a scanning swath of 2330 km
(cross-track) by 10 km (along-track at nadir). MODIS has
a total of 36 different wavelength channels suited for a wide
range of applications. AOD was retrieved by using the sec-
ond generation operational algorithm (Collection 5) devel-
oped byLevy et al.(2009). In general, seven out of 36 wave-
length channels (between 0.47 and 2.12 µm) are used during
the AOD retrieval.

According to the MODIS AOD retrieval algorithm (Col-
lection 5) by Levy et al. (2009), three different channels
of 0.47, 0.66, and 2.12 µm are primarily employed for land
aerosol retrievals, while others are used to screen out cloud,
snow cover, and ice cover. The reported AOD by MODIS
at the wavelength of 0.55 µm is the result of simultaneous
inversion from these 3 channels. The accuracy of MODIS
AOD data is expected to be1AOD =±0.05± 0.15 AOD
over land. More details about the retrieval of MODIS satel-
lite aerosol data are reported inRemer et al.(2005) andLevy
et al. (2007, 2009, 2010). The MODIS AOD value ranged
from 5.0 to−0.05. In this study, the full range of MODIS
AOD value were taken into consideration to avoid any biases
that may occur during the calibration.

To conduct this study, level 2 MODIS Terra AOD prod-
uct (MOD04) data were collected for a period of six years
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Fig. 1. Spatial distributions of 34 monitoring sites to be use in this
study. (SA: Shah Alam; KL: Kuala Lumpur; J. Bahru: Johor Bahru;
PJ: Petaling Jaya).

(2001 to 2006). However, aerosol data are often missing due
to clouds, high surface reflectance (e.g. snow- and ice-cover),
and retrieval errors. For Malaysian climatic conditions, cloud
cover is a serious issue that causes failure in AOD retrieval
by MODIS in most of the region.

To overcome this problem, an averaging algorithm of
a 5×5 window was used (Yap et al., 2011). The algorithm as-
sumes that the neighbouring 5 pixels with no AOD retrieval
have the same value with the reference pixel with a valid
retrieval. This means that if there is no retrieval of AOD
in that particular area, then the nearest 5 pixel (50 km) re-
trieval will be used. In this regard, the number of pixels with-
out AOD information due to cloud cover can be reduced. If
there is a continuous valid AOD retrieval, a normal averaging
scheme will be applied by ignoring pixels with no AOD re-
trieval. On averaging multiple pixels, it is expected to reduce
the influence of random errors associated with the retrieval
of AOD. Furthermore, a 5× 5 window averaging has been
widely used in MODIS validation work, which is in agree-
ment with the average speed of aerosol air mass transport in
the mid-troposphere in the Atlantic (Ichoku et al., 2002; Re-
mer et al., 2005). However, as the average wind speed near
the earth surface is much less than mid-troposphere, a 5× 5
window is consider appropriate. On the other hand, if a 3×3
window is used, we found that there are many voids left in
the imagery that resulted in the poor retrieval of the overall
MODIS AOD in Peninsular Malaysia.

2.2 Mixed effects model

Recent work byLee et al.(2011) states that AOD–PM re-
lationship is influenced by time-varying parameters such as
relative humidity, PM vertical and diurnal concentration pro-
files, and PM optical properties. ThusLee et al.(2011) de-
veloped a mixed effect model which allows for day to day
variability with a hypothesis of little spatial variability over
the study region. In this study, a monthly observation is per-
formed.

The mixed effects model proposed in this study, therefore,
uses a monthly input parameter. Here, we hypothesis that the
time-varying parameter exhibits a certain pattern in Penin-
sular Malaysia as a result of the peninsula’s climate. There-
fore, the monthly site specific spatial variability error, which
affected by the time-varying parameter, are statistically esti-
mated from the AOD–PM10 relationship and plotted to char-
acterize its overall pattern across Peninsular Malaysia. This
site specific spatial variability error is then further include in
the mixed effects model to predict PM10 concentrations of
the study region.

