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Abstract. Atmospheric aerosols impact air quality and
global climate. Space based measurements are the best way
to observe their spatial and temporal distributions, and can
also be used to gain better understanding of their chemical,
physical and optical properties. Aerosol composition is the
key parameter affecting the refractive index, which deter-
mines how much radiation is scattered and absorbed. Com-
position of aerosols is unfortunately not measured by state
of the art satellite remote sounders. Here we use high resolu-
tion infrared measurements for aerosol type differentiation,
exploiting, in that part of spectrum, the dependency of their
refractive index on wavelength. We review existing detection
methods and present a unified detection method based on
linear discrimination analysis. We demonstrate this method
on measurements of the Infrared Atmospheric Sounding In-
terferometer (IASI) and five different aerosol types, namely
volcanic ash, windblown sand, sulfuric acid droplets, ammo-
nium sulfate and smoke particles. We compare these with
traditional MODIS AOD measurements. The detection of
the last three types is unprecedented in the infrared in nadir
mode, but is very promising, especially for sulfuric acid
droplets which are detected in the lower troposphere and up
to 6 months after injection in the upper troposphere/lower
stratosphere.

1 Introduction

Atmospheric aerosols consist of primary (sea spray, crustal
material, smoke, and organic matter) and secondary (sul-

phates, nitrates, ammonia, volatile organic compounds) com-
ponents (Kondratyev et al., 2005). Their presence reduces
air quality, affecting human health, visibility and life in the
whole biosphere (Pöschl, 2005). Aerosols also have an im-
pact on the radiation budget of the Earth, causing a net cool-
ing effect on the climate (Forster et al., 2007). The mag-
nitude of the cooling is highly uncertain, but essential for
a better understanding of ongoing climate change (Hansen
et al., 2011). The reasons for the uncertainty is the large vari-
ability in aerosol: on a temporal, spatial and vertical scale
and of composition, size, shape, chemical, physical and op-
tical properties (Kaufman et al., 2002; Li et al., 2009). Con-
versely, the greenhouse budget is determined by slow vary-
ing long lived gases with definite optical properties. An-
other element is the great number of different ways in which
aerosols can alter the radiative budget of the Earth (Ra-
manathan et al., 2007). These include direct interactions with
solar and terrestrial radiation (Yu et al., 2006) and indirect
effects through a multitude of different interaction mech-
anisms with(in) clouds (Haywood and Boucher, 2000; Li
et al., 2011). These effects can only partially be measured
in a direct way and therefore have to be assessed through
careful modeling.

High temporally and spatially resolved space measure-
ments of aerosols can greatly help in constraining such mod-
eling efforts. Ideally, space measurements should not only in-
clude full information on the distribution and physical char-
acteristics of aerosols, but also on their composition. Chemi-
cal composition is recognized as a key variable determining
both the direct and indirect effects of aerosols on climate.
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2196 L. Clarisse et al.: Aerosol type specification in the infrared

Knowledge of the composition allows to distinguish natural
from anthropogenic aerosols, hygroscopic from hydrophobic
aerosols and absorbing from scattering aerosols (Mishchenko
et al., 2004; Kim et al., 2007a; Mishchenko et al., 2007).

Despite its importance, relatively little attention has been
given to the sounding of aerosol composition. The most com-
monly derived quantity from space-based aerosol sounders is
the so-called aerosol optical depth (AOD) which is a (verti-
cally integrated) measure of how much radiation is absorbed
and scattered. Fortunately, the scientific focus is broaden-
ing, and state-of-the-art aerosol sounders exploit increasingly
many measuring dimensions, such as more spectral bins,
multi-angle observations and polarization measurements; all
of which can be used to infer information on aerosol compo-
sition. Multichannel measurements can be used to differen-
tiate fine vs. coarse mode aerosol which in turn can be used
as a proxy to differentiate anthropogenic vs. natural aerosols
(Kaufman et al., 2005; Yu et al., 2006; Remer et al., 2005;
Jones and Christopher, 2011). Estimates of the single scat-
tering albedo (SSA), which is the ratio of the scattering ver-
sus total extinction efficiency, also yield clues. Sulfate and
seasalt aerosol for example mainly scatter and have a SSA
close to one, while black carbon aerosols mainly absorb and
have a small SSA (Takemura et al., 2002; Kim et al., 2007a;
Torres et al., 2007). Multi-angle observations allow to differ-
entiate non-spherical (mainly dust and cirrus) from spherical
particles (e.g.Kahn et al.(2009)). The reader is referred to
Omar et al.(2009) and Kim et al. (2007a) and references
therein for recent efforts of aerosol type specification using
shortwave measurements.

POLDER (Tanŕe et al., 2011) is currently the most ad-
vanced aerosol sounder in orbit, measuring polarization and
intensity in different spectral channels and in a multi-angle
geometry. Recently, it was demonstrated (Dubovik et al.,
2011) that this instrument can be used to derive aerosol
(chemical) composition via retrieval of refractive indices.
Building on the success of POLDER, the APS instrument
was proposed (Mishchenko et al., 2007). It was specifically
designed to address scientific questions regarding the impact
of aerosol on the global climate. One of the key objectives
was exactly the capability of measuring aerosol composition
through determination of the refractive index (Mishchenko
et al., 2004; Cairns and Mishchenko, 2011).

Remarkably, like most dedicated aerosol sounders
(Kokhanovsky and de Leeuw, 2009), the APS design does
not include any spectral channels in the thermal infrared.
However using thermal infrared radiation for aerosol sound-
ing has a number of appealing advantages such as (i) the
possibility of measuring in absence of solar light, at night
and in the winter at high latitudes (ii) less problems with re-
trieval over bright surfaces (iii) enhanced sensitivity to coarse
mode aerosols and (iv) large sensitivity to aerosol composi-
tion (Clarisse et al., 2010a). This sensitivity to aerosol com-
position is caused by strong variations of the aerosol refrac-

tive index both as a function of composition and a function
of wavelength in the thermal infrared spectral region.

In this paper we present a unified method for aerosol speci-
ation using only thermal infrared radiation and demonstrate
it on the detection of five different aerosol types, some of
which have never been identified directly from space in nadir
mode. Others are observed with unprecedented sensitivity.
Our results underline the large potential of aerosol sounding
in the thermal infrared, and its complementariness to existing
shortwave sounding methods.

In the next section we review the state of the art of aerosol
detection methods from infrared sounders, which leads up to
a unified detection method based on classical discrimination
analysis. In Sect. 3 we apply these techniques on measure-
ments of the Infrared Atmospheric Sounding Interferome-
ter (IASI) (Clerbaux et al., 2009; Hilton et al., 2011). IASI
is one of the most versatile infrared sounders currently in
orbit, designed for both operational and scientific research
goals, it has excellent temporal, spatial and spectral coverage
and instrumental characteristics. The infrared thermal win-
dow is captured from 645 cm−1 to 2760 cm−1 at an apodized
spectral resolution of 0.5 cm−1 and low instrumental noise
(< 0.3 K almost everywhere). We discuss and present results
for volcanic ash, windblown sand, sulfuric acid droplets, am-
monium sulfate and smoke particles. Where possible, we
compare our results to standard (absorption) AOD measure-
ments from OMI and MODIS. In Sect. 4 we present our con-
clusions.

2 Detection methods

2.1 Feature detection

Feature detection methods use elementary (arithmetic) op-
erations on spectral bands or channels to produce detection
flags. Such methods have been and are still widely applied
on measurements from broadband sounders for the detection
of aerosols. The simplest of these is a single threshold on
a given band for the detection of thick high altitude clouds.
At the other extreme there is, e.g.Ackerman et al.(1998) who
published a sophisticated cloud test consisting of 11 different
tests on single and pairs of different MODIS bands.

The most commonly used method for aerosol detection
is the brightness temperature difference (BTD) between two
different spectral bands.Inoue (1985) showed that the dif-
ference of the AVHRR bands at 11 and 12 µm is a good in-
dicator for the presence of cirrus clouds. Analogously,Prata
(1989) showed a reverse absorption effect between 10 and
11 µm for volcanic ash clouds. These papers also featured
the first bispectral diagrams between the BTDs and a ref-
erence band. Such graphs can be used to infer quantitative
information of two other independent variables such as ef-
fective particle radius and optical depth or mass (seeWu,
1987; Parol et al., 1991; Rose et al., 1995for ice –Wen and
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Rose, 1994; Yu et al., 2002; Prata and Prata, 2012for ash).
Similar techniques have been applied for detection of wind-
blown sand (Ackerman, 1989) and extended to 3 (Ackerman,
1997; Ellrod et al., 2003; Strabala et al., 1994) or more bands
(Pavolonis et al., 2006).

Detection techniques based on BTDs have also been ap-
plied on high spectral resolution measurements, e.g. for the
detection of ice (Kahn et al., 2003), ash (Carn et al., 2005)
and sand (DeSouza-Machado et al., 2006) but also for weak
absorbing trace gases, such as sulfur dioxide (SO2) (Clarisse
et al., 2008) and ammonia (NH3) (Clarisse et al., 2009). The
use of BTDs on hyperspectral measurements has the advan-
tage of being able to largely avoid contamination with (other)
trace gases. However, by only using a handful of spectral
channels they do not fully exploit all the information con-
tent captured in such measurements. A full multichannel ex-
tension of BTDs for the detection of ash was presented in
Gangale et al.(2010) where first and second order polyno-
mials were fitted to high resolution brightness temperature
spectra. Detection thresholds could then be introduced on fit-
ted parameters and goodness of fit (see alsoNewman et al.,
2012).

