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Abstract. The Climate Absolute Radiance and Refractiv- ilar physical characteristics to the original PCs calculated
ity Observatory (CLARREO) is a climate observation sys- from each data set, such as water vapor absorption, vegeta-
tem that has been designed to monitor the Earth’s climatdion reflectance, and cloud reflectance.

with unprecedented absolute radiometric accuracy and Sl
traceability. Climate Observation System Simulation Experi-
ments (OSSESs) have been generated to simulate CLARREO

hyperspectral shortwave imager measurements to help del Introduction

fine the measurement characteristics needed for CLARREO

to achieve its objectives. To evaluate how well the ossg-Reflected solar radiation from Earth contains information
simulated reflectance spectra reproduce the Earth’s climat@bout several variables relevant to changes in Earth’s climate,
variability at the beginning of the 21st century, we Comparedincluding cloud properties, aerosols, land surface albedo,
the variability of the OSSE reflectance spectra to that of theBnd sea ice (National Research Council, 2007; Loeb et al.,
reflectance spectra measured by the Scanning Imaging ApZ007; Roberts et al., 2011; Wielicki et al., 2012). Changes
sorption Spectrometer for Atmospheric Cartography (SCIA-i” these and other atmospheric and surface variables im-
MACHY). Principal component analysis (PCA) is a multi- Pact the spectral, spatial, and temporal variability of re-
variate decomposition technique used to represent and studjected solar radiation through spectrally dependent scatter-
the variability of hyperspectral radiation measurements. UsiNg and absorption processes. Monitoring solar reflectance
ing PCA, between 99.7 % and 99.9 % of the total variance thd"0m space to study climate requires highly accurate, hyper-
OSSE and SCIAMACHY data sets can be explained by subsSpectral measurements (Wielicki et al., 2012). In this con-
spaces defined by six principal components (PCs). To quantext hyperspectral refers to spectrally contiguous, overlap-
tify how much information is shared between the simulatedPing spectral radiation measurements (Goetz et al., 1985;
and observed data sets, we spectrally decomposed the integ0€tz, 2009); solar (shortwave) radiation includes wave-
section of the two data set subspaces. The results from fodfngths ranging from the near ultraviolet to the near infrared,
cases in 2004 showed that the two data sets share eight (Ja300—-2500 nm, accounting for approximately 95 % of the so-
uary and October) and seven (April and July) dimensions |ar radiation incident at the top of the atmosphere. Since the
which correspond to about 99.9 % of the total SCIAMACHY 1970s, the information in shortwave hyperspectral measure-
variance for each month. The spectral nature of these share®#ents has facilitated the identification of individual surface
spaces, understood by examining the transformed eigenvedhaterials and the application of sophisticated atmospheric

tors calculated from the subspace intersections, exhibit simeorrection techniques to obtain surface spectral reflectance
(Goetz, 2009). The information about Earth’s surface and
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atmospheric properties in space-based hyperspectral sholectance measurements (Feldman et al., 2011a,b; Wielicki
wave measurements can also be used in climate change det al., 2012).
tection and attribution studies. This information in spectrally The climate OSSE is a powerful tool; however, we need to
resolved shortwave radiation can be used to understand thevaluate how realistic the variability of these simulated spec-
variability of the climate system using spectral decomposi-tral reflectance spectra is relative to observations of spectral
tion techniques such as principal component analysis (PCAjeflectance. The ability of the OSSE to reproduce present-
(Rabbette and Pilewskie, 2001; 2002; Grenfell and Perovichday climate variability is necessary to use OSSE simulations
2008; Roberts et al., 2011). to make confident statements about climate change detection
Roberts et al. (2011) quantified the spectral variability of and attribution. There is still the possibility, however, that
Earth-reflected hyperspectral solar radiance to study the ineven if the OSSE is able to meet this necessary condition of
formation contained in direct satellite measurements for cli-reproducing present day climate variability, its twenty-first
mate change detection and attribution. Although completecentury climate change predictions may not be realistic de-
separation of all atmospheric and surface variables reprepending on how well the underlying climate model simulates
sented in a reflectance spectrum is challenging even ustuture changes in climate. The spectral variability of sim-
ing information-rich hyperspectral measurements, occasionulated and observed hyperspectral reflectance can be com-
ally it is possible to spectrally identify the physical vari- pared both qualitatively (Feldman et al., 2011b), and quanti-
ance drivers such as clouds, sea ice, and vegetation usirtgtively, by the methods presented here.
spectral decomposition techniques (Rabbette and Pilewskie, In this study, we evaluate how well simulated short-
2001, 2002; Huang and Yung, 2005; Roberts et al., 2011)wave hyperspectral reflectance reproduces the variability in
For example, Roberts et al. (2011) applied PCA to Arctic satellite-measured reflectance. To address this question we
Ocean radiance spectra, separating contributions to the dataill explore the utility of the variability of shortwave re-
variance from clouds and sea ice. These results demonstratdigctance to serve as an appropriate measure of the similarity
that hyperspectral reflected radiation contains physical inforbetween two data sets. Roberts et al. (2011) showed that it is
mation about the Earth’s climate system that can be extractegossible to extract physical variables from directly measured
with multivariate spectral decomposition techniques. radiance using principal component analysis rather than in-
Highly accurate climate observation systems are being deverse modeling techniques or any other model-based analy-
signed that will include spectrally resolved measurementssis. Therefore, we compare the variability of measured and
in the visible and near infrared. Such systems include thesimulated reflectance using PCA and other multivariate anal-
Climate Absolute Radiance and Refractivity Observatoryysis techniques to quantify their similarity.
(CLARREO) (National Research Council, 2007; Wielicki ~ The next section is an overview of the observed and sim-
et al.,, 2012) and the Traceable Radiometry Underpinningulated reflectance spectra used in this study. Section 3 de-
Terrestrial- and Helio- Studies (TRUTHS) (Fox et al., 2003, tails the multivariate techniques used in the comparisons. In
2011). The shortwave instruments proposed by both of thes&ect. 4, we present an example that exhibits the quantitative
projects will provide high spectral resolution measurementscomparison techniques with data, and Sect. 5 provides a sum-
with unprecedented absolute radiometric accuracy and Sinary of the study, conclusions, and a discussion of future
traceability. work.
Feldman et al. (2011a) designed a climate Observation
System Simulation Experiment (OSSE) as a CLARREO
shortwave instrument emulator used to derive measure2 Data
ment and mission requirements. For the OSSE, Feldman
et al. (2011a) used global climate model output with a radia-2.1 Observed reflectance — SCIAMACHY
tive transfer model to simulate CLARREO shortwave instru- measurements
ment reflectance measurements. By comparing OSSE out-
put from forced and unforced scenarios, changes in variable¥his study uses hyperspectral reflectance measured by the
such as clouds, aerosols, sea ice, and snow cover were e$Bcanning Imaging Absorption Spectrometer for Atmospheric
ident in zonally averaged spectra, implying that spectrallyCartography (SCIAMACHY) (Bovensmann et al., 1999).
resolved reflectance may be capable of detecting changeSCIAMACHY flew on the European Space Agency's EN-
in key climate variables by the middle and end of the 21stVISAT (Environmental Satellite), a sun-synchronous satel-
century (Feldman et al., 2011a). Using the OSSE, Felddite in near polar orbit that operated from March 2002 to
man et al. (2011b) also found that spectrally resolved re-April 2012. In May 2012, the European Space Agency de-
flectance improves time-to-detection over broadband shortelared the official end of the ENVISAT mission after a space-
wave measurements. The results from the climate OSSEraft failure in April 2012. SCIAMACHY was designed to
studies further support the need for a highly accurate climatestudy the effect of natural and anthropogenic sources on
observation system that includes hyperspectral shortwave reglobal atmospheric composition (Gottwald et al., 2011c).
Additional objectives included understanding the global
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distribution, chemistry, and physics of trace gases, aerosols SCIAMACHY Reflectance
and clouds in the troposphere, stratosphere, and mesosphel : . . : : .
(Bovensmann et al., 1999). SCIAMACHY measured across 0.8
eight channels covering the spectral ranges 214-1773 nm
1934-2044 nm, and 2259-2386 nm with spectral resolutions

