Auxiliary Materials for

Evaluation of Factors Controlling Global Secondary Organic Aerosol Production from Cloud Processes

C. He^{1*}, J. Liu¹, A.G. Carlton², S. Fan³, L.W. Horowitz³, H. Levy II³, and S. Tao¹

[1]{ College of Urban and Environmental Sciences, Peking University, Beijing, China}

[2] {Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, U.S.A. }

[3]{Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, U.S.A.}

* {Now at Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles (UCLA), Los Angeles, CA, USA}

Correspondence to: J. Liu (jfliu@pku.edu.cn)

Table S1. Correlation matrix between the six factors

	LWC	TC _{loss}	Temp	OH	O ₃	VOC/NO _x
LWC	1	0.07	0.18	0.05	-0.1	-0.04
TC _{loss}		1	0.17	0.08	-0.03	0.07
Temp			1	0.66	-0.22	-0.13
OH				1	-0.08	-0.1
O ₃					1	0.08
VOC/NO _x						1

	This work	Ervens et al., 2008		
Model	GCM coupled with detailed gas and cloud chemistry	Cloud parcel model with detailed gas and cloud chemistry		
SOA _{cld} precursors	isoprene, toluene, α -pinene	isoprene		
Multiphase chemistry	Jacob,1986; Liang and Jacobson, 1999; Lim et al., 2005; Tan et al., 2010; Emmons et al., 2010; Liu et al., 2012	Ervens et al., 2004a; Lim et al., 2005; Altieri et al., 2006; Carlton et al., 2006,2007		
Transport	Coupled chemistry-climate GCM simulated continuously for one year	Offline 45 1-h trajectories describing passages of an air parcel through stratocumulus clouds, derived from three-dimensional Eulerian large-eddy-simulations. Repeat 5 times from 10 am.		
Methods	Statistical analysis on the spatiotemporal association of different factors with respect to in-cloud SOA formation	Sensitivity of in-cloud SOA production against initial chemical composition in a closed system.		
Parameterization	$P_{SOAcld} = \alpha \cdot LWC \cdot TC_{loss}^{\gamma} + \beta$	$P_{SOAcld} = (a \cdot LWC + b \cdot \tau + c) \cdot TC_{initial}$		
Major findings	 LWC linearly determines the spatiotemporal variability of <i>P_{SOAcld}</i>. The spatiotemporal association between TC_{loss} and <i>P_{SOAcld}</i> is non-linear. VOC/NO_x is not spatiotemporally correlated (r < 0.1) well with <i>P_{SOAcld}</i>. 	 Initial VOC/NO_x ratio and τ are the most important factors. In-cloud SOA yield is less affected by LWC. 		

Table S2. Major difference between this work and Ervens et al., 2008

Figure S1. Distribution of the correlation (r) between SOA_{cld} production and (a) LWC, (b) TC_{loss} , (c) temperature, (d) O₃, (e) OH, (f) VOC/NO_x at 500hPa.

Figure S2. Same as Figure 3 in the main text, but only for (a) high altitudes (above 400 hPa), (b) the Antarctic region, and (c) the Arctic region.

Figure S3. Process-based seasonal averaged column production of SOA_{cld} in DJF, MAM, JJA, and SON (unit: $ng \cdot m^{-2} \cdot s^{-1}$).

Figure S4. Parameterized seasonal averaged column production of SOA_{cld} in DJF, MAM, JJA, and SON (unit: $ng \cdot m^{-2} \cdot s^{-1}$).

Figure S5. Process-based seasonal averaged zonal mean production of SOA_{cld} in DJF, MAM, JJA, and SON (unit: $pg \cdot m^{-3} \cdot s^{-1}$).

Figure S6. Parameterized seasonal averaged zonal mean production of SOA_{cld} in DJF, MAM, JJA, and SON (unit: $pg \cdot m^{-3} \cdot s^{-1}$).