2.2 Spectral fitting

Feature detection methods have a physical basis, and can
therefore often be used to derive quantitative information.
Because of their simplicity they can be employed in oper-
ational applications or when large amounts of data need to
be processed with limited computational power. In contrast,
the most sophisticated methods rely on spectral fitting, where
the observed spectrumy is matched to a calculated spectrum
generated by a forward radiative transfer modelF x and vary-
ing physical parametersx (Rodgers, 2000). The physical pa-
rameters should include all unknown parameters which in-
fluence the forward model in the spectral range of interest.

Spectral fitting is typically ill-conditioned so that the prob-
lem needs to be constrained with prior information of the
physical parametersxa . Mathematically, the problem is then
often formulated as a minimization of the weighted least-
squares cost function

J = (y − F x)
TS−1

ε (y − F x) + (x − xa)
TS−1

a (x − xa). (1)

Here the weights are the covariance matrices of the instru-
mental noise (Sε) and of the prior information (Sa). A com-
mon assumption is that of moderate non-linearity of the for-
ward model, in which case the solutionx̂ can be achieved by
Newtonian iteration of

xi+1 = xa + (S−1
a + KT

i S−1
ε K i)

−1KT
i S−1

ε

[y − F xi
+ K i(xi − xa)], (2)

with covariance

Ŝ
−1

= K̂
T
S−1

ε K̂ + S−1
a . (3)

Here K is the Jacobian built up of derivativesKij =

∂Fi(x)/∂xj . Under the assumption that both the instrumen-
tal noise and prior information can be accurately described
as Gaussian probability density functions (pdf), this solution
can be shown to be the maximum aposterior solution. Since
this solution is the one that maximizesP(x|y), it can be in-
terpreted as the Gaussian probability density function with
meanx̂ and covariancêS and the method is therefore often
referred to as “optimal estimation”.

Note that there are many other (iterative) methods for
spectral fitting (Rodgers, 2000), and that such methods are
widely employed for the quantitative retrieval of major trace
gases (see e.g.Hurtmans et al., 2012). They can also be used
to detect weak absorbers, and they are the ultimate way of
confirming the presence of their spectral signature in the ob-
served spectrum (seeCoheur et al., 2009andClarisse et al.,
2011 who reported a series of rare trace gas observations
from IASI).

A more qualitative way of spectral fitting was introduced
in Walker et al.(2011) (see also in this contextRodgers,
2000, p. 70–71 andvon Clarmann et al., 2001), who proposed
a non-iterative pseudo retrieval of a single physical variable
or target speciesx using

x̂ = x0 + (KTS−1K)−1KTS−1
[y − F x0], (4)

where the covarianceS includes the instrumental noise and
the covariance of all physical parameters exceptx. The Jaco-
bianK is the derivative of the target species with respect to
a fixed average atmosphere. When all constants are omitted,
and the column matrixK is written as a vectork, a quantity

R1 = kTS−1y =

∑
i

1

λi

kTviv
T
i y (5)

is obtained, which can serve as a (non-normalized) measure
for x. HereS=

∑
i λiviv

T
i is the eigenvalue decomposition

of S.
This approach is powerful whenx is a parameter which

does not affect the observed spectrum in a typical atmo-
sphere, as in that case it is straightforward to generate a co-
variance matrixS from an ensemble of observed spectra.
For instance, SO2 is rarely observed with IASI, and the co-
variance matrixS can be generated from randomly observed
spectra subject to a simple BTD test on SO2. Not having to
retrieve or to model all the other important physical param-
eters is of great advantage, especially as this method can be
applied to large spectral ranges, exploiting the full informa-
tion content from high resolution sounders. Note that this ap-
proach is not equivalent to a full retrieval since (1) it assumes
linearity, (2) a fixed Jacobian is used, and (3) it assumes
a Gaussian distribution of the probability density function de-
scribing the instrumental noise and all other physical param-
eters. This last condition is valid to some extent, but will fail
for outlying features (e.g. rarely observed events such as vol-
canic eruptions, peculiar surface emissivity effects), causing
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false detections. With these caveats in mind, the development
of the pseudo-retrieval method is an important breakthrough
in remote sensing and is extremely powerful, in particular
for the detection of spectral features spanning a large spec-
tral range.

Spectral fitting approaches have also been applied to the
detection and quantification of atmospheric aerosols. The
problem is non-trivial and is made more difficult by the in-
tricacies of aerosol radiative transfer which ideally includes
the effects of multiple scattering. Another added complex-
ity is the fact that the optical properties of aerosol are never
known exactly. These depend on size, shape and composi-
tion (e.g. the spectral properties of windblown dust depend
largely on their mineral content (Sokolik and Toon, 1999))
and can undergo transformations (such as due to particle co-
agulation) during transport in the atmosphere. This becomes
especially important for high spectral resolution measure-
ments. The infinity of different possible aerosol optical prop-
erties contrasts with trace gas spectroscopy for which only
a limited number of molecular parameters need to be known.
In addition to these difficulties, because of spectral interfer-
ence, trace gases and aerosols should be retrieved simultane-
ously.

A complete simultaneous fit of trace gas concentrations,
aerosol optical depths and effective radii for high resolu-
tion IASI spectra was presented inClarisse et al.(2010a)
for scenes with a different dominant aerosol type. It was
shown there, that at least 5 different aerosol compositions
can be differentiated spectroscopically (ice, biomass burn-
ing, sand, volcanic ash and volcanic sulfate). Another recent
example of a full fit approach (on selected window channels,
and without trace gases) is presented inDeSouza-Machado
et al.(2010) for dust retrievals on AIRS spectra.

2.3 Distance approaches

An alternative to a full iterative fit is to use a large amount
of precalculated spectra as a lookup table (LUT). Varying
parameters can include the target molecule/aerosol loading
but also surface temperature, interfering trace gases, aerosol
radius, aerosol height and viewing angle. Observed spectra
y can then be matched to one of the precalculated spectrayi

using, e.g. the Euclidean distance, possibly weighted by the
instrumental noise covariance matrixSε :

J ′
= (y − yi)

TS−1
ε (y − yi). (6)

This distance also appears as the first term in Eq. (1) and
is called the Mahalonobis distance (Rencher, 2002). Ad-
vantages of LUT approaches are that the obtained solu-
tion is guaranteed to be physically meaningful, and that
a global minimum can be found of the difference observed-
calculated spectra (this is not guaranteed using iterative spec-
tral fit approaches). The LUT approach is especially ap-
pealing for the retrieval of aerosols for which the radiative
transfer calculations are slow. Examples include retrievals of

(cirrus) clouds (Li et al., 2005; Yue and Liou, 2009), dust
(Peyridieu et al., 2010 and references therein) and volcanic
ash and ice (Gangale et al., 2010; Clarisse et al., 2008; Corra-
dini et al., 2010) from AIRS and IASI. LUT approaches have
also been employed for the retrieval of rare trace gases, as in
Prata and Bernardo(2007) who proposed a detection algo-
rithm for SO2 by looking for a good correlation between pre-
calculated absorbance spectra of SO2 and absorbance spectra
obtained by dividing observed spectra in a given scene. Their
method also used a LUT approach for determining SO2 abun-
dances.

A purely qualitative detection method based on distance
was proposed inClarisse et al.(2010b) for the detection of
volcanic ash. Rather than using calculated spectra, a set of
real observed spectra was used as a LUT. Observed spectra
were then matched against these using the linear Pearson cor-
relation as distance measure. Methods based on auto correla-
tion have also been proposed, both for trace gases (Beer and
Norton, 1987) and for clouds (Serio et al., 2000; Masiello
et al., 2002).

2.4 Methods based on singular value decomposition and
principal component analysis

The number of spectral channels in high spectral resolution
instruments such as AIRS and IASI far exceeds the num-
ber of independent pieces of information contained in them
(in a typical observation of a terrestrial atmosphere). Making
a principal component analysis (PCA) (Jolliffe, 2002) of an
ensemble of spectra is a way of reducing the dimensionality
by extracting the principal components of spectral variation
and disregarding those that carry no information (Huang and
Antonelli, 2001; Antonelli et al., 2004; Kl üser et al., 2011).
This allows to remove instrumental noise as was illustrated
in Atkinson et al.(2010) with a better detection of NH3 by
the application of a BTD filter on reconstructed spectra.

PCA can also be applied in a different way for the detec-
tion of trace gases or aerosols. Principal components should
be calculated from a large number of random training spec-
tra to accommodate for all observed variability. However, as
discussed inAtkinson et al.(2010), very rare events (volcanic
eruptions, large fires) will typically be reconstructed poorly
as their weight is too low for their spectral features to be
represented in the principal components. This opens up the
possibility of using principal components as a detection tool
by explicitly avoiding the presence of the target species in
the spectra of the training set. This was for instance done for
cloud detection in MIPAS observations (Hurley et al., 2009).

