
Atmos. Chem. Phys., 13, 3481–3500, 2013
www.atmos-chem-phys.net/13/3481/2013/
doi:10.5194/acp-13-3481-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess
Nonlinear Processes 

in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics
O

pen A
ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Ensemble filter based estimation of spatially distributed parameters
in a mesoscale dust model: experiments with simulated and real data

V. M. Khade1, J. A. Hansen2, J. S. Reid2, and D. L. Westphal2

1University Corporation for Atmospheric Research, Visiting Scientist Program, Boulder, CO 80307, USA
2Naval Research Laboratory, Monterey, CA 93943, USA

Correspondence to:V. Khade (vikram@geos.tamu.edu)

Received: 13 September 2012 – Published in Atmos. Chem. Phys. Discuss.: 5 November 2012
Revised: 26 February 2013 – Accepted: 4 March 2013 – Published: 27 March 2013

Abstract. The ensemble adjustment Kalman filter (EAKF)
is used to estimate the erodibility fraction parameter
field in a coupled meteorology and dust aerosol model
(Coupled Ocean/Atmosphere Mesoscale Prediction System
(COAMPS)) over the Sahara desert. Erodibility is often em-
ployed as the key parameter to map dust source. It is used
along with surface winds (or surface wind stress) to calcu-
late dust emissions. Using the Saharan desert as a test bed, a
perfect model Observation System Simulation Experiments
(OSSEs) with 40 ensemble members, and observations of
aerosol optical depth (AOD), the EAKF is shown to recover
correct values of erodibility at about 80 % of the points in the
domain. It is found that dust advected from upstream grid
points acts as noise and complicates erodibility estimation. It
is also found that the rate of convergence is significantly im-
pacted by the structure of the initial distribution of erodibil-
ity estimates; isotropic initial distributions exhibit slow con-
vergence, while initial distributions with geographically lo-
calized structure converge more quickly. Experiments using
observations of Deep Blue AOD retrievals from the MODIS
satellite sensor result in erodibility estimates that are consid-
erably lower than the values used operationally. Verification
shows that the use of the tuned erodibility field results in bet-
ter predictions of AOD over the west Sahara and the Arabian
Peninsula.

1 Introduction

Uncertainty in initial conditions, incorrect boundary condi-
tions, and model inadequacies render forecasts of the atmo-
sphere generated using numerical weather prediction (NWP)

models inaccurate. To obtain the best initial conditions pos-
sible, estimation techniques (e.g, data assimilation) are used
to combine the state estimates given by the model and
those given by the observations. There are a multitude of
data assimilation (DA) techniques used in the geophysical
community. The first truly operational DA systems have
been based on relatively simple 2-D variational techniques
Zhang et al. (2008). Apart from 2-D techniques, 4-D vari-
ational techniques have been implemented in both research
and quasi-operational modes (Wang et al., 2001; Uno et
al., 2008; Benedetti et al., 2009). Dubovik et al. (2008)
have implemented an inversion technique to retrieve global
aerosol source. Perhaps the most promising development for
broad applications, however, has been in the application of
ensemble-based techniques to not only estimate the state but
also to tune aerosol source functions (Lin et al., 2008a, b;
Schutgens et al., 2010; Sekiyama et al., 2010; Yumimoto and
Takemura, 2011; Huneeus et al., 2012). Recently Schutgens
et al. (2012) have developed an ensemble Kalman smoother
to estimate aerosol emissions.

Ensemble-based assimilation forms an important class
of data assimilation methodologies. Ensemble-based DA
was introduced into atmospheric and oceanic sciences by
Evensen (1994) and Houtekamer and Mitchell (1998). Since
then the scientific community has actively researched the the-
ory and practices of ensemble-based data assimilation. The
theoretical development includes different formulations of
the ensemble filter (Bishop et al., 2001; Tipett et al., 2003;
Zupanksi, 2005; Hodyss, 2012) and their intercomparisons
(Lawson and Hansen, 2004; Lei et al., 2010). Ensemble-
based DA has been applied to an entire gamut of atmo-
spheric (Majumdar et al., 2002; Whitaker et al., 2004) and
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oceanographic problems. The performance of ensemble DA
in mesoscale models has been investigated by Dirren et
al. (2007) by using radio soundings and aircraft observa-
tions in the Weather Research and Forecasting Model. Wang
et al. (2008) have explored a hybrid DA technique using
the WRF model over the North American domain with ra-
diosonde observations. Szunyogh et al. (2008) showed that a
global analysis and forecast can be efficiently produced us-
ing the parallelized local ensemble transform Kalman filter.
Keppenne and Rienecker (2002) have designed and imple-
mented a parallelized multivariate ensemble Kalman filter in
an ocean model in the pacific domain using sparse tempera-
ture data.

Apart from incorrect initial conditions, imperfections in
model parametrizations are also responsible for inaccurate
forecasts. The technique of ensemble-based parameter esti-
mation (Annan et al., 2005) has been employed by numerous
researchers as a means of attempting to reduce model error.
Ensemble-based parameter tuning, apart from state estima-
tion, is becoming increasingly popular in the estimation com-
munity. The ensemble Kalman filter was employed in Aksoy
et al. (2006) to estimate multiple parameters in a sea-breeze
model. The EnKF was used in Hacker and Snyder (2005)
for PBL state estimation by assimilating simulated surface
mesonet observations. That work concluded that the PBL
state can be effectively constrained by surface observations,
thereby reducing forecast errors. The moisture availability
parameter was also correctly estimated. Encouraged by these
results Hacker and Rostkier-Edelstein (2007) implemented
the EnKF to estimate the PBL profiles using real surface ob-
servations. It was found that the error could be reduced by up
to 85 % compared to the case when data are not assimilated.
Model imperfection not only results in significant forecast
errors but also distorts the estimates of model predictability
(Khade and Hansen, 2004).

The previously mentioned success with ensemble DA
methods is suggestive of a number of aerosol-related prob-
lems. Aerosol modeling and estimation of uncertainties in
its emission and transport is an important subset of atmo-
spheric sciences (Cakmur et al., 2006; Cooke and Wilson,
1996; Lavoue, et al., 2000; de Meij, et al., 2006; Textor, et al.,
2007). Already skill improvement in aerosol loadings by en-
semble DA techniques is well documented (aforementioned
(Lin et al., 2008a, b; Schutgens et al., 2010; Sekiyama, et
al., 2010; Yumimoto and Takemura 2011)). A second area of
great promise is application to model parameterization prob-
lems. Perhaps greatest of these are aerosol source functions,
which are widely known to have high uncertainties and often
drive significant divergence between aerosol modeling sys-
tems. Given the relative simplicity of chemical transforma-
tional processes associated with dust relative to other species,
as well as its strong, clear and intercontinental signal in re-
mote sensing data sets, dust is an ideal species to examine
how ensemble data assimilation can impact not only aerosol
loading, but other model parameterizations such as source

functions. Indeed, while commonly used dust models often
converge in observables such as bulk regional aerosol optical
depth (AOD), there is considerable divergence in lifecycle
processes and budgets (Huneeus, et al., 2011).

In this study we perform a series of studies to exam-
ine the application of ensemble-based methods to improve
model simulations of dust production. Throughout this work
Coupled Ocean/Atmosphere Mesoscale Prediction System
(COAMPS) is used in the North Africa/Saharan domain. In
this work,

– the ensemble adjustment Kalman filter (Anderson,
2001; Karspeck and Anderson, 2007) is employed
within the DART framework (Anderson et al., 2009;
Whitcomb, 2008),

– the aerosol state (AOD and the dust concentration) and
parameters (erodibility as a proxy for source region) re-
lated to dust production are estimated by assimilating
observations of AOD, and

– estimation experiments with both simulated and real
satellite observations are performed.

In this work thestateincludes the meteorological state and
the aerosol state. The meteorological state is temperature,
three components of wind speed, and humidity. The aerosol
state is dust concentration and AOD. The augmented state is
the erodibility. This paper is organized as follows. The model
is described in Sect. 2. The tuning experiments using simu-
lated observations are presented in Sects. 3, 4 and 5. Sec-
tion 3 describes the setup of the simulated data tuning exper-
iments. Section 3 also discusses the tuning of erodibility at a
particular grid point in detail. The tuning of erodibility over
the whole domain is discussed in Sect. 4. In this section the
perturbations in the erodibility at each grid point are assumed
to be independent. The case of correlated perturbations in
erodibility is considered in Sect. 5. The tuning experiments
with real satellite data are described in Sect. 6. The tuned
erodibility is used to run verification experiments whose re-
sults are presented in Sect. 6. The conclusions of this work
are summarized in Sect. 7.

2 COAMPS Mesoscale aerosol model

The meteorological community, over the years, has devel-
oped many mesoscale models (e.g., WRF (Skamarock et al.,
2005) for researching and forecasting weather phenomenon.
COAMPS (Hodur, 1997; Chen et al., 2003) is a mesoscale
model used to simulate various atmospheric (Doyle and
Bond, 2001) and oceanographic phenomenon (May et al.,
2011). It is used not only for basic research, but opera-
tionally by the US Navy. The atmospheric model is non-
hydrostatic and fully compressible. It allows for nested grids
in which the resolution can increase up to a few meters.
COAMPS employs staggered horizontal and vertical grids
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with a terrain-following sigma Z system for the vertical co-
ordinate. COAMPS includes advanced parameterizations for
subgrid scale mixing, radiation, cumulus parameterization,
and explicit moist physics. In this work COAMPS is run
with 30 vertical levels. The highest model level is at 31 km.
Throughout this work the model uses a resolution of 81 km
in the horizontal.

