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1 1. Measurement sequence
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Figure S1. An example of measurement sequences for (a) the CCN counter temperature gradient
for total CCN concentration measurements, (b) the CCN counter temperature gradient and (c) the

particle size classified by DMA for the size resolved CCN measurements.
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7 2. Derivation of particle hygroscopicity and mixing state

8 The activated fractions measured at the six supersaturations were fitted using following

9  two different functions (Mei et al., 2013):
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and (Lance, 2007;Cerully et al., 2011;Bougiatioti et al., 2011;Padro et al., 2012;Lance et al.,

2013):

RO)=———¢ (82)

The fitting parameters are E, S*, and og for Eqn. (S1) and E, S*, and C for Eqn. (S2), where o
and C are related to the slope of the increasing R, with S near S*. For each set of measurements,
the function form that yielded the best fit (i.e. smaller least squares residue) was used for

subsequent analysis.

For particles with the same size and composition (i.e., hygroscopicity), we would expect
a step function for R, as all particles would have the identical Sc. Ambient aerosols show much
more gradual increase in R, (i.e., instead of a step change), suggesting heterogeneity in particle
Sc. The probability density function (PDF) of the critical supersaturation for size selected

particles, p(Sc) is given by differentiating Ra(Sc) with respect to S¢:

_l_dRa(Sc) 3
P(Se) =2 4s (S3)

c

The dispersion in S¢ is defined as o(S,)/S,, where S_Cis the average particle critical

supersaturation:

S. = Tp(sc) .S, -dS, (S4)
0

and

&(8)=[(s.-5.) ps.)es, ($5)
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When R4(S) is fitted using Eqn. (S1), the hygroscopicity dispersion is:

o) _ e _1]“2 (S6)

and for Eqn (S2), the dispersion is given by:

2 1/2

2 1
rr=+1|-ra-2/C r—+1-ra-1/cC
O-gc): (C—'_j ( : (C—i—j ( ) -1 (S7)
S ') ')

c

The dispersion in S; is due to the combination of the width of DMA transfer function
(particles classified by DMA do not have exactly the identical size) and the heterogeneity in
particle composition (i.e., hygroscopicity), and can be expressed as (Lance et al., 2013):

as)) _9( (@) :l(@f (S8)
S, 4| D. 4\ K

c p

Where the first term on the RHS of the equation represents the contribution due to the width of
DMA transfer function, which was estimated from the dispersion in S; measured during
calibration using (NH4),SO4 particles (i.e., the contribution of the second term was essentially
zero during calibrations). The dispersion in hygroscopicity for classified ambient particles was
then derived by subtracting the contribution of DMA transfer function from the total dispersion

in measured critical supersaturation.
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