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Abstract. Time-dependent variational data assimilation al- of wind information extracted degrades as observation errors
lows the possibility of extracting wind information from ob- or data voids increase. In the case of poorly specified obser-
servations of ozone or other trace gases. Since trace gas ofation error covariances, assimilation of ozone data with im-

servations are not available at sufficient resolution for deriv-posed errors may result in increased RMS wind error, since
ing feature-track winds, they must be combined with modelthe assimilation is constrained too tightly to the noisy obser-

background information to produce an analysis. If done withvations.

time-dependent variational assimilation, wind information
may be extracted via the adjoint of the linearized tracer con-

tinuity equation. This paper presents idealized experiments
that illustrate the mechanics of tracer-wind extraction and’

demonstrate some of the limitations of this procedure. WeO fih or deficienci fih t alobal ob .
first examine tracer—wind extraction using a simple one- ne orthe major deficiencies ot the current giobal observing

dimensional advection equation. The analytic solution for adystemis inadequate global wind profile information (WMO,

single trace gas observation is discussed along with numerza_ d 4 cloud and wat feature tracking |
ical solutions for multiple observations. The limitations of losondes, and cloud and water vapor feature tracking leave

tracer—wind extraction are then explored using highly ideal—!arge gap?, Eartlcularly ;]n the trgplcs, Sour:hern IOcian, and
ized ozone experiments performed with a development ver!n ”"_'OSt 0 t_ € stratosp €reé and mesosphere. n the extra-
sion of the Navy Global Environmental Model (NAVGEM) trop.|cs, trad|t|onal mass—\_de balance. pr_owdes some con-
in which globally distributed hourly stratospheric ozone pro- straint on the wind, but this balance fails in the tropics and

files are assimilated in a single 6 h update cycle in Jan_forsubsynoptic scales (less that000 km) in the extratrop-

uary 2009. Starting with perfect background ozone condi-'¢S: Even W_ith improved_tropk_:al bala_mvce approximations the
tions, but imperfect dynamical conditions, ozone errors de—need for wind observat_lons_ Is crucidlggar et al., 200.8)'
velop over the 6 h background window. Wind increments Spagebome Doppler wind lidar (DW!') has the potential to
are introduced in the analysis in order to reduce the diﬁer-prov'de wind profile measurements in the troposphere and

ences between background ozone and ozone observationlg.Wer stratosphere, but it is extremely expensive (National

For “perfect” observations (unbiased and no random error),ResearCh Council, 2007). The only currently planned DWL

this results in root-mean-square (RMS) vector wind error re-mission, the Atmospheric I_Dynam_lcs_ Mission (ADM'AGOMS)
ductions of up to~4mst in the winter hemisphere and (Stoffel_en et al., 2005), W.'” be limited to a single !|ne-of-
tropics. Wind extraction is more difficult in the summer sight wind component, altitudes below26 km, and simple

hemisphere due to weak ozone gradients and smaller baclglocr;%—t:ack s?;nplt;n?.t:uture le!f Im?y Improve slsmpl'lng
ground wind errors. The limitations of wind extraction are f"“]] a? quabl Y ub %;Le UE' teyt.o evclerdp'rofvl © V,;/.m
also explored for observations with imposed random errordntormation above abou m. Extracting wind information

and for limited sampling patterns. As expected, the amoun{rom trace gas observations is an attractive prospect, partic-
' ularly in the stratosphere, where satellite measurements of
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ozone, water vapor, and nitrous oxide are available. Currenis too weak, whereas if the displacements are over many grid
trace gas (tracer) observations are not generally availablgoints, the small perturbation approximation of the tangent
at the spatial and temporal resolutions necessary to derivBnear model breaks down. In either case, wind extraction is
feature-track wind vectors. For example, limb-viewing ob- made more difficult, and there is the possibility that assimi-
servations from polar-orbiting satellites such as the Aura Mi-lating tracer data may even make the winds worse, rather than
crowave Limb Sounder (MLS) (Waters et al., 1999) or the better. A detailed understanding of the limitations of these
Michelson Interferometer for Passive Atmospheric Soundingprocesses is therefore necessary for optimal assimilation of
(MIPAS) (Fisher et al., 2008) provide good vertical resolu- tracer data.
tion, but lack the horizontal coverage to identify and track A study using realistic sampling of total column ozone and
individual features, while total column ozone measurementsa full numerical weather prediction (NWP) forecast model
from the Ozone Monitoring Instrument (OMI) (Levelt et al., was performed by Peuch et al. (2000). They examined wind—
2006) and the Ozone Mapper Profiler Suite (OMPS) nadirtracer coupling by assimilating simulated TOV'S total column
mapper (Flynn et al., 2009) provide excellent horizontal cov-ozone measurements with a 4D-Var assimilation system for
erage, but lack necessary vertical profile information. Dataa 12 h period. Two polar-orbiting satellites were simulated,
assimilation algorithms, on the other hand, have the potentiaproviding global coverage every six hours. When using per-
to extract wind information indirectly from limited tracer ob- fect observations, reductions of zonal and meridional wind
servations. For example, Andersson et al. (1994) showed tharrors occurred throughout the extratropical troposphere and
analyzed wind fields may be influenced by the 4D-Var as-lower stratosphere of both hemispheres and in the tropical
similation of TIROS (Television Infrared Observation Satel- stratosphere, with error reductions peaking~@-3ms?!
lite) Operational Vertical Sounder (TOVS) radiance channelsin the upper troposphere for each wind component. Since
sensitive to water vapor, providing the first illustration that changes in the total column ozone are caused by horizon-
dynamical information may be extracted by assimilation of tal and vertical advection, primarily in the upper troposphere
tracer information. and lower stratosphere, and by changes in tropopause height,
The theoretical basis for this work was first examined us-it is expected that wind improvements should maximize in
ing idealized tracer observations, simple 1-D and 2-D transthe upper troposphere. A series of experiments in which
port equations, and an extended Kalman filter (Daley, 1995Gaussian noise was added to the data revealed that a noise
1996). Daley showed that wind extraction is possible with standard deviation of 2% or less is necessary for positive
observations that are sufficiently dense, frequent, and accumpact on the global wind field. Another experiment showed
rate. Wind extraction becomes difficult when the observationthat adding a bias of 1% to the total column ozone data re-
frequency decreases, when model errors become large (suchlts in an overall degradation as well. These results indi-
as damping, errors in phase speed, or violating stability lim-cate that wind extraction (at least in the case of total column
its), or when the true constituent time tendency is small rel-ozone assimilation) requires highly precise and unbiased ob-
ative to the observation errors. The latter occurs when therservations.
are small gradients in the tracer field, when the winds are Given these results it is not surprising that when Peuch
weak, or when the winds are blowing parallel to the traceret al. (2000) attempted to assimilate real TOVS total col-
contours. In general, if the amplitude of the constituent struc-umn ozone data, the wind analyses were degraded. Similarly,
ture is smaller than the observation error, it is not possible toHan and McNally (2010) reported that solar-backscatter ultra
extract wind information. violet (SBUV) ozone assimilation could degrade the oper-
The results from Daley (1995, 1996) provide promise thatational European Centre for Medium-Range Weather Fore-
wind extraction from tracers is possible in idealistic 1-D and casts (ECMWF) 4D-Var wind analyses. In order to prevent
2-D settings. The next step is to apply these concepts to morerroneous wind increments, they stated that “the observa-
realistic experiments. Riishgjgaard (1996) applied 4D-Vartion operator that links wind adjustments to changes in ozone
assimilation techniques to a 2-D barotropic vorticity equa-concentration has been artificially cut.” More promising re-
tion model and simulated ozone observations based on results were obtained by Semane et al. (2009) using tei&dA
alistic flow conditions at the 200 hPa pressure level. UsingFrance 4D-Var system Action de Recherche Petite Echelle
perfect ozone data with complete global coverage and startcrande Echelle (ARPEGE) coupled to an offline chemistry
ing with a purely zonal flow field, Riishgjgaard (1996) was transport model, Mogle de Chimie Atmosp#riquea Grande
able to extract a substantial amount of wind information atEchelle (MOCAGE). They compared results from 3-month-
all latitudes, although the impact on the meridional wind waslong (23 January—22 April 2006) data assimilation experi-
weaker in the tropics. Using a series of experiments with dif-ments performed with and without use of Aura MLS ozone
ferent model resolutions, frequency of observations, and asprofiles. A very slight reduction{ 0.1 ms™1) in the global
similation time windows, it was shown that the best resultswind bias (relative to radiosondes) was found in the lower
were for cases where tracer features were displaced a fewtratosphere when MLS data were included, but there was ap-
grid points between successive observations. If the displaceparently no reduction in the standard deviations. Error vari-
ments are approximately one grid point or less, the advectiorance reduction diagnostics were also used to show that MLS
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ozone observations reduce the global initial background er2.1 Derivation of the 1-D model solution