Both the research and operational versions of COAMPS
includes a dust module to model the generation, transport and
physical effects of aerosols particles, including their size and
physical transformations (Liu et al., 2003, 2007). The module
includes simulation of sinks such as sedimentation, dry depo-
sition and wet removal. The integration of the aerosol mod-
ule provides outputs of various quantities like mass loading,
size distribution, optical depth etc. COAMPS can be used for
research purposes.

The details of the COAMPS dust aerosol model are as fol-
lows. The vertical dust fluxF at a particular grid point(i,j)

is given by Westphal et al. (1988) as

Fi,j = k × αi,j × u4
∗i,j , (1)

where the subscripti,j denotes the latitude and longitude
index, respectively.

k = 1.42× 10−5

αi,j is the erodibility,u∗i,j is the friction velocity in m s−1.
The dust is generated only ifu∗i,j > u∗t i,j , whereu∗t i,j is

a threshold friction velocity.
The amount of dust mobilized depends upon the transfer of

(atmospheric) momentum to the earth’s surface. This trans-
fer of momentum is proportional to the surface stressτ (Gill,
1982). The friction velocityu∗ is related to the surface stress
throughu∗ =

√
τ/ρ whereρ is the density. Using theory and

experimentation it is shown that the dust flux is proportional
to the fourth power of the friction velocity (Gillette and Passi,
1988; Nickling and Gillies, 1993). This proportionality forms
the basis of Eq. (1). The dust is mobilized because the surface
wind erodes the land surface. Different land surfaces have
different susceptibilities to erosion by wind. The susceptibil-
ity basically depends on the type of soil covering the land
surface. For example, a land surface covered by thick veg-
etation is less susceptible to erosion than one covered with
loose and disturbed soil. The production of dust requires a
threshold friction velocity to be reached before dust particles
can be lifted from the surface. This threshold friction veloc-
ity is represented byu∗t . At a given grid point dust is not
mobilized foru∗ < u∗t . The values ofu∗t for various land
types have been estimated using field experiment data and
laboratory experimentation (Gillette and Passi, 1988). Vari-
ous modeling studies (Westphal et al., 1988; Liu et al., 2007)
use a value ofu∗t = 0.6 m s−1 for all land types for simplicity.

Given a particular model grid box, the whole grid box need
not be covered by erodible land. Therefore, even ifu∗ ex-
ceedsu∗t , only a part of the grid box that is erodible may

emit dust. This is quantified by the erodibilityαi,j in Eq. (1)
as a spatial weighting function. The erodibility gives the frac-
tion of the grid box covered by dust. At each grid point the
erodibility has a value between 0 (no emission) and 1.0 (all
emission). In this workα is used to denote the erodibility
vector whose components

(
αi,j

)
are the erodibilities at var-

ious grid points. Accurate forecasts of dust production and
transport depend critically on an accurate map of erodibility
(Liu et al., 2007). The value of the constantk in Eq. (1) is
taken from Westphal et al. (1987), which in turn was moti-
vated by Gillette (1981). This value ofk is the slope of the
linear fit to the scatter plot of experimentally obtained flux
data for various values of friction velocity. Since the current
study focuses on satellite data assimilation, we model only
the actively optical and transportable dust with an assumed
diameter of 2 microns for microphysical purposes.

The amount of dust in the atmosphere is quantified by the
dust concentration(cm) in µg m−3. The AOD is another mea-
sure of the amount of dust. The AOD at a particular grid point
i,j is obtained by vertically integrating the dust light extinc-
tion over the atmospheric column, which is simply defined
here as the mass concentration times a mass extinction effi-
ciency(ae) taken as 0.5 m2 g−1.

AODi,j =

∫ (
aecmi,j

)
dz,

wherez is the height. Hence, here we are assuming that AOD
is linearly proportional to total mass concentration. In reality,
dynamics of dust particle size, especially large particles near
sources can be quite complicated. However, for the purpose
of this work this assumption is valid because we want to tune
the dust emitting areas to the first order.

The dust generated at various locations in the domain is
mixed vertically and advected horizontally. The dust in the
atmosphere at a given grid point and vertical level is due to
local generation and that advected from upstream areas. The
share of the advected and local dust in the total dust depends
on meteorological conditions, specifically the wind field. The
amount of local dust depends on the erodibility and friction
velocity at that grid point. It is possible that for a particu-
lar grid point at a particular time at some vertical levels the
advected dust dominates, while at other levels the local dust
constitutes the major portion of the dust. In general the total
dust contains contributions from local production and dust
transported from other areas. Since AOD is the vertical inte-
gral of dust concentration, the total AOD at a grid point has
contribution from local and transported dust.

The AOD at a particular grid point can be expressed as

AODi,j = AODlocal
i,j + AODtransport

i,j .

The transported AOD is due to dust that is produced in up-
stream regions and advected by winds. The local generation
is given by the dust fluxFi,j . Therefore,

AODi,j =

∫ ∫ (
aeFi,j

)
da dt + AODtransport

i,j .

www.atmos-chem-phys.net/13/3481/2013/ Atmos. Chem. Phys., 13, 3481–3500, 2013
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The horizontal area element is represented bydaand the time
step is given bydt. Substituting for the dust flux from Eq. (1),
AODi,j can be expressed as

AODi,j =

∫ ∫ (
aek × αi,j × u4

∗i,j

)
da dt + AODtransport

i,j . (2)

Though the sink term is not mentioned in these equations, the
actual model calculates the removal of the aerosol. The dust
that is emitted locally but not advected away is included in
the transport term. Equation (2) decomposes the total AOD
into the local and advected component. This decomposition
is central to the understanding of the tuning of erodibility as
will be evident in Sect. 4. The erodibility plays an impor-
tant role in the calculation of AOD. The determination of the
value ofα at various locations on the earth is a formidable
task. Many researchers (Westphal et al., 1988; Tegen and
Fung, 1994; Park and In, 2003; Walker et al., 2009) have
made significant efforts to produce maps ofα for impor-
tant dust producing regions of the earth. The efforts made
by these researchers involve the analyses of different types
of landforms and the variation of their properties with season
etc. These efforts involve the visual inspection of atlases and
also observations of AODs.

In the current work we aim to use satellite observations of
AOD to estimateα in the North African region by employing
an ensemble Kalman filter based estimation approach. Note
that the satellite observations of the total AOD, that is the left
hand side of Eq. (2) are available. Observations of local and
transported AOD are not separately available. In the next sec-
tion we describe the estimation experiments with simulated
AOD data.

3 Observation System Simulation Experiment (OSSE)

The ultimate objective of this work is to improve the fore-
casts of AOD over the Sahara by tuningα using satellite
observations of AOD. However, prior to performing exper-
iments with satellite data, an Observation System Simulation
Experiment (OSSE) is performed. OSSEs are important tools
to assess the amenability of a model to tuning. The OSSE
uses simulated observations drawn from theperfect model
experiment. A particular set of values of erodibility are de-
fined to be correct (or perfect). Observations of AOD are
drawn from a model run using the defined correct values of
erodibility. An imperfect model is defined by choosing val-
ues ofα different from the perfect model values.

The meteorological boundary and initial conditions are ob-
tained from Navy Operational Global Atmospheric Predic-
tion System (NOGAPS) global model (Hogan and Rosmond,
1991). Ensemble analysis boundary conditions are used ev-
ery 6 h. These ensemble analysis are obtained by the local
Ensemble transform technique (McLay, et al., 2010). The
ensemble analysis is used as initial conditions so that each
ensemble member is a different realization of meteorology.

Since each ensemble members corresponds to a different re-
alization of initial and boundary conditions the advection
(that is wind) is different for each ensemble member. The
resulting spread in the boundary layer wind is of the order of
0.7 m s−1. For the lateral dust boundary conditions we have
assumed that dust does not enter the domain, which is quite
large. For the period of our study there is no dust storm east
of the Arabian Peninsula. So these dust boundary conditions
approximately hold. This approximation may impact the es-
timation results in the real data experiments but it does not
impact the OSSE results in any way.

The perfect model experiment uses a particular ensem-
ble member of meteorology. The AODobservationsfrom
the assumed perfect model are assimilated into the imperfect
model and the following question is posed: Are the perfect
values of erodibility recovered by the ensemble-based tun-
ing? Because one has defined the imperfect model to be dif-
ferent from perfect model only inα, the OSSE represents the
best-case scenario. Compared to nature the model has many
errors apart from imperfectα. Hence, if the perfectα values
are not recovered in the OSSE, thenα will certainly not be
tuned correctly using real data.