In particular, suppose we have a set of clear spectra{s}

of length n (so an ensemble of spectra with no detectable
spectral signature due to the presence of the physical vari-
able or target speciesx). The principal components are
the eigenvectors corresponding to them < n (to be chosen
cleverly) largest eigenvalues of their covariance matrixS.
Equivalently, they can be obtained from a singular value
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decomposition of the data matrix consisting of all the clear
spectra. The eigenvalue decomposition ofScan be written as

S=

n∑
i=1

λiviv
T
i ≈

m∑
i=1

λiviv
T
i (7)

The set{vi} form a complete basis of the observation space,
so that the identity matrix can be written asI =

∑n
i=1viv

T
i .

By projecting an arbitrary spectrum onto

S′
=

n∑
i=m+1

viv
T
i = I −

m∑
i=1

viv
T
i , (8)

the clear component of the spectrum is disregarded. Doing
this on a large number of polluted spectra (these can be simu-
lated or observed but should exhibit a signature due tox), we
obtain a set of spectra for which again the principal compo-
nents can be calculated. Projection of an arbitrary observed
spectrumy onto the vectorl corresponding to the first prin-
cipal “polluted” component, then gives a quantitative indi-
cation of the presence of the pollutant. This can be written
as

R2 = lTy = lTS′y =

n∑
i=m+1

lTviv
T
i y. (9)

Here the notation was chosen to make the relation with
Eq. (5) apparent. In Eq. (9) the pollutant vectorl could be
replaced by the Jacobiank from Eq. (5) since it is being
projected onto the polluted space. Both the pseudo retrieval
method and the PCA method project the spectrum on the
eigenbasis formed by the covariance matrix of an ensemble
of clear spectra. They differ in the applied weights: in Eq. (5)
the weights are 1/λi and thus inversely proportional to the
eigenvalues, while in Eq. (9) the weights are 0 (for the largest
eigenvalues) and 1 (for the others). So while both methods
are clearly related, they will lead to different results. The ad-
vantage of the PCA method is that the Jacobian does not need
to be known (it can be estimated from the set of polluted ob-
served spectra); while the advantage of the pseudo retrieval
method is that it exploits better the full space and does not
depend on ad-hoc choices such as the number of principal
components.

2.5 Use of geophysical information

The detection methods we have discussed until now work on
a single spectrum basis. A great deal of information can be
extracted by considering ancillary information, in particular
observations adjacent in time or space. An example of a de-
tection algorithm which relies heavily on time context is the
infrared difference dust index (Legrand et al., 2001; Vergé-
Dépŕe et al., 2006). Here for each location, observations of
the past 15 days are taken into account to determine the un-
polluted background. The ash correlation method (Clarisse
et al., 2010b) takes advantage of spacial context by applying

a weaker detection threshold in the neighborhood of certain
detections. Another example of an algorithm which explicitly
uses spacial context was presented inWatkin et al.(2003),
which looks for typical volcanic cloud shapes (e.g. a down-
wind plume) across infrared images from Meteosat. Simi-
larly, isolated false detections can be avoided by using a me-
dian or despeckle filter (Pavolonis and Sieglaff, 2010). Per-
gola et al.(2004) use a climatology of a region to determine
a background of natural variability which may be compared
to the signal containing the anomaly (e.g. volcanic ash). The
method, termed the Robust AVHRR Technique (RAT), uses
statistical measures and is self-adaptive with dynamic thresh-
olds requiring no a priori assumptions. With the increasing
use of high temporal and spatial remote sensors, the use of
context in detection algorithms should play an increasingly
important role.

3 A general approach

In this section we use basic results of classical discriminant
analyses to better understand and generalize some of the de-
tection methods outlined in the previous section. For a com-
plete account of this type of supervised classification we re-
fer to Ripley (1996) andMcLachlan(2004). From now on,
we assume we deal with the problem of detection of aerosol
from high resolution infrared measurements.

3.1 First pillar: discriminant analysis

Suppose we have a large training set of observations (here
spectra)y which can be subdivided in classes or groups
based on certain criteria of the observed scene (here aerosol
composition). Discrimination analysis is then concerned
with the allocation of arbitrary observations to the different
classes. For each classc we can calculate a mean spectrum
µc and covariance matrixSc. If the associated probability
density functionpc is Gaussian and the training set is large
enough, then these parameters describe the different classes
completely. We denote the prior probability of a randomly
chosen observationy to be in classc asπc. Using Bayes’
formula it is straightforward to write down the probability
p(c|y) thaty belongs to classc:

p(c|y) =
p(c)p(y|c)

p(y)
=

πcpc(y)∑
d πdpd(y)

(10)

=
πc|Sc|

−1/2exp(−0.5M2
c (y))∑

d πd |Sd |−1/2exp(−0.5M2
d (x))

(11)

with

Mc(y) = [(y − µc)
TS−1

c (y − µc)]
1/2 (12)

the Mahalanobis distance with respect to classc. Note that
the summations with indexd in these equations are summa-
tions over all the different classes. Based on this formula we
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can assign an observation to the classc with the largest prob-
ability p(c|y), leading to the so-called Bayesian discrimina-
tion. Note that this allocation rule is quadratic iny and is
therefore also referred to as quadratic discriminant analysis.

This quadratic rule can be simplified under certain as-
sumptions. The prior probabilities are usually not known or
hard to determine and are often taken equalπc = πd . When
we also assume that the covariance matrices of the differ-
ent classes are equalSc = Sd = S, then the allocation rule
reduces to assigning the observation to the class with small-
est Mahalanobis distance. When comparing two different
classes, the termyTS−1y cancels out and the allocation rule
becomes linear iny. In particular, for two groupsc andp we
have a linear allocation rule of the form

R3 = mTS−1y = (µc − µp)TS−1y
?
< constant (13)

While it is easy to write down the analytical expression for
this constant, in practice it is usually tuned manually on ob-
servations with known class assignments. This two-class dis-
crimination rule also appears as a special case of the so-called
Fischer discriminant analysis (or canonical variate analysis).
This equation is the basis of our unified method. We will not
use any multiclass discrimination techniques here, but will
address the problem indirectly by combining two-class dis-
crimination rules. In particular, we design two-class discrim-
ination rules for each type of aerosol, where in each case the
rule attempts to differentiate spectra containing a signature
of a specific type of aerosol (polluted spectrap) with those
that do not (clear spectrac).

Equation (13) will only be a good discriminator if the co-
variance matrix of clear spectraSc and polluted spectraSp
are equal to each other. This is fortunately the case for low
aerosol loadings (so those that are hardest to detect) as can
be seen as follows.Sc should be constructed from a repre-
sentative set of clear spectra not containing a specific type
of aerosol. So this covariance matrix will contain the vari-
ability and correlation due to all atmospheric parameters af-
fecting the spectrum, except the specific aerosol type. Now
for low aerosol loadings we haveSp ≈ Sc as the presence of
a thin aerosol layer will affect the spectrum but will not af-
fect the natural variability and correlations due to all other at-
mospheric parameters. In other words, the pdf of moderately
polluted and clear spectra differ only in their mean and not in
their covariance. For increasing aerosol loadings the covari-
ance matrixSp will have a component due to aerosol covari-
ance, but no problems are expected here, since the normality
assumption is not critical for the detection of their large sig-
nature.

The similarities between Eqs. (5) and (13) are no coin-
cidence as they are both derived from maximum likelihood
under the assumption of normality. The covariance matri-
ces appearing in both equations can be constructed from
clear spectra (in the language ofWalker et al.(2011), the
ensemble approach). The vectorm = µc − µp can be inter-

preted as a Jacobian with respect to a changing aerosol load-
ing. This makes the link with Eq. (5) complete. Note that
Eqs. (5) and (13) complement each other. Equation (5) can be
used when no large number of polluted training spectra are
available, but where the Jacobian is known from laboratory
measurements (e.g. for sulfuric acid aerosols). Equation (13)
can be used if no representative Jacobians are known, but
where numerous training spectra are available (e.g. for vol-
canic ash), and thus shares this advantage with PCA-type ap-
proaches.

To more easily interpret the quantitiesR1 or R3, it is con-
venient to scale and normalize them. We therefore use

RN (y) =
kTS−1(y − µc)√

kTS−1k
, (14)

with k the Jacobian or when not available the difference
µp − µc. For clear spectra, this quantity has a mean of zero
and a standard deviation of one. This normalization is done
implicitly in (Walker et al., 2011) with the use ofZ-numbers.
An allocation criterion is found by comparingRN to a pre-
defined threshold, which following our normalization can be
expressed in standard deviations. So for example 68.3% of
unpolluted spectra will have anRN within ±1 and 99.7%
of unpolluted spectra will have a value ofRN within ±3.
In practice (as also explained below), as we are never really
dealing with a normal distribution the detection threshold is
choosing manually by looking at a large number of assumed
clear and polluted observations. Also note that the expected
standard deviation (which we can interpret as an error) ofRN

is exactly 1.
In Walker et al.(2011, 2012), the quantity in Eq. (4) is

called an apparent column (see the discussion leading up to
Eq. (4)), and the same can be said ofRN . Even though it is
scaled and normalized,RN is linear to the column amount
when the magnitude of the aerosol extinction in the spectrum
is directly proportional to the column loading. There are three
conditions necessary for this apply. (1)fixed atmospheric
conditions.Values obtained in different atmospheric condi-
tions can not be compared directly, as the magnitude of the
aerosol extinction then also depends on atmospheric temper-
ature, plume altitude, thermal contrast and interference with
other molecules. For low altitude plumes the thermal contrast
is probably the most important parameter, while for higher
altitude plumes the dependence on plume altitude is largest.
(2) constant aerosol properties. Aerosol properties like size
can affect the absorption/scattering efficiency greatly, and
therefore again the signal strength. (3)non-saturated regime.
As aerosol loadings within a given plume increase, the plume
will gradually turn opaque. A saturation effect occurs first in
spectral regions with large extinction, where extinction has
reached its maximum magnitude (which will again depend
on other atmospheric parameters). Once saturated, a further
increase in aerosol column will not result in a further increase
of RN . Indeed for a completely opaque aerosol plume it is
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even possible to have a decrease in the aerosol extinction
signature because of saturation throughout the thermal in-
frared region, in which case the aerosol plume will appear as
a black or gray body. For the vast majority of aerosol plumes
observed however, this saturation regime rarely occurs, and
the magnitude of the aerosol signature is proportional to the
magnitude of aerosol extinction and therefore toRN . In view
of these remarks, we conclude by saying that the quantityRN

is broadly speaking proportional to the aerosol extinction and
scaled and normalized in such a way that its value expresses
the distance in standard deviations from the unpolluted ob-
servations used in the training set.