ror variance of the horizontal divergence and relative vortic-

ity fields. Although these results are promising, the researchl he nonlinear forward model/ is based on the 1-D advec-
grade MLS retrievals used in this study are not available intion equation for a passive tracer embedded in a constant
near-real time. It is unclear at this point whether tracer ob-wind field. The system of equations is as follows, with de-
servations from current satellites are of sufficient accuracyPendent variableg (tracer mixing ratio) and: (wind), and

and frequency to benefit wind analyses in an operational setthdependent variables(horizontal position) and (time).

ting; a potential source of operational ozone profiles is the

OMPS on the NASA Suomi National Polar-orbiting Partner- M + uz—i =0 (1)
ship (NPP) mission (Flynn et al., 2009), launched 28 Octoberau

2011. In addition, ozone-sensitive infrared radiances can po-— =0

tentially provide dynamical information via tracer—wind cou- ot

pling in NWP systems (Dragani and McNally, 2013). The problem is to determine the model initial stageand

In this study we will examine some of the limitations of « att =0) that produces a forecast that best matches any
wind extraction from ozone assimilation. To accomplish this incoming observations over the assimilation window. The
we first provide a simple illustration of tracer—wind extrac- 4D-Var approach requires a linear approximation to the fore-
tion in 4D-Var, without the use of initial background covari- cast equations, often called the tangent linear model (TLM).
ances between the tracer and the meteorological fields, byhe TLM is constructed by linearizing the full model about
solving the cost function minimization for assimilation of the time-varying background state (identified by subscript b)
tracer observations using a discrete formulation of the prob-and considering small perturbations (identified by primes)
lem in one spatial dimension (Sect. 2). Theoretical discus+elative to the background. The TLM (Eq. 2) describes the
sions of cost function minimization provided in Riishgjgaard evolution of the perturbation terms (also called “increments”)
(1996) and Peuch et al. (2000) using continuous functionsver the analysis time window.
are very helpful to understand how the wind field can be ., , 9a’ 5
influenced by tracer observations, but these discussions doL + ubi + s Ly 2
not provide practical understanding of the discrete problem. ™, 9 A
By examining the analytic solution to the discrete problem al =0
we gain insight into the relative roles of various factors in 9¢
facilitating/inhibiting wind extraction. We then present ide- Equation (2) shows that the perturbation mixing ratio
alized experiments using a 4-D system in order to examinehanges with time both by advection of the tracer perturba-
the limitations of wind extraction in a more realistic setting tions by the background wind and by advection of the spa-
(Sect. 3). These experiments use the NRL Atmospheric Varitially varying background tracer field by the wind perturba-
ational Data Assimilation System-Accelerated Representefions.

(NAVDAS-AR) 4D-Var assimilation system (Xu et al., 2005;  The model is discretized using a periodic three grid point
Rosmond and Xu, 2006) with a preoperational version ofdomain, as illustrated in Fig. 1. The wind is constant in
the Navy Global Environmental Model (NAVGEM) semi- space and time, but that value can be incremented in the as-
Lagrangian forecast model to assimilate idealized globalsimilation algorithm. The model state vector is defined by
ozone profiles in the stratosphere4000 profiles per hour  x = (x4, xp, x3, x4)=(q1, g2, g3, u), whereqi, ¢», andgs
evenly sampled over the globe), with and without imposedindicate tracer mixing ratios at the three grid points, and
errors. With these experiments we are able to examine thes the spatially invariant wind. The finite difference formula-
limitations of wind extraction due to geophysical conditions tion uses first-order Euler forward time stepping and second-
as well as due to observation errors and sampling patternsrder central differencing for the spatial derivatives. This
The overall goal of this paper is to help bridge the gap be-choice of discretization is made for simplicity rather than
tween theoretical studies of tracer assimilation and full NWPaccuracy, as it is known to be unstable (Rood, 1987). How-
tests using real data that have seen marginal or no wind imever, since we are only taking one time step, instability is not
provement. Sections 4 and 5 provide a summary and conclua problem. The discretized TLM is written in matrix form
sions, respectively. below, using the nondimensional wiidl= uAr/AX, where

At is the time step and A is the grid spacingM,, ,,,, isa
matrix that performs one forward time step of the linearized
version of the nonlinear forward mod# (given in Eq. 1),
andr, = t,—1 + At is the time corresponding to time step

2 lllustration of wind extraction using a 1-D model

This section illustrates the process of wind extraction from
tracer observations using a simple 1-D model with time-
dependent variational assimilation.
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Fig. 1. The analytic solution to the cost function minimization prob-
lem for one observation at grid cell 1 and at the final timeTracer
mixing ratio is shown for théa) initial and (b) final times. Back-
ground is in black, analysis is in red, and truth is in green. Dashedother mechanism for linking winds and tracers in the cost
lines are used to indicate the periodic boundary conditions. Arrowsfunction in addition to the TLM (Holm et al.,

indicate the strength of the background wind, analyzed wind, andexperiments, the wind—tracer interaction is all contained in
true wind, as labeled.

3)

between the observed and forecast value of the observations
and on the difference between the initial analyzed state and
the initial background state. Model errors are not included in
the cost function (i.e., a “perfect model” assumption). The
cost function/ can then be written

J=J+ur 4)

1
= = [x(t0) — xp(t0)]” B~ [x(t0) — xp(t0)]

2
1
+ 5 [H (x(1) — ya]" R7HH (x(12) — y(10)].

