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Abstract. The ensemble adjustment Kalman filter (EAKF) models inaccurate. To obtain the best initial conditions pos-
is used to estimate the erodibility fraction parametersible, estimation techniques (e.g, data assimilation) are used
field in a coupled meteorology and dust aerosol modelto combine the state estimates given by the model and
(Coupled Ocean/Atmosphere Mesoscale Prediction Systerthose given by the observations. There are a multitude of
(COAMPS)) over the Sahara desert. Erodibility is often em-data assimilation (DA) techniques used in the geophysical
ployed as the key parameter to map dust source. It is usedommunity. The first truly operational DA systems have
along with surface winds (or surface wind stress) to calcu-been based on relatively simple 2-D variational techniques
late dust emissions. Using the Saharan desert as a test bedZhang et al. (2008). Apart from 2-D techniques, 4-D vari-
perfect model Observation System Simulation Experimentsational techniques have been implemented in both research
(OSSEs) with 40 ensemble members, and observations adnd quasi-operational modes (Wang et al., 2001; Uno et
aerosol optical depth (AOD), the EAKF is shown to recover al., 2008; Benedetti et al., 2009). Dubovik et al. (2008)
correct values of erodibility at about 80 % of the points in the have implemented an inversion technique to retrieve global
domain. It is found that dust advected from upstream gridaerosol source. Perhaps the most promising development for
points acts as noise and complicates erodibility estimation. Ibroad applications, however, has been in the application of
is also found that the rate of convergence is significantly im-ensemble-based techniques to not only estimate the state but
pacted by the structure of the initial distribution of erodibil- also to tune aerosol source functions (Lin et al., 2008a, b;
ity estimates; isotropic initial distributions exhibit slow con- Schutgens et al., 2010; Sekiyama et al., 2010; Yumimoto and
vergence, while initial distributions with geographically lo- Takemura, 2011; Huneeus et al., 2012). Recently Schutgens
calized structure converge more quickly. Experiments usinget al. (2012) have developed an ensemble Kalman smoother
observations of Deep Blue AOD retrievals from the MODIS to estimate aerosol emissions.
satellite sensor result in erodibility estimates that are consid- Ensemble-based assimilation forms an important class
erably lower than the values used operationally. Verificationof data assimilation methodologies. Ensemble-based DA
shows that the use of the tuned erodibility field results in bet-was introduced into atmospheric and oceanic sciences by
ter predictions of AOD over the west Sahara and the ArabiarEvensen (1994) and Houtekamer and Mitchell (1998). Since
Peninsula. then the scientific community has actively researched the the-
ory and practices of ensemble-based data assimilation. The
theoretical development includes different formulations of
the ensemble filter (Bishop et al., 2001; Tipett et al., 2003;
1 Introduction Zupanksi, 2005; Hodyss, 2012) and their intercomparisons
(Lawson and Hansen, 2004; Lei et al., 2010). Ensemble-
Uncertainty in initial conditions, incorrect boundary condi- pased DA has been applied to an entire gamut of atmo-

tions, and model inadequacies render forecasts of the atmaspheric (Majumdar et al., 2002; Whitaker et al., 2004) and
sphere generated using numerical weather prediction (NWP)
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oceanographic problems. The performance of ensemble DAunctions. Indeed, while commonly used dust models often
in mesoscale models has been investigated by Dirren etonverge in observables such as bulk regional aerosol optical
al. (2007) by using radio soundings and aircraft observa-depth (AOD), there is considerable divergence in lifecycle
tions in the Weather Research and Forecasting Model. Wangrocesses and budgets (Huneeus, et al., 2011).

et al. (2008) have explored a hybrid DA technique using In this study we perform a series of studies to exam-
the WRF model over the North American domain with ra- ine the application of ensemble-based methods to improve
diosonde observations. Szunyogh et al. (2008) showed that model simulations of dust production. Throughout this work
global analysis and forecast can be efficiently produced usCoupled Ocean/Atmosphere Mesoscale Prediction System
ing the parallelized local ensemble transform Kalman filter. (COAMPS) is used in the North Africa/Saharan domain. In
Keppenne and Rienecker (2002) have designed and implehis work,

mented a parallelized multivariate ensemble Kalman filter in
an ocean model in the pacific domain using sparse tempera-
ture data.

— the ensemble adjustment Kalman filter (Anderson,
2001; Karspeck and Anderson, 2007) is employed

Apart from incorrect initial conditions, imperfections in Wig_‘in thz DART framework (Anderson et al., 2009;
model parametrizations are also responsible for inaccurate Whitcomb, 2008),

forecasts. The technique of ensemble-based parameter esti-_ the aerosol state (AOD and the dust concentration) and
mation (Annan et al., 2005) has been employed by numerous  harameters (erodibility as a proxy for source region) re-

researchers as a means of attempting to reduce model error.  |ated to dust production are estimated by assimilating
Ensemble-based parameter tuning, apart from state estima-  gpseryations of AOD, and

tion, is becoming increasingly popular in the estimation com- o _ _ _
munity. The ensemble Kalman filter was employed in Aksoy — estimation experiments with both simulated and real
et al. (2006) to estimate multiple parameters in a sea-breeze  satellite observations are performed.

model. The EnKF was used in Hacker and Snyder (2005 . . .
Lo N . n this work thestateincludes the meteorological state and
for PBL state estimation by assimilating simulated surface ) .
the aerosol state. The meteorological state is temperature,

mesonet observations. That work concluded that the PBLt . L
. . . three components of wind speed, and humidity. The aerosol
state can be effectively constrained by surface observations

State is dust concentration and AOD. The augmented state is

thereby reducing forecast EITors. The moisture aVa”ab'“wthe erodibility. This paper is organized as follows. The model
parameter was also correctly estimated. Encouraged by these

results Hacker and Rostkier-Edelstein (2007) implementeciS described n Sect. 2. The tunlng_expenments using simu-
. . . ated observations are presented in Sects. 3, 4 and 5. Sec-
the EnKF to estimate the PBL profiles using real surface ob-

servations. It was found that the error could be reduced by ugon 3 describes the setup of the simulated data tuning exper-

to 85 % compared to the case when data are not assimilatec'p.qents' Sect.ion 3_a|s.o discgsses the Funing of er.oq.ibility ata
Model imperfection not only results in significant forecast particular grid point in detail. The tuning of erodibility over

. . . ... the whole domain is discussed in Sect. 4. In this section the
errors but also distorts the estimates of model predictability : . S : :
perturbations in the erodibility at each grid point are assumed

(Khade and Hansen, 2004). . i .
: . . to be independent. The case of correlated perturbations in

The previously mentioned success with ensemble DA o . . . .

methods is suagestive of a number of aerosol-related oro erodibility is considered in Sect. 5. The tuning experiments
99 PTOb%ith real satellite data are described in Sect. 6. The tuned

lems. Aerosol modeling and estimation of uncertainties in Lo P .
. L . . erodibility is used to run verification experiments whose re-
its emission and transport is an important subset of atmo-

spheric sciences (Cakmur et al., 2006; Cooke and Wilson;ultS are pre_:segt_edsln ?e7ct. 6. The conclusions of this work
1996; Lavoue, et al., 2000; de Meij, et al., 2006; Textor, et al., re simmarizedin Sect. /.

2007). Already skill improvement in aerosol loadings by en-

semble DA techniques is well documented (aforementionedd COAMPS Mesoscale aerosol model

(Lin et al., 2008a, b; Schutgens et al., 2010; Sekiyama, et

al., 2010; Yumimoto and Takemura 2011)). A second area ofThe meteorological community, over the years, has devel-
great promise is application to model parameterization prob-oped many mesoscale models (e.g., WRF (Skamarock et al.,
lems. Perhaps greatest of these are aerosol source functiorZ)05) for researching and forecasting weather phenomenon.
which are widely known to have high uncertainties and oftenCOAMPS (Hodur, 1997; Chen et al., 2003) is a mesoscale
drive significant divergence between aerosol modeling sysmodel used to simulate various atmospheric (Doyle and
tems. Given the relative simplicity of chemical transforma- Bond, 2001) and oceanographic phenomenon (May et al.,
tional processes associated with dust relative to other specieg011). It is used not only for basic research, but opera-
as well as its strong, clear and intercontinental signal in retionally by the US Navy. The atmospheric model is non-
mote sensing data sets, dust is an ideal species to examirtgdrostatic and fully compressible. It allows for nested grids
how ensemble data assimilation can impact not only aerosain which the resolution can increase up to a few meters.
loading, but other model parameterizations such as sourc€EOAMPS employs staggered horizontal and vertical grids
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with a terrain-following sigma Z system for the vertical co- emit dust. This is quantified by the erodibility ; in Eq. (1)
ordinate. COAMPS includes advanced parameterizations foas a spatial weighting function. The erodibility gives the frac-
subgrid scale mixing, radiation, cumulus parameterization tion of the grid box covered by dust. At each grid point the
and explicit moist physics. In this work COAMPS is run erodibility has a value between 0 (no emission) and 1.0 (all
with 30 vertical levels. The highest model level is at 31 km. emission). In this workx is used to denote the erodibility
Throughout this work the model uses a resolution of 81 kmvector whose componen(&i,j) are the erodibilities at var-
in the horizontal. ious grid points. Accurate forecasts of dust production and