Thick Cloud
Clear Sky - Vegetation

Clear Sky - Ocean

[0} 1 .
ranging between 0.22nm and 1.48nm (Gottwald et al., § 0.6
2011a). Ice deposited on channels seven and eight (span *g
ning 1934—2386 nm), interfering with the optical throughput = 04 ]
o

(Gottwald et al., 2011b). For the present study, analysis is re- I
stricted to the wavelength range 300 nm to 1750 nm. Nadir 0.2

pixel size is dependent on the integration time and swath  /
width, causing footprint sizes to vary between 26 km (along 0.0 . . L .
track) by 30km (across track) and 32 km (along track) by 400 600 800 1000 1200 1400 1600
930km (across track). For nadir sampling, SCIAMACHY Wavelength (nm)

has a scanning angular width &f32° across track, which
corresponds to a maximum nadir swath width of 960 km Fig. 1. SCIAMACHY-measured reflectance spectra for three scene
(Gottwald et al.,, 2011a). The measurement characteristictypes: a thick cloud (black), cloud-free vegetation (blue), and cloud-
of SCIAMACHY make it the best candidate to compare free ocean (red).
space-based observations of shortwave reflectance with cli-
mate OSSE-simulated reflectance spectra. ) )

2.2 Simulated reflectance — Observation System

2.1.1 SCIAMACHY reflectance spectra Simulation Experiments

_Feldman et al. (2011a) constructed OSSEs using input from

flectance spectra for different scene types: a thick clouoIhe C;ommumty Climate Systgm Model version 3'.0 (CCSM)
(black), cloud-free green vegetation (blue), and cloud—free(COIIInS etal., 2006) Global CI|ma'te Model and using MOD-
ocean (red). Spectral reflectandg, is defined by, TRAN 5.3 (Berk et al., 2006) to simulate CLARREO short-
wave spectral reflectance measurements during the twenty-
N first century. Monthly averaged fields from two IPCC AR4
R, = nl, (1) emission scenarios were used to produce the OSSE results.
cos(@)Ff The all-sky (cloud-inclusive scenes) reflectance spectra used
in this study were simulated using the unforced constant CO
where IAT is reflected spectral radiancEAl is the incident tei\rlgli/sz;?:g\fgz?n?ggp?grciisIgrrise:LrlwlLS(;Jr;gv;;\cszgv:rl:ggﬁodsg?gﬁére
spectral solar irradiance at the top of the atmospheregand held constant at levels observed in the year 2000 throughout

is the solar zenith angle. Similarities among the three spec-
9 g P the model run (Meehl et al., 2005, 2007). Results from the

tra in Fig. 1 include absorption features such as the oxygen- N ] . :
A band centered around 762 nm and water absorption ban rced .A2 €mission scenario (IPCC, 2007), in which con-
gentratlons of well-mixed greenhouse gases were steadily in-

centered at 940 nm, 1140 nm, and 1350 nm. There are als
differences among these reflectance spectra that are chara%r—eased to the year 2050 then reduced to 1900 levels by the

teristic of the different scenes. Throughout the visible andéeggélgol' dwere atls? uzsoeldlto Sér;:ulate rgﬂticta?ce :Jsmgtthe
much of the near infrared outside water absorption bands (Feldmanetal., a). Changes in the climate system

the reflectance values for the thick cloud spectrum are gen%.’vertthe co'urdse ?f t?le celntury |fnclude atr,plmg o;%@la—
erally higher than the two surface reflectance spectra showrf}/© 'O Pre-indusinal Ievels, suriace warming, and decreases
n snow and ice cover. In the present study we have used

For a cloud-free ocean spectrum measured at nadir, the rer . L
flectance values are low throughout the spectral range exceﬁ € unforced scenario resu_lts _because We are comparing in-
between 300 nm to 400 nm where atmospheric molecular an !V|dual months at the beginning Of. the let. cgntury, when
aerosol scattering increase reflectance. The spectrum me ifferences between the two scenarios are minimal.
sured over green vegetation has low reflectance in the visible
with a local maximum known as the “green peak”, centeredy Quantitative multivariate methods

around 550 nm. The vegetation “red edge” is the increase in

reflectance between 700 and 750 nm. These examples of r&.1  Principal component analysis

flectance serve as a frame of reference when examining the

spectral shapes of principal components, such as those showRrincipal component analysis (PCA) is a spectral decompo-
in Fig. 4, which often resemble reflectance spectra, albeit ofsition technique used to quantify the variance distribution
ten with a linear and nonlinear mixture of source signatures.in a multivariate data set. The principal components (PCs)