Here Jé’ is the scalar cost function for the background fore-
cast error at the beginning of the time periad=(tp) and
J" is the scalar cost function for the observation error. Ob-
servations are indicated by the vectpfr1). The TLM is
implicitly included in the cost function via the calculation
of the state vector after one time stefif1) = M, 1, x (10).
This operation provides the time-dependent component that
distinguishes the cost function from a standard 3D-Var for-
mulation. The background and observation error covariance
matrices,B and R, are specified to be diagonal, with back-
ground error standard deviation of the tracgy 4nd wind
(#) denoted by, ando,, respectively, and the tracer obser-
vation error standard deviation denoteddgy. Note that the
error standard deviations for each variable must be specified
as nonzero, since the cost function becomes singular and no
solution to the variational problem as formulated will exist in
the case of zero standard deviation.

In general, the background error covariance could include
specified wind-tracer correlations. This would provide an-

1999). In our

the TLM matrixM. If there were also observations at the ini-
tial time, the additional term to the cost function would not
contain theM matrix because no advection is required to re-
late t = 1o observations to the initial state. In general, tracer
observations that occur near the end of the assimilation time
window will have the greatest potential to influence the wind
analysis because they correspond to longer advection times.
In the full 4D-Var system, the greater impact of the obser-
vations that occur later in the assimilation window will be
mostly due to the following two factors. First, the quality of
the background decreases with time, making the observations
near the end of the window more valuable. Second, the back-
ground error covariance evolves over the time window from
initial decorrelation between tracer and wind, to a correlated

To make the problem amenable to analytic solution, the cho{flow-dependent) covariance, which results in better use of
sen assimilation window is a single time step with tracer ob-later observations.

servations (no wind observations) only at the final time
Note that if tracer observations occur at the initial tie
they cannot impact the wind analysis via the TLM because naservations will be specified as the tracer mixing ratio at grid
advection has yet occurred (discussed further below). We depoints (i.e.,H = (1,0, 0, 0) for a single observation at;).

fine a quadratic cost function that depends on the differenc&he cost function for a single observation at grid point 1, as

The observation operatatf (which may be nonlinear)
maps the model state vector onto the observations. The ob-

www.atmos-chem-phys.net/13/3501/2013/
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a function of initial perturbations, becomes wind increments can only influence the tracer through the
, b, .y background gradients, not the increment gradients. Larger
J(x'(to)) = Jo (x"(10)) + J* (x'(10)) (3)  gradient regions will allow greater influence on the wind
1 [(X’l(to))z (x/z(to))z (xé(to))z (XQ(to))Z} field, as illustrated in the full 4D-Var context by Peuch et
=3 o2 o2 o2 o2 al. (2000). Third, all of the increments have similar weight-
a a a " ing or “gain” factors. The first term in the denominator of the

1 {(H (M,O_>,lx’(to)) — 5)2] weighting factors is proportional taozb. As ogp increases,

2 : all the increments decrease, so that the analysis moves to-
ward the background state. The second term in the denomi-
The innovation (also referred to as the observation minushator of the weighting factor for the wind increment becomes
forecast departures, or OmE)=y — x1,(t1) depends only large whens, is smaller thars, . For very larges, /oy, the

on the background and observation, so remains fixed in thevind increment is near zero and the tracer increments domi-
cost function. The analysis solution is the initial state thatnate. The third term in the denominator of the weighting fac-
minimizes the cost function, i.3,//dx’(fg) = 0. In general,  tor for tracer increments becomes large whegns smaller

the gradient of the cost function with respect to each initialthano,, assuming the tracer gradient term is large enough.
state variable can be calculated using the chain rule: Varying the ratioo, /o, is one way to reduce or increase the
tracer—wind interaction in the assimilation. However, ideally
the background error values should represent the real fore-
cast error estimates. With only one observation the solution
is underconstrained, and this ratio completely determines the
The Jacobiafx; (tl)/ax} (o) can be recognized as the trans- partitioning between tracer and wind increments.

pose of the elements of the TLM matrix (Eq. 3), also called As an example, we evaluate the solution with a specified
the adjoint (see Errico (1997) for a discussion of adjoint background wind error (relative to the “true” wind) of 40 %.
models). The adjoint model propagates sensitivity of the cosfThe initial background state isp(70) =(1, 2, 3, 1.4). The
function with respect to the state vector backwards in timetruth, x,(t0) = (1, 2, 3, 1.0), is propagated forward in time
from 1, to to. Note that in our simple model the indicgsand  in order to simulate a “perfect” observation (so tha.1,

k vary from 1 to 4. We will now examine solutions to the cost #1) = 1.5). The observation and background error standard de-
function minimization problem, both for a single observation viations are set tep, = 0.1, 0, = 0.1, ando,, = 1.0. The re-

2
9ob

(6)

9 90 Z 3J" 0xp(r)
0x)i(10)  x(t0) 4 dxi (1) 3x(10)

(Sect. 2.2) and for multiple observations (Sect. 2.3). sulting analysis, illustrated in Fig. 1, is(fp) =(0.99, 2.01,
_ . _ 2.99, 1.04). The analyzed wind is much closer to the true
2.2 Solutions for a single observation wind, and the initial tracer values have moved slightly away

. ] ) . ~ from the truth. Although the analysis state is different from
For the case of a single observation at grid point 1 and tim&pe tryth, it minimizes the cost function at a value of 0.07
t1, the gradient of the cost function can be directly evaluatedcompared to a cost function of 2.00 for the background.
gnd the resulting linear equations _s(_)l_ved analytically. Defin-  1he sensitivity of the wind analysis to observation and
ingI" = (x2p(10) — x3p(t0)) /2 as the initial background tracer packground tracer error standard deviations (wighfixed

gradient at.1, the solution is at 0.2), as well as to imposed random observation errors, is
1 examined in Fig. 2, which illustrates the tracer—wind extrac-
! % Ug 29; tion for a range of error specifications and gradients for this
ql(l())z ?4— 1+7 +T O_MZ e g p : ! g !
q . one-observation case. The metric used in Fig. 2 is the “nor-
(o) = % (14 % ) 4 r2% (_%)8 malized wind increment,” which we define as the analyzed
2 of 2 of 2 @) wind increment divided by the ideal increment (the differ-
o2 U2 ,2] 7t ence between the true wind and the background wind) and
ght0) =1 2% + (14 =2 | +T?% (%)s i : o
3 o2 2 o2 2 multiplied by 100. A normalized wind increment of 100 %
) o2 02\ o2 5 -1 indicates perfect match of the analysis with the truth, while
u(to) = {al + (1+ 7) o2+l (=De. 0% indicates that the analysis matches the background. The

solid curves show the solution for a “perfect” observation
We briefly discuss several general properties of this solution(calculated using the true wind). The dashed lines show the
that will extend to the realistic 4D-Var NWP system solu- 1-sigma standard deviation of the solution when Gaussian
tions presented in Sect. 3. First, all the increments are prorandom error is added to the observation with a standard de-
portional to the innovation, so the observations must con-viation equal targp, .
tain information not already in the background. Second, the It is clear that wind extraction is aided by large gradients
wind increment is proportional to the background tracer gra-in the background tracer field. As the gradient goes to zero,
dient. Hence, if the background gradient is zero, there is nahe solution will only increment the tracer field, not the wind
wind increment. This is intuitively correct since, inthe TLM, field. In Fig. 2a,0, is kept at a small value (0.1), which

www.atmos-chem-phys.net/13/3501/2013/ Atmos. Chem. Phys., 13, 3555 2013
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(a) Normalized Wind Increment with Background Tracer Error Stdev = 0.10 |aneaSinqu also prevents wind degradation (dashed lines

L ] ] T move above or near zero), and is an effective way of reduc-
] ing the tracer—wind interaction in 4D-Var.