Both the research and operational versions of COAMPStransport depend critically on an accurate map of erodibility
includes a dust module to model the generation, transport an(Liu et al., 2007). The value of the constantn Eq. (1) is
physical effects of aerosols particles, including their size andaken from Westphal et al. (1987), which in turn was moti-
physical transformations (Liu et al., 2003, 2007). The modulevated by Gillette (1981). This value @fis the slope of the
includes simulation of sinks such as sedimentation, dry depolinear fit to the scatter plot of experimentally obtained flux
sition and wet removal. The integration of the aerosol mod-data for various values of friction velocity. Since the current
ule provides outputs of various quantities like mass loading,study focuses on satellite data assimilation, we model only
size distribution, optical depth etc. COAMPS can be used forthe actively optical and transportable dust with an assumed
research purposes. diameter of 2 microns for microphysical purposes.

The details of the COAMPS dust aerosol model are as fol- The amount of dust in the atmosphere is quantified by the
lows. The vertical dust flu¥ at a particular grid poingz, j) dust concentratiottm) in pg m3. The AOD is another mea-

is given by Westphal et al. (1988) as sure of the amount of dust. The AOD at a particular grid point
4 i, j is obtained by vertically integrating the dust light extinc-
Fij=hkxaijxuy;, 1) tion over the atmospheric column, which is simply defined

here as the mass concentration times a mass extinction effi-

where the subscript j denotes the latitude and longitude ciency (ae) taken as 0.5 gL,

index, respectively.

k=142x1075 AOD; j = / (aecm;;) dz,

a;.j is the erodibility,u,;.; is the friction velocity in ms?, yvh_erez is the height. Hence, here we are assuming that AOD
The dust is generated onlyiif, j > i, ;, Whereu,,; ; is is linearly proportional to total mass concentration. In reality,

a threshold friction velocity. h b ' dynamics of dust particle size, especially large particles near

The amount of dust mobilized depends upon the transfer ofOUrces can be quite complicated. However, for the purpose
(atmospheric) momentum to the earth’s surface. This trans©f this work this assumption is valid because we want to tune
fer of momentum is proportional to the surface stre¢gill, ~ the dust emitting areas to the first order. o
1982). The friction velocity:, is related to the surface stress ~ T1he dust generated at various locations in the domain is
throughu,, = /z/p wherep is the density. Using theory and mixed vertically and advected horizontally. The dust in the
experimentation it is shown that the dust flux is proportional @tmosphere at a given grid point and vertical level is due to
to the fourth power of the friction velocity (Gillette and Passi, !0cal generation and that advected from upstream areas. The
1988; Nickling and Gillies, 1993). This proportionality forms Share of the advected and local dust in the total dust depends
the basis of Eq. (1). The dust is mobilized because the surfac@n meteorological conditions, specifically the wind field. The
wind erodes the land surface. Different land surfaces hav@mount of local dust depends on the erodibility and friction
different susceptibilities to erosion by wind. The susceptibil- Velocity at that grid point. It is possible that for a particu-
ity basically depends on the type of soil covering the land!ar grid point at a particular time at some vertical levels the
surface. For example, a land surface covered by thick Vegadveqted dust dominates,. while at other levels the local dust
etation is less susceptible to erosion than one covered witlgonstitutes the major portion of the dust. In general the total
loose and disturbed soil. The production of dust requires Fust contains contributions from local production and dust
threshold friction velocity to be reached before dust particlestransported from other areas. Since AOD is the vertical inte-
can be lifted from the surface. This threshold friction veloc- 9ral of dust concentration, the total AOD at a grid point has
ity is represented by.,. At a given grid point dust is not ~contribution from local and transported dust.
mobilized foru, < u,,;. The values ofi,, for various land The AOD at a particular grid point can be expressed as
types have been estimated using field experiment data a”ﬂOD,-j — AoDlocal | ppplransport
laboratory experimentation (Gillette and Passi, 1988). Vari- ’ " o . .
ous modeling studies (Westphal et al., 1988; Liu et al., 2007)T "€ transported AOD is due to dust that is produced in up-
use a value ofi,, =0.6 ms for all land types for simplicity. ~ Stream regions and advected by winds. The local generation

Given a particular model grid box, the whole grid box need S given by the dust flux; ;. Therefore,
not be covered by erodible land. Therefore, even,ifex- transport
ceedsu,, only a part of the grid box that is erodible may AOD; ; = // (“eFi,/) da dl+AODi,j :
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The horizontal area element is representeddognd the time  Since each ensemble members corresponds to a different re-
step is given bylt. Substituting for the dust flux from Eq. (1), alization of initial and boundary conditions the advection
AOD; ; can be expressed as (that is wind) is different for each ensemble member. The
resulting spread in the boundary layer wind is of the order of
AOD; ; = // (aek X o ;X U j>da dt +AODEff;nsporf ) 0.7ms L. For the lateral dust boundary conditions we have
' ) assumed that dust does not enter the domain, which is quite

Though the sink term is not mentioned in these equations, théirghe' }:oréhe pF()arlo_d oflou;stuhdy thgre |sbno ddUSt storn;_(_aast
actual model calculates the removal of the aerosol. The dus?’ 1€ \ra |a|n helnd'n_f_l;.a' ot ese .USt oundary CO?] ftions
that is emitted locally but not advected away is included in gpprgxmate y hold. This apprOX|mat|qn may |mp§ctt €es-

the transport term. Equation (2) decomposes the total aAogimation results in the real data experiments but it does not
into the local and advected component. This decompositior{mpaCt the OSSE results in any way.

is central to the understanding of the tuning of erodibility as bl The pebrfectfmodel exlperlmerr:t usg;ba paru_cul:: ensem-
will be evident in Sect. 4. The erodibility plays an impor- e member of meteorology. The AODbservationsirom

tant role in the calculation of AOD. The determination of the the assumed perfect model are assimilated into the imperfect
value of« at various locations on the earth is a formidable model and the_fc_)l_lowing question is posed: Are the perfect
task. Many researchers (Westphal et al., 1988; Tegen an?ﬂalues of erodibility recov_ered by t_he ensemble-based t“r.“
Fung, 1994; Park and In, 2003; Walker et al., 2009) have'ng? Because one has defmed. the imperfect model to be dif-
made significant efforts to produce mapsoffor impor- ferent from perfec_tmodel only im, the OSSE represents the
tant dust producing regions of the earth. The efforts made’€St-case scenario. Compared to nature the model has many

by these researchers involve the analyses of different typegrrors apart from dlmpehrfegl.sgelzzncalf t_f|1|e perf_eclxt valugs
of landforms and the variation of their properties with seasona'€ not recovered in the » therwill certainly not be

etc. These efforts involve the visual inspection of atlases an&uned correctl_y using r_eal data.
also observations of AODSs. The OSSE is run using the meteorology of June/July 2009,

In the current work we aim to use satellite observations Ofcorresppndmg FO the well-known pea_k in the Sahar:_;m dust
AOD to estimate in the North African region by employing production and its westward transport into the subtropical At-

an ensemble Kalman filter based estimation approach. Not!é'intiC OC‘?a”- Throughout this work th_e_ meteorological _state
that the satellite observations of the total AOD, that is the left'S not estimated. The boundary conditions used contain ob-

hand side of Eq. (2) are available. Observations of local anoservatlonal information. The operational valuesaiver the

transported AOD are not separately available. In the next SeCSahara domain are shown in Fig. 1a and are used in the oper-

tion we describe the estimation experiments with simulatedatIonal run of COAMP,S' These values are use_d her(_a for the
AOD data. perfect model run. An index of the frequency with which the

threshold friction velocity is achieved in June/July 2009 at

12:00Z is shown in Fig. 1b. This index is the fraction (ex-
3 Observation System Simulation Experiment (OSSE)  pressed in percent) of the total days in June/July 2009 pe-

riod thatu, exceeded 0.6 nTs at 12:00 Z. The observations
The ultimate objective of this work is to improve the fore- of AOD are used to update the AOD, dust concentration,
casts of AOD over the Sahara by tunimgusing satellite  and the erodibility map. Note that the dust concentration is
observations of AOD. However, prior to performing exper- a three-dimensional field. Operationally, a threshold value
iments with satellite data, an Observation System Simulatiorof u,, = 0.6 is used. However, using the threshold value of
Experiment (OSSE) is performed. OSSEs are important tools:,, = 0.6 in the OSSE would tune values only in high fric-
to assess the amenability of a model to tuning. The OSSHion velocity regions, thus complicating the interpretation of
uses simulated observations drawn from geefect model = OSSE results. Therefore, in the OSSE a valuept= 0.0 is
experimentA particular set of values of erodibility are de- used.
fined to be correct (or perfect). Observations of AOD are Throughout this work an ensemble sizeNdt= 40 is used.
drawn from a model run using the defined correct values ofEach ensemble member has a different initial value.oht
erodibility. An imperfect model is defined by choosing val- each grid point the ensemble fof ; is obtained by sam-
ues ofe different from the perfect model values. pling 40 ensemble members from a Gaussian distribution