3.2 Second pillar: Mahalanobis distance

Despite their name, outlying events occur frequently in spec-
tral observations. The pdf of the ensemble of spectra is not
Gaussian, and large pollution events or peculiar type of sur-
faces will in general not be described well in the Gaussian
mean and covariance matrix. Such events need to be dealt
with when applying the above techniques. The problem can
be easily understood with an analogy. Suppose we have a lin-
ear discrimination routine to differentiate apples and pears
based on a few features (size, weight, color, best matching
shape, . . . ). What will the algorithm do when we present it
with an outlier, such as a banana? Since the observation space
is cut in two by the linear discrimination, it will be classified
as either an apple or pear based on the Mahalanobis distance;
even if that distance is very far from either mean. To avoid
such obvious misclassifications, we suggest to combine the
linear discrimination approach – which serves as a relative
distance measure, with a test based on the absolute distance
of an observation to the class mean. In the analogy, it makes
common sense to classify a fruit as an apple only if it looks
at least a little bit like an apple. As a distance measure we use
the Mahalonobis distance with respect to the mean polluted
spectra.

A(y) = (y − µp)TS−1(y − µp), (15)

This is akin to the ash correlation algorithm (Clarisse et al.,
2010b), but of course here we want this distance not to serve
as the primary criterion for detection, but only to remove
some of the false detections. Note also that as a substitute
of µp we can usek+µc. As for the relative distanceRN it is
convenient to normalize the absolute distance. We use

AN (y) =
(y − µp)TS−1(y − µp)

N
, (16)

with N so that for unpolluted spectra the mean ofAN equals
one. As this quantity is used as a secondary criterion (to ex-
clude anomalous observations), the threshold value for which
we reject observationsAN does not need to be very small. A
value of 0.5 or 1 is usually enough. However, when the avoid-
ance of false detections is essential, much smaller values can
be used.

3.3 Summary of the algorithm

In this section we summarize the proposed unified algorithm
for aerosol detection, and the different required (computa-
tional) steps.

1. Collection of a large number of varied but unpolluted
or clear observations/spectra (with respect to the target
aerosol species).

2. From this collection, the mean unpolluted spectrumµc

and covariance matrixS= Sc are calculated.

3. Spectral information on the target aerosol species is
gathered. Here two distinct approaches are possible

(a) Collection of a large number of polluted observa-
tions/spectra. In this case we can directly calculate
µp. A Jacobiank can be obtained ask = µp − µc.

(b) Construction of a Jacobiank via radiative trans-
fer simulations and knowledge of the spectrally re-
solved refractive index, with assumptions on shape,
size distribution and typical plume altitude. A pol-
luted mean vector can be obtained asµp = k + µc.

4. With the above constant vectors and matrices we can
calculate the two distance measuresRN andAN on ar-
bitrary spectra. These can be evaluated on known clear
and polluted observations to find suitable thresholds for
detection. The thresholds themselves are obtained by
finding a suitable compromise between detection sen-
sitivity and avoidance of false identifications.

5. In view of the interpretation ofRN it can be meaning-
ful not to make a strict binary classification decision,
but to useRN as a pseudo-quantitative property. In this
case it can also be averaged in time or spatial to increase
the signal to noise ratio. The absolute distance criterion
can still be applied to reject anomalous observations. In
the examples below we will sometimes follow this ap-
proach.

While this general algorithm is followed consistently in
this paper, there are some intricacies and practical problems
to be dealt with, which depend on the aerosol type and what
we are trying to achieve. The next section deals with the most
important ones, others are mentioned in the detailed discus-
sion of examples in Section 4.

3.4 Practical considerations

A practical point we need to address is the case where the
class of aerosol we wish to detect is insufficiently homoge-
neous and Gaussian. This is pertinent for mineral aerosol. As
noted before, the spectral signature of ash or sand depends
largely on the specific mineralogical composition. So while
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we might want to classify aerosol based on origin (e.g. vol-
canoes or deserts), their spectral composition might not al-
low the different possible aerosols signatures to be treated
as one aerosol type within the framework of linear discrim-
ination. For volcanic ash, a global class mean spectrumµp

will contain signatures due to rhyolite but also due to basaltic
ash. Such signatures can cancel each other out and the mean
spectrum might not correspond to something observable or
representative.

The problem of inhomogeneity also appeared inClarisse
et al.(2010b) for the selection of an ash reference spectrum.
As a solution, not one, but a large number of reference spec-
tra were selected to accommodate for the different spectral
signatures. Here we propose a solution along the same lines:
instead of trying to detect one type of ash or sand, we divide
each category in a number of homogeneous subgroups and
devise detection tests for each of them. But rather than com-
posing these subgroups in an ad-hoc fashion, we use a more
systematic approach based on spectral clustering. We have
opted here for thek-means algorithm (Ripley, 1996). It is
a method to cluster data ink groups in such a way that each
data point is assigned to the class with smallest distance to its
class mean. To start, the algorithm assigns classes randomly,
and class means and class assignment are then updated itera-
tively until convergence. For the distance metric, we use the
Mahalanobis distance (with a covariance matrix calculated
from clear spectra). We have applied this spectral clustering
both for the detection of ash and sand, withk = 10 as detailed
in the next section.

A last practical point is the construction of the clear covari-
ance matrices. For some of the rarer type of aerosol (e.g. vol-
canic ash), this is straightforward. For others, a prior detec-
tion method is required to filter out polluted spectra. Here we
used mainly BTD type methods. Also, rather than using a sin-
gle covariance matrix, we can increase sensitivity by mak-
ing use of several covariances for different time/space inter-
vals. For example volcanic ash detection over the South Pa-
cific ocean should be easier than detection over the Saharan
desert. The typical covariance over these different regions is
clearly different and this can be exploited by the use of a dif-
ferent covariance matrix. In next section, depending on the
specific aerosol type, we will make use of different covari-
ance matrices for observations over ocean or land, for obser-
vations contained in different latitude–longitude grid boxes
or for different periods of the year.

4 Applications

In this section we present examples of the different types
of aerosol that we were able to distinguish with IASI. Note
that for the analysis we only use a subset of IASI chan-
nels, namely 100 window channels between 750 cm−1 and
1250 cm−1 in brightness temperature space. Channel selec-
tion is a constraint based on a priori knowledge of the win-

dow channels. While the above methods can clearly uti-
lize the full spectrum, using only a subset of channels is
resource-friendly and allows for efficient storage and repro-
cessing of large time periods of IASI data. Using the full
spectrum should lead to slightly better results, although we
expect that these 100 channels capture the majority of the
aerosol information content. In the examples below, the goal
is not to present an ultimate or finished detection product,
but rather to demonstrate the huge and largely unexplored
possibilities of infrared instruments for aerosol type spec-
ification. Where applicable, Jacobians were calculated for
a standard atmosphere (NOAA-NASA-USAF, 1976), with
infrared spectra simulated using an advanced radiative trans-
fer forward model (Clarisse et al., 2010a) with optical prop-
erties of aerosol calculated with Mie theory.

4.1 Sulfuric acid droplets

Oxidation of SO2 produces sulfuric acid, which leads to the
formation of sulfate aerosol and in particular sulfuric acid–
water solution drops (Steele and Hamill, 1981; Turco et al.,
1982; Hamill et al., 1982). Here, our main focus is on upper
tropospheric and stratospheric sulfuric acid droplets which
are formed within hours to weeks after injection of SO2 gas
and have an atmospheric lifetime of months to years. A direct
effect of sulfuric acid aerosols is their interaction with radi-
ation, i.e. scattering of shortwave radiation and absorption
of longwave radiation (Stenchikov et al., 1998). In general,
large stratospheric injections of sulfuric acid aerosols lead to
both a local atmospheric warming and a global cooling of the
climate (Robock, 2000). Very large injections can have a dra-
matic effect on air quality and human health (Schmidt et al.,
2011). Sulfuric acid aerosols also have a detrimental effect
on aircrafts, potentially causing damage to the windshield,
turbine, engine and airframe (Carn et al., 2009).

