
Atmos. Chem. Phys., 13, 3501–3515, 2013
www.atmos-chem-phys.net/13/3501/2013/
doi:10.5194/acp-13-3501-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess
Nonlinear Processes 

in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics
O

pen A
ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Limitations of wind extraction from 4D-Var assimilation of ozone

D. R. Allen1, K. W. Hoppel1, G. E. Nedoluha1, D. D. Kuhl1, N. L. Baker2, L. Xu2, and T. E. Rosmond3

1Remote Sensing Division, Naval Research Laboratory, Washington, DC, USA
2Marine Meteorology Division, Naval Research Laboratory, Monterey, CA, USA
3Science Applications International Corporation, Forks, WA, USA

Correspondence to:D. R. Allen (douglas.allen@nrl.navy.mil), K. W. Hoppel (karl.hoppel@nrl.navy.mil)

Received: 19 October 2012 – Published in Atmos. Chem. Phys. Discuss.: 19 December 2012
Revised: 8 March 2013 – Accepted: 11 March 2013 – Published: 27 March 2013

Abstract. Time-dependent variational data assimilation al-
lows the possibility of extracting wind information from ob-
servations of ozone or other trace gases. Since trace gas ob-
servations are not available at sufficient resolution for deriv-
ing feature-track winds, they must be combined with model
background information to produce an analysis. If done with
time-dependent variational assimilation, wind information
may be extracted via the adjoint of the linearized tracer con-
tinuity equation. This paper presents idealized experiments
that illustrate the mechanics of tracer–wind extraction and
demonstrate some of the limitations of this procedure. We
first examine tracer–wind extraction using a simple one-
dimensional advection equation. The analytic solution for a
single trace gas observation is discussed along with numer-
ical solutions for multiple observations. The limitations of
tracer–wind extraction are then explored using highly ideal-
ized ozone experiments performed with a development ver-
sion of the Navy Global Environmental Model (NAVGEM)
in which globally distributed hourly stratospheric ozone pro-
files are assimilated in a single 6 h update cycle in Jan-
uary 2009. Starting with perfect background ozone condi-
tions, but imperfect dynamical conditions, ozone errors de-
velop over the 6 h background window. Wind increments
are introduced in the analysis in order to reduce the differ-
ences between background ozone and ozone observations.
For “perfect” observations (unbiased and no random error),
this results in root-mean-square (RMS) vector wind error re-
ductions of up to∼4 m s−1 in the winter hemisphere and
tropics. Wind extraction is more difficult in the summer
hemisphere due to weak ozone gradients and smaller back-
ground wind errors. The limitations of wind extraction are
also explored for observations with imposed random errors
and for limited sampling patterns. As expected, the amount

of wind information extracted degrades as observation errors
or data voids increase. In the case of poorly specified obser-
vation error covariances, assimilation of ozone data with im-
posed errors may result in increased RMS wind error, since
the assimilation is constrained too tightly to the noisy obser-
vations.

1 Introduction

One of the major deficiencies of the current global observing
system is inadequate global wind profile information (WMO,
2000). Upper air wind observations from pilot reports, ra-
diosondes, and cloud and water vapor feature tracking leave
large gaps, particularly in the tropics, Southern Ocean, and
in most of the stratosphere and mesosphere. In the extra-
tropics, traditional mass–wind balance provides some con-
straint on the wind, but this balance fails in the tropics and
for subsynoptic scales (less than∼1000 km) in the extratrop-
ics. Even with improved tropical balance approximations the
need for wind observations is crucial (Žagar et al., 2008).
Spaceborne Doppler wind lidar (DWL) has the potential to
provide wind profile measurements in the troposphere and
lower stratosphere, but it is extremely expensive (National
Research Council, 2007). The only currently planned DWL
mission, the Atmospheric Dynamics Mission (ADM-Aeolus)
(Stoffelen et al., 2005), will be limited to a single line-of-
sight wind component, altitudes below∼26 km, and simple
along-track sampling. Future DWLs may improve sampling
and data quality, but they are unlikely to ever provide wind
information above about 30 km. Extracting wind information
from trace gas observations is an attractive prospect, partic-
ularly in the stratosphere, where satellite measurements of
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ozone, water vapor, and nitrous oxide are available. Current
trace gas (tracer) observations are not generally available
at the spatial and temporal resolutions necessary to derive
feature-track wind vectors. For example, limb-viewing ob-
servations from polar-orbiting satellites such as the Aura Mi-
crowave Limb Sounder (MLS) (Waters et al., 1999) or the
Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) (Fisher et al., 2008) provide good vertical resolu-
tion, but lack the horizontal coverage to identify and track
individual features, while total column ozone measurements
from the Ozone Monitoring Instrument (OMI) (Levelt et al.,
2006) and the Ozone Mapper Profiler Suite (OMPS) nadir
mapper (Flynn et al., 2009) provide excellent horizontal cov-
erage, but lack necessary vertical profile information. Data
assimilation algorithms, on the other hand, have the potential
to extract wind information indirectly from limited tracer ob-
servations. For example, Andersson et al. (1994) showed that
analyzed wind fields may be influenced by the 4D-Var as-
similation of TIROS (Television Infrared Observation Satel-
lite) Operational Vertical Sounder (TOVS) radiance channels
sensitive to water vapor, providing the first illustration that
dynamical information may be extracted by assimilation of
tracer information.

The theoretical basis for this work was first examined us-
ing idealized tracer observations, simple 1-D and 2-D trans-
port equations, and an extended Kalman filter (Daley, 1995,
1996). Daley showed that wind extraction is possible with
observations that are sufficiently dense, frequent, and accu-
rate. Wind extraction becomes difficult when the observation
frequency decreases, when model errors become large (such
as damping, errors in phase speed, or violating stability lim-
its), or when the true constituent time tendency is small rel-
ative to the observation errors. The latter occurs when there
are small gradients in the tracer field, when the winds are
weak, or when the winds are blowing parallel to the tracer
contours. In general, if the amplitude of the constituent struc-
ture is smaller than the observation error, it is not possible to
extract wind information.

The results from Daley (1995, 1996) provide promise that
wind extraction from tracers is possible in idealistic 1-D and
2-D settings. The next step is to apply these concepts to more
realistic experiments. Riishøjgaard (1996) applied 4D-Var
assimilation techniques to a 2-D barotropic vorticity equa-
tion model and simulated ozone observations based on re-
alistic flow conditions at the 200 hPa pressure level. Using
perfect ozone data with complete global coverage and start-
ing with a purely zonal flow field, Riishøjgaard (1996) was
able to extract a substantial amount of wind information at
all latitudes, although the impact on the meridional wind was
weaker in the tropics. Using a series of experiments with dif-
ferent model resolutions, frequency of observations, and as-
similation time windows, it was shown that the best results
were for cases where tracer features were displaced a few
grid points between successive observations. If the displace-
ments are approximately one grid point or less, the advection

is too weak, whereas if the displacements are over many grid
points, the small perturbation approximation of the tangent
linear model breaks down. In either case, wind extraction is
made more difficult, and there is the possibility that assimi-
lating tracer data may even make the winds worse, rather than
better. A detailed understanding of the limitations of these
processes is therefore necessary for optimal assimilation of
tracer data.