The mixed effects model used to predict PM10 concentra-
tion is summarized by the following equation:

E(Y )mn = αfix + βfix (AODmn − [εmn + εfix ]) , (1)

where

εfix = α − β(AODmn), (2)

whereE(Y )mn is the estimated PM10 concentration in month
m, at site n; AODmn is the MODIS AOD value in the
grid cell corresponding to monthm, at siten; αfix andβfix
fix is the intercept and slope;εmn is the random error for
monthm, and siten; εfix is the fix error or adjustment de-
rived from long-term observations of MODIS AOD. Here,
the fix error represents the average effect of AOD on PM10
concentrations as shown in Eq. (2). Theα and β in the
Eq. (2) is the intercept, and slope for the relationship of the
long-term observations of MODIS AOD and residual error
measurement for PM10 concentrations. This equation is ob-
tained from a long-term observation of the MODIS AOD
residual effects on the in situ PM10 concentrations mea-
surement. The relationship between the fixed error,εfix and
AODmn is statistically significant withR2

= 0.653 where in-
tercept:α = 0.214 [(SE= 0.00379),p < 0.0001] and slope:
β = 0.653 [(SE= 0.0105),p < 0.0001]. These observations
showed that there is a linear pattern of error in the AOD
data where the error is directly proportional to the AOD data.
Therefore, we added a constant,εfix , that is derived from this
observation to minimize this error.

On the other hand, the random error represent the monthly
site bias in the AOD–PM10 relationship. The site bias may
arise since an AOD value in a 10×10 km grid cell is an aver-
age optical depth in the given grid cell, while the PM10 con-
centrations measured at a given site may not be representative
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of the whole grid cell (Lee et al., 2011). In short, it represents
the bias due to their spatial locations and meteorological con-
dition in relation to the surrounding attribute. Therefore, the
site bias is different for every location. To control for this site
bias, we added a site term as a random error into the statis-
tical model (Lee et al., 2011). The bias value was computed
from ground measurements and interpolated to represents the
approximate ground conditions. From the monthly observa-
tions, the spatial pattern of the site bias exhibit three general
patterns due to the meteorological conditions, i.e. the mon-
soon effect. From here, we average the spatial distribution of
the site bias (random error) according to the monsoon period.
Once this parameter has been entered into the mixed effects
model, the PM10 concentration was estimated for the whole
study area using the MODIS AOD.

2.3 Model validation

This model is analyzed throughout Peninsular Malaysia by
using a cross-validation (CV) method to examine whether
the mixed effects model is applicable to our study region.
There are a total of 31 sampling sites which were used in
establishing the model and three independent sampling sites
were used to validate the model. From the 31 sampling sites,
a mixed effects model was developed to predict PM10 in
Peninsular Malaysia. To assess the relationship between the
predicted and measured PM10 concentrations for each site,
the Pearson correlation coefficients were used. A high corre-
lation indicates that the MODIS AOD data can be used to as-
sess human health exposure investigations and can be applied
in establishing the EPI for Malaysia. In addition, root mean
square error (RMSE) will be used to quantitatively assess the
accuracy of final output. This validation is important to in-
vestigate the reliability and accuracy of the predicted PM10
concentration to assess the spatial accuracy of the predicted
PM10.

2.4 PM10 in Malaysia

In Malaysia, severe cases of air pollution generally affect our
neighboring countries as a result of forest fire and monsoon
wind (Hashim et al., 2004). This event usually occurs dur-
ing southwest monsoon season between May till September,
which brings haze from the Sumatra region to the western
side of Peninsular Malaysia. Other local sources of air pollu-
tion include vehicle emissions, power generation, industrial
emissions, open burning and forest fires (Afroz et al., 2003;
Azmi et al., 2010; Dominick et al., 2012). Furthermore, west
Peninsular Malaysia, where major cities are located, usually
has a higher PM10 concentration in comparison to other re-
gions due to anthropogenic activities (Azmi et al., 2010).