In the satellite era there have been several large vol-
canic stratospheric SO2 injections, most notably due to the
eruptions of El Chich́on in 1982 and Mount Pinatubo and
Cerro Hudson in 1991. A couple of instruments were in or-
bit long enough to measure the associated increase and de-
crease in aerosol loading. Examples include the limb view-
ing SAGE II instrument at visible and near infrared wave-
lengths (Thomason et al., 1997; Bauman et al., 2003) and
CLAES and ISAMS at infrared wavelengths (Rogers et al.,
1998; Lambert et al., 1997). While shortwave instruments
can measure an increase in aerosols, infrared instruments
are sensitive to particle composition and in ISAMS and AT-
MOS infrared measurements performed after the Pinatubo
eruption, it was possible to unambiguously identify the spe-
cific infrared spectral signature of sulfuric acid–water drops
(Grainer et al., 1993; Echle et al., 1998; Eldering et al.,
2001, 2004; Steele et al., 2006). Nadir observations of sul-
furic acid aerosols include the optical depth measurements
made by the NOAA/AVHRR sounder (Stowe et al., 1992;
Long and Stowe, 1994) and infrared HIRS observations
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Fig. 1. View of the Northern Hemisphere on five different days (from top to bottom): 12 June (onset of the volcanic eruption of Sarychev),
19 June, 26 June, 12 July and 12 September 2009. On the left, the SO2 BTD is shown and on the rightRN (H2SO4).
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(Ackerman and Strabala, 1994). More recently, sulfuric acid
observations from the moderate (1–2 Tg SO2) eruptions of
Kasatochi and Sarychev were reported using the CALIPSO
lidar, OSIRIS limb sounder and ACE occultation measure-
ments (Kravitz et al., 2011; Doeringer et al., 2012; O’Neill
et al., 2012; Haywood et al., 2010; Bourassa et al., 2010;
Vernier et al., 2011). Example IASI spectra of sulfuric acid
aerosol observations were shown inKaragulian et al.(2010),
Clarisse et al.(2010a) andHaywood et al.(2010).

In the current detection framework, a clear covariance ma-
trix can be built from time periods which are assumed to be
relatively clear of enhanced concentrations of sulfuric acid
aerosol. In particular, we used a complete year of IASI obser-
vations: April and May 2009 and 2010 for the other months
(because of the Eyjafjallajökull eruptions in April and May
2010). Taking such a large time period and so many days
minimizes the influence of smaller and short lasting volcanic
eruptions. To increase sensitivity, not a global but a local co-
variance matrix was built, representative for each 10 by 10
degree grid cell. For the calculation of the Jacobian, a choice
has to be made for a representative size distribution, tem-
perature and sulfate concentration (Steele and Hamill, 1981;
Grainer et al., 1993). A concentration of 75 % H2SO4 was
chosen, with droplets following a logarithmic size distribu-
tion with an effective radius of 1 µm. Refractive indices were
taken fromTisdale et al.(1998) at a temperature of 215 K
(representative for the Kasatochi and Sarychev injection alti-
tudes).

The spectral signature of sulfuric acid aerosols in the re-
gion 750–1250 cm−1 forms a wavy pattern, caused by several

absorption bands, but with largest absorption for wavenum-
bers above 1100 cm−1 (Boer et al., 2007; Clarisse et al.,
2010a; Echle et al., 1998). Since we expect sulfuric acid
aerosols in volcanic plumes we must be careful of poten-
tial spectral interference with SO2, which has theν1 absorp-
tion band around 1152 cm−1 (Flaud et al., 2009). It is not
the strongest absorption band, but definitely large enough
to cause interference, especially since volcanic plumes were
omitted in the calculation of the clear covariance matrix. To
avoid any possible interference, we treat spectra with a de-
tectable SO2 signature separately. As a measure of the sig-
nature we use the SO2 BTD used inClarisse et al.(2012).
It flags on theν3 band, which is about an order of magni-
tude stronger than theν1 absorption band. We have treated all
spectra with a BTD larger than 0.75 K separately, as this puts
the corresponding variations in theν1 absorption band for the
other spectra well below the instrumental noise. For affected
spectra, we make use of separate Jacobian and covariance
matrices, excluding the spectral region 1152± 65 cm−1. Vol-
canic ash and other rare events can also cause interferences,
but such spectra are easily excluded using the absolute dis-
tance – Eq. (16). We conservatively filtered out observations
with an absolute distance exceeding one.

The results for 3 yr of IASI observations in the Northern
Hemisphere are shown in Figs.1 and2. Figure1 shows SO2
BTD (negative values indicative for SO2) andRN (H2SO4)
following the eruption of Sarychev on 12 June 2009, after 0,
7, 14, 30 and 90 days. From the very onset, H2SO4 is detected
and follows nicely the SO2 distribution. Already after two
weeks, the H2SO4 detection exceeds the SO2 detection. After
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Fig. 3. (left panel) Monthly averaged maps ofRN (H2SO4) for selected months and locations. The top two plumes are from Nyamuragira
(D.R. Congo) in November and December 2011. The inset in the top left panel shows the corresponding OMI SO2 average in DU (figure
courtesy N. Theys, seeTheys et al., 2012). The bottom two plumes are from Kilauea (Hawaii) for August 2008 and Fernandina (Galápagos
Islands) for April 2009. (right panel) MODIS aerosol optical depth (550 nm) for the same events and time periods. MODIS data downloaded
from the Giovanni online data system (http://disc.sci.gsfc.nasa.gov/giovanni/overview).

30 days sulfuric acid aerosol is detected everywhere north
of 40◦ N and it continues to be detectable for many more
months after the eruption, with averageRN (H2SO4) values
over 0.25 until December 2009.

This is also evident from Fig.2 which shows the North-
ern Hemisphere minimum daily value SO2 DBT and aver-
age value ofRN (H2SO4). The different peaks in the SO2
DBT plot can all be attributed to volcanic eruptions, but
note that the magnitude of the peaks are not related to the
magnitude of the eruptions. Only two clear broad peaks

can be seen in theRN (H2SO4) plot, and these can be at-
tributed to the the Kasatochi and Sarychev eruptions which
had a clear long term impact on sulfuric acid concentrations
in the Northern Hemisphere. Although the total SO2 injec-
tion from Kasatochi (> 1.5 Tg) was larger than of Sarychev
(≈ 1 Tg) (Krotkov et al., 2010; Clarisse et al., 2012), it seems
that the lifetime of the sulfuric acid aerosol from Sarychev
was the largest. This is consistent with observations from the
OSIRIS limb sounder which found a larger maximum mean
aerosol optical depth from Sarychev (Haywood et al., 2010;
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Bourassa et al., 2012). A similar observation can be made
from sulfuric acid aerosol retrievals from ACE (Doeringer,
2011; Doeringer et al., 2012). In the absence of large injec-
tions, as was the case in 2010, there is some fluctuation in the
mean value ofRN (H2SO4) and looking at the inter-annual
variability on Fig.2 there is also a recurring seasonal mini-
mum between February and June, possibly related to ozone
seasonality. Although we have not tried this here, it is likely
that this seasonality would disappear when making use of
dedicated seasonal covariance matrices.

The previous examples focus on the larger eruptions of
2008 and 2009, but H2SO4 can also be detected in smaller
eruptions or sustained degassing. Examples of the latter are
presented in the left panel of Fig.3 which shows monthly
averaged maps ofRN (H2SO4) for three volcanoes. The two
first panels on the left show a large plume over Central Africa
originating from the Nyamuragira volcano. It is Africa’s
most active volcano and one of the largest recent natural
sources of SO2 emissions (Carn and Bluth, 2003; Bluth and
Carn, 2008). On 6 November 2011 the Nyamuragira volcano
violently erupted and continued to do so for 5 months. In-
jection altitudes were between 4–8 km (Theys et al., 2012).
Throughout November, SO2 can be detected in the vicinity of
the volcano and drifting westwards. The November monthly
mean shows SO2 mainly over the D.R. of Congo (see also
the monthly mean from OMI shown in inset).

H2SO4 detection extends thousands of kilometers, well
over the South Atlantic with a maximum detection at some
distance away from the emitting source (1000–2000 km).
The SO2 and H2SO4 plots are consistent, as sulfate aerosol
with a much longer lifetime is produced from atmospheric
SO2 which is hence only detected in the vicinity of the vol-
cano. The transport patterns are consistent with a lifetime of
SO2 of the order of one day (Bluth and Carn, 2008), wind
velocities of the order of 500 km per day (∼ 6 ms−1) and
the fact that sulfuric acid aerosols that have undergone some
growth or coagulation are easier to detect. The third figure in
the left panel of Fig.3 shows the August 2008 H2SO4 plume
from Kilauea (Hawaii). The plume has a maximum close to
the volcano and another 1500–2500 km downwind. The de-
tection is remarkable as the injection height of the relatively
mild eruptions at Kilauea is low. In fact, almost no SO2 is
measured using the BTD-based IASI SO2 retrieval (Clarisse
et al., 2012) which uses spectral channels with a penetration
depth between 3 and 6 km. Similarly, an H2SO4 signal was
picked up near the Galápagos Islands in April 2009 for which
no coincident SO2 was measured with IASI. The plume de-
picted in the lower left corner of Fig.3, can be attributed to
activity of the Fernandina volcano.