The OSSE is run using the meteorology of June/July 2009,
corresponding to the well-known peak in the Saharan dust
production and its westward transport into the subtropical At-
lantic Ocean. Throughout this work the meteorological state
is not estimated. The boundary conditions used contain ob-
servational information. The operational values ofα over the
Sahara domain are shown in Fig. 1a and are used in the oper-
ational run of COAMPS. These values are used here for the
perfect model run. An index of the frequency with which the
threshold friction velocity is achieved in June/July 2009 at
12:00 Z is shown in Fig. 1b. This index is the fraction (ex-
pressed in percent) of the total days in June/July 2009 pe-
riod thatu∗ exceeded 0.6 m s−1 at 12:00 Z. The observations
of AOD are used to update the AOD, dust concentration,
and the erodibility map. Note that the dust concentration is
a three-dimensional field. Operationally, a threshold value
of u∗t = 0.6 is used. However, using the threshold value of
u∗t = 0.6 in the OSSE would tune values only in high fric-
tion velocity regions, thus complicating the interpretation of
OSSE results. Therefore, in the OSSE a value ofu∗t = 0.0 is
used.

Throughout this work an ensemble size ofN = 40 is used.
Each ensemble member has a different initial value ofα. At
each grid point the ensemble forαi,j is obtained by sam-
pling 40 ensemble members from a Gaussian distribution
ξ (0.25,0.25) where 0.25 is the mean and the standard de-
viation (spread). The ensemble members with negative val-
ues are set equal to 0.01. This distribution defines the initial
guess. The initial guess is also called the prior orbackground.
The maps of the mean and standard deviation of this initial
guess are shown in Fig. 1c and d, respectively. The model is
spun up by integrating ensemble members for 60 h starting
at 00:00 Z, 10 June 2009. The first DA cycle is implemented

Atmos. Chem. Phys., 13, 3481–3500, 2013 www.atmos-chem-phys.net/13/3481/2013/
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 Fig. 1. Shows the mean and standard deviation of erodibility (α) map, except for(b). The vertical colorbar applies to(b). The upper
horizontal colorbar applies to the left column. The lower horizontal colorbar applies to the right column (except for(b)). The mean and
standard deviations are those for the OSSE.(a) These operational values are used as the perfect values of erodibility (α) in the OSSE.(b) An
index of the strength of friction velocity during June/July 2009. The color gives the fraction (expressed as percentage) of the total number
(48) of times the friction velocity exceeds a value of 0.6 m s−1. For example, in the Horn of Africa the friction velocity is very strong,
exceeding 0.6 m s−1 at all times during the 48 cycles. See the vertical colorbar. The map ofu∗ (not shown) looks different at each update
cycle.(c) and(d): mean and standard deviation of the initial guess ofα map, respectively, for the tuning experiment described in Sects. 3,
4 and 5.(e) and(f): mean and standard deviation of the map (after 48 update cycles), respectively, for the tuning experiment described in
Sect. 4.(g) and(h): mean and standard deviation of the tunedα map, respectively, for the tuning experiment with correlation length scale
l = 20 and cutoff radiusc = 20 described in Sect. 5.(i) and(j) : mean and standard deviation of the tunedα map, respectively, for the tuning
experiment with correlation length scalel = 5 and cutoff radiusc = 5 described in Sect. 5.

at 12:00 Z, 12 June 2009. The DA cycling frequency is 24 h.
That is, the DA cycle (update) is implemented at 12:00 Z,
every day. This frequency for update is chosen because real
satellite data are available at 12:00 Z every day. The OSSE is
run for 48 days, ending on 18 July 2009 at 12:00 Z, so that
there are 48 update cycles. Only the AOD is observed. The

dust concentration and erodibility are not observed. In this
work meteorological observations are not assimilated. The
observational error is set to 10 % of the mean AOD observa-
tion.

Data assimilation experiments with only aerosol state
(dust concentration and AOD) estimation were performed.

www.atmos-chem-phys.net/13/3481/2013/ Atmos. Chem. Phys., 13, 3481–3500, 2013
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The forecasts did not improve with aerosol state estimation
alone. The results from this experiment show that improv-
ing the initial conditions in the dust concentration(cm) is not
important. This is because the source and sinks of dust are
strong over a 24 h period and play the key role in deciding
the forecast. In other words, over a 24 h period the sources
dominate the dust transport especially over areas of strong
dust generation.

The theory underlying parameter estimation is the same
as that of state estimation. Therefore, the state is augmented
by the parameters (α) and data are assimilated. However, the
dynamical equations to integrate the parameters in time for
an untuned model are not known, which gives rise to some
problems. The next section describes these problems and the
methodology used in this work to address these problems.

3.1 Spread inα

The meteorological state variables (temperature, the three
components of wind speed and humidity) have dynamics
evolution equations that are used to integrate these variables
forward in time between consecutive updates. However, in
the imperfect model the parameterα (which is tuned in this
work) does not have a dynamics evolution equation. At a par-
ticular grid point we use the following equation to step for-
ward each ensemble member ofαi,j

αk
ij (t + 1) = αk

ij (t) ,

wherek denotes a particular ensemble member andt denotes
time. This is equivalent to using dα/dt = 0 as the dynamical
equation. If the trueα is constant in time, this equation is
exact for a tuned system but is inexact for an untuned model.

The dynamic evolution equation forα, used in this work,
gives rise to another issue – that of spread inα. Theory of
data assimilation states that each time data assimilation up-
datesα, the spread inα must decrease or remain constant.
The smaller the spread inα, the less impact observations
in succeeding update cycles will have. Because dα/dt = 0,
the prior spread at a particular update is simply the posterior
spread at the last update cycle. This problem is addressed
in this work by using conditional inflation (Aksoy et al.,
2006). If the posterior spread inαi,j falls below a particular
threshold value (1αth), the posterior perturbations inαi,j are
scaled so that the spread is equal to a particular fixed value
(1αfix).

αk
ij (t + 1) = αk

ij (t) + 1αfix

(
αk

ij (t) − α̃ij (t)
)
,

whereα̃i,j is the mean erodibility.
In this work the threshold value used is1αth = 0.05 and

1αfix = 0.05. These values are chosen after experimentation
with different values. If the mean of posteriorαi,j is close to
the limits of αi,j (0 and 1), then a different strategy is em-
ployed. If the mean is less than 0.05 or more than 0.095, the

spread is set equal to 0.015. Also, if the posterior mean de-
creases below 0.03 (increases above 0.97) it is reset to 0.03
(0.97). One more issue is the risk of unphysical values of
the posterior parameter ensemble. Negative values ofαi,j are
physically meaningless and it is possible that an update re-
sults in negative values for some members of the posterior
αi,j . In this work such ensemble members with negative val-
ues are set equal to 0.01.

Before presenting the results of tuning over the whole do-
main, in the next section the tuning ofαi,j (at a single grid
point) in the OSSE is explained.

3.2 Tuning at a grid point

It is instructive to consider the tuning ofαi,j at a single
grid point, allowing the illumination of various issues in-
volved in ensemble-based parameter estimation. The full
three-dimensional COAMPS model is run with assimilation
of simulated AOD data every 24 h. In the experiment de-
scribed in this section the AOD is observed at all grid points.
However, eachαi,j is updated using AOD observation only
at that grid pointi,j . This is because in this experiment the
cutoff radius is set equal to zero (Hamill, et al., 2001).

The tuning ofαi,j at point K (Fig. 1a) as the update cycles
proceed is shown in Fig. 2a. It shows the mean and standard
deviation of theαi,j estimate as the update cycles proceed.
The red line shows the truth; that is, the operational value of
αi,j at this point K. The mean and standard deviation of the
initial guess is 0.3 and 0.2, respectively. As the update cycles
proceed the estimate ofαi,j approaches the correct value. For
this grid point, by 20 cycles the correct value is recovered.
The estimates of AOD are shown in Fig. 2d.

In this example theαi,j update uses AOD observations
only at the same grid point, the mean of the posterior (or
update) at any update cycle is given by

αup = αprior +
cov(αprior,AODprior)

var(AODprior) + var(AODobs)

[
AODobs− AODprior

]
. (3)

In this equation the subscripti,j is not used. All the quanti-
ties in this equation are at grid point K. This equation is the
Kalman equation for parameter estimation and is presented
here to clarify the role of various quantities in the estimation.
In this equation AODobs represents the AOD observation.
The observational error variance is given by var(AODobs).
The other terms are calculated from the short-term ensem-
ble forecast (the prior). The covariance cov

(
αprior,AODprior

)
plays an important role in the update equation. This covari-
ance exists because of the relation between AODprior and
αprior, which is given by Eq. (2). The short-term ensemble
forecast gives 40 different AOD realizations. Each realiza-
tion of AODprior corresponds to a particular realization of lo-
cal variables, non-local variables and meteorology. The local
(at point K) variables are AODprior and u∗. The non-local
variables areα andu∗ at regions that are upstream of point
K. The meteorological variable of interest is wind because
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 Figure 2 : Tuning of α  at a particular grid point marked K  in Figure 1a. The 
estimates of various quantities at this grid point are shown. See section 3(ii) 
for discussion.  

(a) Estimates of α  ( means and spreads).  

(b) The time series of covariance between α  and AOD is shown in green.  

(c) The prior ensemble members at update cycle 6. This update cycle is 
marked with squares in (a), (b) and (d). The red square shows the mean of 
the ensemble.  

 (d) Estimates of AOD (means and spreads). 