Figure 1 presents three examples of SCIAMACHY re
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are linear combinations of the original variables, in this caseance matrix are determined such that they satisfy the charac-
the spectral reflectance values. If the original variables arderistic equationCE = QE, whereE is aK x K matrix, and
correlated (as is generally the case with reflectance spe® is aK x K diagonal matrix composed of the eigenvalues
tra), PCA can significantly reduce the number of variables(w). K is the number of variables, or spectral bands, con-
needed to explain the majority of the variance in a data settained in each spectrum. Each eigenvalug,is the variance
Roberts et al. (2011) presented a literature review of howexplained by each eigenvector. In this study we define the
PCA has been used in various atmospheric science applicgrincipal components (PCs) to be the eigenvectors scaled by
tions, specifically to understand the variability of spectral ra-the square root of their corresponding eigenvalues:

diation in the longwave (longer than 4 um) and the shortwave

(350 nm—2500 nm). PG = Vo Ex @)

The spectral shapes of the principal components may provide
insight into which physical variables are explained by each
. ) . PC dimension. Projection of the mean-centered data onto the
Shortwave reflected radiation provides a number of optionsyjgenyectors are the PC scores, the weighted averages of the
for v_vhat form of the data to use in PCA, each of which input data with the eigenvectors as the weights. Depending
_has Its own advantages. Roberts et al. (2011) U_SEd stan_dargh the spatial or temporal distribution of the data, the scores
ized spectral radiance rather than unstandardized radlanctgdn be used to evaluate how the principal components vary in

because of the large differences in spectral variance. Waves'pace or time. The physical significance of PCs is often diffi-

length bands with the most variability in spectral radiance . 1, determine because the PCs are linear combinations of
(largest spectral variance) dominate the spectral shapes of ”}ﬁe original variables. The original variables may have non-

PCs. By standardizi_ng the_data, principal cqmponents YPHinear dependencies on the physical variance drivers; how-
cally represent physical variables more prominently than PCs, e some of the dominant physical variables can occasion-

calculated from unstandardized data (Preisendorfer, 1988)a||y be identified. For a more detailed and mathematically
Standardized radiances are calculated by spectrally mean-

X . o rhgorous description of PCA, consult Roberts et al. (2011)
centering the radiances and normalizing them by the spectraénd Jolliffe (2002).
standard deviation. The standardized PCs can be used when
comparing two data sets, but not to quantify how much in-3.1.3 Boundary between data signal and noise
formation is shared between them. Unstandardized data must
be used in quantitative comparisons because the standard d&here are several methods that can be applied to estimate the
viation contains pertinent information about each data setnumber of dimensions that define the boundary between sig-
Haskins et al. (1999) compared both standardized and unnal and noise in a data set (Jolliffe, 2002). There is no clear,
standardized infrared radiance PCs, taking advantage of botquantitative boundary between signal and noise. To maxi-
the qualities of the standardized and unstandardized princimize the variance explained by each principal component,
pal components. When the information in the standard deinformation from both the signal and noise are included in
viation is removed, it becomes difficult to identify genuine each eigenmode. Unless the noise variance exceeds the sig-
differences and similarities between two data sets, the maimal variance, the signal in the data typically dominates the
purpose of this study. variance explained by the first few eigenmodes. The best es-
Using reflectance rather than radiance is one way to avoidimate of the boundary between signal and noise is the di-
using standardized radiance while retaining the informationmension at which noise begins to consistently dominate the
in the standard deviation. Normalization by incident solar ir- variance, which may be difficult to determine at times be-
radiance removes this known and dominant spectral shapeause the noise and signal variances are not always strictly
from the PCs, leaving the influences due to atmosphere andnticorrelated with increasing dimension number. This can
surface properties. In the case of SCIAMACHY, the calcu- make it difficult to assess if a particular dimension is dom-
lation of reflectance may also remove instrument anomaliesnated by signal or by noise. There are methods that can be
because the downwelling TOA solar irradiance and Earth-used to more clearly separate the signal and noise in a data
reflected radiance are measured using the same sensors, dat, such as the Minimum Noise Fraction Transform (Green
part diminishing the impact of spectrally dependent noise oret al., 1988), which is discussed briefly in Sect. 5.

3.1.1 PCA input

the PCA results. Cattell (1966) suggested using a plot of the eigenvalues
on a linear scale to determine the location of this bound-
3.1.2 PCA descrption ary. It is identified graphically by visually locating the ini-

tial change in slope in the eigenvalue spectrum. Craddock
The first step in principal component analysis is calculatingand Flood (1969) presented a similar technique, but instead
the covariance matrixC, from the spectrally mean-centered used a logarithmic eigenvalue scale, a method that has been
reflectance spectra. Using a spectral decomposition techustified with the PCA of simulated data with known vari-
nique, the eigenvalues) and eigenvectors) of the covari-  ance structures (Farmer, 1971). In studying the eigenvalue
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spectrum calculated from PCA of solar radiation, we haveeter (IRIS) measurements. In a subsequent study, Haskins
found that the logarithmic plot of the eigenvalues is one ofet al. (1999) inverted IRIS radiance principal components
the best tools to identify how many PCs explain signal in theto derive cloud fraction, relative humidity, and temperature.
data. Kaiser (1960) suggests that all principal component§hose principal component inversions quantified the con-
associated with eigenvalues larger than the average eigerstraints imposed upon climate models by infrared radiance
value explain the signal. A more liberal criterion can be usedmeasurements confirming that clouds are a dominant driver
in which some fraction (typically 0.7) of the average eigen- of the climate system and explain the largest fraction of the
value is used as the cut-off, in an attempt to account for posvariance in the measured data (Haskins et al., 1999). Haskins
sible sampling variations (Jolliffe, 1972). In the Broken Stick et al. (1999) also concluded that if a model is unable to repro-
Method (Jolliffe, 2002)¢w; > % Zf:k %wa\,g is the criterion  duce the observed cloud variability represented in the most
for determining the location of the boundary. Although the dominant principal component, it is unlikely that it would
PCs are mathematically independent, it is still possible forsimulate realistic changes in climate. Huang et al. (2002)
the sampling distribution of each PC to be related to either ofcombined principal component analysis with statistical re-
its neighboring PCs. One test of this separation is called thegyression techniques to quantify how well a GCM represented
North et al. Rule of Thum{North et al., 1982). This rule uses cloud variability relative to IRIS measurements and found
eigenvalue confidence intervals to determine if neighboringthat the model underestimated cloud variations by 2 to 6
PCs are statistically separate from each other. If the neightimes compared to measurements. The latter two studies con-
boring eigenvalues fall outside the confidence interval of averted the PCs of observed radiance to physical quantities
given PC, then that PC is statistically different those on ei-using inversions and regression techniques to quantitatively
ther side. The 95 % confidence intervals for the eigenmodegvaluate the performance of climate models. In the present

