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1. Measurement sequence 1 

 2 

Figure S1.  An example of measurement sequences for (a) the CCN counter temperature gradient 3 

for total CCN concentration measurements, (b) the CCN counter temperature gradient and (c) the 4 

particle size classified by DMA for the size resolved CCN measurements.  5 

 6 

2. Derivation of particle hygroscopicity and mixing state 7 

 The activated fractions measured at the six supersaturations were fitted using following 8 

two different functions (Mei et al., 2013): 9 
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and (Lance, 2007;Cerully et al., 2011;Bougiatioti et al., 2011;Padro et al., 2012;Lance et al., 1 

2013): 2 
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The fitting parameters are E, S*, and S for Eqn. (S1) and E, S*, and C for Eqn. (S2), where S 4 

and C are related to the slope of the increasing Ra with S near S*.  For each set of measurements, 5 

the function form that yielded the best fit (i.e. smaller least squares residue) was used for 6 

subsequent analysis.  7 

 For particles with the same size and composition (i.e., hygroscopicity), we would expect 8 

a step function for Ra as all particles would have the identical Sc.  Ambient aerosols show much 9 

more gradual increase in Ra (i.e., instead of a step change), suggesting heterogeneity in particle 10 

Sc. The probability density function (PDF) of the critical supersaturation for size selected 11 

particles, p(Sc) is given by differentiating Ra(Sc) with respect to Sc:  12 
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The dispersion in Sc is defined as ( )c cS Ss , where cS is the average particle critical 14 

supersaturation: 15 
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When Ra(S) is fitted using Eqn. (S1), the hygroscopicity dispersion is:  1 
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and for Eqn (S2), the dispersion is given by: 3 
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 The dispersion in Sc is due to the combination of the width of DMA transfer function 5 

(particles classified by DMA do not have exactly the identical size) and the heterogeneity in 6 

particle composition (i.e., hygroscopicity), and can be expressed as (Lance et al., 2013): 7 

22 2( )( ) 9 1 ( )

4 4c

c

p

pD

S D

S  


                
       (S8)  8 

Where the first term on the RHS of the equation represents the contribution due to the width of 9 

DMA transfer function, which was estimated from the dispersion in Sc measured during 10 

calibration using (NH4)2SO4 particles (i.e., the contribution of the second term was essentially 11 

zero during calibrations).  The dispersion in hygroscopicity for classified ambient particles was 12 

then derived by subtracting the contribution of DMA transfer function from the total dispersion 13 

in measured critical supersaturation.  14 
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