This 1-D illustration based on assimilation of one obser-
vation, although far from realistic, provides intuitive under-
standing of the process of tracer—wind extraction. Tracer ob-
servations impact the wind due to the use of the TLM in the
cost function. The process is highly dependent on the geo-
physical factors such as the tracer gradient and background
wind, on assimilation model parameters such as the back-
ground error standard deviations, on the details of the formu-
lation of the TLM, on the observation error standard devia-

100
80:
eof
401

20

Normalized Wind Increment (%)

0,

20L

0.0 05 10 15 20 tion, and on the quality of the observation. Before moving to
Background Gradent (Uniless) the full 4D-Var problem, we next examine the 1-D problem
(b)  Normalized Wind Increment with Observation Error Stdev = 0.10 with multiple observations.
120 1 1 1 o
100 - T 1 2.3 Solutions for multiple observations
£ | Lo 0.1 1
g oL 1 If we increase the number of observations, we would expect
g e PPt to enhance our ability to recover the correct wind. Here
;s’ 40; p ’ , ] we present numerical solutions of the 1-D problem with
3 . . tracer observations at all three grid pointstratThe truth
£ 2 . statex; (fp) is again used to construct “perfect” observations
g 7 20 y = (q%°(11), qSP(11), qSP(r1)) for a best case example.
I B The observation error standard deviation is set to a small
20l ‘ ‘ w ] value, oo, =0.001, so that the analysis will closely fit the
00 05 1o 5 20 observations. Note that we cannot set this term exactly

Background Gradient (Unitless)

to zero, because the cost function would become singular
Fig. 2. Normalized wind increment as a function of the background and no solution exists. An imperfect initial background
tracer gradient for the case of one observation. 100 % indicates thatate,xp(fo), is chosen, and, ando, are set to unity. We
the analyzed wind equals the true wind. The solid line is the so-then numerically solve the 4D-Var equations to obtain the

lution using one observation based on the true winds. The dashegnalysis x 4(10). All the values listed below are for the initial
lines represent the 1-sigma standard deviation of the solution fogjme o.

Gaussian random observation ersgp. In (a) oy is fixed at 0.1 and
oop is varied from 0.1 to 2.0, as labeled. (b) oqp, is fixed at 0.1

andoy is varied from 0.1 to 2.0, as labeled. Case 1xp=(2.0,3.0,1.0,0.5 x; — xp = (0.0,00,

0.0,0.2) xa—xp = (—0.07,0.07,0.01,0.11)

This case is similar to the single observation case pre-
tends to favor the incrementing of the wind rather than thesented in Sect. 2.2 in that a wind error is assumed (0.2), but
tracer. For a smalqp, of 0.1, the normalized wind increment the initial background tracer (at timg) equals the truth,
approaches-85 % in our model when the gradient is large ¢, (f0) = ¢,(f0). The background tracer at timg differs
(2.0). Asogp increases, the mean wind recovery decreasedrom the truth due to advection by the imperfect wind field,
and there is an increased probability that the analyzed windy,(#1) # q,(t1), resulting in innovations with respect to the
is worse than the background wind (dashed lines fall belowperfect observations. When the three tracer observations
zero). Although in this one-observation case, the wind mayare assimilated, the analyzed wind error reduces-69 %
become worse, if we were to take an ensemble of observafto 0.09). Small erroneous tracer increments move the
tions with random erras,p to produce an ensemble of analy- analysis away from the initially perfect background. We
ses, more of the analyses would benefit from the tracer assinean constrain the tracer further by adding a fourth tracer
ilation, even in the worst case scenarios presented in Fig. 2abservation at the initial time that matches the truth (e.g.,
In a statistical sense, the overall influence of the tracer assimy (i1, tg) = x; (A1, fp)). In this case the analyzed tracer moves
ilation is positive, even if in certain cases the winds are de-much closer to the truth since we have as many observations
graded, as long asy, is specified consistent with the actual as state vector elements, and the observations are “perfect.”
observation errors. In Fig. 2y is kept small (0.1) while  This situation does not represent realistic NWP systems. The
o, is varied. Increasingy, decreases the wind extraction imperfect simultaneous incrementing of winds and tracers
because it favors tracer increments over wind incrementsillustrated that this case will be a general characteristic of
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realistic tracer—wind assimilation because of limited tracerin the presence of noisy or sparse data. We now move on to
sampling and significant errors in all forecast fields andexamine how some of these limitations are revealed in more
observations. realistic 4D-Var simulations.

Case 2xp = (2.0, 3.0, 1.0, 0.5, — xp = (0.5,—0.2,
0.3,0.0)xa—xp = (0.3,-0.250.32, -0.24) 3 NAVGEM ozone experiment

For case 2 the initial state includes “random” back- 3.1 Experimental procedure

ground tracer errors, but specifies the wind as the true wind.

Again we assimilate three “perfect” tracer observationsThe models presented in Sect. 2 demonstrate the poten-
at time #,. The analysis reduces the initial tracer errors, tial of using tracer observations to constrain wind fields in
but also includes an erroneous wind increment—@f.24, time-dependent variational assimilation, but also illustrate
thereby decreasing the wind by50 %. The analysis state many of the limitations of this approach. Extending the ap-
is able to fit the three observations with a cost functionproach to a more realistic setting, in this section we de-
that is smaller than the cost function that corresponds tcscribe wind extraction experiments that use a development
the background state. However, this illustrates that in theversion of NAVGEM with the 4D-Var assimilation algorithm
presence of significant background tracer errors, assimilatioNAVDAS-AR (Xu et al., 2005; Rosmond and Xu, 2006).
of tracer observations has the potential to degrade the windSNAVGEM s the successor to the Navy Operational Global
However, if the background error covariances are correctlyAtmosphere Prediction System (NOGAPS) (Hogan and Ros-
specified, the winds should not degrade in a statistical senssond, 1991). New features in this version of NAVGEM and
for an ensemble of assimilations with random observationNAVDAS-AR include a semi-Lagrangian transport scheme,

errors. variational bias correction for satellite radiance assimilation,
the simplified Arakawa—Schubert convection scheme, and

Case 3xp = (2.0,3.0,1.0,0.5) x;, —xp = (0.1,0.1, trace gas assimilation. For simplicity, the combined system