A study using realistic sampling of total column ozone and
a full numerical weather prediction (NWP) forecast model
was performed by Peuch et al. (2000). They examined wind–
tracer coupling by assimilating simulated TOVS total column
ozone measurements with a 4D-Var assimilation system for
a 12 h period. Two polar-orbiting satellites were simulated,
providing global coverage every six hours. When using per-
fect observations, reductions of zonal and meridional wind
errors occurred throughout the extratropical troposphere and
lower stratosphere of both hemispheres and in the tropical
stratosphere, with error reductions peaking at∼2–3 m s−1

in the upper troposphere for each wind component. Since
changes in the total column ozone are caused by horizon-
tal and vertical advection, primarily in the upper troposphere
and lower stratosphere, and by changes in tropopause height,
it is expected that wind improvements should maximize in
the upper troposphere. A series of experiments in which
Gaussian noise was added to the data revealed that a noise
standard deviation of 2 % or less is necessary for positive
impact on the global wind field. Another experiment showed
that adding a bias of 1 % to the total column ozone data re-
sults in an overall degradation as well. These results indi-
cate that wind extraction (at least in the case of total column
ozone assimilation) requires highly precise and unbiased ob-
servations.

Given these results it is not surprising that when Peuch
et al. (2000) attempted to assimilate real TOVS total col-
umn ozone data, the wind analyses were degraded. Similarly,
Han and McNally (2010) reported that solar-backscatter ultra
violet (SBUV) ozone assimilation could degrade the oper-
ational European Centre for Medium-Range Weather Fore-
casts (ECMWF) 4D-Var wind analyses. In order to prevent
erroneous wind increments, they stated that “the observa-
tion operator that links wind adjustments to changes in ozone
concentration has been artificially cut.” More promising re-
sults were obtained by Semane et al. (2009) using the Mét́eo-
France 4D-Var system Action de Recherche Petite Echelle
Grande Echelle (ARPEGE) coupled to an offline chemistry
transport model, Mod̀ele de Chimie Atmosph́eriqueà Grande
Echelle (MOCAGE). They compared results from 3-month-
long (23 January–22 April 2006) data assimilation experi-
ments performed with and without use of Aura MLS ozone
profiles. A very slight reduction (< 0.1 m s−1) in the global
wind bias (relative to radiosondes) was found in the lower
stratosphere when MLS data were included, but there was ap-
parently no reduction in the standard deviations. Error vari-
ance reduction diagnostics were also used to show that MLS
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ozone observations reduce the global initial background er-
ror variance of the horizontal divergence and relative vortic-
ity fields. Although these results are promising, the research
grade MLS retrievals used in this study are not available in
near-real time. It is unclear at this point whether tracer ob-
servations from current satellites are of sufficient accuracy
and frequency to benefit wind analyses in an operational set-
ting; a potential source of operational ozone profiles is the
OMPS on the NASA Suomi National Polar-orbiting Partner-
ship (NPP) mission (Flynn et al., 2009), launched 28 October
2011. In addition, ozone-sensitive infrared radiances can po-
tentially provide dynamical information via tracer–wind cou-
pling in NWP systems (Dragani and McNally, 2013).

In this study we will examine some of the limitations of
wind extraction from ozone assimilation. To accomplish this
we first provide a simple illustration of tracer–wind extrac-
tion in 4D-Var, without the use of initial background covari-
ances between the tracer and the meteorological fields, by
solving the cost function minimization for assimilation of
tracer observations using a discrete formulation of the prob-
lem in one spatial dimension (Sect. 2). Theoretical discus-
sions of cost function minimization provided in Riishøjgaard
(1996) and Peuch et al. (2000) using continuous functions
are very helpful to understand how the wind field can be
influenced by tracer observations, but these discussions do
not provide practical understanding of the discrete problem.
By examining the analytic solution to the discrete problem
we gain insight into the relative roles of various factors in
facilitating/inhibiting wind extraction. We then present ide-
alized experiments using a 4-D system in order to examine
the limitations of wind extraction in a more realistic setting
(Sect. 3). These experiments use the NRL Atmospheric Vari-
ational Data Assimilation System-Accelerated Representer
(NAVDAS-AR) 4D-Var assimilation system (Xu et al., 2005;
Rosmond and Xu, 2006) with a preoperational version of
the Navy Global Environmental Model (NAVGEM) semi-
Lagrangian forecast model to assimilate idealized global
ozone profiles in the stratosphere (∼4000 profiles per hour
evenly sampled over the globe), with and without imposed
errors. With these experiments we are able to examine the
limitations of wind extraction due to geophysical conditions
as well as due to observation errors and sampling patterns.
The overall goal of this paper is to help bridge the gap be-
tween theoretical studies of tracer assimilation and full NWP
tests using real data that have seen marginal or no wind im-
provement. Sections 4 and 5 provide a summary and conclu-
sions, respectively.

2 Illustration of wind extraction using a 1-D model

This section illustrates the process of wind extraction from
tracer observations using a simple 1-D model with time-
dependent variational assimilation.

2.1 Derivation of the 1-D model solution

The nonlinear forward modelM is based on the 1-D advec-
tion equation for a passive tracer embedded in a constant
wind field. The system of equations is as follows, with de-
pendent variablesq (tracer mixing ratio) andu (wind), and
independent variablesλ (horizontal position) andt (time).

∂q

∂t
+ u

∂q

∂λ
= 0 (1)

∂u

∂t
= 0

The problem is to determine the model initial state (q and
u at t = 0) that produces a forecast that best matches any
incoming observations over the assimilation window. The
4D-Var approach requires a linear approximation to the fore-
cast equations, often called the tangent linear model (TLM).
The TLM is constructed by linearizing the full model about
the time-varying background state (identified by subscript b)
and considering small perturbations (identified by primes)
relative to the background. The TLM (Eq. 2) describes the
evolution of the perturbation terms (also called “increments”)
over the analysis time window.

∂q ′

∂t
+ ub

∂q ′

∂λ
+ u′

∂qb

∂λ
= 0 (2)

∂u′

∂t
= 0

Equation (2) shows that the perturbation mixing ratio
changes with time both by advection of the tracer perturba-
tions by the background wind and by advection of the spa-
tially varying background tracer field by the wind perturba-
tions.

The model is discretized using a periodic three grid point
domain, as illustrated in Fig. 1. The wind is constant in
space and time, but that value can be incremented in the as-
similation algorithm. The model state vector is defined by
x = (x1, x2, x3, x4) = (q1, q2, q3, u), whereq1, q2, andq3
indicate tracer mixing ratios at the three grid points, andu

is the spatially invariant wind. The finite difference formula-
tion uses first-order Euler forward time stepping and second-
order central differencing for the spatial derivatives. This
choice of discretization is made for simplicity rather than
accuracy, as it is known to be unstable (Rood, 1987). How-
ever, since we are only taking one time step, instability is not
a problem. The discretized TLM is written in matrix form
below, using the nondimensional windU = u1t/1λ, where
1t is the time step and1λ is the grid spacing.M tn−1→tn is a
matrix that performs one forward time step of the linearized
version of the nonlinear forward modelM (given in Eq. 1),
andtn = tn−1 + 1t is the time corresponding to time stepn.

www.atmos-chem-phys.net/13/3501/2013/ Atmos. Chem. Phys., 13, 3501–3515, 2013
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indicate the periodic boundary conditions. Arrows indicate the strength of the background wind, 7 

analyzed wind, and true wind, as labeled.  8 
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Fig. 1.The analytic solution to the cost function minimization prob-
lem for one observation at grid cell 1 and at the final timet1. Tracer
mixing ratio is shown for the(a) initial and (b) final times. Back-
ground is in black, analysis is in red, and truth is in green. Dashed
lines are used to indicate the periodic boundary conditions. Arrows
indicate the strength of the background wind, analyzed wind, and
true wind, as labeled.


x′

1(tn)

x′

2(tn)

x′

3(tn)

x′

4(tn)

 = M tn−1→tn


x′

1(tn−1)

x′

2(tn−1)

x′

3(tn−1)

x′

4(tn−1)

 (3)

=


1 −

Ub
2

Ub
2

(
x3b(tn−1)−x2b(tn−1)

2

)
Ub
2 1 −

Ub
2

(
x1b(tn−1)−x3b(tn−1)

2

)
−

Ub
2

Ub
2 1

(
x2b(tn−1)−x1b(tn−1)

2

)
0 0 0 1




x′

1(tn−1)

x′

2(tn−1)

x′

3(tn−1)

x′

4(tn−1)


To make the problem amenable to analytic solution, the cho-
sen assimilation window is a single time step with tracer ob-
servations (no wind observations) only at the final timet1.
Note that if tracer observations occur at the initial timet0,
they cannot impact the wind analysis via the TLM because no
advection has yet occurred (discussed further below). We de-
fine a quadratic cost function that depends on the difference

between the observed and forecast value of the observations
and on the difference between the initial analyzed state and
the initial background state. Model errors are not included in
the cost function (i.e., a “perfect model” assumption). The
cost functionJ can then be written

J = J b
0 + J r (4)

=
1

2
[x(t0) − xb(t0)]

T B−1 [x(t0) − xb(t0)]

+
1

2
[H (x(t1)) − y(t1)]

T R−1 [H (x(t1)) − y(t1)] .