It is instructive to compare these results with MODIS AOD
measurements. Sulfate aerosols are efficient scatterers of so-
lar radiation, and we therefore expect these plumes to show
up in the monthly AOD averages shown in the right panel of
Fig. 3. While the two quantities (RN (H2SO4) and AOD) are
clearly different, in the non-saturrated regime, they are both

proportional to the aerosol loading. The best match is ob-
tained for the Kilauea plume. Small differences in the loca-
tion of the plume maximum, direction and extend can be at-
tributed to instrumental dependency on aerosol radius (larger
particles are easier to detect in the thermal infrared than the
visible) and altitude (higher altitude particles are easier to
detect in the infrared because of larger thermal contrast).
But overall we note that there is an excellent agreement be-
tween the two sounders. Note that MODIS AOD monthly
averages for 2008 around Kilauea were analyzed in detail
in Beirle et al. (2012) in the context of sulfate formation
and depletion. The other sulfate aerosol plumes detected by
IASI also appear to be present in MODIS AOD monthly av-
erages, but they are hard to discern because of the presence
of other aerosol particles: smoke and dust for Central Africa
and background (mostly anthropogenic) aerosols in the Pa-
cific ocean (see again Fig.3). These comparative examples
demonstrate the sensitivity and accuracy of the current algo-
rithm. At the same time they illustrate the great advantage of
being able to single out aerosol sulfate from all other types
of aerosol as small loadings can easily be missed in AOD
measurements due to the presence of background aerosols
(as is the case here for e.g. the Fernandina volcano).

4.2 Windblown sand

Sand, dust and other soil derived aerosol is emitted directly
rather than formed in the atmosphere. As one of the most
abundant types of aerosol it has a multitude of climatological
and environmental impacts (Gasśo et al., 2010). Sand inter-
acts with a wide range of radiation and is readily sensed by
most aerosol sensors, see e.g.Carboni et al.(2012) for a com-
parison of AOD of Saharan dust from eight different instru-
ments. Retrievals over land, and especially deserts is chal-
lenging in the thermal infrared because of variable surface
emissivity and in the solar spectral range because of high re-
flectivity. Thermal infrared instruments are very sensitive to
sand aerosols, and they have the advantage of being able to
distinguish them from other aerosol types. They can also be
used to retrieve effective radius and height (Pierangelo et al.,
2004, 2005; Peyridieu et al., 2010; DeSouza-Machado et al.,
2010).

As explained above, to deal with the large variety of
different sand signatures, we have constructed 10 polluted
class mean spectraµp using thek-means algorithm. Twelve
sand/dust storm scenes were selected (including transport)
from the Sahara, Gobi, Arabian and Simpson deserts both
during night and day. Effort was made to confirm the pres-
ence of sand aerosols using either visible (MODIS) or lidar
(CALIPSO) imagery. From these different scenes, sand pol-
luted spectra were selected based on DBT tests and fed to
the k-means algorithm. The 10 resulting class mean spec-
tra are shown in Fig.4. The observed large variability in the
spectral signatures supports the choice to work with differ-
ent classes, although the number of classes could probably

Atmos. Chem. Phys., 13, 2195–2221, 2013 www.atmos-chem-phys.net/13/2195/2013/
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Fig. 4.Clustered mean spectra for sand (left panel) and volcanic ash (right panel) as generated by thek-means algorithm on spectra observed
over a variety of airborne sand and ash plumes, respectively. The broadband V-shape absorption between 800–1200 cm−1 due to Si-O is seen
in most spectra. Some other mineral features are depicted as well. The spectral region with the large absorption due to O3 is grayed out.

be reduced. For most class means, the characteristic V-shape
between 800 and 1200 cm−1 is obvious. This shape is due to
the presence of Si-O fundamentals in minerals such as quartz,
illite and montmorillonite (Hunt, 1982; Clark, 1999; Sokolik
and Toon, 1999). Other tentative assignments of calcite and
kaolinite have also been indicated.

The problem of constructing a clear covariance matrix is
not trivial, and here we have opted for a recursive approach as
a better sand detection allows us to construct a better covari-
ance matrix. First, to better accommodate for surface emis-
sivity effects in the detection of windblown sand we treat
land and ocean separately. In the first iteration, a sand detec-
tion test was designed based on a single relative distanceRN .
Here, the clear covariance matrices (one for land and one for
ocean) were constructed from all spectra of one day (so also
contaminated spectra) and the polluted class mean from the
mean of the twelve dust scenes described above. Detection
in this way is noisy, but allows to filter out the most obvi-
ous dust scenes. In the second iteration, this basic test was
used to design better clear covariance matrices from 24 days
of spectra. These matrices were used to replace the covari-
ance matrices in the first test to obtain a better detection test.
This second detection test was then used to construct the final
clear covariance matrices.

Using these, and the 10 different class means, 10 different
sand detection tests were designed, each using the value of
RN as primary detection criterion andAN to remove false
alerts. The corresponding detection thresholds were manu-
ally tuned. The result for a day in March and one in April
are shown in Fig.5. The colors refer to the individual tests,
but in cases of detection by multiple tests, only the color cor-

responding to the first successful detection is indicated. The
March plot (top panel) shows large synoptical scale trans-
port patterns westwards from the Saharan desert and east-
wards from the Taklamakan and Gobi desert. Looking at
North Africa and the land/ocean transitions it is clear that
detection over land is almost as good as over ocean for these
large plumes. The April plot (bottom panel) depicts a very
large plume of Saharan dust being transported towards the
UK and the rest of Europe. The plume originated from the
North African coast on 5 April and was transported over the
Atlantic and Spain reaching the UK, Norway and Sweden on
8–10 April and reaching back to Saudi-Arabia on the 13th.
Note that most of the sand is detected with tests 2, 4, 7 and
8. This has to do with parameter tuning but also with the
fact that some signatures only manifest themselves in special
thermal conditions. An example is test 1 which is observed
very close to the west coast of Africa in the bottom panel and
seems to occur when there is almost no or negative thermal
contrast between the dust plume and the underlying ocean.

Figure6 shows MODIS AOD and OMI absorption AOD
(AAOD) for the same two days as Fig.5. Comparing the fig-
ures side by side, a good agreement is found. The AOD maps
exhibit the same transport patterns found with IASI: west-
wards/northwards from the Saharan desert and eastwards
from the Taklamakan and Gobi desert. Enhanced AOD val-
ues over parts of India and South China are probably due
to aerosol from anthropogenic origin. Note that the MODIS
product shown here (dark target) does not provide retrievals
over bright surfaces such as the Saharan desert. The plume
which IASI detects on 23 March over the Northern part of
the Sahara is hence not present in the MODIS AOD. For

www.atmos-chem-phys.net/13/2195/2013/ Atmos. Chem. Phys., 13, 2195–2221, 2013
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Fig. 5. Sand aerosols detected over the Northern Hemisphere on 23 March 2010 (top) and 8 April 2011 (bottom) based on strict thresholds
for RN andAN for each of the ten tests. The colorcode corresponds to the test which passed (see Fig.4). In case multiple tests flagged an
observation, only the lowest test number is indicated.

this reasoninfrared spectral range is just like we have also
shown the OMI AAOD where it does show up. Overall note
that the AOD maps are rather patchy in comparison with
the IASI detections using the current algorithm. This conclu-
sion becomes even stronger when realizing that the detection
problem we are tackling with IASI attempts to assign a bi-
nary dust/no dust detection on a per pixel basis. This way
of presenting (Fig.5) is not flattering as it exposes even sin-
gle pixel false detections, while making the problem of de-
tecting plume edges much harder. In contrast, anomalies in
smoothened AOD images (a continuous quantity) are aver-
aged out in the contour plot and/or obscured by how the brain
perceives continuous data.

Resulting monthly averages of detected sand are shown
in Fig. 7 for the months January and June 2011. The figure
was obtained by gridding the daily detection maps and cal-
culating the percentage of detected sand spectra in each grid
cell. The plots were saturated at 20 %. A qualitative compar-
ison with AIRS optical depths (Peyridieu et al., 2010) over
the Atlantic ocean and Arabian sea shows an excellent cor-
respondence. Detection over land is more difficult than over
ocean; especially for lower loadings (e.g. in January). The
false detection rate is in general low (smaller than 1 % glob-
ally, larger in the tropics) except in specific locations marked
by peculiar surface emissivity features (e.g. over Lake Eyre,
Australia). Almost no interference with other aerosol types
is found, except with ash, which will be dealt with in next
section.

4.3 Volcanic ash

Volcanic ash generally refers to small (less than 2 mm) pul-
verised particles of pieces of volcanic glass and rock. Their
atmospheric lifetime range from minutes to months depend-
ing on injection height and particle size (Rose and Durant,
2009). The main motivation for routine monitoring of fine
volcanic ash from space is mitigation of the safety threat it
poses to aviation. Volcanic ash causes erosion and abrasion to
the aircraft (e.g. to the windscreen) and readily melts inside
the engine, potentially leading to engine failure (seeCasade-
vall (1994); Miller and Casadevall(2000); OFCM(2004) and
references therein). Currently a global network of nine vol-
canic ash advisory centers (VAACs) reports ash observations
and forecasts. These rely on transport and dispersion models
fed by ground-based data (lidar/radar), satellite observations
and reports from pilots. Until April 2010 the emphasis of
the volcanic ash problem was on the safety aspect. However,
during and after the April–May eruption of Eyjafjallajökull
eruption in 2010, a lot of attention was given to the finan-
cial aspect. Indeed the cost of rerouting or canceling flights
can be very large, e.g. for the period of 15 to 21 April 2010,
airlines lost at least US$ 1.7 billion in revenue (Mazzocchi
et al., 2010). The eruptions of Eyjafjallajökull in 2010 and
Gŕımsv̈otn reinforced the need for, and importance of accu-
rate high spatial and temporal ash measurements and model-
ing forecasts (Stohl et al., 2011; Zehner, 2012).