Fig. 2.Tuning of at a particular grid point marked K in Fig. 1a. The estimates of various quantities at this grid point are shown. See Sect. 3.2
for discussion.(a) Estimates ofα (means and spreads).(b) The time series of covariance betweenα and AOD is shown in green.(c) The
prior ensemble members at update cycle 6. This update cycle is marked with squares in(a), (b) and(d). The red square shows the mean of
the ensemble.(d) Estimates of AOD (means and spreads).

it advects dust from upstream regions. Therefore, the uncer-
tainty in the AODprior ensemble is due to the uncertainties in
localα, localu∗, upstreamα, upstreamu∗, and winds. From
Eq. (2) the uncertainty in prior AOD can be written as

Var
(
AODprior

)
= Var

(
AODlocal

prior

)
+ Var

(
AODtransport

prior

)
. (4)

The contribution of uncertainty in local variables is contained
in the first term on the right-hand side (rhs) of Eq. (4). The
contribution from non-local variables and winds is given by
the second term on the rhs of Eq. (4). Out of the total spread
of AODprior only a part is correlated with theαprior. This part
is the first term of Eq. (4). The remaining spread is due to
that in the transported AOD given by the second term that
acts as advective additive noise. Given a particular magnitude
of advective noise, the strength of the covariance between
AODprior andαprior depends on the magnitude of the friction
velocity. The time series ofu∗ and cov

(
αprior,AODprior

)
is

shown in Fig. 2b. The covariance (scaled up by a factor of
10) is shown by the green curve. The covariance tends to be
higher for higher values ofu∗. This is because stronger local
generation helps the covariance signal to rise above advec-

tive noise. The prior AOD andα ensembles at update cycle 6
are shown in Fig. 2c. The update cycle 6 is marked on each
of the curves in Fig. 2a, b and d by squares. The red square
in Fig. 2c shows the mean of the prior ensemble. The spread
in the prior AOD ensemble in Fig. 2c includes spread due
to localα and additive noise. A finite-size ensemble is used
to estimate the true covariance. Because of the small size of
the ensemble, it is expected that the ensemble estimate of
covariances will not match the true covariance. Such covari-
ances are termed spurious. Spurious covariance is basically
an inaccurate estimate of the true covariance due to sampling
errors. For example (Fig. 2b), the negative covariance val-
ues at update cycle 4 and 11 are spurious. The finite (small)
size of the ensemble (40 in this work) is the reason for these
spurious covariances.

The estimate of covariance obtained using the ensemble
plays a central role in deciding the quality of tuning. Spuri-
ous covariance can seriously hamper successful tuning, and
since they are unavoidable it is important to properly account
for them. This issue of spurious covariances is especially
important when AOD observations at many different spatial
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Figure 3 : Illustration of cutoff radius and correlation functions with different 

length scales.  The length scales are specified in units of grid points. The 

dashed lines show the Gaspari-Cohn localization functions with different 

cutoff length scales (c). The solid lines are correlation functions.  For 

example, the solid blue line shows the correlation between α  at the grid point 

marked 0 on the xaxis and the neighboring grid points for l=20.  

 

 

 

 

 

 

Fig. 3. Illustration of cutoff radius and correlation functions with
different length scales. The length scales are specified in units of
grid points. The dashed lines show the Gaspari–Cohn localization
functions with different cutoff length scales(c). The solid lines are
correlation functions. For example, the solid blue line shows the
correlation betweenα at the grid point marked 0 on the x-axis and
the neighboring grid points forl = 20.

locations are available and used in the estimation. In princi-
ple,α at a single grid point is updated using all available ob-
servations of AOD. The covariance betweenα and AOD at
the observed grid point determines the weight given to the in-
novation in the calculation of the increment. This covariance
is calculated using the ensemble. If a very large ensemble
size is used, the ensemble covariance is more accurate. With
a small ensemble size the estimated covariance tends to be in-
accurate, especially if the true covariance is small. The true
covariance with a grid point geographically far away tends
to be smaller, and hence the estimated covariance should be
trusted less for far away grid points. The concept of a cutoff
radius or a localization radius is widely used in ensemble-
based filtering work to address the problem of spurious co-
variances (Hamill, et al., 2001). The cutoff radius,c, dictates
the distance over which observations are used to calculate the
correction. This is achieved by defining a (localization) func-
tion that decays as one moves away from the grid point being
tuned. The Gaspari–Cohn function (Gaspari and Cohn, 1999)
is used in this work. The width of this function is governed by
the value ofc. In the current work, we will run experiments
with various values ofc. The functions corresponding to the
values ofc used in this work are shown in Fig. 3 as dashed
curves for a single grid point. This grid point is marked 0 on
the x-axis. The dashed cyan curve shows the Gaspari–Cohn
function corresponding toc = 5 grid points. In this work the
distance is mentioned in units of grid points. The horizontal
resolution used in this work is 81 km (5 grid points is equal
to 400 km).

The functions peak at the grid point marked 0. This is the
grid point whereα is being tuned. The Gaspari–Cohn func-
tion value at a particular grid point is used as a multiplicative
factor to decrease the weight given to the observation in cor-
recting theα at that grid point. The functions are shown in
one dimension along a latitude circle in Fig. 3. However, ac-
tual functions are defined in two dimensions. Practically, ob-
servations at all grid points more than a distance of 2c from
the point of interest do not have any impact on the correc-
tions.

In the next section the results of tuningα (all over the do-
main) is described.

4 Tuning with uncorrelated α perturbations in OSSE

In the last section it was assumed that observations of AOD
are available at all points in the domain, whereas in reality ac-
tual satellite observations are available for many (but not all)
locations. At any given update cycle the satellite observations
are sparse. This sparseness of satellite observations is mim-
icked in the OSSE by observing AOD at 20 % of grid points
in the domain. These 20 % grid points are randomly chosen
at each update cycle. In the satellite observations, however,
the sparse regions need not change randomly with time. The
observational error is set equal to 10 % of the mean AOD
observation. This observational error is motivated by AOD
satellite data whose error is at least 10 % of mean observa-
tion.

We begin with an experiment in which the cutoff radius is
set to zero. This means thatαi,j at any given grid point uses
only the AOD observation at that grid point. The mean and
standard deviation of the initial guessα is shown in Fig. 1c, d.
The perturbations inα in initial guess are uncorrelated. The
result of this experiment; that is, the ensemble mean of the
tunedα (after 48 cycles) over the domain is shown in Fig. 1e.
The uncertainty in this estimated mean is given by the stan-
dard deviation in the ensemble which is shown in Fig. 1f. Be-
cause this experiment is an OSSE we know the perfect values
of erodibility at every grid point which is shown in Fig. 1a.

If the ensemble estimation worked correctly, then the
tuned values in Fig. 1e should match those in Fig. 1a. Com-
paring Fig. 1e to Fig. 1a, it is clear that the ensemble-based
tuning is able to recover the perfect values ofα to a large
extent. The estimation is especially successful over the Ara-
bian Peninsula and parts of the domain where true value of
α is small. The assimilation of data constrains the tuned val-
ues quite well, in that the standard deviation in the tuned en-
semble decreases in Fig. 1f compared to Fig. 1d. Some areas
(like the Horn of Africa) have a very small spread (less than
0.025). This is because the mean in these areas decreases be-
low 0.05 and the spread in such areas in set equal to 0.015
(see Sect. 3.1).
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Figure 4 : Yellow color points show the (correctly) tuned grid points. The 

white or clear grid points show the untuned points.  The (correctly) tuned 

point  lies  within 0.05 absolute units of the perfect value at a given grid 

point. The blue colored contours enclose areas with strong friction velocity ( 

Figure 1b) . The red contours enclose areas with high erodibility (Figure 1a).  

(a) Shows the quality of tuning for the tuning experiment corresponding to 
Figure 1e.  

(b) Shows the quality of tuning for the tuning experiment corresponding to 
Figure 1i.  

 

Fig. 4. Yellow color points show the (correctly) tuned grid points.
The white or clear grid points show the untuned points. The (cor-
rectly) tuned point lies within 0.05 absolute units of the perfect
value at a given grid point. The blue colored contours enclose areas
with strong friction velocity (Fig. 1b) . The red contours enclose ar-
eas with high erodibility (Fig. 1a).(a) Shows the quality of tuning
for the tuning experiment corresponding to Fig. 1e.(b) Shows the
quality of tuning for the tuning experiment corresponding to Fig. 1i.

The success of the tuning experiment is further quanti-
fied by comparing the tunedα value at each grid point to
the trueα value at that grid point.α at a particular grid
point is deemed to be (correctly) tuned if its tuned value
lies within 0.05 of the true value at that grid point. Other-
wise it is deemed to be untuned. This criterion of 0.05 (in
absolute units ofα) is an arbitrary choice. This criterion is
used throughout this work to determine the quality of tun-
ing. The distribution of the tuned and untuned points over
the domain is shown in Fig. 4a. The grid points colored with
yellow are those tuned successfully. The white grid points
are the untuned grid points. The blue contours enclose ar-
eas with high friction velocity. These contours correspond
to areas in which the friction velocity is above 0.6 m s−1 at
least 20 % of times (Fig. 1b). The red contours enclose areas
with high true erodibility (more than 0.25). Some of the areas
with high friction velocity are marked S1, S2 and S3. Notice
that in these areas the tuning is successful. In the Horn of
Africa (S1) almost all the grid points are successfully tuned.
Recall that the friction velocity gives rise to the covariance
signal. Consequently areas with strong friction velocity tend
to be tuned well. Some areas with weak friction velocity are
marked W1, W2, W3 and W4. These areas tend to be poorly
tuned. Consider area W1. Note that W1 is an area of weak
friction velocity sandwiched between areas of high friction
velocity on its north and south. Not only does it have a weak
signal but also high advection noise because it lies in an area
of high erodibility (it is enclosed by the red contour). As
pointed out in Sect. 3.2, the advection noise is additive noise.
The combination of low friction velocity (small local signal
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Figure 5 : The tuning curves for OSSE experiments with different values of  l 

and c.  Each curve shows the percentage of grid  points tuned correctly as 

the update cycles proceed. The values of l and c are specified in grid point 

units. A distance of 10 grid points corresponds to 800 km. For this problem a 

correlation length scale of 5 grid points  (400 km) gives the best results. See 

sections 4 and 5 for discussion. 