HereJ b
0 is the scalar cost function for the background fore-

cast error at the beginning of the time period (t = t0) and
J r is the scalar cost function for the observation error. Ob-
servations are indicated by the vectory(t1). The TLM is
implicitly included in the cost function via the calculation
of the state vector after one time step,x(t1) = M t0→t1x(t0).
This operation provides the time-dependent component that
distinguishes the cost function from a standard 3D-Var for-
mulation. The background and observation error covariance
matrices,B andR, are specified to be diagonal, with back-
ground error standard deviation of the tracer (q) and wind
(u) denoted byσq andσu, respectively, and the tracer obser-
vation error standard deviation denoted byσob. Note that the
error standard deviations for each variable must be specified
as nonzero, since the cost function becomes singular and no
solution to the variational problem as formulated will exist in
the case of zero standard deviation.

In general, the background error covariance could include
specified wind–tracer correlations. This would provide an-
other mechanism for linking winds and tracers in the cost
function in addition to the TLM (Holm et al., 1999). In our
experiments, the wind–tracer interaction is all contained in
the TLM matrixM . If there were also observations at the ini-
tial time, the additional term to the cost function would not
contain theM matrix because no advection is required to re-
late t = t0 observations to the initial state. In general, tracer
observations that occur near the end of the assimilation time
window will have the greatest potential to influence the wind
analysis because they correspond to longer advection times.
In the full 4D-Var system, the greater impact of the obser-
vations that occur later in the assimilation window will be
mostly due to the following two factors. First, the quality of
the background decreases with time, making the observations
near the end of the window more valuable. Second, the back-
ground error covariance evolves over the time window from
initial decorrelation between tracer and wind, to a correlated
(flow-dependent) covariance, which results in better use of
later observations.

The observation operatorH (which may be nonlinear)
maps the model state vector onto the observations. The ob-
servations will be specified as the tracer mixing ratio at grid
points (i.e.,H = (1,0,0,0) for a single observation atλ1).
The cost function for a single observation at grid point 1, as
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a function of initial perturbations, becomes

J (x′(t0)) = J b
0 (x′(t0)) + J r(x′(t0)) (5)

=
1

2

[(
x′

1(t0)
)2

σ 2
q

+

(
x′

2(t0)
)2

σ 2
q

+

(
x′

3(t0)
)2

σ 2
q

+

(
x′

4(t0)
)2

σ 2
u

]

+
1

2

[(
H

(
M t0→t1x

′(t0)
)
− ε

)2

σ 2
ob

]
.

The innovation (also referred to as the observation minus
forecast departures, or OmF)ε = y − x1b(t1) depends only
on the background and observation, so remains fixed in the
cost function. The analysis solution is the initial state that
minimizes the cost function, i.e.,∂J/∂x′(t0) = 0. In general,
the gradient of the cost function with respect to each initial
state variable can be calculated using the chain rule:

∂J

∂x′

j (t0)
=

∂J b
0

∂x′

j (t0)
+

∑
k

∂J r

∂x′

k(t1)

∂x′

k(t1)

∂x′

j (t0)
= 0. (6)

The Jacobian∂x′

k(t1)/∂x′

j (t0) can be recognized as the trans-
pose of the elements of the TLM matrix (Eq. 3), also called
the adjoint (see Errico (1997) for a discussion of adjoint
models). The adjoint model propagates sensitivity of the cost
function with respect to the state vector backwards in time
from t1 to t0. Note that in our simple model the indicesj and
k vary from 1 to 4. We will now examine solutions to the cost
function minimization problem, both for a single observation
(Sect. 2.2) and for multiple observations (Sect. 2.3).

2.2 Solutions for a single observation

For the case of a single observation at grid point 1 and time
t1, the gradient of the cost function can be directly evaluated
and the resulting linear equations solved analytically. Defin-
ing0 = (x2b(t0) − x3b(t0))/2 as the initial background tracer
gradient atλ1, the solution is

q ′

1(t0) =

{
σ2

ob
σ2

q
+

(
1+

U2
b

2

)
+ 02 σ2

u

σ2
q

}−1

ε

q ′

2(t0) =

{
σ2

ob
σ2

q
+

(
1+

U2
b

2

)
+ 02 σ2

u

σ2
q

}−1(
−

Ub
2

)
ε

q ′

3(t0) =

{
σ2

ob
σ2

q
+

(
1+

U2
b

2

)
+ 02 σ2

u

σ2
q

}−1(
Ub
2

)
ε

u′(t0) =

{
σ2

ob
σu

+

(
1+

U2
b

2

)
σ2

q

σ2
u

+ 02
}−1

(−0)ε.

(7)

We briefly discuss several general properties of this solution
that will extend to the realistic 4D-Var NWP system solu-
tions presented in Sect. 3. First, all the increments are pro-
portional to the innovation, so the observations must con-
tain information not already in the background. Second, the
wind increment is proportional to the background tracer gra-
dient. Hence, if the background gradient is zero, there is no
wind increment. This is intuitively correct since, in the TLM,

wind increments can only influence the tracer through the
background gradients, not the increment gradients. Larger
gradient regions will allow greater influence on the wind
field, as illustrated in the full 4D-Var context by Peuch et
al. (2000). Third, all of the increments have similar weight-
ing or “gain” factors. The first term in the denominator of the
weighting factors is proportional toσ 2

ob. As σob increases,
all the increments decrease, so that the analysis moves to-
ward the background state. The second term in the denomi-
nator of the weighting factor for the wind increment becomes
large whenσu is smaller thanσq . For very largeσq/σu, the
wind increment is near zero and the tracer increments domi-
nate. The third term in the denominator of the weighting fac-
tor for tracer increments becomes large whenσq is smaller
thanσu, assuming the tracer gradient term is large enough.
Varying the ratioσq /σu is one way to reduce or increase the
tracer–wind interaction in the assimilation. However, ideally
the background error values should represent the real fore-
cast error estimates. With only one observation the solution
is underconstrained, and this ratio completely determines the
partitioning between tracer and wind increments.

As an example, we evaluate the solution with a specified
background wind error (relative to the “true” wind) of 40 %.
The initial background state isxb(t0) = (1, 2, 3, 1.4). The
truth, xt (t0) = (1, 2, 3, 1.0), is propagated forward in time
in order to simulate a “perfect” observation (so thaty(λ1,
t1) = 1.5). The observation and background error standard de-
viations are set toσob = 0.1, σq = 0.1, andσu = 1.0. The re-
sulting analysis, illustrated in Fig. 1, isxa(t0) = (0.99, 2.01,
2.99, 1.04). The analyzed wind is much closer to the true
wind, and the initial tracer values have moved slightly away
from the truth. Although the analysis state is different from
the truth, it minimizes the cost function at a value of 0.07
compared to a cost function of 2.00 for the background.