The meteorological boundary and initial conditions are ob-£ (0.25,0.25) where 0.25 is the mean and the standard de-

tained from Navy Operational Global Atmospheric Predic- viation (spread). The ensemble members with negative val-
tion System (NOGAPS) global model (Hogan and Rosmond,ues are set equal to 0.01. This distribution defines the initial
1991). Ensemble analysis boundary conditions are used evguess. The initial guess is also called the pridsackground
ery 6 h. These ensemble analysis are obtained by the locathe maps of the mean and standard deviation of this initial
Ensemble transform technique (McLay, et al., 2010). Theguess are shown in Fig. 1c and d, respectively. The model is
ensemble analysis is used as initial conditions so that eackpun up by integrating ensemble members for 60 h starting
ensemble member is a different realization of meteorology.at 00:00 Z, 10 June 2009. The first DA cycle is implemented
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(a) Operational values of erodibility
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Fig. 1. Shows the mean and standard deviation of erodibility rhap, except forb). The vertical colorbar applies tb). The upper
horizontal colorbar applies to the left column. The lower horizontal colorbar applies to the right column (exd@gp}.féhe mean and
standard deviations are those for the OS@EThese operational values are used as the perfect values of erodigjlitythe OSSE(b) An

index of the strength of friction velocity during June/July 2009. The color gives the fraction (expressed as percentage) of the total number
(48) of times the friction velocity exceeds a value of 0.6Th.sFor example, in the Horn of Africa the friction velocity is very strong,
exceeding 0.6 ms! at all times during the 48 cycles. See the vertical colorbar. The magp @iot shown) looks different at each update
cycle.(c) and(d): mean and standard deviation of the initial guesa ofiap, respectively, for the tuning experiment described in Sects. 3,

4 and 5.(e) and(f): mean and standard deviation of the map (after 48 update cycles), respectively, for the tuning experiment described in
Sect. 4(g) and(h): mean and standard deviation of the turethap, respectively, for the tuning experiment with correlation length scale

[ = 20 and cutoff radius = 20 described in Sect. §) and(j): mean and standard deviation of the tuaeshap, respectively, for the tuning
experiment with correlation length scdle- 5 and cutoff radiug = 5 described in Sect. 5.

at 12:00Z, 12 June 2009. The DA cycling frequency is 24 h.dust concentration and erodibility are not observed. In this
That is, the DA cycle (update) is implemented at 12:00 Z, work meteorological observations are not assimilated. The
every day. This frequency for update is chosen because realbservational error is set to 10 % of the mean AOD observa-
satellite data are available at 12:00 Z every day. The OSSE ison.

run for 48 days, ending on 18 July 2009 at 12:00 Z, so that Data assimilation experiments with only aerosol state
there are 48 update cycles. Only the AOD is observed. Thddust concentration and AOD) estimation were performed.

www.atmos-chem-phys.net/13/3481/2013/ Atmos. Chem. Phys., 13, 348049 2013
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The forecasts did not improve with aerosol state estimatiorspread is set equal to 0.015. Also, if the posterior mean de-
alone. The results from this experiment show that improv-creases below 0.03 (increases above 0.97) it is reset to 0.03
ing the initial conditions in the dust concentrati@r,) is not (0.97). One more issue is the risk of unphysical values of
important. This is because the source and sinks of dust arthe posterior parameter ensemble. Negative values phre
strong over a 24 h period and play the key role in decidingphysically meaningless and it is possible that an update re-
the forecast. In other words, over a 24 h period the sourcesults in negative values for some members of the posterior
dominate the dust transport especially over areas of strong; ;. In this work such ensemble members with negative val-
dust generation. ues are set equal to 0.01.

The theory underlying parameter estimation is the same Before presenting the results of tuning over the whole do-
as that of state estimation. Therefore, the state is augmentemain, in the next section the tuning ef ; (at a single grid
by the parameters} and data are assimilated. However, the point) in the OSSE is explained.
dynamical equations to integrate the parameters in time for
an untuned model are not known, which gives rise to some3.2 Tuning at a grid point
problems. The next section describes these problems and the

methodology used in this work to address these problems. !t IS instructive to consider the tuning af; ; at a single
grid point, allowing the illumination of various issues in-

3.1 Spread ina volved in ensemble-based parameter estimation. The full
three-dimensional COAMPS model is run with assimilation
The meteorological state variables (temperature, the threef simulated AOD data every 24 h. In the experiment de-
components of wind speed and humidity) have dynamicsscribed in this section the AOD is observed at all grid points.
evolution equations that are used to integrate these variablddowever, eachy; ; is updated using AOD observation only
forward in time between consecutive updates. However, inat that grid point, j. This is because in this experiment the
the imperfect model the parametef(which is tuned in this  cutoff radius is set equal to zero (Hamill, et al., 2001).
work) does not have a dynamics evolution equation. Ata par- The tuning of; ; at point K (Fig. 1a) as the update cycles
ticular grid point we use the following equation to step for- proceed is shown in Fig. 2a. It shows the mean and standard

ward each ensemble membergf; deviation of thew; ; estimate as the update cycles proceed.
The red line shows the truth; that is, the operational value of
alkj t+1= Ol,kj @, «;,; at this point K. The mean and standard deviation of the

initial guess is 0.3 and 0.2, respectively. As the update cycles

wherek denotes a particular ensemble memberamehotes  proceed the estimate of ; approaches the correct value. For
time. This is equivalent to usingwdds = 0 as the dynamical this grid point, by 20 cycles the correct value is recovered.
equation. If the truex is constant in time, this equation is The estimates of AOD are shown in Fig. 2d.
exact for a tuned system but is inexact for an untuned model. In this example they; ; update uses AOD observations

The dynamic evolution equation fer, used in this work, only at the same grid point, the mean of the posterior (or
gives rise to another issue — that of spreadifTheory of  update) at any update cycle is given by
data assimilation states that each time data assimilation up-
datesa, the spread ire must decrease or remain constant. a, = aprior +
The smaller the spread i, the less impact observations

in succeeding update cycles will have. Becauaédd= 0, In this equation the subscript; is not used. All the quanti-
the prior spread at a particular update is simply the posteriokies in this equation are at grid point K. This equation is the
spread at the last update cycle. This problem is addressefaiman equation for parameter estimation and is presented
in this work by using conditional inflation (Aksoy et al., here to clarify the role of various quantities in the estimation.
2006). If the posterior spread in ; falls below a particular | this equation AORQps represents the AOD observation.
threshold valueA«;;), the posterior perturbationsn ; are The observational error variance is given by (#&®Dops).
scaled so that the spread is equal to a particular fixed valugne other terms are calculated from the short-term ensem-

coV(aprior, AODprior)
var(AODpyrior) + var(AODgps)

[AODobS— AODprior] (3)

(Acrix). ble forecast (the prior). The covariance ()my,ior, AODpriO,)
. . . y plays an important role in the update equation. This covari-
o (1 +1) = oy (1) + Aari (Otij (1) —aj (t))7 ance exists because of the relation between ffDand
aprior, Which is given by Eq. (2). The short-term ensemble
whereg; ; is the mean erodibility. forecast gives 40 different AOD realizations. Each realiza-

In this work the threshold value usedAsx;;, =0.05 and  tion of AODyyior COrresponds to a particular realization of lo-
Aasix = 0.05. These values are chosen after experimentatiorcal variables, non-local variables and meteorology. The local
with different values. If the mean of posterigy ; is close to  (at point K) variables are AOfor and u,. The non-local
the limits of; ; (0 and 1), then a different strategy is em- variables arex andu, at regions that are upstream of point
ployed. If the mean is less than 0.05 or more than 0.095, thé. The meteorological variable of interest is wind because