 

Fig. 5. The tuning curves for OSSE experiments with different val-
ues ofl andc. Each curve shows the percentage of grid points tuned
correctly as the update cycles proceed. The values ofl and c are
specified in grid point units. A distance of 10 grid points corre-
sponds to 800 km. For this problem a correlation length scale of
5 grid points (400 km) gives the best results. See Sects. 4 and 5 for
discussion.

of AOD), and large amounts of advected AOD makes it diffi-
cult to correctly estimate the erodibility parameters. The sit-
uation is similar with area W3 in the Arabian Peninsula and
W2 in the center of the domain. The area W4 in the south of
the Sahara has weak friction velocity and low erodibility.

Using this criterion of 0.05, the number of grid points suc-
cessfully tuned is counted and expressed as percentage of
the total number of grid points. This percentage is shown in
Fig. 5 as the dashed magenta curve. By the end of 48 update
cycles, about 70 % of the points in the domain are correctly
tuned.

The experiment discussed above (dashed magenta curve in
Fig. 5) used a value ofc = 0. However, using a cutoff radius
of 0 prohibits the update at any grid point from using obser-
vations in adjoining areas. To assess the impact of using more
observations, tuning experiments are run with non-zero val-
ues ofc. The solid magenta (squares) curve in Fig. 5 shows
the percentage of grid points tuned correctly for an experi-
ment with uncorrelated initialα perturbations and a cutoff
radius equal to 20 grid points. Clearly, the results degrade
compared to thec = 0 experiment (dashed magenta curve)
even though the update ofα at any given grid point uses
more observations inc = 20 experiment than that inc = 0
experiment. Recall that apart from the observation of AOD, a
good estimate of the covariance betweenα at the point being
updated and AOD at the location of observation is also im-
portant for correct tuning. Apparently, in thec = 20 tuning
experiment the ensemble does not correctly estimate the co-
variance betweenα at any given grid point being updated and
the neighboring location where the observation is available.
This leads to the degradation of the tuning because along
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with many observations, the update uses many bad covari-
ances. The reason for the bad covariances is a combination
of the effect of advective noise and the small size of the en-
semble. The covariance betweenα at a particular point and
AOD at another point is partly controlled by the correlation
betweenα perturbations at these two points. For the exper-
iment described in this section, the updates do not result in
correlating theα perturbations; that is, the initially uncor-
relatedα perturbations remain uncorrelated at the end of all
the update cycles. In the current experiment the perturbations
are uncorrelated, and hence dust generated by all the points
within the neighborhood of point of interest contributes to
the advective noise. The small ensemble finds it difficult to
capture the local signal due to this advective noise resulting
in spurious covariances. Hence, including the observations of
AOD from neighboring grid points degrades the tuning rather
than improving it. The solid magenta curve shows the result
of the experiment withc = 5. Its performance is intermediate
betweenc = 0 andc = 20. The experiment withc = 10 (ma-
genta circles) gives almost the same result as that withc = 20.

However, one would like to use as many observations as
possible by settingc > 0. The main hurdle to usingc > 0 is
the advective noise. What can be done to address this prob-
lem? A possible solution to this problem is to correlate the
perturbations in neighboringα, thereby reducing the advec-
tive noise. Also, the results of the experiments in this section
suggest that the assimilation of observations does not impose
a correlation structure in theα field. That is, the observa-
tions are unable to recover the correlation structure (if any)
between initially uncorrelatedα. Can the assimilation of ob-
servations recover the correlation structure if theα perturba-
tions are initially correlated? The next section considers the
issue of initially correlatedα perturbations.

5 Tuning with correlated α perturbations in OSSE

In this section the initial perturbations ofα are spatially cor-
related. Some examples of the correlation functions between
the α perturbations are shown in Fig. 3. The point marked
0 on the x-axis is the point of interest. The solid blue curve
gives the correlation between theα perturbations at point 0
and that at various neighboring points along the latitude cir-
cle corresponding to a correlation length scale ofl = 20 grid
points. The standard deviation of this correlation function
is l = 20. This correlation is constructed by first sampling
from (uncorrelated)ξ (0.25,0.25) and then constructing a
spatially smoothed perturbation for each ensemble member
separately. These weights are chosen proportional to a two-
dimensional Gaussian function with standard deviation of
l = 20. The cyan curve shows the correlation function for
l = 5. The gray curve shows the correlation function forl = 0;
that is, independent perturbations. The correlation function
of any grid point in the experiment described in the Sect. 4
looks like the gray curve. The termcorrelation functionwill

imply correlations betweenα perturbations (between two
grid points).

The red (squares) curve in Fig. 5 shows the tuning curve
for an experiment with correlation length scalel = 20 and
cutoff radiusc = 20. The initial mean and standard deviation
for this experiment is shown in Fig. 1c and 1d, which is the
same as that for thel = 0 experiment described in Sect. 4.
The initial guess for the magenta curves and red (squares)
curve in Fig. 5 is the same, except that for the red curve the
initial α perturbations are correlated over a length scale of 20
grid points. The correlation function of any grid point in the
domain forl = c = 20 experiment looks like the solid blue
curve in Fig. 3. The red (squares) curve in Fig. 5 shows that
the tuning is successful for about the first 5 update cycles
and there after degrades. The reason for this degradation can
be understood by considering the correlation function at a
particular grid point as the update cycles proceed. The cor-
relation function at a particular grid point (marked x in area
W1 in Fig. 4) is shown in Fig. 6 as the solid green curve. The
number in each panel indicates the update cycle. At the ini-
tial time a correlation length scale ofl = 20 is imposed. The
green curve is the correlation between theα perturbations at
the point marked 0 on the x-axis and that at the neighbor-
ing grid points around the latitude circle. The dashed yellow
line shows the localization function corresponding to cutoff
radiusc = 20. The dashed black curve in each panel shows
a Gaussian with length scale of 5 grid point for reference.
At each update cycle AOD data are assimilated and all these
α perturbations are updated, thereby modifying the correla-
tion of α with surrounding points. As the update cycles pro-
ceed, the correlation function narrows down, as seen in the
successive panels in Fig. 6. In fact, it converges towards a
function with a length scale of about 5 grid points as seen
in the last few update cycles. The parameter estimation re-
sults in a length scale ofα perturbations of approximately 5
grid points, but the localization is allowing information from
much further away to impact the local estimate ofα. The cor-
relations with points further away than 5 grid points tend to
be bad, and hence as the updates proceed the red (squares)
curve in Fig. 5 degrades.

The correlation functions for many grid points at various
locations are inspected, and it is found that the correlation
length converges to about 5 grid points. A new tuning exper-
iment is run withl = 5, c = 5. The result of this experiment
is shown in Fig. 5 as the solid green curve. Clearly,l = 5,
c = 5 performs far better thanl = c = 0 andl = c = 20. An-
other experiment is run withl = 20,c = 5. The tuning curve
for this experiment is shown by the solid red curve in Fig. 5.
The tuning forl = 20, c = 5 is as good as that forl = 5,
c = 5. This is because for thel = 20 experiment as the up-
date cycles proceed the correlation function narrows to about
5 grid points. Also, because c=5, effectively only observa-
tions within a radius of about 5 grid points are used to update
α at any grid point.
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Figure 6 : Evolution of the correlation function at a particular grid point (marked 

x in area W1 in Figure 4 for the experiment with l=c=20.  Each panel is for a 

different update cycle. The numbers inside each panel show the update cycle.  

 

Fig. 6. Evolution of the correlation function at a particular grid point (marked x in area W1 in Fig. 4) for the experiment withl = c = 20.
Each panel is for a different update cycle. The numbers inside each panel show the update cycle.

The tuned map at the last update cycle forl = 20, c = 5
experiment is shown in Fig. 1i. The tuned map correspond-
ing to thel = c = 20 experiment (solid red (squares) curve
in Fig. 5) is shown in Fig. 1g. Clearly, the tuned map in
Fig. 1i recovers the perfect map shown in Fig. 1a more
accurately than does thel = c = 0 experiment (Fig. 1e) or
the l = c = 20 experiment (Fig. 1g). Comparing Fig. 1f and
Fig. 1j the estimate from thel = 20,c = 5 experiment is con-
strained better thanl = c = 0 experiment as can be inferred
from the lower values of spread in Fig. 1j.