The infrared spectral range is just like for windblown dust,
the preferred way of differentially observing volcanic ash.
For a review of different techniques and instruments see

Atmos. Chem. Phys., 13, 2195–2221, 2013 www.atmos-chem-phys.net/13/2195/2013/
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on 23 March 2010 (top) and 8 April 2011 (bottom). Data downloaded from the Giovanni online data system (http://disc.sci.gsfc.nasa.gov/
giovanni/overview).

Fig. 6. MODIS (Terra) aerosol optical depth measurements at 550 nm and OMI absorption aerosol optical depth measurements at 500 nm
on 23 March 2010 (top) and 8 April 2011 (bottom). Data downloaded from the Giovanni online data system (http://disc.sci.gsfc.nasa.gov/
giovanni/overview).

Prata(2009). Traditionally broadband instruments have been
used for the detection of volcanic ash and their general small
footprint and high revisit time remain a decisive advantage
(Pavolonis and Sieglaff, 2010; Prata and Prata, 2012). Only
a few papers deal with ash measurements from high spec-
tral resolution instruments, and these report better sensitivity
to thin plumes and better differentiation of ash with other
atmospheric parameters (clouds, water vapor, sand and sur-
face emissivity features) (Gangale et al., 2010; Clarisse et al.,
2010b; Kl üser et al., 2012).

In the current framework, as volcanic ash is only sporad-
ically observed, it is easy to generate the covariance ma-
trices. For simplicity, we have used the same ones as for
the detection of sulfuric acid aerosols. The same distinc-
tion was also made for spectra with and without a detectable
SO2 signature. So, to avoid cross contamination, a reduced
spectral signature is used in case of positive SO2 detec-
tion. There is no unique spectral signature of ash because

of variable composition and size distribution. For the calcu-
lation of the polluted class mean(s) we have adopted there-
fore the same approach as for sand, selecting spectra of
ten different ash scenes from eruptions of Eyjafjallajökull,
Gŕımsv̈otn, Puyehue-Cord́on Caulle, Soufrìere Hills, Shiv-
eluch and Sarychev. These spectra were then clustered us-
ing thek-means algorithm for which class means are shown
in Fig. 4. The algorithm separates the different eruptive
plumes remarkably well and the different classes clearly ex-
hibit a difference in composition but also in magnitude. Most
striking is the difference around 860 cm−1 (830 to 900 cm−1)
going from concave for felsic ashes (e.g. from Puyehue-
Cord́on Caulle) to convex for mafic ashes (Grı́msv̈otn). The
concavity of felsic ashes was noted inGangale et al.(2010)
in spectra of the rhyolitic ash of Chaitén and is only partially
reproduced in the widely used refractive measurements of
Pollack et al.(1973) which has the concave peak closer to
800 cm−1. See in this context alsoNewman et al.(2012) for
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Fig. 7. Ash and sand detection in January (top panel) and June (bottom panel) 2011 in percentages per grid cell. In case both sand and ash
were detected in the same grid cell all observations were assigned to one category based on the relative number count: when the number of
sand detections was lower than twice the number of ash detections it was marked as ash, otherwise as sand.

example plots of high resolution spectral fits of rhyolitic and
basaltic volcanic ash.

In the same way as was done for sand, detection thresh-
old were manually tuned. While the use of different covari-
ance matrices in different latitude/longitude gridboxes al-
ready guarantees few false detections due to sand and surface
emissivity features, an improvement can be made to reduce
these even further while increasing the sensitivity. First the
detection test for sand was expanded with a so-called weak
ash detection test. The corresponding detection thresholds
were chosen to be quite relaxed, and the resulting detected
aerosols were labeled as “containing minerals”. This set of
observations was then subjected to a strong ash detection test
with stricter detection thresholds. Observations which passed
the strong ash test were labeled ash. In addition, all observa-

tions within 150 km of these observations and which passed
the weak ash detection test were also labeled ash. All other
mineral containing aerosols were labeled as sand. While the
above method is ad-hoc and can obviously be improved, it
was found to have a larger sensitivity and less false detections
than the ash-correlation method (Clarisse et al., 2010b). We
have applied the ash detection algorithm on 4 years of IASI
data, and compared with available literature data. This anal-
ysis confirmed the robustness of the current algorithm, as no
major ash-rich eruption was missed, while excellent agree-
ment was obtained with published data for the eruptions of
Eyjafjallajökull and Chait́en.

Monthly averages of ash detection are indicated together
with sand detection on Fig.7. Ash in January can be at-
tributed to eruptions of Kirishima (Japan), Tengger Caldera

Atmos. Chem. Phys., 13, 2195–2221, 2013 www.atmos-chem-phys.net/13/2195/2013/
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Fig. 8. Average MODIS (Terra) aerosol optical depth measurements at 550 nm for June 2011. This product is not sensitive to aerosol
composition and therefore shows a variety of different aerosols and their transport patterns which can be attributed to natural aerosol (sand
mainly between 0 and 30◦ N and ash below−30◦ N), and anthropogenic (mainly urban/industrial pollution in India and Asia and biomass
burning in Central Africa). This figure can be compared with Fig.7 for the minerals and with Figure10 for ammonium sulfate aerosol. Data
downloaded from the Giovanni online data system (http://disc.sci.gsfc.nasa.gov/giovanni/overview).

(Indonesia) and Kizimen/Karymsky (Kamchatka, Russia)
and in June to the eruptions of Puyehue-Cordón Caulle
(Chile). The eruption of Kirishima illustrates nicely how
ash and sand can be differentiated even over areas with
significant background sand transport. Ash from the erup-
tions of Puyehue-Cord́on Caulle was very long-lived. On the
daily plots (not shown) ash from the June 4 and subsequent
eruptions of Puyehue-Cordón Caulle eruption (Kl üser et al.,
2012; Theys et al., 2012) could be seen to circulate the South-
ern Hemisphere four times between−40◦ and−60◦ latitude
until about 20 July. As can be seen from the daily plots, the
original ash layer was enriched after 10 days by later erup-
tions. Most aerosol was correctly identified as ash until the
end of June, with increasing amounts of thin filaments la-
beled as sand/minerals after that.

To conclude the discussion of mineral detection, we com-
pare our monthly June average Fig.7 (bottom panel) to the
MODIS AOD average for the same time period as shown in
Fig. 8. The sand/dust transport patterns and their extent cor-
respond generally really well, especially transport of Saharan
sand westwards and of the Arabian desert over the Middle
East region. Note that our monthly average was constructed
using binary data, which was designed to yield almost no
false detections. This also means that data near the edges of
plumes is lost. The MODIS AOD monthly average on the
other hand, benefits a great deal from averaging. Observa-
tions that would otherwise never been attributed to dust (be-

cause of having an only marginally augmented AOD) do con-
tribute to the monthly average, and help in establishing the
harder to detect plume edges. The fact that both maps agree
is not-trivial and is a clear demonstration of how well the
detection of sand works with the unified method. Also note
that the (limited) transport from the Taklamakan and Gobi
desert shows up really well in the IASI monthly average.
It is harder to discern in the MODIS AOD average, partly
because of problems with bright surfaces, partly because of
interference with anthropogenic aerosol (which is seen over
the whole of Asia and the North Pacific ocean). Ash from
Puyehue-Cord́on Caulle is detected with MODIS across the
Southern Hemisphere, but limited to above−45◦ because of
the Austral Winter. This eruption is a good example of the
necessity of being able to measure aerosols globally and dur-
ing all periods of the year.

4.4 Ammonium sulfate

Sulfuric acid droplets can exist in pure form in remote ar-
eas or high up in the troposphere and stratosphere, but in
polluted areas ammonium sulfate readily forms as ammo-
nia condenses on sulfuric acid droplets. Ammonia sulfate
aerosols are abundant and may be found in either solid or
aqueous form, and can be pure, mixed with other secondary
aerosol or coated on primary aerosol (Wang et al., 2008; Yu
et al., 2012; Zhang et al., 2007). They represent a major part
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the absorption feature around 1115cm

−1 well. The green spectrum
uses refractive indices of water soluble aerosol (Volz, 1972a,b; Shet-
tle and Fenn, 1979) containing 80 %H2O (Hess et al., 1998). It has
a large ammonium sulfate component but also other components
which reproduce to some extent the observed slope between 800
and 1000cm−1.

Fig. 9. Ammonium sulfate signatures in observed and simulated
spectra. The blue spectrum was observed over East China in June
2010. Simulated spectra are shown using two different sets of re-
fractive indices. The red spectrum uses refractive indices of crys-
talline ammonium sulfate fromEarle et al.(2006), and reproduces
the absorption feature around 1115 cm−1 well. The green spectrum
uses refractive indices of water soluble aerosol (Volz, 1972a,b; Shet-
tle and Fenn, 1979) containing 80 % H2O (Hess et al., 1998). It has
a large ammonium sulfate component but also other components
which reproduce to some extent the observed slope between 800
and 1000 cm−1.

of anthropogenic aerosol, affecting air quality and impacting
significantly the radiative budget (Adams et al., 1999; Mar-
tin et al., 2004). To our knowledge remote sensing measure-
ments of ammonium sulfates have not been reported until
now.