0.1,0.0) xa—xp = (0.1,0.1,0.1,0.0) with NAVDAS-AR and the semi-Lagrangian forecast model

will be referred to as NAVGEM, with the caveat that we are

For the third case, we choose initial background tracerusing a preoperational development version.
errors that represent a constant bias of 0.1, but no wind error. The NAVGEM outer-loop configuration (used for calcu-
This is a special case since a constant tracer bias does nfgting the background, the truth, and the innovations) for this
change with advection, and without a spatial gradient in thestudy has a horizontal resolution based on spectral triangular
innovations, the wind increment is always zero. The analysigruncation T239 £0.5° Gaussian grid spacing for latitude,
for three tracer observations does very well at correcting the.5° grid for longitude), while the inner loop (used for solv-
tracer bias because we have perfect observations at eveigg the analysis) is run at T119-(.0° Gaussian grid spacing
grid point. If we reduce the number of observations to justfor latitude, 1.0° grid for longitude). Both are run with 60 ver-
one (at grid point 1), this results in an erroneous 5 % decreas#cal levels with model top at 0.005 hPa (approximate verti-
in the analyzed wind (to 0.45). Undersampling of the tracercal spacing of 1-2 km, varying with altitude) and with a time
field in the presence of a constant background tracer biastep of 450 s. The vertical grid is a hybrid sigma-pressure grid
may adversely affect the wind. A bias correction schemethat transitions to pure pressure levels-&7 hPa. Note that
may help alleviate this problem, but this may be complicatedthe outer loop resolution and number of vertical levels differs
by observation biases and/or inadequate photochemicdrom the currently operational model (T319 with 50 levels).
parameterizations in the forecast model. The ozone analysis uses observations from the Aura MLS.

The results from these test cases, although highly idealThe MLS Version 2 ozone data (Froidevaux et al., 2008)
ized, are useful for demonstrating some of the limitations ofwere assimilated in the model for several weeks in order to
tracer—wind extraction that have been identified in previousgenerate a realistic ozone analysis for initializing the “truth”
studies (Daley, 1995; Riishgjgaard, 1996; Peuch et al., 2000forecast as described below.
Semane et al., 2009). First, geophysical distributions (i.e., In order to test ozone—wind extraction in this system, we
tracer gradients and orientation with respect to wind) mustdesigned an experiment in which simulated ozone measure-
be sufficient for wind extraction. Second, observations mustments are assimilated into NAVGEM. The time period of
be sufficiently accurate and their errors correctly specified.January 2009 was chosen because of the dynamic activity
Third, observations must be sufficiently dense in order to ex-that accompanied the unusually large 2009 Arctic strato-
tract wind information. Fourth, the background tracer mustspheric major warming (Manney et al., 2009; Lahoz et al.,
be unbiased, or the tracer field must be sufficiently sampled?011). The winter stratosphere is generally a location with
to identify the bias. In addition, as shown in Sect. 2.2, correctlarge horizontal ozone gradients, making wind extraction fa-
specification of background and observation error standardorable, as explained in Sect. 2. During the major warming,
deviations is required to optimally extract wind information strong ozone advection occurs as the vortex splits apart into
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Fig. 3. (a) Forecast ozone (used for the “truth”) over the Northern _
Hemisphere at 11.4 hPa-80 km) after 51h (03:00Z on 22 Jan- Fig. 4. (Top) The background (black) and analyzed (red) RMS vec-

uary 2009). Red (blue) indicates high (low) values of 0z¢ngThe tor wind error as a function of pressure in ‘Fhree Iatitude.bands for

sampling grid used for the experiment. There are 3840 points ovefN® case of “perfect” ozone observations (i.e., observations based

the globe, with an average spacing of approximately 300 km. The®" _the truth with no |mpo_se_d random errors) with specified qbser-

red dots indicate the observations that are used for the case whe}@tion error standard deviatiargy, of 0.1 ppmv. (Bottom) The dif-

the data are subsampled to resemble a fictitious polar-orbiting satef€rences between the analyzed and the background RMS wind er-

lite (see text for details). rors. Negatlvc_a \(alges indicate |mprovements to_ the wind fleld_du_e
to tracer assimilation. The horizontal dashed line at 78 hPa indi-
cates the lowest level of the observations. All plots are for 06:00 Z
on 22 January 2009.

two pieces. This event therefore provides an excellent case

study to test the wind extraction process. Note that in this full
3-D simulation, vertical ozone gradients may also play a rolestratosphere are used, ranging from 78 to 1.2 hP20(to
in the wind extraction due to the vertical advection term in 50 km altitude). Simulated ozone measurements were gener-
the linearized ozone continuity equation. This role is of sec-ated at each observing location for each forecast hour. For the
ond order, however, because the vertical advection of tracerassimilation of these observations, the observation error co-
in the stratosphere is much weaker than horizontal advectiorariance is specified as uncorrelated with a constant standard
over short timescales (Plumb, 2002). The influence of verti-deviationogp of 0.1 ppmv (unless otherwise specified). We
cal gradients will not, therefore, be discussed in this paper. will examine cases with “perfect” observations (i.e., based
The approach follows a similar design to that used in theon the “truth” simulation with no random error or bias added)
fully idealized “OZONE" simulation included in Peuch et and with the addition of random error. Note that although the
al. (2000). The first step is to generate the “truth” simula- observations are called “perfect”, we do not sgf exactly
tion. This is a 3-day forecast initialized at 00:00 Z on 20 Jan-to zero, but to a reasonably small value. Settiggto zero
uary 2009 using the NAVGEM analyzed ozone and dynami-causes the cost function (Eq. 4) to become singular and pre-
cal fields. A snapshot of the ozone at 11.4 hPa@km) 51 h  vents the solution from converging.
into the forecast (03:00Z on 22 January 2009) is provided The third step involves choosing initial conditions that pro-
in Fig. 3a. The polar vortex, marked by low ozone mixing duce a background forecast with the desired error character-
ratio, has been stretched into an elongated dumbbell shapéstics. We choose to create a background forecast in which
There are strong gradients throughout much of the Northerthe ozone errors are forced only by wind errors. The ini-
Hemisphere, indicating strong potential for wind extraction. tial (time =0) background ozone field must be perfect, but
The global ozone data were saved at hourly intervals alondhe initial background dynamical fields (fields other than
the forecast on the model Gaussian grid. ozone) must be imperfect. Although the initial ozone is per-
The second step is to produce the simulated observationdect, ozone errors develop over the 6 hr background forecast
An approximately equal area sampling was generated by subdue to advection by imperfect winds. We create imperfect
dividing an icosahedral base into a triangular grid with 3840Qinitial dynamical conditions by using fields from the truth
elements (see Fig. 3b), which has a horizontal resolution okimulation that are mismatched by 2 days (i.e., using the
~300 km. To avoid any horizontal interpolation of the back- 20 January dynamical fields to initialize an assimilation cycle
ground ozone, measurement locations were chosen as tHer 22 January), but use the true ozone field (corresponding to
nearest NAVGEM latitude/longitude grid points to the cir- 22 January) for the initial ozone. This approach creates a dy-
cumcenters of the triangles. The measurements are simulatathmically balanced initial state, but one that differs from the
on the NAVGEM vertical grid, so vertical interpolation of the “true” state. The 2-day mismatch results in much larger ini-
background is avoided as well. Sixteen vertical levels in thetial wind errors than expected in a typical operational system.