The spatial distribution of tuned points forl = 20, c = 5
experiment is shown in Fig. 4b. Comparing this figure with
Fig. 4a correlating perturbations and using more observations
leads to tuning gains in high advection/low friction velocity
regions like W1, W2, W3 and W4. This strengthens, to some
extent, our hypothesis that correlating perturbations leads to
an improvement in the covariance estimates. This improve-
ment in the signal (covariance) can be considered to be an
effectivedecrease in advection noise. The reduction in the
degrees of freedom (because of correlations) increases the
impact of observations, thereby improving the tuning. It ap-
pears that for this particular problem, on an average over the
domain, an emergent correlation length scale is about 5 grid
points (400 km). Imposing a correlation function ofl = 5 is
leading to better covariances. This does not mean that ad-
vection mainly happens over a length scale of 5 grid points.
Advection most probably is taking place over longer length
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Figure 7 : Comparison between tuning for different values of l and c at 

a particular point. This point is marked x in the W1 area in Figure 4. The 

evolution of the correlation function at this point is shown in Figure 6. 

 

Fig. 7.Comparison between tuning for different values ofl andc at
a particular point. This point is marked x in the W1 area in Fig. 4.
The evolution of the correlation function at this point is shown in
Fig. 6.

scale. However, the linear signal due to advection survives
only over a length scale ofl = 5 grid points.

Various other experiments with different values ofl and
c are run to further investigate the interplay between cor-
relation length and cutoff radius. The red and blue curves
correspond to experiments with correlation length scalesl =

20 andl = 10 (800 km), respectively. The behavior of the
red (circles) curve (l = 20, c = 10) is similar to that of red
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(squares) curve. Forl = 20, c = 10, the correlation function
narrows down and converges to about 5 grid points, similar
to the case ofl = c = 20. However, the degradation is not as
much as thel = c = 20 because only observations within ra-
dius ofc = 10 grid points are being assimilated. The amount
of bad covariances being used is less in the c=10 exper-
iment compared to the c=20 experiment. The experiment
with l = 10, c = 5 (solid green curve) gives a result compa-
rable withl = 5, c = 5 andl = 20, c = 5. This shows that if
l > c, then the correlation length is effectivelyl = c as far as
the data assimilation is concerned. As the update cycles pro-
ceed,l converges to 5 grid points. Before this convergence
happens sincec < l, the observational information beyond a
distance ofc is not used. For thel = 10 experiments with
c = 10 (blue circles) andc = 20 (blue squares), the behavior
is similar to thel = 20 experiment with similar values of c.
This shows thatl > 5 is too broad for this problem and ifc
is specified longer than 5, then the data assimilation narrows
the correlation function to 5 grid points. Lastly, consider the
dashed curves that show results forc = 0 for various values
of l. These curves approximately overlap, showing that it is
futile to correlate perturbations without using observations
in the neighborhood. The curves withc > = l, for c > 5, show
that using observations outside the correlated area degrades
the tuning, which is because of inaccurate covariances. Fig-
ure 7 shows the tuning at a particular point marked x in W1
area Fig. 4. The dashed magenta line uses observations only
at the same grid point, and hence the updates take place only
when data are available at that grid point. Though the solid
magenta curve has access to more observations, the covari-
ance estimates are not good enough because the perturbations
are not correlated. The red curve (squares) uses observations
over a length scale ofc = 20, while as the updates progress
the correlation narrows to 5 grid points. Consequently, the
estimate does not converge towards the perfect value ofα at
this grid point very well. The solid green, blue and red curves
converge smoothly because the correlation is over a scale of
5 grid points. These curves have access to more observational
information and improved signal because of correlation.

The results from all these experiments suggest that the ob-
servations are able to uncover the correlation scale between
neighboringα field, provided the initialα perturbations are
correlated over a broad length scale. This correlation scale
for this problem is about 5 grid points. As seen in Sect. 4, if
the initial α perturbations are uncorrelated, the observations
are not able to impose a correlation structure as the updates
proceed.

The sensitivity of the OSSE tuning results to ensemble
size was found by running experiments with smaller ensem-
ble sizes. As noted, for an ensemble size ofN = 40, about
85 % of the grid points are tuned for thel = 20,c = 5 exper-
iment (solid red curve in Fig. 5). This percentage decreases
to 75 %, 60 % and 45 % for an ensemble size of 20, 10 and 5,
respectively.

Though results from the OSSE experiments are not guar-
anteed to hold for experiments with real data, they do provide
valuable insights into the tuning of erodibility. They show
that under ideal circumstances the erodibility is amenable
to tuning, given realistic observational coverage and errors.
Ideal circumstances mean that the only model error is im-
perfect values of erodibility. Even so it provides confidence
in the tuning methodology to proceed with experiments with
real data. The next section describes the tuning experiments
with real satellite data.

6 Real data

In this section the tuning experiments with satellite data are
described in Sect. 6.1. In Sect. 6.2 the estimated map of
erodibility is verified using satellite data.

6.1 Tuning

MODIS Deep Blue data (Remer et al., 2005; Hsu et al., 2004,
2006; Shi et al., 2011) are used for the experiments with real
data. The satellite data are averaged over a box of 3 grid
points (about 240 km) to obtain super observations. The er-
rors in the observations could be correlated. The averaging
serves to decorrelate these errors. The super observations are
assimilated into the COAMPS model using the ensemble-
based tuning methodology. Here the observational error is
set equal to 0.15 + 10 % AOD units, but realistically the er-
rors for some locations can be considerably greater (Shi et
al., 2011). Shi et al. (2011) also found that lower values of
AOD observations tend to have higher relative uncertainty
than higher values. Incorporating 0.15 AOD units in the ob-
servational error assigns high errors to observations below
0.15. The tuning experiment for the real data runs from 12
June 2009 to 8 July 2009. MODIS satellite data are assim-
ilated every 24 h at 12:00 Z. In total the tuning experiment
uses 28 update cycles. The period from 8 July 2009 to 30
July 2009 is used for verification. The threshold friction ve-
locity is set to 0.6 m s. It has to be noted that the experiment
with real data is completely separate from the OSSE experi-
ment described in Sects. 3, 4 and 5.

The operational values ofα (Fig. 1a) are used as the mean
of the initial guess. The ensemble perturbations inα are cor-
related over a length scale of 5 grid points. The standard devi-
ation ofα at each grid point is set equal to 0.25. The negative
ensemble members are set equal to 0.01. The mean and stan-
dard deviation of this initial guess are shown in Fig. 8a and b,
respectively. The standard deviation in some areas in Fig. 8b
is lower than 0.25. This is because in these areas the mean of
the initial guess has low values, and therefore the ensemble
members below the value of zero are set equal to 0.01. This
decreases the standard deviation below 0.25. In this experi-
ment the correlation cutoff radius is set equal to 5. After 28
update cycles the mean of tunedα converges to values shown
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Figure 8 : The tuning experiment with real satellite data. The left colorbar is 

for panels (a) and (c). The right colorbar is for the standard deviations shown 

in panels (c) and (d). 

 (a)  The operational values of  α  are used as mean of initial guess.  

 (b)  Standard deviation of initial guess α  are  is set equal to 0.25.  

 (c)  The mean of tuned values after 28 update cycles.  

 (d)  The standard deviation of tuned values after 28 updates cycles. 

 

Fig. 8. The tuning experiment with real satellite data. The left colorbar is for(a) and(c). The right colorbar is for the standard deviations
shown in(c) and(d). (a) The operational values ofα are used as mean of initial guess.(b) Standard deviation of initial guessα are is set
equal to 0.25.(c) The mean of tuned values after 28 update cycles.(d) The standard deviation of tuned values after 28 updates cycles.

in Fig. 8c. The standard deviation in the mean of these tuned
values is shown in Fig. 8d.

The estimates ofα as a function of the update cycles at
four different grid points is shown in Fig. 9. For the grid
point in panel (a) the estimate decreases from 0.3 to about
0.05. The convergence is not smooth, but clearly the esti-
mation corrects a bias in the first guess in the downward
direction. Between cycles 10 and 28 the mean wiggles be-
tween 0.05 and 0.1 rather than staying at a constant value.
This is because the estimated erodibility can compensate for
other errors in the model like those in threshold velocity and
advection. Similarly in panel (b) the estimation corrects the
erodibility in an upward direction but does not remain con-
stant. Panel (c) shows a case where the erodibility has clearly
not converged. In panel (d) the estimate appears to converge
between updates 10 and 15, but undergoes large variation af-
ter update 20. The estimation curves shown in these panels
are representative of many locations in the domain. The as-
sumption that the model is imperfect only in the erodibility
is too simplistic. There are many other imperfections in the
model. The estimate of erodibility inadvertently corrects for
these imperfections. The imperfections in threshold velocity
and near surface wind would have the highest impact on the
estimate of erodibility because these control the dust flux.
The friction velocity depends on the 10 m wind. It is possible
that the estimation correctsα to account for imperfection in
the 10 m wind. Therefore, one has to exercise caution while
interpreting the tuned map of erodibility.

Considering the tuned map (Fig. 8c), on an average in the
west Sahara and the Arabian Peninsula the parameter estima-
tion results in lower values ofα compared to the operational
values (Fig. 1a). It is possible that the estimation decreases
the erodibility in these areas to correct for a positive bias in
the friction velocity. In the south Sahara region (between lat-
itude 5 and 10◦ N) α converge to higher values. During the
tuning process the ocean values ofα are set equal to zero
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Figure 9 :  Each panel shows the mean and spread of the erodibility at 4 

different grid points for the real data experiment. The latitude and longitude 

of the point is mentioned in the title of each panel. 