It is however well known that ammonium sulfate has
a strong absorption band near 1115 cm−1 (see Fig.9), which
is favorably located in the atmospheric window. Refractive
indices of ammonium sulfate have been measured since the
1970’s both in crystalline (Volz, 1973; Toon et al., 1976;
Earle et al., 2006; Segal-Rosenheimer et al., 2009) and aque-
ous form (Remsberg, 1973; Downing et al., 1977; Boer et al.,
2007). For the calculation of the Jacobian, we use the recent
publicly available dataset fromEarle et al.(2006) assum-
ing a logarithmic size distribution with an effective radius
of 0.2 µm. Because we expect ammonium sulfate aerosols
close to the surface, for this type of aerosol we only used
cloud filtered spectra. Covariance matrices were constructed
separately for land and ocean on global data of 24 days cov-
ering all months. As we have a priori no easy way of filtering
out spectra with an ammonium sulfate signature, the idea of

using a global covariance matrix is to reduce the weight of
such spectra.

Ammonium sulfate was unambiguously identified over
East China for May–July 2010, see Fig.10; and confirmed
by visual inspection of observed spectra over this region. An
example of such a spectrum is given in Fig.9. It exhibits
the ammonium sulfate absorption band around 1115 cm−1;
but also a clear slope from 750 to 1000 cm−1. This slope ap-
pears together with the ammonium sulfate absorption band in
refractive indices of water soluble aerosol, reported inVolz
(1972a,b) andShettle and Fenn(1979). The time and loca-
tion of the ammonium sulfate plume coincides very well with
increased AOD in MODIS, LIDAR and AERONET mea-
surements (Kim et al., 2007b). This is also apparent in our
MODIS AOD June average (Fig.8). The peak in June/July is
explained by the availability of ammonia and favorable stable
meteorological conditions in terms of build up and growth of
aerosols (Kim et al., 2006, 2007b). Globally, ammonium sul-
fate was not confidently detected anywhere else over back-
ground noise and interferences of dust and smoke.

4.5 Smoke

Smoke from biomass burning consists of 50–70 % of organic
and black carbon, representing less than 5 % of burned car-
bon. In addition secondary particles are also formed within
smoke plumes. The majority of smoke particles is in the ac-
cumulation mode (< 1 µm diameter) and efficiently absorb
and scatter solar radiation. A non-negligible fraction (∼ 10 %
in mass) of coarse mode particles consisting of ash, soil, car-
bons and partially combusted biomass with sizes is in the
coarse mode (Reid et al., 2005a,b). This suggest the possi-
bility of interaction with infrared radiation. One of the few
laboratory measurements of smoke particles in the infrared
(Sutherland and Khanna, 1991) reports significant extinction
between 1000 and 1800 cm−1, see Fig.11. Also IASI ob-
servations of smoke particles have been reported (Clarisse
et al., 2010a). Since the launch of IASI, the most clear ob-
servations of smoke particles were probably made in plumes
from the Australian bush fires of 2009, where a global drop
in the baseline of∼ 10 K (and∼ 20 K between 1050 and
1250 cm−1) was observed (Clarisse et al., 2011). Although
in this case, arguably, part of the observed signature was
also due to the sum of all enhanced trace gas absorptions
(e.g. from large molecules as PAN and acetic acid). Other ob-
servations of smoke with IASI were reported inKöhler et al.
(2011), who point out the importance of thermal contrast and
the fact that downwelling infrared radiance is much more af-
fected by the presence of smoke than upwelling radiance.

For the covariance matrices we have used the same
ones as for the detection of ammonium sulfate, with again
land/ocean separation and cloud filtering. A Jacobian was
generated from a simulation using the refractive indices of
smoke from a mixed weed sample reported inSutherland
and Khanna(1991). While the detection is noisy on an

Atmos. Chem. Phys., 13, 2195–2221, 2013 www.atmos-chem-phys.net/13/2195/2013/



L. Clarisse et al.: Aerosol type specification in the infrared 2213
L. Clarisse et al.: Aerosol type specification in the infrared 29

May 2010

100 110 120 130 140
20

25

30

35

40

45

50
June 2010

100 110 120 130 140
20

25

30

35

40

45

50
July 2010

100 110 120 130 140
20

25

30

35

40

45

50
August 2010

 

 

100 110 120 130 140
20

25

30

35

40

45

50

R
N
 (AS)

0.5

1

1.5

2

2.5

3

Fig. 10. Ammonium sulfate detected over East China for four consecutive months May–August 2010 (land only).
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Fig. 11.Smoke aerosol signatures in observed and simulated spec-
tra. The blue spectrum was observed over the Indian Ocean in Oc-
tober 2010. The red spectrum is a simulated spectrum using refrac-
tive indices of smoke from a mixed weed sample (Sutherland and
Khanna, 1991).

individual spectrum basis, it picks up (aged) smoke plumes
over the South Atlantic and Indian ocean especially in
September and October as shown in Fig.12 for October
2010. It is well known that fires in Southern Africa and South
America peak in these months. Also the transport pattern
from West to East matches well with earlier observations
(Edwards et al., 2006; Giglio et al., 2006; Roy et al., 2008).
Comparison with the MODIS (Fig.13) monthly AOD av-
erage for October shows a good similarity in the transport

pattern, but also notable differences over land where infrared
detection seems to be more difficult.

5 Conclusions

In this paper we have presented a unified aerosol detection
scheme based on a primary relative and secondary absolute
distance criterion. The primary criterion uses classical linear
discrimination analysis, and generalizes previously reported
detection scheme using optimal estimation and PCA’s. The
secondary criterion was used here to filter out false detections
which becomes necessary when the underlying probability
distributions depart from normality. We have demonstrated
the methods on IASI observations using five different types
of aerosol namely volcanic ash, windblown sand, sulfuric
acid droplets, ammonium sulfate and smoke particles. For
each of these we have introduced small adaptations in the
exact implementation, mainly in the way the Jacobian and
covariance matrices were generated. It is clear that there are
lot of different variations, which will work equally well. The
presented results should therefore be seen as proof of concept
rather than finished products.

It would indeed be a natural step to use the presented
first generation products as a basis for a second generation
product. As we demonstrated for sand detection, first gener-
ation products can be used to build better covariance matri-
ces. Other improvements could include making use of larger
spectral range (in particular the window between 2000–
2200 cm−1) and to make more use of space and time differ-
entiated covariance matrices. Improvements outside the cur-
rent detection framework include making use of some of the
more advanced techniques of class discrimination. Indeed,
we have only implemented here what is essentially the most
basic form of class discrimination, while the state of the art is
vast and highly advanced (McLachlan, 2004). Also note that
nothing in the method is IASI specific, so that our techniques
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can easily be applied to measurements of other high spectral
resolution infrared sounders (TES, AIRS, GOSAT,. . .).

Notably absent in the current scheme are clouds and sea
spray. As noted before, ice crystals found in e.g. cirrus clouds
found have a pronounced spectral signature. The presented
method can therefore be applied for their detection without
any complications. We have not attempted the detection of
regular clouds, as these do not have a pronounced spectral
signature in the infrared, and we therefore do not expect
the current scheme to be easily adaptable for their detec-
tion. Sea spray on the other hand does have a marked, but
slowly varying spectral signature (Irshad et al., 2009). We
have attempted detection of sea spray but no convincing re-
sults emerged, likely due to a combination of (1) the use of
too small spectral range and (2) constructed covariance ma-
trices as sea spray is omnipresent, (3) low thermal contrast
over oceans and (4) no obvious test cases of enhanced load-
ings.

For the aerosol types for which the method does work,
the results exceed our expectations. Aerosol composition
is an essential climate variable, but state of the art aerosol
sounders offer only limited information. As we have demon-
strated here, the thermal infrared has a (largely unexplored)
potential of measuring aerosol composition directly, which
can contribute to our understanding of climatic issues. The
presented algorithm allows to detect volcanic sulfate aerosol
with unprecedented sensitivity, both from large and from sus-
tained volcanic eruptions down to the mid/lower troposphere.
This advance could lead to better constraints on the large un-
certainties of sulfate aerosol climate forcing (Schmidt et al.,
2012). It was already well known that infrared sounders are
very good at measuring mineral aerosol. But the current
detection scheme seems to be particular robust, especially
in differentiating ash from sand. These mineral detections
would not require too much work to be implemented in an
operational setting, with applications to e.g. aviation hazard

Atmos. Chem. Phys., 13, 2195–2221, 2013 www.atmos-chem-phys.net/13/2195/2013/

http://disc.sci.gsfc.nasa.gov/giovanni/overview


L. Clarisse et al.: Aerosol type specification in the infrared 2215

mitigation. The demonstration of smoke and ammonia sul-
fate detection was unforeseen, especially since these aerosols
consist mainly of small particles (< 1 µm) and are located in
the lower troposphere. Also note that it is possible for multi-
ple aerosol types to be detected in the same observation, pro-
vided that their respective spectral signatures cover at least
partially different spectral regions. A good example of this
is the Central Africa region, where we were able to detect
sulfate aerosol (Fig.3), windblown sand (Fig.7) and smoke
(Fig. 12).
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