Atmos. Chem. Phys., 13, 348850Q 2013 www.atmos-chem-phys.net/13/3481/2013/
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Fig. 2. Tuning of at a particular grid point marked K in Fig. 1a. The estimates of various quantities at this grid point are shown. See Sect. 3.2
for discussion(a) Estimates ofx (means and spread¢h) The time series of covariance betwaemnd AOD is shown in greerfc) The

prior ensemble members at update cycle 6. This update cycle is marked with squalegbnand(d). The red square shows the mean of
the ensemblgd) Estimates of AOD (means and spreads).

it advects dust from upstream regions. Therefore, the uncertive noise. The prior AOD and ensembles at update cycle 6
tainty in the AODyior ensemble is due to the uncertainties in are shown in Fig. 2¢c. The update cycle 6 is marked on each
local «, localu,, upstreamw, upstreame,., and winds. From  of the curves in Fig. 2a, b and d by squares. The red square
Eq. (2) the uncertainty in prior AOD can be written as in Fig. 2c shows the mean of the prior ensemble. The spread
ocal transpor in the prior AOD ensemble in Fig. 2c¢ includes spread due
Var (AODprior) = Var (AODprior) + Var (AODprior ) (4)  tolocala and additive noise. A finite-size ensemble is used
to estimate the true covariance. Because of the small size of
the ensemble, it is expected that the ensemble estimate of
covariances will not match the true covariance. Such covari-
the second term on the rhs of Eq. (4). Out of the total spreadam(.:es are termeq spuriofui. Spurious cpvariance s basiclglly
of AODprior Only @ part is correlated with theyior. This part an inaccurate estlmatep the true covariance due tp sampling
prior errors. For example (Fig. 2b), the negative covariance val-

Li;??nﬂtf; tt?;r:sogrfgd (;\1'()); h?\lgenmba"llr?g ;géiig ![Zr?#?hgues at update cycle 4 and 11 are spurious. The finite (small)
\sported _given by . ..~ size of the ensemble (40 in this work) is the reason for these

acts as advective additive noise. Given a particular magnitude . .
Spurious covariances.

of advective noise, the strength of the covariance between : . . .
. o The estimate of covariance obtained using the ensemble
AODyprior andaprior depends on the magnitude of the friction . . . . .
plays a central role in deciding the quality of tuning. Spuri-

velocity. The time series af, and cm(oeprior,AODprior) is . : )
I i ous covariance can seriously hamper successful tuning, and
shown in Fig. 2b. The covariance (scaled up by a factor of

10) is shown by the green curve. The covariance tends to bsmce they are unavoidable it is important to properly account

) . O ?or them. This issue of spurious covariances is especiall
higher for higher values af,.. This is because stronger local P P Y

) . . . important when AOD observations at many different spatial
generation helps the covariance signal to rise above advec-

The contribution of uncertainty in local variables is contained
in the first term on the right-hand side (rhs) of Eq. (4). The
contribution from non-local variables and winds is given by
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Different cutoff radii (c) and correlation length scales (1) The functions peak at the grid point marked 0. This is the
<1 . i i i [ grid point wherex is being tuned. The Gaspari—~Cohn func-
| tion value at a particular grid point is used as a multiplicative
factor to decrease the weight given to the observation in cor-
recting thew at that grid point. The functions are shown in
one dimension along a latitude circle in Fig. 3. However, ac-
tual functions are defined in two dimensions. Practically, ob-
servations at all grid points more than a distance ofrdm
the point of interest do not have any impact on the correc-
tions.
In the next section the results of tuningall over the do-
main) is described.

1.0

4 Tuning with uncorrelated a perturbations in OSSE

MO'ZSO —AKIO —éO —éO —iO 6 1‘0 2(0 Bb 4‘0 50
grid points along latitude circles In the last section it was assumed that observations of AOD
Fig. 3. lllustration of cutoff radius and correlation functions with &re available atall points in the domain, whereas in reality ac-
different length scales. The length scales are specified in units ofual satellite observations are available for many (but not all)
grid points. The dashed lines show the Gaspari-Cohn localizatiodocations. At any given update cycle the satellite observations
functions with different cutoff length scal¢s). The solid lines are ~ are sparse. This sparseness of satellite observations is mim-
correlation functions. For example, the solid blue line shows theicked in the OSSE by observing AOD at 20 % of grid points
correlation between at the grid point marked 0 on the x-axis and in the domain. These 20 % grid points are randomly chosen
the neighboring grid points fdr= 20. at each update cycle. In the satellite observations, however,
the sparse regions need not change randomly with time. The
. . . L . Observational error is set equal to 10% of the mean AOD
locations are available and used in the estimation. In prinCi-jcarvation. This observational error is motivated by AOD

ple,« atasingle grid point is updated using all available ob- o,iejite data whose error is at least 10% of mean observa-
servations of AOD. The covariance betweetand AOD at :

the opser_ved grid point_determings the weight g.iven to t.he in- We begin with an experiment in which the cutoff radius is
novation in the calculation of the increment. This covarianCegqt 1o zero. This means that; at any given grid point uses

IS cqlculated using the ensemblg. I a very large ensemb! nly the AOD observation at that grid point. The mean and
size is used, the ensemble covariance is more accurate. Wi

andard deviation of the initial guess$s shown in Fig. 1c, d.

a small ensemble size the estimated covariance tends to be iq—he perturbations i in initial guess are uncorrelated. The
accurgte, especially _if the_true covariance is small. The UG esult of this experiment; that is, the ensemble mean of the
covariance with a grid point geographically far away tendsy, o, (after 48 cycles) over the domain is shown in Fig. Le.

to be smaller, and hence the es.timated covariance should bfé’ne uncertainty in this estimated mean is given by the stan-
trusted less for far away grid points. The concept of a CUtoﬁdard deviation in the ensemble which is shown in Fig. 1f. Be-

radius or a localization radius is widely used in ensemble-q, 5o this experiment is an OSSE we know the perfect values
based filtering work to address the problem of Spurious o~ oo gipjlity at every grid point which is shown in Fig. 1a.
variances (Hamill, et al., 2001). The cutoff radiusdictates If the ensemble estimation worked correctly, then the

the distance over which observations are used to calculate the, | 4 values in Fig. 1e should match those in Fig. 1a. Com-

cprrection. This is achieved by defining a(locali;atiorj) funp- aring Fig. 1e to Fig. 1a, it is clear that the ensemble-based
tion that decays as one moves away from the grid point be'n‘funing is able to recover the perfect valuesaofo a large

tuned. The Gaspari-Cohn function (Gaspari and Cohn, 1999}, 40t The estimation is especially successful over the Ara-

is used in this work. The width of this funf:uon is gove_rned by bian Peninsula and parts of the domain where true value of
the value ofc. In the current work, we will run experiments  is sma1. The assimilation of data constrains the tuned val-
with various valu'es Ot The functions correspondlng to the ues quite well, in that the standard deviation in the tuned en-
values ofc us_ed In th|_s Wo_rk are_shO\_Nn in F'_g' 3 as dashed semble decreases in Fig. 1f compared to Fig. 1d. Some areas
curves for a single grid point. This grid pointis marked 0 0N (i q the Horn of Africa) have a very small spread (less than
the x-axis. The dashed cyan curve shows the Gaspari-Colj g>5 This is because the mean in these areas decreases be-

function corresponding to=5 grid points. In this work the low 0.05 and the spread in such areas in set equal to 0.015
distance is mentioned in units of grid points. The horizontal (see Sect. 3.1).

resolution used in this work is 81 km (5 grid points is equal
to 400 km).
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Fig. 4. Yellow color points show the (correctly) tuned grid points.
The white or clear grid points show the untuned points. The (cor-
rectly) tuned point lies within 0.05 absolute units of the perfect
value at a given grid point. The blue colored contours enclose area
with strong friction velocity (Fig. 1b) . The red contours enclose ar-
eas with high erodibility (Fig. 1afa) Shows the quality of tuning
for the tuning experiment corresponding to Fig. (®. Shows the
quality of tuning for the tuning experiment corresponding to Fig. 1i.

