Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) – Supplementary Material

P. J. Young, A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa and G. Zeng

Description

This supplementary material consists of four parts:

(1) Table S1 details the CO, VOC and NOx emissions from each model, as used in the construction of Fig. 1 in the main paper.

(2) Figures S1-S3 show the annual mean ozone for all the models for the Hist 2000 simulation. The figures show the zonal mean ozone concentration (Fig. S1), tropospheric ozone column (Fig. S2) and surface ozone concentration (Fig. S3). These figures relate to Fig. 2 in the main paper.

(3) Figures S4-S6 show the change in annual mean ozone compared to Hist 2000 for all the models, showing the zonal mean ozone concentration change (Fig. S4), tropospheric ozone column change (Fig. S5) and surface ozone concentration change (Fig. S6). These figures relate to Figs. 9-11 in the main paper. Blank panels indicate where a given model did not provide output for the relevant simulation.

(4) Figure S7 shows the multi-model mean change in total column ozone between the Hist 1980 and Hist 2000 simulation. Figure also shows a comparable change in the total ozone column from the Total Ozone Mapping Spectrometer (TOMS) data.

For all figures, the legend on the color bar describes what is plotted.

Model	Hist		RCP2.6		RCP4.5		RCP6.0		RCP8.5		
	1850	1980	2000	2030	2100	2030	2100	2030	2100	2030	2100
CESM-CAM-superfast	564	1148	1248	1105	790	-	_	1206	966	1189	873
CICERO-OsloCTM2	565	1147	1248	1113	750	1236	689	_	_	1197	907
CMAM	823	1375	1502	1354	1036	1424	906	_	_	1436	1116
EMAC	497	1080	1180	_	-	1108	589	_	_	1122	802
GEOSCCM	527	1117	1231	_	-	_	-	_	_	_	_
GFDL-AM3	568	1146	1246	1104	786	1174	655	1204	961	1188	868
GISS-E2-R	387	971	1070	924	621	989	495	1029	802	1005	702
HadGEM2	922	1483	1610	1465	1143	1536	1011	_	_	1549	1224
LMDz-OR-INCA	407	991	1093	944	640	_	-	1049	821	1025	722
MIROC-CHEM	384	962	1064	922	605	_	-	1024	790	1006	688
MOCAGE	486	1068	1168	1026	708	_	_	1126	883	1110	791
NCAR-CAM3.5	565	1148	1248	1105	787	1175	656	1206	962	1189	870
STOC-HadAM3	492	1082	1184	1040	717	_	_	_	_	1125	801
UM-CAM	480	1047	1148	1011	700	1077	570	_	_	1093	781

Table S1a. Yearly total emissions of CO (Tg CO / yr) for each ACCMIP model, for each time slice and scenario. GISS-E2-R-TOMAS emissions same as GISS-E2-R.

Table S1b. As Table S1a, but yearly total emissions of VOCs (Tg C / yr).

Model	Hist		RCP2.6		RCP4.5		RCP6.0		RCP8.5		
	1850	1980	2000	2030	2100	2030	2100	2030	2100	2030	2100
CESM-CAM-superfast	429	429	429	429	429	-	_	429	429	429	429
CICERO-OsloCTM2	411	462	461	462	438	462	438	_	_	462	435
CMAM	—	_	-	_	_	_	_	_	_	_	_
EMAC	450	559	580	_	_	597	585	_	_	621	682
GEOSCCM	495	578	627	_	_	_	_	_	_	_	_
GFDL-AM3	762	828	830	824	788	830	800	832	808	836	814
GISS-E2-R	721	807	830	851	834	869	885	865	922	876	988
HadGEM2	69	96	106	101	83	95	78	_	_	103	82
LMDz-OR-INCA	565	662	666	654	600	_	_	662	628	671	639
MIROC-CHEM	728	821	833	826	774	_	_	836	808	842	805
MOCAGE	942	1,049	1,059	1,050	990	_	_	1,061	1,024	1,069	1,030
NCAR-CAM3.5	578	665	668	662	616	671	633	673	643	679	651
STOC-HadAM3	573	697	722	771	710	_	_	_	_	794	904
UM-CAM	429	523	535	528	475	532	486	—	_	546	513

Table S1c. As Table S1a, but yearly total emissions of NO_x (Tg N / yr).

Model	Hist		RCP2.6		RCP4.5		RCP6.0		RCP8.5		
	1850	1980	2000	2030	2100	2030	2100	2030	2100	2030	2100
CESM-CAM-superfast	12.1	44.3	50.0	34.3	23.6	_	_	39.5	23.2	48.0	31.7
CICERO-OsloCTM2	18.4	45.4	50.3	43.4	28.9	46.5	28.6	_	_	52.9	35.6
CMAM	18.3	44.1	50.8	43.3	27.8	46.7	29.5	_	_	53.2	36.9
EMAC	14.3	41.7	47.5	_	_	43.9	27.8	_	_	50.8	37.0
GEOSCCM	17.3	41.5	45.0	_	_	_	_	_	-	_	_
GFDL-AM3	13.8	40.9	46.2	39.7	24.5	43.0	27.0	41.2	25.1	49.8	35.8
GISS-E2-R	15.8	43.2	48.6	42.4	27.9	45.3	29.7	43.9	28.5	51.6	39.1
HadGEM2	11.9	39.3	44.8	38.8	23.4	42.0	25.7	_	-	49.2	34.5
LMDz-OR-INCA	14.1	41.0	45.9	39.3	25.7	41.9	24.6	40.6	24.3	47.9	31.8
MIROC-CHEM	23.9	51.6	57.3	51.8	36.7	_	_	53.8	39.2	62.4	53.4
MOCAGE	14.8	42.5	47.9	41.3	26.0	_	_	42.8	24.8	51.2	36.9
NCAR-CAM3.5	12.1	44.9	50.7	35.7	23.7	39.0	26.0	40.9	24.3	49.3	35.3
STOC-HadAM3	18.2	46.0	51.6	44.9	29.5	_	_	_	-	55.2	40.9
UM-CAM	17.4	43.9	49.2	44.1	29.2	47.3	31.5	_	_	53.7	40.7

hPa 100 300

CICERO-OsloCTM2

Fig. S7. Annual cycle in total column ozone from (a) the Total Ozone Mapping Spectrometer (TOMS) (1996-2005 average) and (c) the Hist 2000 time slice from the ACCMIP multi-model mean. Late 20th century change in the total ozone column for (b) TOMS (1996-2005 average minus 1979-1985 average) and (d) ACCMIP multi-model mean (Hist 2000 minus Hist 1980). Grey shading in (b) is where the column change is less than 1 standard deviation, calculated from the interannual variability in the 1979-2005 TOMS data. Grey shading in (d) is where the change is less than 1 standard deviation, calculated from the individual model results.