3 Results and discussion

3.1 Descriptive statistics

The mean concentrations of PM10 in our study site are sum-
marized in Table 1. From Table 1, there are several sites that
exhibit high mean (SE) PM10 concentrations across Penin-
sular Malaysia. For example, Perai, Melaka, Kuala Selangor,
Klang, KL, Shah Alam and Manjung. These sites are mainly
industrialized regions that are affected by heavy traffic and
seasonal haze. Surprisingly, Bukit Rambai, Melaka, has the
highest mean (SE) PM10 concentration at 74.9 (1.81) µgm−3

followed by Klang at 72.3 (3.04) µgm−3. The exceptionally
high PM10 concentration in Bukit Rambai is mainly a re-
sult of local anthropogenic activities as it is situated in an in-
dustrial district with a secondary impact from seasonal haze
(Mahmud and Iza, 2010). The range and average number
of monthly sample points, (n) across peninsular Malaysia
was between 35 to 72 and 61, respectively. A total of 433
(17.69 %) monthly samples points were discarded due to
the unavailability of a corresponding point with the MODIS
AOD samples.

3.2 PM10 prediction

In the mixed effects model, the random error for all 72
months were generated (from year 2001 to 2006) and are
summarized in Table 2. The random error was attributed to
site and time varying errors. It has a seasonal pattern across
Peninsular Malaysia as shown in Fig. 2. From Table 2 and
Fig. 2, regions of densely developed sites have a high nega-
tive random error. This shows that these regions tend to have
an overestimated AOD value. Therefore, it is necessary to
include the random error into the mixed effects model to per-
form the adjustment. The fixed error or adjustment effect,
εfix , represents the monthly effect of MODIS AOD on PM10
for all study days. This constant is derived from Eq. (2).

Using the mix effects model approach, the seasonal pat-
tern of random error clearly shows the effects of the monsoon
wind on our study region. The negative (red) region denotes
the overestimated value from MODIS AOD that needed to
be trimmed down. Similarly the positive (blue) region indi-
cates an underestimation of the MODIS AOD, so that en-
hancement is needed. The overestimation of MODIS AOD
may be due to the effect of unscreened clouds resulting from
the MODIS cloud screening algorithm (Lee et al., 2011).
This was also demonstrated in the work ofHolben et al.
(1998) where level 2 (AERONET) data were compared with
MODIS AOD where unscreened clouds cause a positive bias
in the predicted particulate matter concentration. Further-
more, bright surface condition may also increase the error
as a result of poorer visible to infrared (2.12 µm) band rela-
tionship (Levy et al., 2009). In addition, the overestimation
of the AOD may also be related to the natural multiple scat-
tering effect of the atmospheric particulate matter (pollutant).

Atmos. Chem. Phys., 13, 3517–3526, 2013 www.atmos-chem-phys.net/13/3517/2013/
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Table 1. Long-term (2001–2006) descriptive statistics of PM10 concentration (µgm−3) and corresponding MODIS AOD observed at 34
monitoring stations.