Atmos. Chem. Phys., 13, 3508515 2013 www.atmos-chem-phys.net/13/3501/2013/



D. R. Allen et al.: Limitations of wind extraction from 4D-Var assimilation of ozone 3509

NH (30-90N) TR (20S-30N) SH (30-005) The final step is to assimilate ozone observations and eval-
uate the analysis relative to the truth. NAVGEM uses a 6 h
time window with the observations binned at 0.5h inter-
vals. Since the simulated observations fall directly on one
: Ul ! hour intervals, there is no time-binning error (the TLM time
000 005 010 015 020 025 03 000 00z 0ot 005 008 o0 step of 450 s results in exactly eight time steps between ob-
e s Erertoom e e Ereroon e s Ereripem servation intervals). The background error covariances are
Fig. 5. The background (black) and analyzed (red) RMS ozone er-specified in the assimilation algorithm as follows. The back-
rors for the case of “perfect” ozone observations (i.e., based on thground ozone error standard deviatiop has a constant
truth with no imposed random errors) with specified observation er-value of 0.2 ppmv. The horizontal and vertical spatial cor-
ror standard deviatioagp, of 0.1 ppmv. All plots are for 06:00Z on  relation lengths for ozone are 385 km ard.3 km, respec-
22 January 2009. tively. The background error covariance for the other fields is
based on the dynamically balanced model used operationally

We ch hi hin ord | back aDaley and Barker, 2001). The wind error standard devia-
e choose this approach in order to create large backgroun onso, increase with altitude from-3ms1 at 100 hPa to

ozone errors (and therefore large innovations) that enhancg6 5ms!at6hPa. These values are similar to the SH back-
the wind extraction meghamsm. The bgckgr0un:j rch,t'n_]e"’m'gjround RMS wind errors in our experiment (see Fig. 4), but

square (RMS) vector wind errors (relative Fo the true. winds are much smaller than the NH background RMS errors. No
ggnerated from the 3-_day_ forecast) re_sultmg from this _z'dayfurther attempt has been made to modify the background er-
mismatch are shown in Fig. 4 (black lines) for three latitude . ;- yard deviations to exactly match the forecast error in

bands: Northern Hemisphere (NH) (30-90°N), the trolOicsthis experiment. The TLM does not incorporate ozone chem-
istry, but this should not be very important over the short

(30°S-30°N), and Southern Hemisphere (SH) (30-90°S)
time scales of the assimilation window, except possibly in

Note that throughout the rest of the paper “RMS wind error”
is used as shorthand for "RMS vector wind error,” which is the upper stratosphere. For this study, only one assimilation
cycle was performed, with the analyzed winds at 06:00 Z on

Pressure [hPa]
Pressure [hPa]
3

the square root of the sum of the RMS zonal wind error and
the RMS _mgridional wind error. Because the RMS wind er- o, January used for verification.
rors are similar throughout the background forecast, we will
plot the errors at the “analysis” time, which is the central time
of the 6 h analysis window (in this case 06:00Z on 22 Jan-
uary 2009).

The background RMS wind errors are largest in the win-
ter hemisphere, with values 6f5 ms1 in the lower strato-

3.2 Limitations due to geophysical conditions

The analyzed RMS wind errors (relative to the “truth” fore-
cast that was used to simulate the observations) following
; . 1 ozone assimilation are shown in the red lines on Fig. 4 (top
spherg, increasing t630ms™ in the upper stratosphere, row), and the change in RMS wind error (i.e., analyzed RMS
while in the SH the errors are I?SS than 77 ghroughout . wind error — background RMS wind error) is shown on Fig. 4
the pressure range under consideration (200-1 hP_a). Un“kf’oottom row). The analyzed RMS wind errors are smaller
Ehe V\,{mds the background RMSf oz,(,)_ne_ _e:rors (relatl\:je to thethan the background errors in all three latitude bands over
.tru.e ozon_e) start at Zero (.per ept initial ozone) an 9rOW the altitude range of the observations. This verifies that the
in time during _the assimilation window due to errors in the tracer—wind extraction mechanism is working for the obser-
backgrgum_j winds. Th? background RMS. 0ZONE EITOrS arga¢ign coverage and quality simulated in this study. The re-
shown in Fig. 5 (black lines) for the analysis time. Similar to duction in RMS wind error is largest in the NH and tropics, as
the background RMS wind errors, the ozone errors are larg%xpected with differences of up te4 m s, peaking abové

n Fhe NH and tropics, while in the SH they are very small. 0 hPa. The magnitude of these differences is similar to the
This suggests that even for the large wind errors simulate esults of Peuch et al. (2000), but the altitudes at which the

