

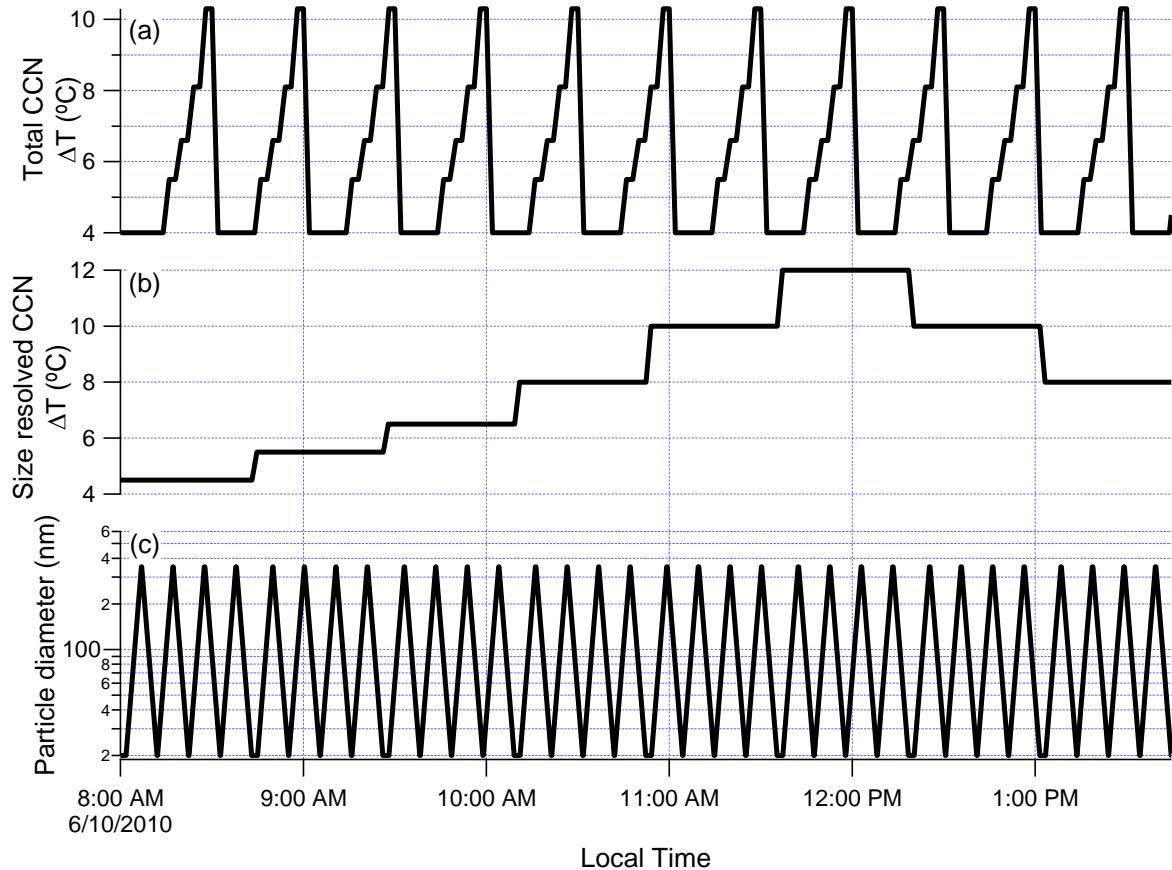
1 **Supplementary Information for**

2 **CCN activity of organic aerosols observed downwind of**
3 **urban emissions during CARES**

4 **Fan Mei^{1,2}, Ari Setyan^{3,4}, Qi Zhang³, and Jian Wang¹**

5 [1]Brookhaven National Laboratory, Upton, New York

6 [2]Now at Pacific Northwest National Laboratory, Richland, Washington


7 [3]Department of Environmental Toxicology, University of California, Davis, California

8 [4]Now at Ecole Nationale Supérieure des Mines de Douai, Département Chimie &

9 Environnement, 59508 Douai Cedex, France; and Université Lille Nord de France, 59044 Lille,
10 France

11 Correspondence to: J. Wang (jian@bnl.gov)

1 **1. Measurement sequence**

2
3 Figure S1. An example of measurement sequences for (a) the CCN counter temperature gradient
4 for total CCN concentration measurements, (b) the CCN counter temperature gradient and (c) the
5 particle size classified by DMA for the size resolved CCN measurements.

6

7 **2. Derivation of particle hygroscopicity and mixing state**

8 The activated fractions measured at the six supersaturations were fitted using following
9 two different functions (Mei et al., 2013):

10
$$R_a(S) = \frac{E}{2} \cdot \left(1 + \operatorname{erf} \left(\frac{\ln S - \ln S^*}{\sqrt{2\sigma_s^2}} \right) \right) \quad (\text{S1})$$

1 and (Lance, 2007; Cerully et al., 2011; Bougiatioti et al., 2011; Padro et al., 2012; Lance et al.,
2 2013):

$$3 R_a(S) = \frac{E}{1 + \left(\frac{S}{S^*}\right)^C} \quad (S2)$$

4 The fitting parameters are E , S^* , and σ_S for Eqn. (S1) and E , S^* , and C for Eqn. (S2), where σ_S
5 and C are related to the slope of the increasing R_a with S near S^* . For each set of measurements,
6 the function form that yielded the best fit (i.e. smaller least squares residue) was used for
7 subsequent analysis.