can be calculated usintyo = z(0.975) x %032, whereN is study, we only use the information provided by the principal

the number of observations (number of spectra in this Study)pomponents that explain nearly all the variance in the data

This is another method that can be used to determine the a&-et to evaluate simulated reflectance.
proximate boundary between signal and noise; the boundar
would be located where the eigenmodes are no longer statis-
tically separated.

The subijectivity of locating the signal-noise boundary is h | methods that b dt h
recognized by all the studies discussed here, but these sug— ere aré several methods that can be used to compare the

.2.2 Quantitative comparison using subspace
intersection

gested techniques often help to provide guidance in makin ariability of two data sets. Similar to variability analysis in
he infrared introduced above, one method is to compare the

this decision. The information provided by these selection wral sh fth s Thi . b
criteria help us to make sense of the subspace Compariso?PeC ral shapes of the components. 1hiS comparison can be

techniques applied to the two data sets below. An approximabelprI in that it is a preliminary, qualitative, representation

tion of the boundary between signal and noise in these twoOf the relat!onshlp petween the two data sets. Here, we ex-
ine the information shared by two data sets by applying

data sets puts the results from the significance test described" o
in Sect. 3.2.4 into context as we will discuss in Sect. 4. a method similar to that used by Goetz et al. (1998) to de-

velop a novel atmospheric correction lookup table method

3.2 Quantitative comparison description to retrieve AVIRIS surface reflectance. This method com-
pared subspaces of the measured AVIRIS radiance spectra
3.2.1 Comparing spectral variability in the infrared with that simulated by MODTRAN under a variety of at-

mospheric conditions. The spectral decomposition of the in-
Comparing the variability between two data sets of radianceersection between these subspaces determined how many
data using second-moment statistics (statistics derived frondimensions the two data sets shared. The intersection was
the squared values of the data, such as variance) as an obsed as a transformation between the two data sets provid-
jective test of climate models is a technique that has beering the means to relate the simulated atmospheric condi-
used by several others (Goody et al., 1998). For exampletions with those observed in the AVIRIS spectra. The Goetz
second-moment statistics have been used to evaluate climagt al. (1998) primary objective was to develop a computation-
model variability in temperature (Polyak, 1996) and long- ally efficient method of atmospheric correction for surface
wave emission spectra (Haskins et al., 1997, 1999; Huangeflectance studies. In the present study, a similar mathemat-
et al., 2002). All of these studies state that the model needgal framework is applied to determine how much of the total
to exhibit correct second-moment statistics with respect tovariance is shared between two data sets as a quantitative
sufficiently accurate measurements to be considered rigomeasure of their similarity.
ously validated. Haskins et al. (1997) compared the variance Quantitative methods similar to those presented in this pa-
contribution and the spectral shapes of principal componentper have been used in other areas of atmospheric science
to evaluate how well simulated infrared spectra reproducedand other scientific fields to evaluate multivariate data (e.g.
the variability observed in Infrared Interferometer Spectrom-Krzanowski, 1979; Crone and Crosby, 1995). For example,

www.atmos-chem-phys.net/13/3133/2013/ Atmos. Chem. Phys., 13, 3133+, 2013



3138 Y. L. Roberts et al.: Comparison of the variability in obs. and sim. shortwave reflectance

Crone and Crosby (1995) used the spectral decomposition ofquivalent to the number of dimensiors,included in the

the intersection between subspaces of independent satellinalysis, the two subspaces are equivalent. If the sum of all
measurements to determine their similarity. Determining thek eigenvalues is zero, then the two data sets are completely
significance of the difference between two subspaces is inerthogonal and do not share any information.

strumental for principal component regression because this

decision gives guidance for determining if a subspace defined.2.4 Subspace similarity significance

by one set of principal components is appropriate to explain
the variability of another (Crone and Crosby, 1995; Jolliffe, V& adopt the Crone and Crosby (1995) method for deter-

2002). The ultimate goal of the present study is to evaluatdMning if two subspaces are significantly close at the 95 %

one data set based on its relationship to another, so we engonfidence level using their distance. That is, if the distance
ploy similar spectral decomposition analysis techniques. ~ P&tween the two subspaces is significantly small, they are
similar. The result from this significance test provides an up-

3.2.3 Mathematical details of intersection per limit for the number of dimensions that two data sets

decomposition share and can be used as a guideline. This significance test
determines how much of the total variance of each data set

The intersection comparison method described herds shared between the two data sets. Determining if two sub-

is largely derived from a technique described by spaces are equivalent is not the same as concluding that the

Krzanowski (1979) for comparing groups of principal individual PCs are the same, nor is it equivalent to concluding

components. First, we calculate the principal components athat the covariance matrices calculated in the PCA process

described in Sect. 3.1.2. The following process is repepated are equal to each other; rather, this analysis helps to deter-

times, where X k < p, andp is some number less than the mine to what degree the subspaces spanned by B@s are

total number of PCs. Using the eigenvectors calculated fromsimilar.