Fig. 5. The tuning curves for OSSE experiments with different val-
ues ofl andc. Each curve shows the percentage of grid points tuned
correctly as the update cycles proceed. The valudsaofd ¢ are
§pecified in grid point units. A distance of 10 grid points corre-
sponds to 800 km. For this problem a correlation length scale of
5 grid points (400 km) gives the best results. See Sects. 4 and 5 for
discussion.

of AOD), and large amounts of advected AOD makes it diffi-

The success of the tuning experiment is further quanti-cult to correctly estimate the erodibility parameters. The sit-
fied by comparing the tuned value at each grid point to uation is similar with area W3 in the Arabian Peninsula and
the truea value at that grid pointe at a particular grid W2 in the center of the domain. The area W4 in the south of
point is deemed to be (correctly) tuned if its tuned valuethe Sahara has weak friction velocity and low erodibility.
lies within 0.05 of the true value at that grid point. Other-  Using this criterion of 0.05, the number of grid points suc-
wise it is deemed to be untuned. This criterion of 0.05 (in cessfully tuned is counted and expressed as percentage of
absolute units o) is an arbitrary choice. This criterion is the total number of grid points. This percentage is shown in
used throughout this work to determine the quality of tun- Fig. 5 as the dashed magenta curve. By the end of 48 update
ing. The distribution of the tuned and untuned points overcycles, about 70 % of the points in the domain are correctly
the domain is shown in Fig. 4a. The grid points colored with tuned.
yellow are those tuned successfully. The white grid points The experiment discussed above (dashed magenta curve in
are the untuned grid points. The blue contours enclose arFig. 5) used a value af=0. However, using a cutoff radius
eas with high friction velocity. These contours correspondof O prohibits the update at any grid point from using obser-
to areas in which the friction velocity is above 0.6 sat vations in adjoining areas. To assess the impact of using more
least 20 % of times (Fig. 1b). The red contours enclose areagbservations, tuning experiments are run with non-zero val-
with high true erodibility (more than 0.25). Some of the areasues ofc. The solid magenta (squares) curve in Fig. 5 shows
with high friction velocity are marked S1, S2 and S3. Notice the percentage of grid points tuned correctly for an experi-
that in these areas the tuning is successful. In the Horn ofment with uncorrelated initiad perturbations and a cutoff
Africa (S1) almost all the grid points are successfully tuned.radius equal to 20 grid points. Clearly, the results degrade
Recall that the friction velocity gives rise to the covariance compared to the = 0 experiment (dashed magenta curve)
signal. Consequently areas with strong friction velocity tendeven though the update ef at any given grid point uses
to be tuned well. Some areas with weak friction velocity are more observations ia = 20 experiment than that in=0
marked W1, W2, W3 and W4. These areas tend to be poorlyexperiment. Recall that apart from the observation of AOD, a
tuned. Consider area W1. Note that W1 is an area of wealgood estimate of the covariance betweeat the point being
friction velocity sandwiched between areas of high friction updated and AOD at the location of observation is also im-
velocity on its north and south. Not only does it have a weakportant for correct tuning. Apparently, in tlke= 20 tuning
signal but also high advection noise because it lies in an areaxperiment the ensemble does not correctly estimate the co-
of high erodibility (it is enclosed by the red contour). As variance between at any given grid point being updated and
pointed out in Sect. 3.2, the advection noise is additive noisethe neighboring location where the observation is available.
The combination of low friction velocity (small local signal This leads to the degradation of the tuning because along
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with many observations, the update uses many bad covarimply correlations betweer perturbations (between two
ances. The reason for the bad covariances is a combinatiogrid points).
of the effect of advective noise and the small size of the en- The red (squares) curve in Fig. 5 shows the tuning curve
semble. The covariance betweerat a particular point and for an experiment with correlation length scdle- 20 and
AOD at another point is partly controlled by the correlation cutoff radiusc = 20. The initial mean and standard deviation
betweenx perturbations at these two points. For the exper-for this experiment is shown in Fig. 1c and 1d, which is the
iment described in this section, the updates do not result irsame as that for the= 0 experiment described in Sect. 4.
correlating thea perturbations; that is, the initially uncor- The initial guess for the magenta curves and red (squares)
relateda perturbations remain uncorrelated at the end of allcurve in Fig. 5 is the same, except that for the red curve the
the update cycles. In the current experiment the perturbationmitial « perturbations are correlated over a length scale of 20
are uncorrelated, and hence dust generated by all the pointgrid points. The correlation function of any grid point in the
within the neighborhood of point of interest contributes to domain forl = ¢ = 20 experiment looks like the solid blue
the advective noise. The small ensemble finds it difficult tocurve in Fig. 3. The red (squares) curve in Fig. 5 shows that
capture the local signal due to this advective noise resultinghe tuning is successful for about the first 5 update cycles
in spurious covariances. Hence, including the observations oénd there after degrades. The reason for this degradation can
AOD from neighboring grid points degrades the tuning ratherbe understood by considering the correlation function at a
than improving it. The solid magenta curve shows the resultparticular grid point as the update cycles proceed. The cor-
of the experiment witle = 5. Its performance is intermediate relation function at a particular grid point (marked x in area
betweenc =0 andc =20. The experiment witk =10 (ma- W1 in Fig. 4) is shown in Fig. 6 as the solid green curve. The
genta circles) gives almost the same result as thatawitO. number in each panel indicates the update cycle. At the ini-
However, one would like to use as many observations agial time a correlation length scale b& 20 is imposed. The
possible by setting > 0. The main hurdle to using> 0 is green curve is the correlation between éhperturbations at
the advective noise. What can be done to address this prolihe point marked O on the x-axis and that at the neighbor-
lem? A possible solution to this problem is to correlate theing grid points around the latitude circle. The dashed yellow
perturbations in neighboring, thereby reducing the advec- line shows the localization function corresponding to cutoff
tive noise. Also, the results of the experiments in this sectionradiusc = 20. The dashed black curve in each panel shows
suggest that the assimilation of observations does not imposa Gaussian with length scale of 5 grid point for reference.
a correlation structure in the field. That is, the observa- At each update cycle AOD data are assimilated and all these
tions are unable to recover the correlation structure (if any)x perturbations are updated, thereby modifying the correla-
between initially uncorrelated. Can the assimilation of ob- tion of & with surrounding points. As the update cycles pro-
servations recover the correlation structure iféhgerturba-  ceed, the correlation function narrows down, as seen in the
tions are initially correlated? The next section considers thesuccessive panels in Fig. 6. In fact, it converges towards a
issue of initially correlated perturbations. function with a length scale of about 5 grid points as seen
in the last few update cycles. The parameter estimation re-
sults in a length scale of perturbations of approximately 5
5 Tuning with correlated a perturbations in OSSE grid points, but the localization is allowing information from
much further away to impact the local estimatexof he cor-
In this section the initial perturbations aefare spatially cor-  relations with points further away than 5 grid points tend to
related. Some examples of the correlation functions betweee bad, and hence as the updates proceed the red (squares)
the & perturbations are shown in Fig. 3. The point marked curve in Fig. 5 degrades.
0 on the x-axis is the point of interest. The solid blue curve The correlation functions for many grid points at various
gives the correlation between tleeperturbations at point 0 locations are inspected, and it is found that the correlation
and that at various neighboring points along the latitude cir-length converges to about 5 grid points. A new tuning exper-
cle corresponding to a correlation length scalé ef20 grid iment is run with = 5, ¢ = 5. The result of this experiment
points. The standard deviation of this correlation functionis shown in Fig. 5 as the solid green curve. Cleakhy 5,
is I = 20. This correlation is constructed by first sampling ¢ = 5 performs far better than= ¢ = 0 and/ = ¢ = 20. An-
from (uncorrelated¥ (0.25,0.25) and then constructing a other experiment is run with= 20,¢ = 5. The tuning curve
spatially smoothed perturbation for each ensemble membeifor this experiment is shown by the solid red curve in Fig. 5.
separately. These weights are chosen proportional to a twoFhe tuning for/ =20, ¢ =5 is as good as that far=>5,
dimensional Gaussian function with standard deviation ofc = 5. This is because for the= 20 experiment as the up-
1 =20. The cyan curve shows the correlation function for date cycles proceed the correlation function narrows to about
[ =5. The gray curve shows the correlation function/fer0; 5 grid points. Also, because=5, effectively only observa-
that is, independent perturbations. The correlation functiontions within a radius of about 5 grid points are used to update
of any grid point in the experiment described in the Sect. 4« at any grid point.
looks like the gray curve. The teroorrelation functionwill
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Fig. 6. Evolution of the correlation function at a particular grid point (marked x in area W1 in Fig. 4) for the experimerit=with- 20.
Each panel is for a different update cycle. The numbers inside each panel show the update cycle.