The sensitivity of the wind analysis to observation and
background tracer error standard deviations (withσu fixed
at 0.2), as well as to imposed random observation errors, is
examined in Fig. 2, which illustrates the tracer–wind extrac-
tion for a range of error specifications and gradients for this
one-observation case. The metric used in Fig. 2 is the “nor-
malized wind increment,” which we define as the analyzed
wind increment divided by the ideal increment (the differ-
ence between the true wind and the background wind) and
multiplied by 100. A normalized wind increment of 100 %
indicates perfect match of the analysis with the truth, while
0 % indicates that the analysis matches the background. The
solid curves show the solution for a “perfect” observation
(calculated using the true wind). The dashed lines show the
1-sigma standard deviation of the solution when Gaussian
random error is added to the observation with a standard de-
viation equal toσob .

It is clear that wind extraction is aided by large gradients
in the background tracer field. As the gradient goes to zero,
the solution will only increment the tracer field, not the wind
field. In Fig. 2a,σq is kept at a small value (0.1), which
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Figure 2. Normalized wind increment as a function of the background tracer gradient for the case 2 

of one observation. 100% indicates that the analyzed wind equals the true wind. The solid line is 3 

the solution using one observation based on the true winds. The dashed lines represent the 1-4 

sigma standard deviation of the solution for Gaussian random observation error ob . In (a) q is 5 

fixed at 0.1 and ob  is varied from 0.1 to 2.0, as labeled. In (b)
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Fig. 2.Normalized wind increment as a function of the background
tracer gradient for the case of one observation. 100 % indicates that
the analyzed wind equals the true wind. The solid line is the so-
lution using one observation based on the true winds. The dashed
lines represent the 1-sigma standard deviation of the solution for
Gaussian random observation errorσob. In (a) σq is fixed at 0.1 and
σob is varied from 0.1 to 2.0, as labeled. In(b) σob is fixed at 0.1
andσq is varied from 0.1 to 2.0, as labeled.

tends to favor the incrementing of the wind rather than the
tracer. For a smallσob of 0.1, the normalized wind increment
approaches∼85 % in our model when the gradient is large
(2.0). Asσob increases, the mean wind recovery decreases
and there is an increased probability that the analyzed wind
is worse than the background wind (dashed lines fall below
zero). Although in this one-observation case, the wind may
become worse, if we were to take an ensemble of observa-
tions with random errorσob to produce an ensemble of analy-
ses, more of the analyses would benefit from the tracer assim-
ilation, even in the worst case scenarios presented in Fig. 2a.
In a statistical sense, the overall influence of the tracer assim-
ilation is positive, even if in certain cases the winds are de-
graded, as long asσob is specified consistent with the actual
observation errors. In Fig. 2b,σob is kept small (0.1) while
σq is varied. Increasingσq decreases the wind extraction
because it favors tracer increments over wind increments.

Increasingσq also prevents wind degradation (dashed lines
move above or near zero), and is an effective way of reduc-
ing the tracer–wind interaction in 4D-Var.

This 1-D illustration based on assimilation of one obser-
vation, although far from realistic, provides intuitive under-
standing of the process of tracer–wind extraction. Tracer ob-
servations impact the wind due to the use of the TLM in the
cost function. The process is highly dependent on the geo-
physical factors such as the tracer gradient and background
wind, on assimilation model parameters such as the back-
ground error standard deviations, on the details of the formu-
lation of the TLM, on the observation error standard devia-
tion, and on the quality of the observation. Before moving to
the full 4D-Var problem, we next examine the 1-D problem
with multiple observations.

2.3 Solutions for multiple observations

If we increase the number of observations, we would expect
to enhance our ability to recover the correct wind. Here
we present numerical solutions of the 1-D problem with
tracer observations at all three grid points att1. The truth
statext (t0) is again used to construct “perfect” observations
y = (qob

1 (t1), qob
2 (t1), qob

3 (t1)) for a best case example.
The observation error standard deviation is set to a small
value, σob = 0.001, so that the analysis will closely fit the
observations. Note that we cannot set this term exactly
to zero, because the cost function would become singular
and no solution exists. An imperfect initial background
state,xb(t0), is chosen, andσq andσu are set to unity. We
then numerically solve the 4D-Var equations to obtain the
analysis,xa(t0). All the values listed below are for the initial
time t0.

Case 1: xb = (2.0,3.0,1.0,0.5) xt − xb = (0.0,0.0,

0.0,0.2) xa− xb = (−0.07,0.07,0.01,0.11)

This case is similar to the single observation case pre-
sented in Sect. 2.2 in that a wind error is assumed (0.2), but
the initial background tracer (at timet0) equals the truth,
qb(t0) = q t (t0). The background tracer at timet1 differs
from the truth due to advection by the imperfect wind field,
qb(t1) 6= q t (t1), resulting in innovations with respect to the
perfect observations. When the three tracer observations
are assimilated, the analyzed wind error reduces by∼50 %
(to 0.09). Small erroneous tracer increments move the
analysis away from the initially perfect background. We
can constrain the tracer further by adding a fourth tracer
observation at the initial time that matches the truth (e.g.,
y(λ1, t0) = xt (λ1, t0)). In this case the analyzed tracer moves
much closer to the truth since we have as many observations
as state vector elements, and the observations are “perfect.”
This situation does not represent realistic NWP systems. The
imperfect simultaneous incrementing of winds and tracers
illustrated that this case will be a general characteristic of
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realistic tracer–wind assimilation because of limited tracer
sampling and significant errors in all forecast fields and
observations.

Case 2: xb = (2.0, 3.0, 1.0, 0.5)xt − xb = (0.5,−0.2,
0.3, 0.0)xa− xb = (0.3,−0.25,0.32,−0.24)

For case 2 the initial state includes “random” back-
ground tracer errors, but specifies the wind as the true wind.
Again we assimilate three “perfect” tracer observations
at time t1. The analysis reduces the initial tracer errors,
but also includes an erroneous wind increment of−0.24,
thereby decreasing the wind by∼50 %. The analysis state
is able to fit the three observations with a cost function
that is smaller than the cost function that corresponds to
the background state. However, this illustrates that in the
presence of significant background tracer errors, assimilation
of tracer observations has the potential to degrade the winds.
However, if the background error covariances are correctly
specified, the winds should not degrade in a statistical sense
for an ensemble of assimilations with random observation
errors.

Case 3: xb = (2.0,3.0,1.0,0.5) xt − xb = (0.1,0.1,

0.1,0.0) xa− xb = (0.1,0.1,0.1,0.0)

For the third case, we choose initial background tracer
errors that represent a constant bias of 0.1, but no wind error.
This is a special case since a constant tracer bias does not
change with advection, and without a spatial gradient in the
innovations, the wind increment is always zero. The analysis
for three tracer observations does very well at correcting the
tracer bias because we have perfect observations at every
grid point. If we reduce the number of observations to just
one (at grid point 1), this results in an erroneous 5 % decrease
in the analyzed wind (to 0.45). Undersampling of the tracer
field in the presence of a constant background tracer bias
may adversely affect the wind. A bias correction scheme
may help alleviate this problem, but this may be complicated
by observation biases and/or inadequate photochemical
parameterizations in the forecast model.

The results from these test cases, although highly ideal-
ized, are useful for demonstrating some of the limitations of
tracer–wind extraction that have been identified in previous
studies (Daley, 1995; Riishøjgaard, 1996; Peuch et al., 2000;
Semane et al., 2009). First, geophysical distributions (i.e.,
tracer gradients and orientation with respect to wind) must
be sufficient for wind extraction. Second, observations must
be sufficiently accurate and their errors correctly specified.
Third, observations must be sufficiently dense in order to ex-
tract wind information. Fourth, the background tracer must
be unbiased, or the tracer field must be sufficiently sampled
to identify the bias. In addition, as shown in Sect. 2.2, correct
specification of background and observation error standard
deviations is required to optimally extract wind information

in the presence of noisy or sparse data. We now move on to
examine how some of these limitations are revealed in more
realistic 4D-Var simulations.