PCA, we calculate the intersectioh) between the two data To address this question, we use a metric called the sub-

sets using: space distance, which is defined using the intersection eigen-

I—E, EI; E, EIx 3 values:

The intersection will be & x k square matrix. The eigen- i i ©)

vector matricesk 4 andEp) used to calculate the intersec- T Vi

tion are composed only of the eigenvectors used to de-

fine the subspace. Singular value decomposition determineghere is the number of PCs used to define the subspace

the eigenvaluesl() and eigenvectorsy() of |. Becausd is

a symmetrical matrix, the two sets of eigenvectors calculate

in this decomposition are equivalent:

D(Obs Sim);, =

cf\nd Sim andObs represent the original simulated and ob-
served reflectance data sets, respectively. The distance de-
fined in Eq. (6) is the sample distance calculated from the
| =vYryY? (4) spectral decomposition of the intersection between the two
data sets. We use this sample distance to test the null hypoth-

The eigenvalues on the diagonal of the k diagonal eigen-  esis that the population distance between the two subspaces
value matrix (7) can also be represented as a veclork s zero,D(Obs Sim); = 0, against the alternative hypothesis
elements long. that D(Obs Sim); > 0.

The spectral decomposition provides information from  The distance metric is used in the triangle inequality to
which we can understand the amount of shared variance beonstruct a confidence interval that tests the null hypothesis

tween the two subspaces. The eigenvector maftixs used  (Crone and Crosby, 1995). The form of the triangle inequal-
to determine the transformed eigenvector matrices for eacly we use is:

data set in the shared intersecting space:

A=gly (52) D(Obs Sim), < D(Obs Obsy + D(Obs Sim); + D(Sim, Sim); (7)

and is rearranged to give:

B=ELEsA (5b) _ - - - ~
D(Obs Sim); > D(Obs Sim); — D(Obs Obg; — D(Sim, Sim);  (8)

Each of thek vectors inA andB are mutually orthogonal

and are used to understand the spectral nature of the overlajghere Obs and Sim are bootstrap-generated observed and
between the two data sets. simulated reflectance data sets. This equation allows us to

The eigenva|ue5 |m provide a measure of Sim"arity be- estimate a one-sided confidence interval for the true pa-
tween each pair of subspaces. If the sum of all the eigenfameter distance between the observed and simulated re-

values (also the trace of the intersection matrix in Eq. 4) isflectance. To estimate the distributionsi@fObs Obg; and
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D(Sim, Sim);, we generate new reflectance data sets withWe temporally aligned the data by calculating monthly aver-
the same number of spectrd, as the original observed and ages of the SCIAMACHY reflectance by linearly averaging
simulated data sets by usibgotstrap with replacemerithe ~ the SCIAMACHY pixels falling into each 5.625grid box
bootstrapped data sets are formed by randomly selecting revithin each month.
flectance spectra in the observed and simulated sets of spec-Itis a challenge to entirely eliminate the sampling differ-
tra until the newly formed data sets are the same size as thences between the two data sets. The OSSE spectra were
originals. This is donavith replacementmeaning that it is  generated using gridded input data from monthly averaged
possible for each spectrum to be chosen more than once. W&CM output. The SCIAMACHY reflectance spectra, on the
perform this procedure using a random number generator. other hand, were instantaneous measurements from a satel-

We calculate the principal components for the bootstrap-lite in sun-synchronous, near polar orbit. Even with the data
generated data sets and find the intersections between thigsampling, inherent differences between satellite-measured
bootstrap-generated and original observed and simulatednd model-generated reflectance may remain because of the
data sets. Then we calculate the distances between the geimherent nonlinearity in the equation of radiative transfer. The
erated and original data sets for each numbek afom- objective of the steps presented above is to mitigate the im-
ponents used to define the subspaces. We repeat this prpact on the quantitative comparison due to sampling differ-

; . PR S ences.

cess¢500.t|mes t(_) estimate @st.rlbu.nonsmb_bs Obgk_ and To understand the effect of computing comparable spatial
D(Sim, Sim)g, using those distributions to find the distances grids and monthly averages, we performed PCA on all SCIA-
in the 97.5 percentile to use in Eq. (8) for the estimation of paCHY reflectance spectra measured in January, April,
D(Obs Sim);. 500 repetitions was the value used by Crone jy1y, and October 2004 for each month separately. The eigen-
and Crobsy (1995), but we also investigated the impact dify,glue spectra from these all-inclusive PCA results (Fig. 2:
ferent numbers of repetitions had on the results, finding thabray) show that the variance of the SCIAMACHY dominant
at least 500 repetitions create continuous distance distribuygdes is higher than when the spatial and temporal averages
tions. Creating these distributions with 1000 repetitions re-5.e computed. The shapes of the eigenvalue spectra in black,
sulted in equivalent estimations 6f(Obs Sim), compared  ¢gjculated from the resampled SCIAMACHY data are much
to using 500 repetitions. ID(Obs Sim); > 0, then the null  ¢joser to the shape of the red OSSE eigenvalue spectra, im-
hypothesis is rejected; otherwise, we fail to reject the nullpying that the distribution of information is also more com-
hypothesis. We can also think of these population distanceﬁarame after resampling. Despite the sampling differences
as 95 % confidence intervals. Ki(Obs Sim), > 0, then the  petween the SCIAMACHY and OSSE data sets, the spec-
confidence interval does notinclude zero; otherwise, the conyra|, temporal, and spatial resampling performed here aligns
fidence interval does include zero, and it is possible for thehe gistribution of the variability within the data sets, lending
population distance to be zero. confidence to the appropriateness of the applied resampling.

4.2 Spectral reflectance variability
4 Hyperspectral reflectance variability

To illustrate the quantitative methods presented in Sect. 3.2.3
4.1 SCIAMACHY and OSSE data processing this study will focus on the four months for which we had

daily SCIAMACHY data in 2004, January, April, July, and
Because we are quantitatively evaluating the similarity be-October as an initial evaluation of the OSSE performance at
tween the SCIAMACHY and OSSE reflectance spectra, itthe beginning of the twenty-first century. Before employing
is important that the spectral, spatial, and temporal resoluthe quantitative comparison tools described above, we first
tion and sampling of the two data sets are comparable. Wealculate the principal components from the unstandardized
created identically sized reflectance data sets by spectralyQSSE and SCIAMACHY reflectance spectra. The eigenval-
spatially, and temporally resampling both of them and by in-ues (i.e. the variance of each PC dimension) for each of the
cluding only averaged spectra located in grid boxes with datdour cases are shown in Fig. 2. The shapes of the eigenvalue
in both the SCIAMACHY and OSSE resampled data sets.spectra show that the general distributions of the variance for
Both sets of reflectance spectra were resampled to 10 nrboth data sets are similar, at least for, approximately, the first
full-width at half maximum spectral resolution and 3 nm 15 or 16 dimensions. The cumulative variance contribution
sampling resolution. The OSSE spectra are produced usingn Fig. 3 shows some differences in variance in the first few
monthly averaged data on a 1°2§rid (Sect. 2.2). To ensure PCs, but for both data sets and all four months, six PC dimen-
that SCIAMACHY pixels from at least every three days (the sions explain between 99.7% and 99.9 % of the total data
approximate time over which SCIAMACHY obtains near variance.
global coverage) throughout each month were represented In addition to studying the distribution of variance for the
in the monthly average of each grid box, we expanded theéwo data sets, we also examine the spectral shapes of the
grid to 5.625, four times the size of the original OSSE grid. first several components that dominate the data variability.