The tuned map at the last update cycle fet 20, ¢ =5 OSSE: Tuning at a grid point in region W1
experiment is shown in Fig. 1i. The tuned map correspond-
ing to thel = ¢ = 20 experiment (solid red (squares) curve
in Fig. 5) is shown in Fig. 1g. Clearly, the tuned map in
Fig. li recovers the perfect map shown in Fig. 1a more
accurately than does thle= ¢ =0 experiment (Fig. 1e) or
the! = ¢ = 20 experiment (Fig. 1g). Comparing Fig. 1f and
Fig. 1j the estimate from thie= 20,c = 5 experiment is con-
strained better thah= ¢ = 0 experiment as can be inferred
from the lower values of spread in Fig. 1j.

The spatial distribution of tuned points fbe= 20, c =5
experiment is shown in Fig. 4b. Comparing this figure with
Fig. 4a correlating perturbations and using more observations
leads to tuning gains in high advection/low friction velocity 0% 10 20 30 40 50
regions like W1, W2, W3 and W4. This strengthens, to some Update cycles
extent, our hypothesis that correlating perturbations leads tgrjg. 7. comparison between tuning for different valueg andc at
an improvement in the covariance estimates. This improvea particular point. This point is marked x in the W1 area in Fig. 4.
ment in the signal (covariance) can be considered to be amhe evolution of the correlation function at this point is shown in
effectivedecrease in advection noise. The reduction in theFig. 6.
degrees of freedom (because of correlations) increases the
impact of observations, thereby improving the tuning. It ap-
pears that for this particular problem, on an average over thecale. However, the linear signal due to advection survives
domain, an emergent correlation length scale is about 5 gridnly over a length scale éf= 5 grid points.
points (400 km). Imposing a correlation functionlo£ 5 is Various other experiments with different values/aind
leading to better covariances. This does not mean that ade are run to further investigate the interplay between cor-
vection mainly happens over a length scale of 5 grid points.relation length and cutoff radius. The red and blue curves
Advection most probably is taking place over longer length correspond to experiments with correlation length scaes

20 and/ =10 (800 km), respectively. The behavior of the
red (circles) curvel(= 20, ¢ = 10) is similar to that of red
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(squares) curve. Far= 20, ¢ = 10, the correlation function Though results from the OSSE experiments are not guar-
narrows down and converges to about 5 grid points, similaranteed to hold for experiments with real data, they do provide
to the case of = ¢ = 20. However, the degradation is not as valuable insights into the tuning of erodibility. They show
much as thé = ¢ = 20 because only observations within ra- that under ideal circumstances the erodibility is amenable
dius ofc = 10 grid points are being assimilated. The amountto tuning, given realistic observational coverage and errors.
of bad covariances being used is less in thel@ exper-  Ideal circumstances mean that the only model error is im-
iment compared to the=20 experiment. The experiment perfect values of erodibility. Even so it provides confidence
with [ = 10, ¢ = 5 (solid green curve) gives a result compa- in the tuning methodology to proceed with experiments with
rable with] =5, ¢ =5 andl = 20, ¢ = 5. This shows that if real data. The next section describes the tuning experiments
[ > ¢, then the correlation length is effectivdly= c as far as  with real satellite data.
the data assimilation is concerned. As the update cycles pro-
ceed,/ converges to 5 grid points. Before this convergence
happens since </, the observational information beyond a § Real data
distance ofc is not used. For thé =10 experiments with
c =10 (blue circles) and = 20 (blue squares), the behavior |n this section the tuning experiments with satellite data are
is similar to thel = 20 experiment with similar values of c. described in Sect. 6.1. In Sect. 6.2 the estimated map of
This shows that > 5 is too broad for this problem and df erodibility is verified using satellite data.
is specified longer than 5, then the data assimilation narrows
the correlation function to 5 grid points. Lastly, consider the 6.1 Tuning
dashed curves that show results fog 0 for various values
of I. These curves approximately overlap, showing that it isMODIS Deep Blue data (Remer et al., 2005; Hsu et al., 2004,
futile to correlate perturbations without using observations2006; Shi et al., 2011) are used for the experiments with real
in the neighborhood. The curves with- =1, forc > 5, show  data. The satellite data are averaged over a box of 3 grid
that using observations outside the correlated area degradgmints (about 240 km) to obtain super observations. The er-
the tuning, which is because of inaccurate covariances. Figrors in the observations could be correlated. The averaging
ure 7 shows the tuning at a particular point marked x in W1serves to decorrelate these errors. The super observations are
area Fig. 4. The dashed magenta line uses observations onéssimilated into the COAMPS model using the ensemble-
at the same grid point, and hence the updates take place onlyased tuning methodology. Here the observational error is
when data are available at that grid point. Though the solidset equal to 0.15+ 10% AOD units, but realistically the er-
magenta curve has access to more observations, the covarirs for some locations can be considerably greater (Shi et
ance estimates are not good enough because the perturbatiosis, 2011). Shi et al. (2011) also found that lower values of
are not correlated. The red curve (squares) uses observatiod®©D observations tend to have higher relative uncertainty
over a length scale af = 20, while as the updates progress than higher values. Incorporating 0.15 AOD units in the ob-
the correlation narrows to 5 grid points. Consequently, theservational error assigns high errors to observations below
estimate does not converge towards the perfect valaeadf  0.15. The tuning experiment for the real data runs from 12
this grid point very well. The solid green, blue and red curvesJune 2009 to 8 July 2009. MODIS satellite data are assim-
converge smoothly because the correlation is over a scale dfated every 24 h at 12:00 Z. In total the tuning experiment
5 grid points. These curves have access to more observationakes 28 update cycles. The period from 8 July 2009 to 30
information and improved signal because of correlation. July 2009 is used for verification. The threshold friction ve-
The results from all these experiments suggest that the oblocity is set to 0.6 ms. It has to be noted that the experiment
servations are able to uncover the correlation scale betweewith real data is completely separate from the OSSE experi-
neighboringe field, provided the initiakk perturbations are ment described in Sects. 3, 4 and 5.
correlated over a broad length scale. This correlation scale The operational values of (Fig. 1a) are used as the mean
for this problem is about 5 grid points. As seen in Sect. 4, if of the initial guess. The ensemble perturbationg ere cor-
the initial @ perturbations are uncorrelated, the observationsrelated over a length scale of 5 grid points. The standard devi-
are not able to impose a correlation structure as the updateation ofa at each grid point is set equal to 0.25. The negative
proceed. ensemble members are set equal to 0.01. The mean and stan-
The sensitivity of the OSSE tuning results to ensembledard deviation of this initial guess are shown in Fig. 8a and b,
size was found by running experiments with smaller ensem+espectively. The standard deviation in some areas in Fig. 8b
ble sizes. As noted, for an ensemble sizeNo& 40, about  is lower than 0.25. This is because in these areas the mean of
85 % of the grid points are tuned for the- 20,c =5 exper-  the initial guess has low values, and therefore the ensemble
iment (solid red curve in Fig. 5). This percentage decreasesnembers below the value of zero are set equal to 0.01. This
to 75 %, 60 % and 45 % for an ensemble size of 20, 10 and 5¢ecreases the standard deviation below 0.25. In this experi-
respectively. ment the correlation cutoff radius is set equal to 5. After 28
update cycles the mean of tunedonverges to values shown
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(a) Real data: mean of initial guess, I=c=5
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Fig. 8. The tuning experiment with real satellite data. The left colorbar igdpand(c). The right colorbar is for the standard deviations
shown in(c) and(d). (a) The operational values of are used as mean of initial guegls) Standard deviation of initial guessare is set
equal to 0.25(c) The mean of tuned values after 28 update cy¢dsThe standard deviation of tuned values after 28 updates cycles.

in Fig. 8c. The standard deviation in the mean of these tuned ;@ feal data: Tning at 15.0,8.7) o, (b) Real data: Tuning at (27.2,23.4)
values is shown in Fig. 8d. 07

o
=
o

The estimates of as a function of the update cycles at
four different grid points is shown in Fig. 9. For the grid
point in panel (a) the estimate decreases from 0.3 to about
0.05. The convergence is not smooth, but clearly the esti-
mation corrects a bias in the first guess in the downward
direction. Between cycles 10 and 28 the mean wiggles be- °  ° Bt © ® Update Syctes
tween 0.05 and 0.1 rather than staying at a constant value (o eal data: ning at (12.2.24.0 () Real date: Tuning at (18.5,48.9)
This is because the estimated erodibility can compensate fol ‘
other errors in the model like those in threshold velocity and
advection. Similarly in panel (b) the estimation corrects the
erodibility in an upward direction but does not remain con- ¢,,
stant. Panel (c) shows a case where the erodibility has clearlyz "
not converged. In panel (d) the estimate appears to converge
between updates 10 and 15, but undergoes large variation af °% 3
ter update 20. The estimation curves shown in these panels
are representative of many locations in the domain. The asFig. 9. Each panel shows the mean and spread of the erodibility at
sumption that the model is imperfect only in the erodibility 4 different grid points for the real data experiment. The latitude and
is too simplistic. There are many other imperfections in thelongitude of the point is mentioned in the title of each panel.
model. The estimate of erodibility inadvertently corrects for
these imperfections. The imperfections in threshold velocity ) _ o
and near surface wind would have the highest impact on th&Vithin the model. Comparing (Fig. 8) panel (b) and (d) it is
estimate of erodibility because these control the dust flux.8vident that the standard deviation in the mean of the tuned
The friction velocity depends on the 10 m wind. It is possible Values decreases to about 0.05 compared to the initial guess
that the estimation correcisto account for imperfection in ~ Standard deviation.
the 10 m wind. Therefore, one has to exercise caution while Since one does not know the real erodibility, the tuned map
interpreting the tuned map of erodibility. has to be assessed indirectly by verifying forecasts of AOD.