Site Location Latitude Longitude n PM10 (µgm−3) MODIS AOD
Mean SE Mean SE

Pasir Gudang 1.4704 103.8940 63 48.19 1.09 0.33 0.01
Teluk Kalung, Kemaman 4.2658 103.4323 60 42.75 1.42 0.28 0.01
Taman Inderawasih, Perai 5.3711 100.3891 51 67.96 2.94 0.37 0.02
Bukit Rambai, Melaka 2.2586 102.1727 57 74.91 1.81 0.39 0.02
Jerantut 3.9706 102.3477 66 40.98 1.28 0.29 0.01
Jalan Tasik, Ipoh 4.6294 101.1166 69 51.55 1.27 0.28 0.01
Perai 5.3982 100.4039 61 62.89 1.77 0.33 0.02
Nilai 2.8216 101.8114 73 58.99 1.51 0.36 0.03
Klang 3.0100 101.4085 61 72.33 3.04 0.42 0.02
Indera Mahkota, Kuantan 3.8193 103.2965 46 35.69 1.13 0.30 0.02
Balok Baru, Kuantan 3.9607 103.3822 64 58.63 1.18 0.34 0.02
Petaling Jaya (PJ) 3.1092 101.6387 66 56.74 1.85 0.37 0.02
Sg. Petani 5.6315 100.4697 67 52.18 1.37 0.3 0.02
J.Bahru 1.4974 103.7268 57 41.98 1.45 0.31 0.01
Taiping 4.8987 100.6792 65 46.65 1.27 0.31 0.01
Pangkalan Chepa, Kota Bahru 6.1591 102.2880 61 44.61 1.34 0.31 0.01
Kota Bahru 6.1587 102.2510 63 41.74 1.35 0.30 0.01
Kajang 2.9939 101.7417 64 49.26 1.72 0.35 0.03
Paka-Kertih 4.5980 103.4349 58 34.85 0.89 0.26 0.01
Shah Alam (SA) 3.1047 101.5563 65 62.40 2.35 0.38 0.02
Langkawi 6.3316 99.8583 57 41.18 1.25 0.25 0.01
Kangar 6.4240 100.1841 63 50.20 1.39 0.32 0.02
Kuala Terengganu 5.3076 103.1202 61 55.60 1.32 0.29 0.01
P. Pinang 5.3575 100.2944 60 41.50 1.41 0.31 0.02
Alor Star 6.1372 100.3466 45 37.03 1.21 0.28 0.02
Manjung 4.2003 100.6633 69 64.97 2.16 0.36 0.02
Bachang 2.2131 102.2343 62 45.02 1.73 0.33 0.02
Muar, Johor 2.0397 102.5769 69 54.57 1.79 0.37 0.02
Tanjung Malim 3.6878 101.5244 70 44.21 1.29 0.31 0.01
Pegoh 4, Ipoh 4.5533 101.0802 69 50.52 1.37 0.30 0.01
Seremban 2.7236 101.9684 71 46.28 1.33 0.32 0.02
Kuala Selangor 3.3265 101.2589 66 65.94 2.08 0.37 0.02
W.P Putrajaya 2.9319 101.6818 44 52.12 2.78 0.38 0.04
W.P K. Lumpur (KL) 3.1062 101.7178 35 60.77 3.11 0.42 0.04

SE: Standard error.
n: Number of monthly samples points.

Thus most of the well-developed regions (having bright sur-
face) tend to be overestimated. In Fig. 2, the effect of the
monsoon wind was clear as it drifted the overestimated re-
gion further inland towards east Peninsular Malaysia. In con-
trast, the occurrence of the underestimated MODIS AOD val-
ues was common only during the intermonsoon season and
in some rural areas. The intermonsoon is the interval when
a change of monsoon wind direction occurs. During this pe-
riod, most of the atmospheric particulate matter concentra-
tions recorded originated from local anthropogenic activities
due to the stagnant wind condition. Therefore, the underes-
timated MODIS AOD value at this period could be due to
lower pollution levels in that particular area, compared to its

surroundings that resulted in a plunge of offset in the ob-
served MODIS AOD value below the apparent value.

The predicted PM10 concentrations from the mixed effects
model are also prone to errors attributed from the differ-
ence in AOD retrieval and in situ measurements of the PM10
concentrations. This is due to the fact that the in situ mea-
surements were point measurements, whilst the AOD was
based on 10× 10 km grid cells. However, this error was not
taken into account due to the fact that the in situ measure-
ments were a 24 h average. Here, if the surrounding (within
10× 10 km) PM10 concentration of a particular station was
to represent the 10× 10 km grid cell, it would most prob-
ably have been measured by the monitoring station within
24 h. Thus the 24 h in situ PM10 concentrations averaged

www.atmos-chem-phys.net/13/3517/2013/ Atmos. Chem. Phys., 13, 3517–3526, 2013
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Table 2.Estimation of long-term (2001–2006) monthly mean random error (AOD) for 34 monitoring stations.