3 NAVGEM ozone experiment

3.1 Experimental procedure

The models presented in Sect. 2 demonstrate the poten-
tial of using tracer observations to constrain wind fields in
time-dependent variational assimilation, but also illustrate
many of the limitations of this approach. Extending the ap-
proach to a more realistic setting, in this section we de-
scribe wind extraction experiments that use a development
version of NAVGEM with the 4D-Var assimilation algorithm
NAVDAS-AR (Xu et al., 2005; Rosmond and Xu, 2006).
NAVGEM is the successor to the Navy Operational Global
Atmosphere Prediction System (NOGAPS) (Hogan and Ros-
mond, 1991). New features in this version of NAVGEM and
NAVDAS-AR include a semi-Lagrangian transport scheme,
variational bias correction for satellite radiance assimilation,
the simplified Arakawa–Schubert convection scheme, and
trace gas assimilation. For simplicity, the combined system
with NAVDAS-AR and the semi-Lagrangian forecast model
will be referred to as NAVGEM, with the caveat that we are
using a preoperational development version.

The NAVGEM outer-loop configuration (used for calcu-
lating the background, the truth, and the innovations) for this
study has a horizontal resolution based on spectral triangular
truncation T239 (∼0.5° Gaussian grid spacing for latitude,
0.5° grid for longitude), while the inner loop (used for solv-
ing the analysis) is run at T119 (∼1.0° Gaussian grid spacing
for latitude, 1.0° grid for longitude). Both are run with 60 ver-
tical levels with model top at 0.005 hPa (approximate verti-
cal spacing of 1–2 km, varying with altitude) and with a time
step of 450 s. The vertical grid is a hybrid sigma-pressure grid
that transitions to pure pressure levels at∼87 hPa. Note that
the outer loop resolution and number of vertical levels differs
from the currently operational model (T319 with 50 levels).
The ozone analysis uses observations from the Aura MLS.
The MLS Version 2 ozone data (Froidevaux et al., 2008)
were assimilated in the model for several weeks in order to
generate a realistic ozone analysis for initializing the “truth”
forecast as described below.

In order to test ozone–wind extraction in this system, we
designed an experiment in which simulated ozone measure-
ments are assimilated into NAVGEM. The time period of
January 2009 was chosen because of the dynamic activity
that accompanied the unusually large 2009 Arctic strato-
spheric major warming (Manney et al., 2009; Lahoz et al.,
2011). The winter stratosphere is generally a location with
large horizontal ozone gradients, making wind extraction fa-
vorable, as explained in Sect. 2. During the major warming,
strong ozone advection occurs as the vortex splits apart into
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Figure 3. (a) Forecast ozone (used for the “truth”) over the Northern Hemisphere at 11.4 hPa 3 

(~30 km) after 51 hours (3Z on 22 January 2009). Red (blue) indicates high (low) values of 4 

ozone. (b) The sampling grid used for the experiment. There are 3840 points over the globe, with 5 

an average spacing of approximately 300 km. The red dots indicate the observations that are used 6 

for the case where the data are sub-sampled to resemble a fictitious polar-orbiting satellite (see 7 

text for details).  8 
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Fig. 3. (a)Forecast ozone (used for the “truth”) over the Northern
Hemisphere at 11.4 hPa (∼30 km) after 51 h (03:00 Z on 22 Jan-
uary 2009). Red (blue) indicates high (low) values of ozone.(b) The
sampling grid used for the experiment. There are 3840 points over
the globe, with an average spacing of approximately 300 km. The
red dots indicate the observations that are used for the case where
the data are subsampled to resemble a fictitious polar-orbiting satel-
lite (see text for details).

two pieces. This event therefore provides an excellent case
study to test the wind extraction process. Note that in this full
3-D simulation, vertical ozone gradients may also play a role
in the wind extraction due to the vertical advection term in
the linearized ozone continuity equation. This role is of sec-
ond order, however, because the vertical advection of tracers
in the stratosphere is much weaker than horizontal advection
over short timescales (Plumb, 2002). The influence of verti-
cal gradients will not, therefore, be discussed in this paper.

The approach follows a similar design to that used in the
fully idealized “OZONE” simulation included in Peuch et
al. (2000). The first step is to generate the “truth” simula-
tion. This is a 3-day forecast initialized at 00:00 Z on 20 Jan-
uary 2009 using the NAVGEM analyzed ozone and dynami-
cal fields. A snapshot of the ozone at 11.4 hPa (∼30 km) 51 h
into the forecast (03:00 Z on 22 January 2009) is provided
in Fig. 3a. The polar vortex, marked by low ozone mixing
ratio, has been stretched into an elongated dumbbell shape.
There are strong gradients throughout much of the Northern
Hemisphere, indicating strong potential for wind extraction.
The global ozone data were saved at hourly intervals along
the forecast on the model Gaussian grid.

The second step is to produce the simulated observations.
An approximately equal area sampling was generated by sub-
dividing an icosahedral base into a triangular grid with 3840
elements (see Fig. 3b), which has a horizontal resolution of
∼300 km. To avoid any horizontal interpolation of the back-
ground ozone, measurement locations were chosen as the
nearest NAVGEM latitude/longitude grid points to the cir-
cumcenters of the triangles. The measurements are simulated
on the NAVGEM vertical grid, so vertical interpolation of the
background is avoided as well. Sixteen vertical levels in the
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Figure 4. (Top) The background (black) and analyzed (red) RMS vector wind error as a function 2 

of pressure in three latitude bands for the case of “perfect” ozone observations (i.e., observations 3 

based on the truth with no imposed random errors) with specified observation error standard 4 

deviation ob of 0.1 ppmv. (Bottom) The differences between the analyzed and the background 5 

RMS wind errors. Negative values indicate improvements to the wind field due to tracer 6 

assimilation. The horizontal dashed line at 78 hPa indicates the lowest level of the observations. 7 

All plots are for 6Z on 22 January 2009. 8 
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Fig. 4. (Top) The background (black) and analyzed (red) RMS vec-
tor wind error as a function of pressure in three latitude bands for
the case of “perfect” ozone observations (i.e., observations based
on the truth with no imposed random errors) with specified obser-
vation error standard deviationσob of 0.1 ppmv. (Bottom) The dif-
ferences between the analyzed and the background RMS wind er-
rors. Negative values indicate improvements to the wind field due
to tracer assimilation. The horizontal dashed line at 78 hPa indi-
cates the lowest level of the observations. All plots are for 06:00 Z
on 22 January 2009.

stratosphere are used, ranging from 78 to 1.2 hPa (∼20 to
50 km altitude). Simulated ozone measurements were gener-
ated at each observing location for each forecast hour. For the
assimilation of these observations, the observation error co-
variance is specified as uncorrelated with a constant standard
deviationσob of 0.1 ppmv (unless otherwise specified). We
will examine cases with “perfect” observations (i.e., based
on the “truth” simulation with no random error or bias added)
and with the addition of random error. Note that although the
observations are called “perfect”, we do not setσob exactly
to zero, but to a reasonably small value. Settingσob to zero
causes the cost function (Eq. 4) to become singular and pre-
vents the solution from converging.