Considering the tuned map (Fig. 8c), on an average in thd he next section describes such a verification experiment.
west Sahara and the Arabian Peninsula the parameter estima- o
tion results in lower values af compared to the operational 6-2 Verification

values (Fig. 1a). It is possible that the estimation decrease_?_h ; f th d Fig. 8¢) in f .
the erodibility in these areas to correct for a positive bias in e performance of the tuned map (Fig. 8c) in forecasting

the friction velocity. In the south Sahara region (between Iat—?‘o? IS po;npared to that gf;he dopera;[jlonfll ]Entap. tThe ver-
itude 5 and 10N) o converge to higher values. During the cation 1S done over a period independent ot the tuning pe-

tuning process the ocean valuescofire set equal to zero riod. Recall that the tuning experiment for the real data runs
from 12 June 2009 to 8 July 2009 (28 days). The period from
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(a) Real data : Prior AOD on 20 July 2009 per.)

*30.0

Fig. 10. Mean AOD estimates on 20 July 2009 at 12:0@&).and(b): priors using the tuned (Fig. 8c) and the operational maps (Fig. 1a),
respectively(c) and(d): posteriors obtained by assimilating satellite data into the priors sho¢@) and(b), respectively(e) Satellite data.

8 July 2009 to 30 July 2009 (19 days) is used for verification.Comparing panel (a) and (b) to (e), the tuned forecast agrees
Two separate data assimilation (verification) experiments arevith the observations more than the operational forecasts.
run over the verification period. In these experiments only thePanel (c) shows the posterior AOD field corresponding to
dust concentration and AOD fields are estimated. The erodithe prior in panel (a). Panel (d) shows the posterior corre-
bility parameter map is held fixed. The first DA experiment sponding to panel (b). The same data (panel (e)) are assimi-
uses the operational erodibility map (Fig. 1a) and the secondiated into the tuned and operational priors to obtain posteri-
uses the tuned erodibility map (Fig. 8c). The same MODISors in panels (c) and (d), and hence these posteriors are sim-
observations are assimilated in each of these experimentdar. These posteriors are used as initial conditions to launch
For each experiment we have access to analysis ensembiee next 24h ensemble forecasts. These forecasts (priors)
on 19 different days. For each experiment, 24, 48, 72 andalid at 12:00 Z, 21 July are shown in panels (a) and (b) in
96 h ensemble forecast is launched from each of these analyrig. 11. The satellite observations on 21 July 2009 are shown
sis ensembles. Consequently, for each of the two experiments Fig. 11c. The tuned forecast (panel (a)) matches better
we have 19 different forecast ensemble means. The MODISwvith the observations (panel (c)) than does the operational
observations at the respective days are used to verify the forderecast (panel (b)). Note that these tuned and operational
cast means in each experiment. For a given day MODIS obforecasts used similar initial conditions in AOD, which are
servations are used to verify the forecast launched from thejiven by panel (c) and (d) of Fig. 10. In spite of these similar
last day, but this data are also assimilated to generate the posgiitial conditions, the operational forecast (prior) is different
terior. This is not a problem because 24 h is long enoughfrom the tuned forecast on 21 July with operational forecasts
for the dust generation and transport to render the forecaggiving higher AOD values on 21 July. Note that the same
almost independent of the initial conditions. The source ofmeteorology is used in both the operational and tuned ex-
dust, that is the erodibility values, plays a dominating role in periments. The only difference between the tuned and opera-
deciding the spatial distribution of dust over the 24 h period. tional experiments is the different maps of erodibility. There-
Consider the verifications of these two experiments on &fore, the difference between these forecasts is due to different
particular day. Figure 10 shows the mean estimates of AODvalues in the erodibility maps. The lower values of AOD in
on 20 July, 2009. Panel (e) shows the satellite observations diuned forecasts are attributable to lower values of erodibility
AOD at 12:00Z, 20 July 2009. The right side panels ((b) andin the tuned map (Fig. 8c) compared to the operational map
(d)) corresponds to the operational experiments. Panel (ajFig. 1a).
and (c) shows the estimates from the tuned experiment. The Both on 20 and 21 July, the tuned forecasts give lower val-
same MODIS data are assimilated into each of these exues of AOD, thus resulting in better verifications compared
periments. The prior shown in panel (a) is the mean of theto the operational forecasts. The comparison of verifications
24 h ensemble forecast launched starting from the posterioover the 19 days is performed by usimgan absolute error
AOD on 19 July 2009 for the tuned experiment. This fore- which is calculated as follows. At each particular grid point,
cast for the operational experiment is shown in panel (b).for each 24 hour lead time the absolute difference between
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(a) Real data : Prior AOD on 21 July 2009

0.0

Fig. 11.Mean AOD estimates on 21 July 2009 at 12:00 Z. See the colorbar in Figa)land(b) are the forecasts launched from the tuned
and operational posteriors on 20 July, respectielySatellite data.
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Fig. 12. Result of the verification experiment. The green contours
enclose areas of strong friction velocity.

Verification days

the mean operational forecast and the MODIS observation is
calculated. Fig. 13.A0D verifications at grid points S and P in Fig. 12. Legend

in (b) applies to(a).
80 = ’AODOD - AODobs|

Then at each grid point, the averagesgbver different fore- At each grid point, the average &f, over different forecasts

casts is the mean absolute error for the operational modeis the mean absolute error for the tuned model. At each grid

Similarly, the absolute difference between the mean tunegoint, the operational and tuned mean absolute errors are

forecast (AOLR),) and observation is calculated. used to calculate the metrdifference mean absolute error
(dMAE),

etu = |AODy — AODgpd|
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model in forecasting the AOD. If dMAE O at a particular
grid point, then the tuned model outperforms the operational
model. On the other hand, if dMAE 0 it means that the op-
erational map performs better at that grid point.

The dMAE corresponding to the tuned map in Fig. 8c is
shown in Fig. 12, with contours of high friction velocity over-
laid. Figure 12a shows the dMAE calculated for the forecast
lead time of 24 h. The tuned map outperforms the operational
map largely in the west Sahara and Arabian Peninsula re-
gions. The tuned map gives better forecasts than the opera-
tional map to some extent in the Horn of Africa. In most of
the other regions the dMAE is withir0.1 and+0.1, indi-
cating that the tuned and operational forecast are almost sim-
ilar. There are a couple of pockets near central Sahara where
the tuned map gives degraded performance. These areas are
blue in color. Panels (b) and (c) in Fig. 12 show the dMAE
for longer lead times of 48 and 96 h, respectively. Compar-
ing panels (a), (b) and (c) it is clear that broadly the pattern
of areas where the tuned model outperforms the operational
model are similar for all lead times. However, comparing the
red areas in the vicinity of point S in panels (a) and (b) the
tuned model performs better over a larger region for the 96 h
forecast compared to the 24 h forecast. Also, the magnitude
of improvement of the tuned model is higher for longer lead
time in this area. This is also true in the Arabian Peninsula.
An important dMAE feature that develops with longer lead
times is in the vicinity of points O and W off the coast of
Africa. The red color near point O in panel (c) indicates that
the tuned model gives a better forecast at 96 h, whereas the
tuned model is as good as the operational model in this area
at 24 h. In Fig. 13 the relative performance of the tuned and
operational models is further probed by inspecting the AOD
forecasts at two of the points marked in Fig. 12.