Fig. 9. Each panel shows the mean and spread of the erodibility at
4 different grid points for the real data experiment. The latitude and
longitude of the point is mentioned in the title of each panel.

within the model. Comparing (Fig. 8) panel (b) and (d) it is
evident that the standard deviation in the mean of the tuned
values decreases to about 0.05 compared to the initial guess
standard deviation.

Since one does not know the real erodibility, the tuned map
has to be assessed indirectly by verifying forecasts of AOD.
The next section describes such a verification experiment.

6.2 Verification

The performance of the tuned map (Fig. 8c) in forecasting
AOD is compared to that of the operational map. The veri-
fication is done over a period independent of the tuning pe-
riod. Recall that the tuning experiment for the real data runs
from 12 June 2009 to 8 July 2009 (28 days). The period from
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Figure 10 :  Mean AOD estimates on 20 July 2009 at 12:00 Z.   

(a) and (b) Priors using the tuned (Figure 8c) and the operational maps 

(Figure 1a) respectively.  

(c) and (d) Posteriors obtained by assimilating satellite data into the priors 

shown in (a) and (b) respectively. 

(e)  Satellite data.  

Fig. 10.Mean AOD estimates on 20 July 2009 at 12:00 Z.(a) and(b): priors using the tuned (Fig. 8c) and the operational maps (Fig. 1a),
respectively.(c) and(d): posteriors obtained by assimilating satellite data into the priors shown in(a) and(b), respectively.(e)Satellite data.

8 July 2009 to 30 July 2009 (19 days) is used for verification.
Two separate data assimilation (verification) experiments are
run over the verification period. In these experiments only the
dust concentration and AOD fields are estimated. The erodi-
bility parameter map is held fixed. The first DA experiment
uses the operational erodibility map (Fig. 1a) and the second
uses the tuned erodibility map (Fig. 8c). The same MODIS
observations are assimilated in each of these experiments.
For each experiment we have access to analysis ensemble
on 19 different days. For each experiment, 24, 48, 72 and
96 h ensemble forecast is launched from each of these analy-
sis ensembles. Consequently, for each of the two experiments
we have 19 different forecast ensemble means. The MODIS
observations at the respective days are used to verify the fore-
cast means in each experiment. For a given day MODIS ob-
servations are used to verify the forecast launched from the
last day, but this data are also assimilated to generate the pos-
terior. This is not a problem because 24 h is long enough
for the dust generation and transport to render the forecast
almost independent of the initial conditions. The source of
dust, that is the erodibility values, plays a dominating role in
deciding the spatial distribution of dust over the 24 h period.

Consider the verifications of these two experiments on a
particular day. Figure 10 shows the mean estimates of AOD
on 20 July, 2009. Panel (e) shows the satellite observations of
AOD at 12:00Z, 20 July 2009. The right side panels ((b) and
(d)) corresponds to the operational experiments. Panel (a)
and (c) shows the estimates from the tuned experiment. The
same MODIS data are assimilated into each of these ex-
periments. The prior shown in panel (a) is the mean of the
24 h ensemble forecast launched starting from the posterior
AOD on 19 July 2009 for the tuned experiment. This fore-
cast for the operational experiment is shown in panel (b).

Comparing panel (a) and (b) to (e), the tuned forecast agrees
with the observations more than the operational forecasts.
Panel (c) shows the posterior AOD field corresponding to
the prior in panel (a). Panel (d) shows the posterior corre-
sponding to panel (b). The same data (panel (e)) are assimi-
lated into the tuned and operational priors to obtain posteri-
ors in panels (c) and (d), and hence these posteriors are sim-
ilar. These posteriors are used as initial conditions to launch
the next 24 h ensemble forecasts. These forecasts (priors)
valid at 12:00 Z, 21 July are shown in panels (a) and (b) in
Fig. 11. The satellite observations on 21 July 2009 are shown
in Fig. 11c. The tuned forecast (panel (a)) matches better
with the observations (panel (c)) than does the operational
forecast (panel (b)). Note that these tuned and operational
forecasts used similar initial conditions in AOD, which are
given by panel (c) and (d) of Fig. 10. In spite of these similar
initial conditions, the operational forecast (prior) is different
from the tuned forecast on 21 July with operational forecasts
giving higher AOD values on 21 July. Note that the same
meteorology is used in both the operational and tuned ex-
periments. The only difference between the tuned and opera-
tional experiments is the different maps of erodibility. There-
fore, the difference between these forecasts is due to different
values in the erodibility maps. The lower values of AOD in
tuned forecasts are attributable to lower values of erodibility
in the tuned map (Fig. 8c) compared to the operational map
(Fig. 1a).

Both on 20 and 21 July, the tuned forecasts give lower val-
ues of AOD, thus resulting in better verifications compared
to the operational forecasts. The comparison of verifications
over the 19 days is performed by usingmean absolute error,
which is calculated as follows. At each particular grid point,
for each 24 hour lead time the absolute difference between
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Figure 11 : Mean AOD estimates on 21 July 2009 at 12:00 Z. See the colorbar 

in Figure 10. 

(a) and (b) are the forecasts launched from the tuned and operational 

posteriors on 20 July, respectively. 

(c) Satellite data.  

Fig. 11.Mean AOD estimates on 21 July 2009 at 12:00 Z. See the colorbar in Fig. 10.(a) and(b) are the forecasts launched from the tuned
and operational posteriors on 20 July, respectively.(c) Satellite data.
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Figure 12 : Result of the verification experiment.  The green contours 
enclose areas of strong friction velocity.  

Fig. 12. Result of the verification experiment. The green contours
enclose areas of strong friction velocity.

the mean operational forecast and the MODIS observation is
calculated.

ε0 =
∣∣AODop− AODobs

∣∣
Then at each grid point, the average ofε0 over different fore-
casts is the mean absolute error for the operational model.
Similarly, the absolute difference between the mean tuned
forecast (AODtu) and observation is calculated.

εtu = |AODtu − AODobs|
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Figure 13 : AOD  verifications at grid points S and P in Figure 12. Legend in 

panel (b) applies to panel (a). 

 

Fig. 13.AOD verifications at grid points S and P in Fig. 12. Legend
in (b) applies to(a).

At each grid point, the average ofεtu over different forecasts
is the mean absolute error for the tuned model. At each grid
point, the operational and tuned mean absolute errors are
used to calculate the metricdifference mean absolute error
(dMAE),
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Fig. 14. The scatter plots of forecast AOD (24 h lead time) and
AOD observations.(a) corresponds to the box containing point S in
Fig. 12a.(b) corresponds to the box containing point U in Fig. 12a.
(c) corresponds to the box containing point N in Fig. 12a.

dMAE = εop− εtu

This metric is a simple and convenient way to quantify the
comparative performance of the operational and tuned mod-
els in forecasting the AOD, at each grid point. If dMAE> 0
it means that the operational model errs more than the tuned

model in forecasting the AOD. If dMAE> 0 at a particular
grid point, then the tuned model outperforms the operational
model. On the other hand, if dMAE< 0 it means that the op-
erational map performs better at that grid point.

The dMAE corresponding to the tuned map in Fig. 8c is
shown in Fig. 12, with contours of high friction velocity over-
laid. Figure 12a shows the dMAE calculated for the forecast
lead time of 24 h. The tuned map outperforms the operational
map largely in the west Sahara and Arabian Peninsula re-
gions. The tuned map gives better forecasts than the opera-
tional map to some extent in the Horn of Africa. In most of
the other regions the dMAE is within−0.1 and+0.1, indi-
cating that the tuned and operational forecast are almost sim-
ilar. There are a couple of pockets near central Sahara where
the tuned map gives degraded performance. These areas are
blue in color. Panels (b) and (c) in Fig. 12 show the dMAE
for longer lead times of 48 and 96 h, respectively. Compar-
ing panels (a), (b) and (c) it is clear that broadly the pattern
of areas where the tuned model outperforms the operational
model are similar for all lead times. However, comparing the
red areas in the vicinity of point S in panels (a) and (b) the
tuned model performs better over a larger region for the 96 h
forecast compared to the 24 h forecast. Also, the magnitude
of improvement of the tuned model is higher for longer lead
time in this area. This is also true in the Arabian Peninsula.
An important dMAE feature that develops with longer lead
times is in the vicinity of points O and W off the coast of
Africa. The red color near point O in panel (c) indicates that
the tuned model gives a better forecast at 96 h, whereas the
tuned model is as good as the operational model in this area
at 24 h. In Fig. 13 the relative performance of the tuned and
operational models is further probed by inspecting the AOD
forecasts at two of the points marked in Fig. 12.