here, an ozone measurement_ precision better than 0.1 ppn]?:{rgest impact occurs is different. Peuch et al. (2000) assim-
WOUId be requ'|red o det.ect wind-error-induced OmF values;,io 4 15 of simulated total column ozone data and found
n th_e SH ar!d n the_trop|cal and NH lower stratosphere. Thethe largest impact on winds in the upper troposphere/lower
deS|gn_of th'.s e¥per'mer?t represents a best case scenario fg[ratosphere, consistent with the fact that total ozone vari-
extracting wind |nf0rmat|on because thg resulting OmF Val'ability is dominated by transport processes in this region. Our
ues are onI.y a function of background wmd_errorg. There ar(.astudy finds the dynamical impact of simulated ozone profile
no correlations between ozone and other fle'lds in the SPEC3ssimilation to peak in the middle and upper stratosphere. For
fied background_ error covariance, so advection by t_he TLMy20ne measurements with larger vertical weighting functions
over the 6 h assimilation window is the only mechanism thatOr with vertical dependence of quality, we would expect the
conngcts ozone with the dynamical fields in the aSSim"ationdynamical impact as a function of aI:[itude to be different.
algorithm. The change in RMS wind error is large in the tropical mid-
dle to upper stratosphere, but is small bele®0 hPa in the
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tropics. The change in RMS wind error in the tropics qualita- as the advection terms, the errors in the TLM from neglect of
tively resembles the tropical o0zone mixing ratio profile, with photochemistry will be significant.
a peak at~10 hPa, and decreasing monotonically above and As discussed in Sect. 2, wind extraction is closely related
below. Becauseyy, is constant in mixing ratio, the relative er- to the innovations. In our simulations the innovations depend
rors will be smaller in regions of larger ozone mixing ratios, on the orientation of the wind errors with respect to back-
such as in the tropical middle stratosphere, so we expect tground horizontal tracer gradients. Figure 6b shows the lati-
have a larger impact here. If observations have errors proportude/pressure cross section of RMS innovations for this sim-
tional to the mixing ratio, this would result in different wind ulation. There are large innovations in the NH middle and up-
extraction characteristics. However, independent of observaper stratosphere, colocated with large changes of RMS wind
tion error, the strength of the horizontal ozone gradients ancerror (Fig. 6a). In regions of small innovation the wind error
cross-gradient winds also play a major role in determiningreduction is also small. This is also consistent with the results
the effectiveness of wind extraction. from Daley (1996), which show that when the constituent
Inthe SH the change in RMS wind error is quite small (lesstime tendency is small, wind extraction will be difficult. For
than ~0.5ms1). This is due to the summer stratospheric the summer stratosphere the winds are generally zonal and
flow being much less disturbed by upward-propagating plan-steady. Under such conditions, tracer fields eventually be-
etary waves, causing near-zonal flow that is much less varicome aligned with the streamfunction (Rhines and Young,
able and therefore easier to forecast in the absence of tracd©983). When this occurs, the wind is aligned perpendicular
information. However, the winter stratosphere is very dy-to the tracer gradients and the advection term becomes small
namic, particularly during such events as major or final (see also Salby and Juckes, 1994). These results indicate that
warmings, so the error growth rate is expected to be largethe system is working consistently with expectations gained
The analysis for these conditions is not very sensitive to thefrom the simple 1-D model, and that tracer innovation plots
background ozone error standard deviation, since removingre useful for identifying regions where wind extraction is
the ozone from the control variable (effectively setting the feasible. Other tracers besides ozone may have gradients that
initial background ozone error standard deviation to zero) refacilitate wind extraction in different regions due to differ-
sults in essentially the same wind analyses (not shown). Thigng sources/sinks and photochemistry. Using innovation plots
is because the ozone OmFs were designed to correspond toade from other tracers, one can ascertain information about
wind errors only; the ozone OmF values at the beginning ofwhere each tracer will be able to influence the winds.
the time window are then zero, which would tend to suppress Although Fig. 6a may suggest that wind improvements are
ozone increments. As seen in Fig. 5, the differences betweenniform across the NH upper stratosphere, horizontal maps
background and analyzed RMS ozone errors are rather smalgf the change in vector wind error show that the actual sit-
suggesting the largest impact of the ozone assimilation is omation is rather complicated. Figure 6¢c shows the wind er-
the dynamical fields, rather than on ozone itself. ror change at 11.4hPa as a function of longitude and lati-
Figure 6a presents a latitude/pressure cross section of theide in the NH, overlaid with 11.4 hPa geopotential height
change in RMS wind error (difference between analyzed andccontours (white lines). There are significant regions of im-
background RMS wind errors). Ozone assimilation is ben-proved wind over the NH, particularly in the polar vortex,
efitting the winds throughout the NH upper stratosphere,indicated by the dumbbell-shaped geopotential height con-
where the dynamics of the major warming are causing strongours (see also Fig. 3a), and in the tropical Pacific region.
ozone advection. This reduction in RMS wind errors extendsRegions of degraded wind occur around the anticyclonic re-
to pressures higher than 78 hPa in many locations, suggestingjons that flank both sides of the polar vortex (closed geopo-
that assimilation of stratospheric tracer fields has an impactential height contours in the Aleutian and European regions)
not only on the stratospheric analyses, but also on the uppeand in the tropics. In the SH (Fig. 6d), marginal wind vector
tropospheric winds. This is likely attributed to vertical error changes (less than2 m s 1) cover the majority of the hemi-
correlations in the background error covariances (Daley andgphere, with larger changes in the tropics. While the impact
Barker, 2001). A few locations — most notably in the tropi- of tracer assimilation is very weak in the SH summer con-
cal upper troposphere, NH polar lower stratosphere, and SHiitions, the dynamical conditions in the NH winter lead to a
upper stratosphere — show a slight degrading of the winds (inmuch stronger influence of the tracer field on the winds.
dicated by white regions). The latter may be partly caused by In Fig. 7 we examine background and analyzed mean er-
ozone photochemistry. The forecast model used to generat®rs of the zonal and meridional wind, to supplement the
the observations includes parameterized chemistry, but th&MS results shown in Fig. 4. In the NH the analyzed mean
tangent linear model does not. In the upper stratosphere, thigonal wind error is smaller (in absolute value) than the back-
can cause problems, since the ozone photochemistry is relaround error over the entire range from 200 to 1 hPa, with
tively fast with photochemical relaxation times of less than amaximum improvement of2ms ! around 6 hPa. The im-
day (Coy et al., 2007). In general, if the photochemical termspact on the mean meridional wind in the NH is weaker,
in the ozone continuity equation are of the same magnitudevith slight improvement from-78 to 5 hPa and slight degra-
dation from~5 to 2 hPa. That zonal winds in the NH are
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Fig. 7. (Top row) The background (black) and analyzed (red) mean

zonal wind error as a function of pressure in three latitude bands

for the case of perfect ozone observations (i.e., based on the truth

with no imposed random errors) with specified observation error

standard deviatioagp of 0.1 ppmv. (Bottom row) Same as top row,

2 1 0 -1 2 3 4 5 -6 7 -8 9 -10 but for mean meridional wind error. The horizontal dashed line at
Change in RIMS Wind Error [m/s] 78 hPa indicates the lowest level of the observations. All plots are

Fig. 6. (@) The change in RMS vector wind error (analyzed — back- for 06:00 Z on 22 January 2009.
ground) as a function of latitude and pressure for 06:00 Z on 22 Jan-
uary 2009. Red (blue) indicates large (small) error reduction. White o .
indicates increasing error) RMS ozone innovation as a func- 3-3  Limitations due to observation errors and
tion of latitude and pressure calculated using all observations in the observation error specifications
6 h window.(c) Change in vector wind error over the NH overlaid
with the geopotential height contours (white lines) at 11.4 hPa forUp to this point, the observations have been “perfect” in the
06:00 Z on 22 January 200@) Same agc), but for the SH. sense that they are generated directly from the “truth” fore-
cast with no imposed error. We now examine cases where
Gaussian random errors of 2%, 5%, and 10 % of the ozone
influenced more than the meridional winds is likely due to the mixing ratio are applied to all data. In each case the specified
larger background zonal wind errors combined with signifi- 5, is also set to the same percent value, as in the simulations
cant background tracer gradient in the zonal direction cause@ly Peuch et al. (2000). The resulting analyzed RMS wind er-
by the splitting of the vortex during the major warming (see rors are shown in Fig. 8. In all three latitude bands, increased
Fig. 3a). In the tropics and SH, the impact of ozone assimi-observation error results in smaller changes in RMS wind er-
lation on the mean winds is very small relative to the RMS ror. In none of these cases does adding ozone errors result in
differences (Fig. 4), with regions of both slight improvement increased RMS wind errors sineg, is specified consistently
and slight degradation. with the imposed observation errors. This result differs from
It is clear from this analysis that the ability of the 4D-Var peuch et al. (2000), where imposed random observation er-
system to extract wind information is strongly dependentrors of 3% or larger in the total column ozone field resulted
on geophysical factors. These include the background ozong a global degrading of the winds. One major difference be-
gradients and the initial wind errors, which convolve via the tween the two studies is that we are assimilating profiles of
advection equation to produce ozone innovations. Althoughozone mixing ratio, whereas Peuch et al. (2000) assimilated
regions of both improved and degraded winds occur in thethe vertically integrated total column amount.
NH mid-stratosphere (Fig. 6c), the overall impact on the e also tried a case with imposed random observation
winds is positive, as seen in Fig. 6a. Analyses of other dy-errors of 5%, but with the specifiegh, Set to a constant
namical situations, as well as other trace gases than 0zone, 1 ppmv, which is less than the 5% random error in most
will result in wind extraction in different geophysical re- of the middle stratosphere. The resulting analysis (Fig. 9)
gions. We now move on to examine the limitations of wind shows reductions in RMS wind error in the NH and the trop-
extraction due to observation errors and how they are charadcs above about 20 hPa. However, in the SH, the RMS wind
terized in the 4D-Var system. error increases in the pressure range fro® to 2 hPa. This
is because in the SH, the 5% imposed random observation
error is much larger than the true OmF values, and the assim-
ilation is constrained too tightly to the noisy data. This illus-
trates the fact that assimilating noisy ozone data in regions
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Fig. 8.As in Fig. 4, but for the cases with imposed random observa-Fig. 10.As in Fig. 4, but for the case of data subsampled at 1/7 of the
tion errors of 2% (red), 5% (green), and 10 % (blue). All plots are globe each hour (see Fig. 3b for sampling pattern) for the cases of