www.atmos-chem-phys.net/13/3133/2013/ Atmos. Chem. Phys., 13, 3133+, 2013



3140 Y. L. Roberts et al.: Comparison of the variability in obs. and sim. shortwave reflectance
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g 10'F . PC Number
§ 10+ ¢ 1
g-} T scia 1 Fig. 3. The cumulative variance fraction for each of the four cases
10:L  OsSE _ for the first ten PC dimensions. For all four months, both SCIA-
10k MACHY (solid) and OSSE (dashed), six PC dimensions explain be-
: . - tween 99.7 % and 99.9 % of the total data variance in both data sets.
10 15 20 25 30
(b) PC Number
July 2004 Eigenvalues
10'5 T In addition to there being similarities between the PCs from
01§ 1 the two data sets, there are spectral features that are indica-
2 0T R T tive of physical variables. Water absorption bands are evident
g 107 1 in at least the first four PCs for both data sets. The first PC
L% T scia T resembles a cloud reflectance spectrum, and PC4 resembles
10t OSSE ] a green vegetation reflectance spectrum (Fig. 1). It is likely
100k that the other PCs explain physical variables but they cannot
N be uniquely identified. An illustration of this point is pre-
© PC Number sented in Fig. 5, which shows the October 2004 OSSE and
October 2004 Eigenvalues SCIAMACHY scores for PC4 and PC5. The spectral shape
' ' ' ' ' of PC4 is indicative of vegetation. This is confirmed in the
o spatial distribution of the scores by the relatively high scores
g 10 over regions that are green in October such as the Amazon,
g 10° the Southeastern US, sub-Saharan Africa, and Southern Asia.
5 10 Moreover, negative scores are seen over areas typically de-
. 10° void of green vegetation such as the oceans, polar regions,
. 02200000 and semi-arid regions. Although similar spatial patterns are
T PR 2-5 a— also observed in the PC5 scores, evidence that PC5 is partly
(@) PC Number explained by vegetation is not apparent by the spectral shape

of PC5. This point also helps to support the importance of
Fig. 2. The first 30 eigenvalues for the Janugay, April (b), July ~ comparing entire subspaces when evaluating the data set sim-

(c), and October(d) 2004 SCIAMACHY and OSSE Reflectance jlarity rather than solely relying on one-to-one PC compar-
PCs. The difference in shape between each of the grey lines angygns.

the black lines shows how well the SCIAMACHY data resampling
performed prior to PCA aligned the SCIAMACHY distribution of
information with that of the OSSE.

There are some cases, however, in which individual com-
parisons of the PCs can reveal important differences be-
tween data sets. For example, although the first October
2004 SCIAMACHY PC contains some aspects of a cloud
reflectance spectrum (Fig. 4), its spectral shape also con-
Figure 4 compares the first nine October 2004 SCIAMACHY tains characteristics of a frozen surface, such as ice clouds
and OSSE PCs. Generally among the four cases the spectrat ice or snow at the surface. The local maximum that oc-
shapes of the SCIAMACHY and OSSE components are verycurs between 1400 and 1450 nm occurs because of its po-
similar. The spectral shapes of the first two components araition between the water vapor absorption band centered at
nearly identical for the four cases and together explain 94.7-4350 nm and the ice absorption band centered at approxi-
97.5% (OSSE) and 95.7-98.3 % (SCIA) of the data variancemately 1500 nm. Although it appears that the first OSSE PC
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Fig. 4. The first nine October 2004 SCIAMACHY (black) and OSSE (red) principal components show a close comparison between the two
data sets. Physical variables are identifiable within some PC spectral shapes including clouds (PC1), vegetation (PC4), and water absorptiol
(PC1-4).

does not have the same ice spectral feature at 1400 nm as theted reflectance, we begin by using the selection criteria de-
first SCIAMACHY PC, this feature is in the OSSE PC, but it scribed in Sect. 3.1.3 to estimate the number of dimensions
is broadened so that the peak occurs at a longer wavelengtthat define the boundaries between signal and noise. For ex-
We also see this difference in the January and April 2004ample, using the October 2004 logarithmic eigenvalue plot
PC1 cases. Itis likely that we do not see this ice feature ancguggested by Craddock and Flood (1969) (Fig. 2d) it appears
difference between the data sets in the July PC1 because difiat six dimensions may be sufficient to represent the sig-
the reduction in Arctic snow and ice in July and the Antarc- nal explained by the variability in the data set, which is also
tic night that occurs during this time. The way in which this how many dimensions the fractional Kaiser method (Jolliffe,
feature is manifested in the PC may be representative of hovt972) (Sect. 3.1.3) suggested. The dip between the sixth and
snow BRDF values from MODIS are used as input for MOD- seventh eigenvalues and the change in slope before and after
TRAN within the OSSE. The BRDF under snowy conditions these eigenvalues likely indicates that the first six dimensions
was determined from snow-covered and snow-free MODISexplain most of the variance in the data sets. This is also sup-
surface reflectance and was created by linearly interpolatingported by the increasing amount of noise in the PC shapes
over the MODIS channels to obtain an estimate of the specafter PC6 in Fig. 4. The Broken Stick Method (Jolliffe, 2002)
tral BRDF function for each grid box. This estimate was suggested 14 dimensions, but the Broken Stick Method typ-
input into MODTRAN. The necessary linear interpolation ically suggests the largest number of dimensions among the
over the coarse band coverage in the near infrared may bBC selection criteria described in Sect. 3.1.3. Using these cri-
the cause of the broadened ice feature around 1400, which igria for the other three months as well, we have estimated

visible in the PC1 comparison in Fig. 4. that seven dimensions explain the reflectance signal for Jan-
o _ uary and April, and eight dimensions explain the signal for
4.3 Quantitative subspaces comparison July. Because the Broken Stick Method suggested that be-

i ) ) ] tween 14 and 16 dimensions were above the noise level, we
Initial evaluation of the comparison of the eigenvalues andgy|cylated intersections using the first twenty eigenvectors.