The time series of AOD forecasts at point S are shown in
Fig. 13a. The black curve shows the AOD observations. The
dashed green curve shows scaled by a factor of 5, dur-
ing the verification period. Clearly,, is above the threshold
level of 0.6 m s for almost all the verification times. The solid
curves show the operational forecasts at lead times of 24 and
96 h. The dashed curves show the tuned forecasts. The title
of the panel shows the value of operational and tuned erodi-
bility. At point S the operationat is 0.32 and the tuned is
0.04. The title of the panel also shows the dMAE at 24 and

Fig. 14. The scatter plots of forecast AOD (24 h lead time) and 96 h, which is 2.2 and 2.9, respectively. The number 78.0 and
AOD observations(a) corresponds to the box containing point S in - 95,0 shown in the panel are the percentage of times when the
Fig. 12a.(b) corresponds to the box containing point U in Fig. 12a. u, exceeds the threshold value during the tuning and veri-

(c) corresponds to the box containing point N in Fig. 12a.

dMAE = 80p — Etu

fication periods, respectively. So at this point out of the to-
tal number of cycles (28) in the tuning periad, exceeds
the threshold value 78 % of times. This point is an example
of a grid point whereu, is very strong both during the tun-
ing and verification periods. Because the signal is strong dur-

This metric is a simple and convenient way to quantify theing the tuning period, this point isined correctly decreas-
comparative performance of the operational and tuned moding the value from 0.32 to 0.04. The phraseed correctly

els in forecasting the AOD, at each grid point. If dMAED

should be carefully interpreted. We do not know the values

it means that the operational model errs more than the tunedf erodibility in nature. Because the (tuned) forecasted AOD

Atmos.
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matches well with the observations at this point, we drawPanel (c) shows that the tuned model decreases the bias by
the conclusion that the tuned value is correct. The dashe@.46 from 0.72 to 0.26 in the Arabian Peninsula.
blue curve matches well with the observations while the op- The decrease in bias in the west Sahara and the Arabian
erational forecast (blue curve) is too high. The low value of Peninsula contributes towards the positive dMAE in these
tuned AOD can be directly attributed to the lower value of regions. This decrease in bias is due to the downward cor-
tuned erodibility at point S. Note that the tuned AOD not only rection of the tuned erodibility values (compared to the oper-
has a smaller bias (with respect to the observations) comational values) in these regions. In the south Saharan region
pared to the operational AOD values but also a smaller stanthe operational bias is0.09 (result not shown). The tuned
dard deviation. In both the tuned and operational model themodel changes this bias to 0.07. This might be due to upward
96 h forecast is higher than the 24 h forecast. This suggestsorrection in tuned values in the south Saharan region. The
that there is some accumulation of dust over the 96 h. Thigositive bias of 0.12 in the east Saharan region might be due
accumulation seems to be more for the operational than théo the increased advection from the south Saharan region. In
tuned model as the separation between red and blue curvabe Atlantic region the biases in the tuned and operational
is larger for the operational model. This accumulation mightmodel are comparable (results not shown).
be because in the operational model the production is more Consider Fig. 12c. The red areas coincide with areas with
because of higher erodibility of 0.32 (compared to 0.04). Thehigh operational erodibility. In these areas (west Sahara and
higher dMAE of 2.9 at 96 h compared to 2.2 at 24 h meansthe Arabian Peninsula) the operationalwas corrected by
that the operational model errs more (compared to the tunethe tuning to a lower value. In the (white) areas other than
model) at 96 h than at 24 h. Note that both the operational anavest Sahara and the Arabian Peninsula, both operational and
tuned forecasts follow the variations in the friction velocity tuned maps perform equally well. The improvement of fore-
(green curve). casts in west Sahara and the Arabian Peninsula is because
In Fig. 12 consider the white area to the lower right of tuning leads to a better model of dust generation by decreas-
point S, around the point marked P. The verification for thising the erodibility. However, an improvement in the dust gen-
point is shown in Fig. 13b. At this poini, exceeds the eration over the red areas does not impact the forecasts in
threshold value for about half the time during both tuning the other areas. This means that the effect of tuning is local-
(60%) and verification (55 %) periods. This point has low ized in space. This might be because of the model error in
value of erodibility in the operational map. Because the op-dust transport. Both the tuned and operational models used
erational values areorrectthe tuning methodology does not the same meteorology and therefore the same winds. These
change this value much. The inference that these values amight be different from the winds in nature. Both the tuned
correctis drawn from the fact that at point P both operational and operational model suffer from the model error in meteo-
and tuned models do (equally) well in predicting the obser-rology. Because of this model error in dust transport, the im-
vations. proved dust generation in the red areas might not necessarily
The inspection of the forecasts’ time series and observaimprove dust forecasts in other areas. In this work meteoro-
tions shown in Fig. 13 suggests that the positive dMAE inlogical variables are not estimated.
Fig. 12 is because the tuned model AOD has a lower bias At almost all the points in the domain (two of which are
compared to the operational model AOD. shown in Fig. 13), the 96 h forecasts are higher than the 24 h
The biases in the tuned and operational models for variforecasts, for the tuned and the operational model separately.
ous regions are shown in Fig. 14. These various regions ar&ghe higher AOD at longer lead time points to accumula-
marked by boxes in Fig. 12a. The panel (a) shows the scattion of AOD either from local production or from upstream
ter plot of AOD observations versus the forecast AOD in thetransport. The higher AOD at 96 h explains the larger cov-
west Sahara region. The red dots show the operational AODerage of the red area in the Sahara in Fig. 12c compared to
The grey line is a reference line with zero bias and slopeFig. 12a. Because both the models use the same meteorology
equal to unity. The red line is the linear fit to the red dots. Thisand sinks, the higher operational AOD at 96 h is due to higher
linear fit is given by the equation AQJg=a x AODgps+ b production in the upstream areas. This higher production is
The regression coefficientssandb (which is the bias) are  due to the higher operational erodibility.
shown in the upper right corner of the panel. The blue line is The tuned and operational forecasts were compared to cli-
the linear fit to the cyan dots, which shows the tuned AOD.matology, and it was found that neither were able to outper-
The tuned model reduces the bias from 0.56 to 0.31. Thougliorm the climatology.
the tuned model on an average overestimates the AOD by
0.31 it decreases the hias by 0.25 (compared to the opera-
tional model) which is a substantial improvement. 7 Conclusions and further work
The panel (b) shows the scatter plot for the east Saharan re-
gion. In this region the tuned model increases the bias (0.12)This work establishes the importance of the correlation struc-
The operational model has a small negative bias-0f04.  ture while performing ensemble-based estimation of spa-
tially extended parameters. The EAKF (ensemble adjustment
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Kalman filter) is implemented in an OSSE in which the only is the only aerosol over the North African domain. This as-
model error is due to imperfect erodibility map. The results sumption does not hold in reality. We have also assumed that
of OSSE experiments showed that these parameters could libe dust aerosol has only one size. The model resolution is
successfully tuned, given observations of AOD, if an appro-also quite coarse. Further, we have assumed that the aerosols
priate correlation structure is applied to the initial perturba- do not feed back on the meteorology.
tions of erodibility and a supporting localization radius is ap-  While these assumptions do not impact the OSSE results,
plied. The tuning results are inferior if a correlation length is they do impact the estimate of erodibility obtained with
not imposed on the initial perturbations of erodibility. real data. Therefore, the real data results presented in this
The methodology used involves running experiments withwork should be considered as a first step towards obtaining
different correlation length scales imposed on the prior pa-ensemble-based estimates of erodibility.
rameter perturbations and also different cutoff radii. A priori  There is a wide scope to improve the erodibility estimates
one does not know the appropriate length scale that shoulgresented in this work. The meteorological state is not esti-
be used for the correlation structure. If an initial correlation mated in this work. Meteorological observations could be as-
structure is not imposed, the data assimilation does not insimilated to estimate this state, which can potentially correct
duce a correlation among the erodibility perturbations. How-the errors in transport, thereby improving the 10 m winds. It
ever, if a long correlation length scale is imposed along withis important to estimate the threshold velocity and the sinks
a long cutoff length scale, then at each grid point the correla-of dust apart from the erodibility. An estimate of erodibil-
tion length scale converges towards the appropriate correlaity for realistic applications could be obtained by running the
tion length scale. It is found that the appropriate length scaleestimation experiment for many different years. It would be
for this problem is 5 grid points, which is about 400 km. The interesting to compare such an estimate with that obtained
tuning experiment with a correlation length scale of 5 grid from 4DVAR.
points resulted in the best tuning in OSSE. This technique It would be exciting to investigate whether this technique
of specifying a long length scale and allowing the filter to of determining the appropriate length scale is effective in
identify the appropriate value is introduced in this work. other parameter estimation problems. In the current problem
It is very important to choose an appropriate value for thethe true parameter map is static in that it does not change
cutoff radius. If the cutoff radius is larger than the correlation with time. It would be interesting to test this methodology in
length scale, then the tuning degrades. This is because themproblem where the true parameter map evolves in time.
the update uses covariances from regions that are uncorre-

lated in erodibility.
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