Site location Latitude Longitude Mean random error p-value

Pasir Gudang 1.4704 103.8940 0.0266
Teluk Kalung, Kemaman 4.2658 103.4323 0.0017
Taman Inderawasih, Perai 5.3711 100.3891 −0.0362
Bukit Rambai, Melaka 2.2586 102.1727 −0.0692
Jerantut 3.9706 102.3477 0.0168
Jalan Tasik, Ipoh 4.6294 101.1166 −0.0348
Perai 5.3982 100.4039 −0.0539
Nilai 2.8216 101.8114 −0.0166
Klang 3.0100 101.4085 −0.0091
Indera Mahkota, Kuantan 3.8193 103.2965 0.0521
Balok Baru, Kuantan 3.9607 103.3822 −0.0290
Petaling Jaya (PJ) 3.1092 101.6387 0.0176
Sg. Petani 5.6315 100.4697 −0.0302
J.Bahru 1.4974 103.7268 0.0234
Taiping 4.8987 100.6792 0.0046
Pangkalan Chepa, Kota Bahru 6.1591 102.2880 0.0217p<0.0001
Kota Bahru 6.1587 102.2510 0.0273
Kajang 2.9939 101.7417 0.0324
Paka-Kertih 4.5980 103.4349 0.0279
Shah Alam (SA) 3.1047 101.5563 −0.0051
Langkawi 6.3316 99.8583 −0.0264
Kangar 6.4240 100.1841 0.0054
Kuala Terengganu 5.3076 103.1202 −0.0652
P. Pinang 5.3575 100.2944 0.0443
Alor Star 6.1372 100.3466 0.0284
Manjung 4.2003 100.6633 −0.0423
Bachang 2.2131 102.2343 0.0440
Muar, Johor 2.0397 102.5769 0.0329
Tanjung Malim 3.6878 101.5244 0.0265
Pegoh 4, Ipoh 4.5533 101.0802 −0.0254
Seremban 2.7236 101.9684 0.0213
Kuala Selangor 3.3265 101.2589 −0.0369
W.P Putrajaya 2.9319 101.6818 0.0379
W.P K. Lumpur (KL) 3.1062 101.7178 0.0269

to represent the 10× 10 km grid cell, would most proba-
bly resemble the predicted PM10 concentration from MODIS
AOD. Furthermore, the comparison of a 10×10 km grid cell
with a point measurement was a common practice among re-
searchers such asChu et al.(2003), andKoelemeijer et al.
(2006). However, for a monitoring station that is close to the
pollution source such as Bukit Rambai, Melaka, the random
error would appear higher due to the point measurement as it
does not represent the 10× 10 km2 grid cell. Therefore, it is
important to avoid sampling in close proximity to a pollution
source, when the aim is to compare it to a large grid cell.

3.3 Accuracy assessment

In order to examine the accuracy of the predicted monthly
PM10 concentrations, the monthly in situ PM10 concentra-
tions and the monthly predicted PM10 concentrations were
regressed as shown in Fig. 3. The mixed effects model ex-

plained 77 % of the variability in the monthly measured
PM10 concentration for a period of six years (i.e. 2001
till 2006). From Fig. 3, the relationship of the predicted
PM10 concentration using the mixed effects model approxi-
mate the ground condition [slope= 1; intercept= 2×10−05;
n = 1895,p < 0.0001]. Furthermore, validation from three
independent ground stations (i.e. Johor Bahru, Shah Alam
and Pengkalan Chepa which are situated in southern, central
and northern parts of Peninsular Malaysia) that were cho-
sen to assess the predicted PM10 concentration also show
a promising result when regressed with the measured PM10
concentrations [slope= 1.085; intercept= −5.515;n = 181;
p < 0.0001] (Fig. 4). This slope presented in Fig. 4 shows
that the predicted PM10 concentration had a high agreement
with the in situ PM10 concentration measurement and the in-
tercept represent the noise in the predicted PM10 concentra-
tion dataset which is considerably lower.
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Fig. 2.Seasonal distribution of random error(a) intermonsoon,(b) northeast monsoon,(c) southwest monsoon season.