The time series of AOD forecasts at point S are shown in
Fig. 13a. The black curve shows the AOD observations. The
dashed green curve showsu∗ scaled by a factor of 5, dur-
ing the verification period. Clearly,u∗ is above the threshold
level of 0.6 m s for almost all the verification times. The solid
curves show the operational forecasts at lead times of 24 and
96 h. The dashed curves show the tuned forecasts. The title
of the panel shows the value of operational and tuned erodi-
bility. At point S the operationalα is 0.32 and the tunedα is
0.04. The title of the panel also shows the dMAE at 24 and
96 h, which is 2.2 and 2.9, respectively. The number 78.0 and
95.0 shown in the panel are the percentage of times when the
u∗ exceeds the threshold value during the tuning and veri-
fication periods, respectively. So at this point out of the to-
tal number of cycles (28) in the tuning period,u∗ exceeds
the threshold value 78 % of times. This point is an example
of a grid point whereu∗ is very strong both during the tun-
ing and verification periods. Because the signal is strong dur-
ing the tuning period, this point istuned correctly, decreas-
ing the value from 0.32 to 0.04. The phrasetuned correctly
should be carefully interpreted. We do not know the values
of erodibility in nature. Because the (tuned) forecasted AOD
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matches well with the observations at this point, we draw
the conclusion that the tuned value is correct. The dashed
blue curve matches well with the observations while the op-
erational forecast (blue curve) is too high. The low value of
tuned AOD can be directly attributed to the lower value of
tuned erodibility at point S. Note that the tuned AOD not only
has a smaller bias (with respect to the observations) com-
pared to the operational AOD values but also a smaller stan-
dard deviation. In both the tuned and operational model the
96 h forecast is higher than the 24 h forecast. This suggests
that there is some accumulation of dust over the 96 h. This
accumulation seems to be more for the operational than the
tuned model as the separation between red and blue curves
is larger for the operational model. This accumulation might
be because in the operational model the production is more
because of higher erodibility of 0.32 (compared to 0.04). The
higher dMAE of 2.9 at 96 h compared to 2.2 at 24 h means
that the operational model errs more (compared to the tuned
model) at 96 h than at 24 h. Note that both the operational and
tuned forecasts follow the variations in the friction velocity
(green curve).

In Fig. 12 consider the white area to the lower right of
point S, around the point marked P. The verification for this
point is shown in Fig. 13b. At this point,u∗ exceeds the
threshold value for about half the time during both tuning
(60 %) and verification (55 %) periods. This point has low
value of erodibility in the operational map. Because the op-
erational values arecorrect the tuning methodology does not
change this value much. The inference that these values are
correct is drawn from the fact that at point P both operational
and tuned models do (equally) well in predicting the obser-
vations.

The inspection of the forecasts’ time series and observa-
tions shown in Fig. 13 suggests that the positive dMAE in
Fig. 12 is because the tuned model AOD has a lower bias
compared to the operational model AOD.

The biases in the tuned and operational models for vari-
ous regions are shown in Fig. 14. These various regions are
marked by boxes in Fig. 12a. The panel (a) shows the scat-
ter plot of AOD observations versus the forecast AOD in the
west Sahara region. The red dots show the operational AOD.
The grey line is a reference line with zero bias and slope
equal to unity. The red line is the linear fit to the red dots. This
linear fit is given by the equation AODop = a × AODobs+ b

The regression coefficientsa andb (which is the bias) are
shown in the upper right corner of the panel. The blue line is
the linear fit to the cyan dots, which shows the tuned AOD.
The tuned model reduces the bias from 0.56 to 0.31. Though
the tuned model on an average overestimates the AOD by
0.31 it decreases the bias by 0.25 (compared to the opera-
tional model) which is a substantial improvement.

The panel (b) shows the scatter plot for the east Saharan re-
gion. In this region the tuned model increases the bias (0.12).
The operational model has a small negative bias of−0.04.

Panel (c) shows that the tuned model decreases the bias by
0.46 from 0.72 to 0.26 in the Arabian Peninsula.

The decrease in bias in the west Sahara and the Arabian
Peninsula contributes towards the positive dMAE in these
regions. This decrease in bias is due to the downward cor-
rection of the tuned erodibility values (compared to the oper-
ational values) in these regions. In the south Saharan region
the operational bias is−0.09 (result not shown). The tuned
model changes this bias to 0.07. This might be due to upward
correction in tuned values in the south Saharan region. The
positive bias of 0.12 in the east Saharan region might be due
to the increased advection from the south Saharan region. In
the Atlantic region the biases in the tuned and operational
model are comparable (results not shown).

Consider Fig. 12c. The red areas coincide with areas with
high operational erodibility. In these areas (west Sahara and
the Arabian Peninsula) the operationalα was corrected by
the tuning to a lower value. In the (white) areas other than
west Sahara and the Arabian Peninsula, both operational and
tuned maps perform equally well. The improvement of fore-
casts in west Sahara and the Arabian Peninsula is because
tuning leads to a better model of dust generation by decreas-
ing the erodibility. However, an improvement in the dust gen-
eration over the red areas does not impact the forecasts in
the other areas. This means that the effect of tuning is local-
ized in space. This might be because of the model error in
dust transport. Both the tuned and operational models used
the same meteorology and therefore the same winds. These
might be different from the winds in nature. Both the tuned
and operational model suffer from the model error in meteo-
rology. Because of this model error in dust transport, the im-
proved dust generation in the red areas might not necessarily
improve dust forecasts in other areas. In this work meteoro-
logical variables are not estimated.

At almost all the points in the domain (two of which are
shown in Fig. 13), the 96 h forecasts are higher than the 24 h
forecasts, for the tuned and the operational model separately.
The higher AOD at longer lead time points to accumula-
tion of AOD either from local production or from upstream
transport. The higher AOD at 96 h explains the larger cov-
erage of the red area in the Sahara in Fig. 12c compared to
Fig. 12a. Because both the models use the same meteorology
and sinks, the higher operational AOD at 96 h is due to higher
production in the upstream areas. This higher production is
due to the higher operational erodibility.

The tuned and operational forecasts were compared to cli-
matology, and it was found that neither were able to outper-
form the climatology.

7 Conclusions and further work

This work establishes the importance of the correlation struc-
ture while performing ensemble-based estimation of spa-
tially extended parameters. The EAKF (ensemble adjustment
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Kalman filter) is implemented in an OSSE in which the only
model error is due to imperfect erodibility map. The results
of OSSE experiments showed that these parameters could be
successfully tuned, given observations of AOD, if an appro-
priate correlation structure is applied to the initial perturba-
tions of erodibility and a supporting localization radius is ap-
plied. The tuning results are inferior if a correlation length is
not imposed on the initial perturbations of erodibility.

The methodology used involves running experiments with
different correlation length scales imposed on the prior pa-
rameter perturbations and also different cutoff radii. A priori
one does not know the appropriate length scale that should
be used for the correlation structure. If an initial correlation
structure is not imposed, the data assimilation does not in-
duce a correlation among the erodibility perturbations. How-
ever, if a long correlation length scale is imposed along with
a long cutoff length scale, then at each grid point the correla-
tion length scale converges towards the appropriate correla-
tion length scale. It is found that the appropriate length scale
for this problem is 5 grid points, which is about 400 km. The
tuning experiment with a correlation length scale of 5 grid
points resulted in the best tuning in OSSE. This technique
of specifying a long length scale and allowing the filter to
identify the appropriate value is introduced in this work.

It is very important to choose an appropriate value for the
cutoff radius. If the cutoff radius is larger than the correlation
length scale, then the tuning degrades. This is because then
the update uses covariances from regions that are uncorre-
lated in erodibility.

The tuning methodology is implemented with MODIS
satellite data. In general, it is found that the operational
model overestimates observed AOD. The ensemble-based
tuning correctly identifies this high bias and corrects the op-
erational erodibility maps to lower values. The tuned values
are especially low compared to the operational values in the
west Sahara and the Arabian Peninsula regions. Verification
experiments show that the tuned forecasts are more in agree-
ment with the MODIS observations than the operational fore-
casts. In the west Sahara and the Arabian Peninsula areas the
gain in forecast accuracy due to tuning is as high as 1.5 AOD
units.

However, the tuned map obtained with MODIS data
should be considered only as demonstration of feasibility of
estimation of erodibility. This is because a number of sim-
plistic assumptions about the model are made in this work.
These include the assumption that the model is perfect apart
from imperfection in erodibility. But the advection in the
model is imperfect. Also, the value of 0.6 used for the thresh-
old velocity might be different from that in nature. The fric-
tion velocity strongly depends on the 10 m winds and any er-
ror in model meteorology renders the 10 m winds erroneous.
The low estimated values in west Sahara and the Arabian
Peninsula could be because the estimation is correcting for a
bias in friction velocity and threshold velocity by correcting
erodibility. In this work we have assumed that dust aerosol

is the only aerosol over the North African domain. This as-
sumption does not hold in reality. We have also assumed that
the dust aerosol has only one size. The model resolution is
also quite coarse. Further, we have assumed that the aerosols
do not feed back on the meteorology.

While these assumptions do not impact the OSSE results,
they do impact the estimate of erodibility obtained with
real data. Therefore, the real data results presented in this
work should be considered as a first step towards obtaining
ensemble-based estimates of erodibility.

There is a wide scope to improve the erodibility estimates
presented in this work. The meteorological state is not esti-
mated in this work. Meteorological observations could be as-
similated to estimate this state, which can potentially correct
the errors in transport, thereby improving the 10 m winds. It
is important to estimate the threshold velocity and the sinks
of dust apart from the erodibility. An estimate of erodibil-
ity for realistic applications could be obtained by running the
estimation experiment for many different years. It would be
interesting to compare such an estimate with that obtained
from 4DVAR.

It would be exciting to investigate whether this technique
of determining the appropriate length scale is effective in
other parameter estimation problems. In the current problem
the true parameter map is static in that it does not change
with time. It would be interesting to test this methodology in
a problem where the true parameter map evolves in time.
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