PC spectral shapes suggests that the variance distributiog, o, though we estimated that fewer dimensions than de-

between these data sets is similar. To quantify how muchyne the houndary between signal and noise, we calculated 20
of the variance is shared between the observed and simu-
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Fig. 5. The spatial distribution of the October 2004 PC4 SCIA- Fig. 6. The comparison of the eigenvalues from the spectral decom-
MACHY (a) and OSSHb) scores and the PC5 SCIAMACH({¢) position of the intersection to the maximum possible eigenvalue for
and OSSHd) scores. Both PC4 and PC5 scores show evidence ofeach number of subspace dimensions. As more dimensions are used
vegetation, implying that this physical signal is distributed betweento define the subspaces, the similarity identified by the eigenvalues
at least these two components. Data set similarities seen in the ovedecreases.

lap of PC shapes in Fig. 4 are reinforced by the similarities seen in

the spatial distribution of the scores.

For each month, the twenty intersections were computed
different intersections with between one and twenty eigen-Using the subspaces spanned by & < 20 eigenvectors of
vectors to find the number of dimensions at which the twothe SCIAMACHY and OSSE data, and the spectral decom-
data sets are different at the 95 % confidence level. positions of each of these intersections were performed. Re-

call that the eigenvalues from the intersection decomposition
are measures of similarity between the subspaces. The eigen-
values for each of these subspaces are shown in Fig. 6 for
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each month, with the maximum possible similarityshown January 2004 - SCIA & OSSE Distance
in black. Ask, the number of dimensions used to define each sof T T T =
subspace, increases between one and twenty dimensions, the
observed similarity between the two data sets decreases. This
is illustrated by the increasing difference between the red
lines and the black lines in Fig. 6. To quantify the largest
number of dimensions that the two data sets share, we first
calculate the distance between each set of subspaces. The
calculated subspace distances, the maximum possible dis-
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Obs/Max Distance Ratio
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20F

o
o

I
~

Subspace Distance
o

Maximum Distance 0.2
Observed Distance
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tances {/k) and the ratio between the calculated distance @ Subspace Dimensions
and the maximum distance are shown in Fig. 7. The sub- April 2004 - SCIA & OSSE Distance
space distances also confirm the result shown by the eigen- sof T T T T =

o
©

values in Fig. 6, most clearly demonstrated by the relative 25f 1
distances, which generally increase with the number of di-
mensions used to define each subspace.

The subspace distances shown in Fig. 7 are the observed

distances on the left side of Eq. (8). Continuing with the pro-

20F
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Subspace Distance
o
o
~
Obs/Max Distance Ratio
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cess, the triangle inequality is used to estimate the population 0.5¢ Observed Distance
distances, shown in Fig. 8. This statistical significance test O
shows how many-dimensional subspaces are the same at (®) Subspace Dimensions

a 95 % confidence level, and vertical lines indicate the largest July 2004 - SCIA & OSSE Distance
k-dimensional subspace for which this is true for each case sof ="

in Fig. 8. We also note that the selection criteria results using
the logarithmic eigenvalue plot shown in Fig. 2 give simi-

lar values to those determined by the statistical significance
test. The statistical significance test found that the two data
sets agree over seven dimensions in April and July and eight

o
@

25F b

20F

o
o

Subspace Distance
o
o
~
Obs/Max Distance Ratio

Maximum Distance 0.2

dimensions in January and October. This alignment demon- 05F Observed Distance

strates that the two data sets are generally similar at the signal 000

to noise boundary, discussed at the beginning of this section © Subspace Dimensions

and estimated to be located at seven (January), seven (April), October 2004 - SCIA & OSSE Distance
T T =10

eight (July), and six (October) dimensions using the tech- aof
niques described in Sect. 3.1.3. Using the cumulative vari-
ance explained (Fig. 3) by the number of dimensions indi-
cated by the vertical lines in Fig. 8 we can determine how
much OSSE and SCIAMACHY variance is explained in the
k-dimensional space in which they are similar at the 95%
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confidence level. The results in Figs. 3 and 8 show that for 05 Observed Distance
the number of dimensions over which the two data sets agree 00— PR 100-0
in January, April, July, and October, approximately 99.9 % of (@) Subspace Dimensions

the SCIAMACHY and OSSE data variance is explained.