The third step involves choosing initial conditions that pro-
duce a background forecast with the desired error character-
istics. We choose to create a background forecast in which
the ozone errors are forced only by wind errors. The ini-
tial (time = 0) background ozone field must be perfect, but
the initial background dynamical fields (fields other than
ozone) must be imperfect. Although the initial ozone is per-
fect, ozone errors develop over the 6 hr background forecast
due to advection by imperfect winds. We create imperfect
initial dynamical conditions by using fields from the truth
simulation that are mismatched by 2 days (i.e., using the
20 January dynamical fields to initialize an assimilation cycle
for 22 January), but use the true ozone field (corresponding to
22 January) for the initial ozone. This approach creates a dy-
namically balanced initial state, but one that differs from the
“true” state. The 2-day mismatch results in much larger ini-
tial wind errors than expected in a typical operational system.
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Figure 5. The background (black) and analyzed (red) RMS ozone errors for the case of “perfect” 2 

ozone observations (i.e., based on the truth with no imposed random errors) with specified 3 

observation error standard deviation ob of 0.1 ppmv. All plots are for 6Z on 22 January 2009. 4 
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Fig. 5. The background (black) and analyzed (red) RMS ozone er-
rors for the case of “perfect” ozone observations (i.e., based on the
truth with no imposed random errors) with specified observation er-
ror standard deviationσob of 0.1 ppmv. All plots are for 06:00 Z on
22 January 2009.

We choose this approach in order to create large background
ozone errors (and therefore large innovations) that enhance
the wind extraction mechanism. The background root-mean-
square (RMS) vector wind errors (relative to the “true” winds
generated from the 3-day forecast) resulting from this 2-day
mismatch are shown in Fig. 4 (black lines) for three latitude
bands: Northern Hemisphere (NH) (30–90° N), the tropics
(30° S–30° N), and Southern Hemisphere (SH) (30–90° S).
Note that throughout the rest of the paper “RMS wind error”
is used as shorthand for “RMS vector wind error,” which is
the square root of the sum of the RMS zonal wind error and
the RMS meridional wind error. Because the RMS wind er-
rors are similar throughout the background forecast, we will
plot the errors at the “analysis” time, which is the central time
of the 6 h analysis window (in this case 06:00 Z on 22 Jan-
uary 2009).

The background RMS wind errors are largest in the win-
ter hemisphere, with values of∼5 m s−1 in the lower strato-
sphere, increasing to∼30 m s−1 in the upper stratosphere,
while in the SH the errors are less than 7 m s−1 throughout
the pressure range under consideration (200–1 hPa). Unlike
the winds the background RMS ozone errors (relative to the
“true” ozone) start at zero (“perfect” initial ozone) and grow
in time during the assimilation window due to errors in the
background winds. The background RMS ozone errors are
shown in Fig. 5 (black lines) for the analysis time. Similar to
the background RMS wind errors, the ozone errors are large
in the NH and tropics, while in the SH they are very small.
This suggests that even for the large wind errors simulated
here, an ozone measurement precision better than 0.1 ppmv
would be required to detect wind-error-induced OmF values
in the SH and in the tropical and NH lower stratosphere. The
design of this experiment represents a best case scenario for
extracting wind information because the resulting OmF val-
ues are only a function of background wind errors. There are
no correlations between ozone and other fields in the speci-
fied background error covariance, so advection by the TLM
over the 6 h assimilation window is the only mechanism that
connects ozone with the dynamical fields in the assimilation
algorithm.

The final step is to assimilate ozone observations and eval-
uate the analysis relative to the truth. NAVGEM uses a 6 h
time window with the observations binned at 0.5 h inter-
vals. Since the simulated observations fall directly on one
hour intervals, there is no time-binning error (the TLM time
step of 450 s results in exactly eight time steps between ob-
servation intervals). The background error covariances are
specified in the assimilation algorithm as follows. The back-
ground ozone error standard deviationσq has a constant
value of 0.2 ppmv. The horizontal and vertical spatial cor-
relation lengths for ozone are 385 km and∼1.3 km, respec-
tively. The background error covariance for the other fields is
based on the dynamically balanced model used operationally
(Daley and Barker, 2001). The wind error standard devia-
tionsσu increase with altitude from∼3 m s−1 at 100 hPa to
∼6.5 m s−1 at 6 hPa. These values are similar to the SH back-
ground RMS wind errors in our experiment (see Fig. 4), but
are much smaller than the NH background RMS errors. No
further attempt has been made to modify the background er-
ror standard deviations to exactly match the forecast error in
this experiment. The TLM does not incorporate ozone chem-
istry, but this should not be very important over the short
time scales of the assimilation window, except possibly in
the upper stratosphere. For this study, only one assimilation
cycle was performed, with the analyzed winds at 06:00 Z on
22 January used for verification.

3.2 Limitations due to geophysical conditions

The analyzed RMS wind errors (relative to the “truth” fore-
cast that was used to simulate the observations) following
ozone assimilation are shown in the red lines on Fig. 4 (top
row), and the change in RMS wind error (i.e., analyzed RMS
wind error – background RMS wind error) is shown on Fig. 4
(bottom row). The analyzed RMS wind errors are smaller
than the background errors in all three latitude bands over
the altitude range of the observations. This verifies that the
tracer–wind extraction mechanism is working for the obser-
vation coverage and quality simulated in this study. The re-
duction in RMS wind error is largest in the NH and tropics, as
expected, with differences of up to∼4 m s−1, peaking above
10 hPa. The magnitude of these differences is similar to the
results of Peuch et al. (2000), but the altitudes at which the
largest impact occurs is different. Peuch et al. (2000) assim-
ilated 12 h of simulated total column ozone data and found
the largest impact on winds in the upper troposphere/lower
stratosphere, consistent with the fact that total ozone vari-
ability is dominated by transport processes in this region. Our
study finds the dynamical impact of simulated ozone profile
assimilation to peak in the middle and upper stratosphere. For
ozone measurements with larger vertical weighting functions
or with vertical dependence of quality, we would expect the
dynamical impact as a function of altitude to be different.
The change in RMS wind error is large in the tropical mid-
dle to upper stratosphere, but is small below∼30 hPa in the
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tropics. The change in RMS wind error in the tropics qualita-
tively resembles the tropical ozone mixing ratio profile, with
a peak at∼10 hPa, and decreasing monotonically above and
below. Becauseσob is constant in mixing ratio, the relative er-
rors will be smaller in regions of larger ozone mixing ratios,
such as in the tropical middle stratosphere, so we expect to
have a larger impact here. If observations have errors propor-
tional to the mixing ratio, this would result in different wind
extraction characteristics. However, independent of observa-
tion error, the strength of the horizontal ozone gradients and
cross-gradient winds also play a major role in determining
the effectiveness of wind extraction.

In the SH the change in RMS wind error is quite small (less
than ∼0.5 m s−1). This is due to the summer stratospheric
flow being much less disturbed by upward-propagating plan-
etary waves, causing near-zonal flow that is much less vari-
able and therefore easier to forecast in the absence of tracer
information. However, the winter stratosphere is very dy-
namic, particularly during such events as major or final
warmings, so the error growth rate is expected to be large.
The analysis for these conditions is not very sensitive to the
background ozone error standard deviation, since removing
the ozone from the control variable (effectively setting the
initial background ozone error standard deviation to zero) re-
sults in essentially the same wind analyses (not shown). This
is because the ozone OmFs were designed to correspond to
wind errors only; the ozone OmF values at the beginning of
the time window are then zero, which would tend to suppress
ozone increments. As seen in Fig. 5, the differences between
background and analyzed RMS ozone errors are rather small,
suggesting the largest impact of the ozone assimilation is on
the dynamical fields, rather than on ozone itself.