8 For particles with the same size and composition (i.e., hygroscopicity), we would expect
9 a step function for R_a as all particles would have the identical S_c . Ambient aerosols show much
10 more gradual increase in R_a (i.e., instead of a step change), suggesting heterogeneity in particle
11 S_c . The probability density function (PDF) of the critical supersaturation for size selected
12 particles, $p(S_c)$ is given by differentiating $R_a(S_c)$ with respect to S_c :

$$13 p(S_c) = \frac{1}{E} \cdot \frac{dR_a(S_c)}{dS_c} \quad (S3)$$

14 The dispersion in S_c is defined as $\sigma(S_c)/\bar{S}_c$, where \bar{S}_c is the average particle critical
15 supersaturation:

$$16 \bar{S}_c = \int_0^{\infty} p(S_c) \cdot S_c \cdot dS_c \quad (S4)$$

17 and

$$18 \sigma^2(S_c) = \int_0^{\infty} (S_c - \bar{S}_c)^2 p(S_c) dS_c \quad (S5)$$

1 When $R_a(S)$ is fitted using Eqn. (S1), the hygroscopicity dispersion is:

2
$$\frac{\sigma(S_c)}{S_c} = \left[e^{\sigma_s^2} - 1 \right]^{1/2} \quad (S6)$$

3 and for Eqn (S2), the dispersion is given by:

4
$$\frac{\sigma(S_c)}{S_c} = \left[\frac{\Gamma\left(\frac{2}{C}+1\right) \cdot \Gamma(1-2/C)}{\Gamma(2)} \right] \left/ \left(\frac{\Gamma\left(\frac{1}{C}+1\right) \cdot \Gamma(1-1/C)}{\Gamma(2)} \right)^2 - 1 \right. \right]^{1/2} \quad (S7)$$

5 The dispersion in S_c is due to the combination of the width of DMA transfer function
6 (particles classified by DMA do not have exactly the identical size) and the heterogeneity in
7 particle composition (i.e., hygroscopicity), and can be expressed as (Lance et al., 2013):

8
$$\left(\frac{\sigma(S_c)}{S_c} \right)^2 = \frac{9}{4} \left(\frac{\sigma(D_p)}{D_p} \right)^2 + \frac{1}{4} \left(\frac{\sigma(\kappa)}{\kappa} \right)^2 \quad (S8)$$

9 Where the first term on the RHS of the equation represents the contribution due to the width of
10 DMA transfer function, which was estimated from the dispersion in S_c measured during
11 calibration using $(\text{NH}_4)_2\text{SO}_4$ particles (i.e., the contribution of the second term was essentially
12 zero during calibrations). The dispersion in hygroscopicity for classified ambient particles was
13 then derived by subtracting the contribution of DMA transfer function from the total dispersion
14 in measured critical supersaturation.

15

16

17

1 **References**
2

3 Bougiatioti, A., Nenes, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., and Mihalopoulos, N.:
4 Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol,
5 *Atmos. Chem. Phys.*, 11, 8791-8808, doi: 10.5194/acp-11-8791-2011 2011.

6 Cerully, K. M., Raatikainen, T., Lance, S., Tkacik, D., Tiitta, P., Petaja, T., Ehn, M., Kulmala, M., Worsnop, D. R., Laaksonen, A., Smith, J. N., and Nenes, A.: Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign, *Atmos. Chem. Phys.*, 11, 12369-12386, doi: 10.5194/acp-11-12369-2011, 2011.

10 Lance, S.: Quantifying compositional impacts of ambient aerosol on cloud droplet formation, Ph.D., Georgia Institute of Technology, Atlanta, 2007.

12 Lance, S., Raatikainen, T., Onasch, T., Worsnop, D., Yu, X. Y., Alexander, M. L., Stolzenburg, M. R., McMurry, P. H., Smith, J. N., and Nenes, A.: Aerosol mixing-state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006, *Atmos. Chem. Phys.*, 13, 5049-5062 10.5194/acp-13-5049-2013, 2013.

16 Mei, F., Hayes, P. L., Ortega, A. M., Taylor, J. W., Allan, J. D., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Jimenez, J. L., and Wang, J.: Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA, *J. Geophys. Res.*, 118, 2903-2917 10.1002/jgrd.50285, 2013.

20 Padro, L. T., Moore, R. H., Zhang, X., Rastogi, N., Weber, R. J., and Nenes, A.: Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment, *Atmos. Chem. Phys.*, 12, 10239-10255, doi:10.5194/acp-12-10239-2012, 2012.

24
25