Furthermore, the ability of the mixed effects model to pre-
dict the PM10 concentration was compared to a linear re-
gression model by using Pearson correlation,R, and root
mean square error, RMSE (Table 3). The linear regression
model has been widely used by many researcher (Chu et al.,
2003; Engel-Cox et al., 2004a,b, 2005, 2006) to establish the
AOD–PM10 or 2.5 relationship, and therefore is regarded as
a common and valid methodology to predict particulate mat-
ters of different sizes (10 µm and 2.5 µm in diameter). Since
the R does not quantitatively reflect the difference between
the measured and predicted PM10 concentrations, RMSE is
necessary to better assess both models. In Table 3, the per-
formance of the mixed effects model has significantly im-
proved the accuracy of the predicted PM10, compared to the
linear regression model. Overall, the long-term Pearson cor-

relation,R, of predicted PM10 concentration has improved
from 0.60 to 0.88 using the mixed effects model. Similarly,
the RMSE of the predicted PM10 concentration of the mixed
effects model improvised the linear regression model by an
average of±6.18 µgm−3 annually. In other words, the accu-
racy of the mixed effects model was superior and has im-
proved approximately 50 % compared to the conventional
linear regression model. This was further confirmed by the
ANOVA test (p value≈ 1) which suggests that the predicted
PM10 concentration using our method is in high agreement
with in situ measurements. From this performance test, the
mixed effects model appeared to be a better solution in pro-
ducing a reliable concentration map for both environmental
and health effect studies.
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Table 3.Long-term comparison on linear regression model and mixed effects model on PM10-AOD and RMSE (µgm−3) of annual MODIS
estimated PM10 concentration.

Linear regression model Mixed effects model

Year R n RMSE p R n RMSE p

(µgm−3) (µgm−3)

2001 0.60 315 ±13.01 0.89 315 ±6.25
2002 0.60 325 ±15.36 0.89 325 ±8.57
2003 0.63 322 ±14.30 0.90 322 ±7.19
2004 0.62 367 ±13.38 p < 0.0001 0.90 367 ±7.61 p < 0.0001
2005 0.60 366 ±12.27 0.88 366 ±7.42
2006 0.66 381 ±12.52 0.91 381 ±6.75
2001–2006 0.60 2076 ±12.90 0.88 2076 ±7.32

Fig. 3. Assessment of the monthly in situ PM10 measurement and
monthly predicted PM10 by a mixed effects model.

4 Conclusions

To date, there has been an increase in the adoption of satellite
AOD data into air pollution, health effects and environmen-
tal studies. The awareness of the potential of remote sens-
ing technologies to enhance ground-level particulate matters
monitoring networks has further encouraged the many gov-
ernment and private agencies to look into its practicality. In
Malaysia, the used of satellite derived parameters as perfor-
mance indicators in EPI is one of the highlights to bring for-
ward these technologies. However, the application of satellite
data has always been received with skepticism in this region
due to cloud cover and low predictive power. The proposed
mixed effects model suggested in this paper has shown that
this calibration method can be reliable in producing a better
PM10 concentration map for this region. Taking into account
the site specific random error and the fixed errors, the accu-
racy of the satellite data improve significantly.

Fig. 4. Assessment of the monthly in situ PM10 measurement and
monthly predicted PM10 from three independent monitoring sites.

Next, we anticipate that the outcome of this method will be
increasingly used for health effects, pollution and environ-
mental related studies. Future satellite technologies are ex-
pected to improve spatial and temporal resolutions in the near
future, resulting in an even more accurate retrieval method.
As the satellite data are readily available, monitoring and pre-
dicting atmospheric pollution such as PM10 can be made in
a cost-effective way. Another focus of our future research
will be to study atmospheric particulate matter and other at-
mospheric trace gases that are harmful to human health.
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