Figure 6a presents a latitude/pressure cross section of the
change in RMS wind error (difference between analyzed and
background RMS wind errors). Ozone assimilation is ben-
efitting the winds throughout the NH upper stratosphere,
where the dynamics of the major warming are causing strong
ozone advection. This reduction in RMS wind errors extends
to pressures higher than 78 hPa in many locations, suggesting
that assimilation of stratospheric tracer fields has an impact
not only on the stratospheric analyses, but also on the upper
tropospheric winds. This is likely attributed to vertical error
correlations in the background error covariances (Daley and
Barker, 2001). A few locations – most notably in the tropi-
cal upper troposphere, NH polar lower stratosphere, and SH
upper stratosphere – show a slight degrading of the winds (in-
dicated by white regions). The latter may be partly caused by
ozone photochemistry. The forecast model used to generate
the observations includes parameterized chemistry, but the
tangent linear model does not. In the upper stratosphere, this
can cause problems, since the ozone photochemistry is rela-
tively fast with photochemical relaxation times of less than a
day (Coy et al., 2007). In general, if the photochemical terms
in the ozone continuity equation are of the same magnitude

as the advection terms, the errors in the TLM from neglect of
photochemistry will be significant.

As discussed in Sect. 2, wind extraction is closely related
to the innovations. In our simulations the innovations depend
on the orientation of the wind errors with respect to back-
ground horizontal tracer gradients. Figure 6b shows the lati-
tude/pressure cross section of RMS innovations for this sim-
ulation. There are large innovations in the NH middle and up-
per stratosphere, colocated with large changes of RMS wind
error (Fig. 6a). In regions of small innovation the wind error
reduction is also small. This is also consistent with the results
from Daley (1996), which show that when the constituent
time tendency is small, wind extraction will be difficult. For
the summer stratosphere the winds are generally zonal and
steady. Under such conditions, tracer fields eventually be-
come aligned with the streamfunction (Rhines and Young,
1983). When this occurs, the wind is aligned perpendicular
to the tracer gradients and the advection term becomes small
(see also Salby and Juckes, 1994). These results indicate that
the system is working consistently with expectations gained
from the simple 1-D model, and that tracer innovation plots
are useful for identifying regions where wind extraction is
feasible. Other tracers besides ozone may have gradients that
facilitate wind extraction in different regions due to differ-
ing sources/sinks and photochemistry. Using innovation plots
made from other tracers, one can ascertain information about
where each tracer will be able to influence the winds.

Although Fig. 6a may suggest that wind improvements are
uniform across the NH upper stratosphere, horizontal maps
of the change in vector wind error show that the actual sit-
uation is rather complicated. Figure 6c shows the wind er-
ror change at 11.4 hPa as a function of longitude and lati-
tude in the NH, overlaid with 11.4 hPa geopotential height
contours (white lines). There are significant regions of im-
proved wind over the NH, particularly in the polar vortex,
indicated by the dumbbell-shaped geopotential height con-
tours (see also Fig. 3a), and in the tropical Pacific region.
Regions of degraded wind occur around the anticyclonic re-
gions that flank both sides of the polar vortex (closed geopo-
tential height contours in the Aleutian and European regions)
and in the tropics. In the SH (Fig. 6d), marginal wind vector
changes (less than∼2 m s−1) cover the majority of the hemi-
sphere, with larger changes in the tropics. While the impact
of tracer assimilation is very weak in the SH summer con-
ditions, the dynamical conditions in the NH winter lead to a
much stronger influence of the tracer field on the winds.

In Fig. 7 we examine background and analyzed mean er-
rors of the zonal and meridional wind, to supplement the
RMS results shown in Fig. 4. In the NH the analyzed mean
zonal wind error is smaller (in absolute value) than the back-
ground error over the entire range from 200 to 1 hPa, with
maximum improvement of∼2 m s−1 around 6 hPa. The im-
pact on the mean meridional wind in the NH is weaker,
with slight improvement from∼78 to 5 hPa and slight degra-
dation from∼5 to 2 hPa. That zonal winds in the NH are
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Figure 6. (a) The change in RMS vector wind error (analyzed – background) as a function of 2 

latitude and pressure for 6Z on 22 January 2009. Red (blue) indicates large (small) error 3 

reduction. White indicates increasing errors. (b) RMS ozone innovation as a function of latitude 4 

and pressure calculated using all observations in the 6-hour window. (c) Change in vector wind 5 

error over the NH overlaid with the geopotential height contours (white lines) at 11.4 hPa for 6Z 6 

on 22 January 2009. (d) Same as (c) but for the SH.  7 
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Fig. 6. (a)The change in RMS vector wind error (analyzed – back-
ground) as a function of latitude and pressure for 06:00 Z on 22 Jan-
uary 2009. Red (blue) indicates large (small) error reduction. White
indicates increasing errors.(b) RMS ozone innovation as a func-
tion of latitude and pressure calculated using all observations in the
6 h window.(c) Change in vector wind error over the NH overlaid
with the geopotential height contours (white lines) at 11.4 hPa for
06:00 Z on 22 January 2009.(d) Same as(c), but for the SH.

influenced more than the meridional winds is likely due to the
larger background zonal wind errors combined with signifi-
cant background tracer gradient in the zonal direction caused
by the splitting of the vortex during the major warming (see
Fig. 3a). In the tropics and SH, the impact of ozone assimi-
lation on the mean winds is very small relative to the RMS
differences (Fig. 4), with regions of both slight improvement
and slight degradation.

It is clear from this analysis that the ability of the 4D-Var
system to extract wind information is strongly dependent
on geophysical factors. These include the background ozone
gradients and the initial wind errors, which convolve via the
advection equation to produce ozone innovations. Although
regions of both improved and degraded winds occur in the
NH mid-stratosphere (Fig. 6c), the overall impact on the
winds is positive, as seen in Fig. 6a. Analyses of other dy-
namical situations, as well as other trace gases than ozone,
will result in wind extraction in different geophysical re-
gions. We now move on to examine the limitations of wind
extraction due to observation errors and how they are charac-
terized in the 4D-Var system.
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Figure 7. (Top row) The background (black) and analyzed (red) mean zonal wind error as a 2 

function of pressure in three latitude bands for the case of perfect ozone observations (i.e., based 3 

on the truth with no imposed random errors) with specified observation error standard deviation 4 

ob of 0.1 ppmv. (Bottom row) Same as top row, but for mean meridional wind error. The 5 
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Fig. 7. (Top row) The background (black) and analyzed (red) mean
zonal wind error as a function of pressure in three latitude bands
for the case of perfect ozone observations (i.e., based on the truth
with no imposed random errors) with specified observation error
standard deviationσob of 0.1 ppmv. (Bottom row) Same as top row,
but for mean meridional wind error. The horizontal dashed line at
78 hPa indicates the lowest level of the observations. All plots are
for 06:00 Z on 22 January 2009.

3.3 Limitations due to observation errors and
observation error specifications

Up to this point, the observations have been “perfect” in the
sense that they are generated directly from the “truth” fore-
cast with no imposed error. We now examine cases where
Gaussian random errors of 2 %, 5 %, and 10 % of the ozone
mixing ratio are applied to all data. In each case the specified
σob is also set to the same percent value, as in the simulations
by Peuch et al. (2000). The resulting analyzed RMS wind er-
rors are shown in Fig. 8. In all three latitude bands, increased
observation error results in smaller changes in RMS wind er-
ror. In none of these cases does adding ozone errors result in
increased RMS wind errors sinceσob is specified consistently
with the imposed observation errors. This result differs from
Peuch et al. (2000), where imposed random observation er-
rors of 3 % or larger in the total column ozone field resulted
in a global degrading of the winds. One major difference be-
tween the two studies is that we are assimilating profiles of
ozone mixing ratio, whereas Peuch et al. (2000) assimilated
the vertically integrated total column amount.