It is also informative to inspect the spectral shapes of eaclfig. 7. The observed subspace distances between the SCIAMACHY
pair of transformed eigenvectors (Fig. 9). Using the Octoberand OSSE reflectance subspaces for ten subspaces (red) compared
2004 results from the statistical significance test, we show thdo the maximum possible distance between the two subspaces
transformed vectors of the eight-dimensional shared spac!ack). The blue line shows the ratio between the observed sub-
between the SCIAMACHY and OSSE reflectance data. The>Pac€ dlstance_ and t_he maximum p053|b_le distance for each number
first three eigenvectors exhibit several spectral characteristiccﬁ);jﬁgfﬁgizlgg%nnslﬁgzlg;?(tI;f]’ethe ratio of the values on the red
that are also present in the original PCs in Fig. 4. The fourth '
transformed eigenvector in part resembles the original PC4,
but the others contain only segments of recognizable spemificance technique, we have presented an objective method
tral features, if any. Because some of the transformed vectorgith which to quantitatively compare two multivariate sub-
resemble the original PCs, this means that overlapping inforspaces, a technique which has several other applications, as
mation between the two data sets is very similar to that ofdescribed below.
the original dominant modes of observed variability. By ap-
plying the intersection decomposition and the statistical sig-
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January 2004 - Population Distance information between two data sets can be compared. First,
' ' ' we qualitatively compared the most dominant principal com-
ponents that explained the majority of the variance in both
data sets and found that the two data sets appear to share
similar variance distributions. We also found that linear in-
terpolation of surface reflectance in the OSSE manifests as
a difference in the first principal component for the January,
April, and October cases. Second, we quantitatively com-
- n . o 10 pared the spectral variability of the two data sets using their
Subspace Dimensions principal components. This analysis showed that the OSSE
April 2004 - Population Distance and SCIAMACHY reflectance spectra share a large fraction
' ' ' ' of their spectral variability and that this variability shares
osp 1 spectral characteristics with the original PC transformation
of the measured data set. From these results we conclude
that at the beginning of the century, the OSSE appears to
give a realistic representation of the Earth’s variability rel-
ative to SCIAMACHY-measured reflectance. These findings
provide a necessary, initial condition that helps us to under-
. . . . 0 stand the predictive potential of the OSSE for understanding
b) Subspace Dimensions how Earth’s variability may change during the 21st century.
July 2004 - Population Distance In Sect. 4.1, we discuss the differences between the SCIA-
osf ' ' ' ] MACHY and OSSE data sets despite our attempts to align
the spectral, spatial, and temporal sampling. Our main objec-
tive in this study was to compare the variability of the two
data sets, which we did using the intersection of the prin-
cipal components calculated from the covariance matrices.
It is possible that the sampling differences between the two
sets of reflectance spectra were manifested as differences in
: ” . : 0 the pairs of principal components, but despite those sampling
Subspace Dimensions differences, the spectral shapes of the principal components
October 2004 - Population Distance were qualitatively similar. The test that we proposed in this
' ' ' study to quantitatively compare the variability between two
05f / data sets does not rely on the similarity between each pair of

0.5F 9

0.0

-0.5F 1

Estimated Population Distance

Estimated Population Distance

Estimated Population Distance

spectra, nor does it evaluate the equivalency of the covariance
00 L~ matrices or the resulting principal components. Rather, this
test evaluates the similarity of the subspaces that are spanned
by some number of principal components. If the two sub-
spaces are found to be statistically similar, we interpret this
to mean that the variability of those subspaces is similar as
Subspace Dimensions well.

There are several other research questions that the quan-
Fig. 8. The population distances between the OSSE-simulated anditative comparison method applied in this study could be
SCIAMACHY-observed reflectance spectra for Janu@y April used to address. For the OSSE simulations used in this study,
(b), July(c), and Octobe(d) 2004. The distances less than zero cor- ccsm3 output was used, but other climate model results

respond to subspaces/otlimensions that are the same at the 95 % could also be used for the OSSE simulations. The compar-

confidence level. The vertical lines indicate the maximum number. . L "
. ) ) ison meth resen her n provide rigor iV

of dimensions the two data sets share at the 95 % confidence lev ?O ethod presented here can provide rigorous objective

for each case ?esting of these different climate models to determine which
' model best reproduces Earth’s present-day climate variability
and is likely better to study future changes in Earth’s climate.
5 Conclusions and future work Feldman et al. (2011a) used the OSSE to compare the
shortwave reflectance signal observed between two differ-
In this study, we used SCIAMACHY-measured hyperspec-ent emission scenarios simulated using CCSM3: the con-
tral solar reflectance to evaluate how well OSSE-simulatedstant CQ and the A2 emission scenarios. The quantitative
hyperspectral reflectance captures variability in the Earth’smethod described in this study can be used to understand how
climate system. We presented two primary ways in which thechanges in different climate forcing scenarios are manifested

Estimated Population Distance

d)
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Fig. 9. The spectral shapes of the transformed eigenvectors for October 2004 in the shared intersection space. The first six or seven dimension
align well, and the first four dimensions share spectral characteristics with the first four original October 2004 PCs, shown in Fig. 4.

in the variability of hyperspectral reflectance. These results The Minimum Noise Fraction (MNF) transform (Green
can be studied during the first decade of the 21st century, foet al., 1988) is a method that can be used in conjunction with
comparison to SCIAMACHY reflectance, and during the en-the comparison method described in this study. The MNF
tire 21st century, to attempt to understand how changes ins a two-part PCA that whitens or decorrelates the noise in
climate contribute to changes in reflected shortwave spectrahe data set, so if a well-defined noise characterization is
variability on a centennial time scale. This may provide in- available from noise-equivalent dark spectra during an in-
sight into which variables contribute to changes in the mea-strument’s lifetime, this transformation can be applied to the
sured reflectance over different time scales. In a subsequemadiances before the quantitative comparison method is used.
paper, we will evaluate how well the OSSE reproduces theOne of the benefits of the MNF transform is that it typically
temporal variability of the Earth’s climate system over the provides a clearer boundary between the signal and noise lev-
decade for which we have SCIAMACHY measurements.  els using the eigenvalue spectrum.

In addition to the ideas presented above, there are other Another improvement to this work involves the method
ways to improve and expand upon the analysis presented insed to spatially and temporally resample the sun-
this study. We focused on the similarities between the ob-synchronous satellite-measured reflectance. Although the
served and simulated data, but it may also be useful to infmethods aligned the spectral, temporal, and spatial sampling
vestigate the nature of the differences between the two dataf the two data sets, it would be beneficial to establish more
sets. One approach to address the differences in the variabigppropriate methods for gridding sun-synchronous satellite
ity between data sets would be to conduct a radiative transeata to minimize the potential sampling differences in com-
fer simulation study in which specific variables that may be parisons such as these. As climate observation systems are
the cause of variability differences were modified. For exam-deployed, we will be able to apply the techniques described
ple, regarding the difference discussed in Sect. 4.2, we coulthere to further improve the development of climate OSSEs as
rerun the OSSE using snow BRDFs with a higher spectrafuture instruments are designed. The results presented in this
resolution than the current MODIS input to evaluate if such paper provide a foundation for how these quantitative com-
a change accounts for the difference observed between thgarisons between two hyperspectral data sets can be made.
first pair of SCIAMACHY and OSSE eigenvectors. These results also provide the community with a measure of
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how well the OSSEs are able to reproduce the variability of etry from space: an essential tool for climate studies, Philos. T.
the Earth’s climate system. Roy. Soc. A, 369, 4028-4063, 2011.

Goetz, A.: Three decades of hyperspectral remote sensing of the

Earth: a personal view, Remote Sens. Environ., 113, 5-16,
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