for 06:00 Z on 22 January 2009. all perfect data (red), 2% imposed observational error (green), and
5% imposed observational error (blue). All plots are for 06:00 Z on
NH !SO—QON)‘ ) Tropics (30S-30N) ) ) SH (30—995) 22 ‘January 2009

3

The results for the case of these “perfect,” but sparser, ob-
servations and for 2% and 5% imposed random error are

Pressure [hPa]
Pressure [hPa]
Pressure [hPa]

* el ® , ! ~ shown in Fig. 10. Wind extraction is achieved with this re-
* e vt ° swesme duced sampling, but the effectiveness is severely reduced
NHoooN) Tropics (305-30N) SH e0-905) from the case where all observations are used (compare with

Fig. 4). Particularly for the 5% error, a typical value for the
uncertainty of MLS ozone in the stratosphere (Froidevaux et
al., 2008), there is very little change in RMS wind error in
\ 0 L the tropics, and virtually none in the SH. Wind extraction us-
P P T ing a limb-viewing or single-angle nadir-viewing instrument
Cremse nRS s vt e RS g Srorti Cremse RS naSrore such as MLS and SBUV will be even more difficult, and will
Fig. 9. As in Fig. 4, but for the case of imposed observation er- Not likely provide significant wind information except in the
rors of 5%, and with specified observation error standard deviationdynamically active winter hemisphere. Improvements to the
oob Of 5% (green) and 0.1 ppmv (red). All plots are for 06:00 Z on winter stratosphere are particularly important, however, since
22 January 20009. this is the season when the dynamical coupling with the tro-
posphere is greatest (Baldwin et al., 2003). The study by Se-
mane et al. (2009), which used MLS observations, found a
of weak tracer tendency can harm the analyzed winds if thgeduction in the 3-month mean wind bias, but not in the stan-
observation error covariances are poorly specified. dard deviation. The experiments considered in our paper use
a perfect model (i.e., no mean biases) with only one update
cycle. More realistic experiments will be necessary for a di-
rect comparison with the Semane et al. (2009) results.

Pressure [hPa]

Pressure [hPa]

Pressure [hPa]
3

3.4 Limitations due to sampling patterns

Wind extraction is also sensitive to the tracer sampling pat-
tern used. The observation sampling of 3840 evenly dis-
tributed profiles every hour clearly provides sufficient cov- 4 Summary
erage to extract wind in certain regions (especially NH and
tropics). This original sampling pattern can be subsampledrhe |imitations of wind extraction from ozone assimilation
to resemble a fictitious pOlar-Orbiting instrument. For this are exp|0red in this Study using a Simp|e 1-D time-dependent
purpose the global grid was subsampled using a 26-degregariational illustration as well as idealized 4D-Var experi-
wide swath that circles the globe (see Fig. 3b). Each hourments. Both are performed without correlations between the
the swath shifts 26 degrees in longitude so that global coveryinds and tracer in the initial background error covariance.
age is achieved after 7 h. This simulates a fictitious satelliteThe wind extraction is therefore accomplished via the ad-
with 90-degree inclination orbit, 60 min period, and which joint of the linearized tracer continuity equation. The 1-D
measures at exactly 1 h intervals. illustration uses an analytic solution for a single tracer ob-
servation and numerical solution for multiple observations
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to demonstrate the dependence of wind extraction on backef a 2-day mismatch in the initial dynamical conditions re-
ground tracer gradient, observation quality, observation samsults in larger initial wind errors than those in a typical six-
pling, and specification of the background and observationahour update cycle. This facilitates large ozone innovations
error characteristics. Although highly idealized, the 1-D so-and exaggerates the component of ozone innovations due to
lutions are useful for highlighting some of the limitations of advection errors. We cannot therefore extend our conclusions
wind extraction to be expected in the full 4D-Var approach, directly to an operational setting. However, even if a further
particularly the necessity of correctly specifying observationdegradation of the wind impact may be demonstrated in an
error standard deviation in order to avoid degrading the wind OSSE, one main message is that within the present idealized
The NAVGEM 4D-Var experiments use simulated, glob- study, the limits of wind extraction can be demonstrated by
ally distributed ozone profiles with a vertical resolution equal increasing errors and reducing coverage towards real-world
to that of the forecast model. The observations are fictitiousgconditions.
in that they have vertical resolution attainable only by limb-  In the future we plan to examine wind extraction in more
viewing instruments, but have global horizontal sampling re-realistic settings and using other tracers besides ozone since
sembling multiple nadir sensors. The simulations take placeliffering tracer gradients may allow wind extraction in dif-
during the unusually large 2009 Arctic stratospheric majorferent regions. One difficulty in using multiple tracers is
warming, which provided large Northern Hemisphere ozonethe specification of photochemical sources and sinks, which
gradients that are conducive to wind extraction, as shown irmust be sufficiently accurate to maintain a realistic back-
the results. The 4D-Var experiments demonstrate that reducground tracer field. Another important future study is to in-
tion of RMS wind errors is possible, but with limitations due corporate a background error covariance calculated from an
to geophysical conditions, tracer observation quality and erensemble forecast system. An ensemble-based error covari-
ror specifications, and observation sampling pattern. Ozon@nce would contain explicit wind—tracer correlations in the
provides more dynamical information in the winter and trop- initial background error covariance and would thereby in-
ical stratosphere, and less in the summer. Adding randontrease the wind—tracer interactions, especially for observa-
observation errors limits the ability to extract wind, but the tions near the beginning of the assimilation time window.
overall impact on the analyzed winds remained positive asA recent paper by Milewski and Bourqui (2011) has shown
long as the observation error standard deviation in the assimpromising results in which assimilating ozone observations
ilation system was specified consistently with the imposedwith an ensemble Kalman filter in a chemistry—climate model
random errors. If the observation error standard deviation ican directly benefit the wind analyses via wind—tracer cross
underestimated, RMS wind errors may indeed increase. Arcovariances.
experiment was also performed with a reduced sampling pat-

tern_that coarsely resgmbles a polar-orbl_tlng sat_elhte (WhIIeAcknowledgementsWe would like to thank those responsible
retaining the same high vertical resolution). Wind extrac- ¢, he development of NAVDAS-AR and the semi-Lagrangian
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