We also tried a case with imposed random observation
errors of 5 %, but with the specifiedσob set to a constant
0.1 ppmv, which is less than the 5 % random error in most
of the middle stratosphere. The resulting analysis (Fig. 9)
shows reductions in RMS wind error in the NH and the trop-
ics above about 20 hPa. However, in the SH, the RMS wind
error increases in the pressure range from∼30 to 2 hPa. This
is because in the SH, the 5 % imposed random observation
error is much larger than the true OmF values, and the assim-
ilation is constrained too tightly to the noisy data. This illus-
trates the fact that assimilating noisy ozone data in regions
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 1 

Figure 8. As in Figure 4, but for the cases with imposed random observation errors of 2% (red), 2 

5% (green), and 10% (blue). All plots are for 6Z on 22 January 2009. 3 

4 

Fig. 8.As in Fig. 4, but for the cases with imposed random observa-
tion errors of 2 % (red), 5 % (green), and 10 % (blue). All plots are
for 06:00 Z on 22 January 2009.
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Figure 9. As in Figure 4, but for the case of imposed observation errors of 5%, and with specified 2 

observation error standard deviation ob of 5% (green) and 0.1 ppmv (red).  All plots are for 6Z 3 

on 22 January 2009. 4 

5 

Fig. 9. As in Fig. 4, but for the case of imposed observation er-
rors of 5 %, and with specified observation error standard deviation
σob of 5 % (green) and 0.1 ppmv (red). All plots are for 06:00 Z on
22 January 2009.

of weak tracer tendency can harm the analyzed winds if the
observation error covariances are poorly specified.

3.4 Limitations due to sampling patterns

Wind extraction is also sensitive to the tracer sampling pat-
tern used. The observation sampling of 3840 evenly dis-
tributed profiles every hour clearly provides sufficient cov-
erage to extract wind in certain regions (especially NH and
tropics). This original sampling pattern can be subsampled
to resemble a fictitious polar-orbiting instrument. For this
purpose the global grid was subsampled using a 26-degree
wide swath that circles the globe (see Fig. 3b). Each hour,
the swath shifts 26 degrees in longitude so that global cover-
age is achieved after 7 h. This simulates a fictitious satellite
with 90-degree inclination orbit, 60 min period, and which
measures at exactly 1 h intervals.
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Figure 10. As in Figure 4, but for the case of data subsampled at 1/7 of the globe each hour (see 2 

Figure 3b for sampling pattern) for the cases of all perfect data (red), 2% imposed observational 3 

error (green), and 5% imposed observational error (blue). All plots are for 6Z on 22 January 4 

2009. 5 

 6 

Fig. 10.As in Fig. 4, but for the case of data subsampled at 1/7 of the
globe each hour (see Fig. 3b for sampling pattern) for the cases of
all perfect data (red), 2 % imposed observational error (green), and
5 % imposed observational error (blue). All plots are for 06:00 Z on
22 January 2009.

The results for the case of these “perfect,” but sparser, ob-
servations and for 2 % and 5 % imposed random error are
shown in Fig. 10. Wind extraction is achieved with this re-
duced sampling, but the effectiveness is severely reduced
from the case where all observations are used (compare with
Fig. 4). Particularly for the 5 % error, a typical value for the
uncertainty of MLS ozone in the stratosphere (Froidevaux et
al., 2008), there is very little change in RMS wind error in
the tropics, and virtually none in the SH. Wind extraction us-
ing a limb-viewing or single-angle nadir-viewing instrument
such as MLS and SBUV will be even more difficult, and will
not likely provide significant wind information except in the
dynamically active winter hemisphere. Improvements to the
winter stratosphere are particularly important, however, since
this is the season when the dynamical coupling with the tro-
posphere is greatest (Baldwin et al., 2003). The study by Se-
mane et al. (2009), which used MLS observations, found a
reduction in the 3-month mean wind bias, but not in the stan-
dard deviation. The experiments considered in our paper use
a perfect model (i.e., no mean biases) with only one update
cycle. More realistic experiments will be necessary for a di-
rect comparison with the Semane et al. (2009) results.

4 Summary

The limitations of wind extraction from ozone assimilation
are explored in this study using a simple 1-D time-dependent
variational illustration as well as idealized 4D-Var experi-
ments. Both are performed without correlations between the
winds and tracer in the initial background error covariance.
The wind extraction is therefore accomplished via the ad-
joint of the linearized tracer continuity equation. The 1-D
illustration uses an analytic solution for a single tracer ob-
servation and numerical solution for multiple observations
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to demonstrate the dependence of wind extraction on back-
ground tracer gradient, observation quality, observation sam-
pling, and specification of the background and observational
error characteristics. Although highly idealized, the 1-D so-
lutions are useful for highlighting some of the limitations of
wind extraction to be expected in the full 4D-Var approach,
particularly the necessity of correctly specifying observation
error standard deviation in order to avoid degrading the wind.

The NAVGEM 4D-Var experiments use simulated, glob-
ally distributed ozone profiles with a vertical resolution equal
to that of the forecast model. The observations are fictitious,
in that they have vertical resolution attainable only by limb-
viewing instruments, but have global horizontal sampling re-
sembling multiple nadir sensors. The simulations take place
during the unusually large 2009 Arctic stratospheric major
warming, which provided large Northern Hemisphere ozone
gradients that are conducive to wind extraction, as shown in
the results. The 4D-Var experiments demonstrate that reduc-
tion of RMS wind errors is possible, but with limitations due
to geophysical conditions, tracer observation quality and er-
ror specifications, and observation sampling pattern. Ozone
provides more dynamical information in the winter and trop-
ical stratosphere, and less in the summer. Adding random
observation errors limits the ability to extract wind, but the
overall impact on the analyzed winds remained positive as
long as the observation error standard deviation in the assim-
ilation system was specified consistently with the imposed
random errors. If the observation error standard deviation is
underestimated, RMS wind errors may indeed increase. An
experiment was also performed with a reduced sampling pat-
tern that coarsely resembles a polar-orbiting satellite (while
retaining the same high vertical resolution). Wind extrac-
tion was still possible with the reduced sampling, but the
wind improvement was much less than the case of globally
uniform sampling, particularly in the tropics and Southern
Hemisphere.

5 Conclusions

This paper examines the limitations of wind extraction from
the 4D-Var assimilation of ozone due to geophysical variabil-
ity, observation quality, observation and background error
specifications, and observation sampling. In our 4D-Var ex-
periments, the initial background ozone field was always per-
fect (based on the truth) in order to provide a best case sce-
nario for quantifying the ozone–wind interaction. Because
perfect background ozone cannot be maintained while cy-
cling the assimilation with imperfect winds, only one update
cycle was used. A complete observing-system simulation ex-
periment (OSSE) would require multiple update cycles using
the full suite of operational meteorological observations. It is
possible that background ozone errors that develop and per-
sist in a full OSSE will destroy much of the wind improve-
ment seen in our idealized experiments. In addition, the use

of a 2-day mismatch in the initial dynamical conditions re-
sults in larger initial wind errors than those in a typical six-
hour update cycle. This facilitates large ozone innovations
and exaggerates the component of ozone innovations due to
advection errors. We cannot therefore extend our conclusions
directly to an operational setting. However, even if a further
degradation of the wind impact may be demonstrated in an
OSSE, one main message is that within the present idealized
study, the limits of wind extraction can be demonstrated by
increasing errors and reducing coverage towards real-world
conditions.

In the future we plan to examine wind extraction in more
realistic settings and using other tracers besides ozone since
differing tracer gradients may allow wind extraction in dif-
ferent regions. One difficulty in using multiple tracers is
the specification of photochemical sources and sinks, which
must be sufficiently accurate to maintain a realistic back-
ground tracer field. Another important future study is to in-
corporate a background error covariance calculated from an
ensemble forecast system. An ensemble-based error covari-
ance would contain explicit wind–tracer correlations in the
initial background error covariance and would thereby in-
crease the wind–tracer interactions, especially for observa-
tions near the beginning of the assimilation time window.
A recent paper by Milewski and Bourqui (2011) has shown
promising results in which assimilating ozone observations
with an ensemble Kalman filter in a chemistry–climate model
can directly benefit the wind analyses via wind–tracer cross
covariances.
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