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Abstract. Data assimilation (DA) approaches, including 1 Introduction

variational and the ensemble Kalman filter methods, provide

a computationally efficient framework for solving the €0

source—sink estimation problem. Unlike DA applications for Data assimilation (DA) is best known as a tool in numeri-
weather prediction and constituent assimilation, however, th&al weather prediction (NWP; e.g., Swinbank, 2010) and has
advantages and disadvantages of DA approaches for coPeen applied to analyze complex data sets and estimate pa-
flux estimation have not been extensively explored. In thisr@meters in a variety of fields, including atmospheric con-
study, we compare and assess estimates from two advancé#tuent (e.g., Lahoz and Errera, 2010; Elbern et al., 2010),
DA approaches (an ensemble square root filter and a varig@ceanographic (e.g., Haines, 2010), and land surface (e.g.,
tional technique) using a batch inverse modeling setup as Reichle, 2008; Houser et al., 2010) assimilation problems. In
benchmark, within the context of a simple one-dimensional@ll such applications, a DA system aims to optimally com-
advection—diffusion prototypical inverse problem that has bine the information from available observations with a prior
been designed to capture the nuances of a real f{&® es- model estimate (or the background derived from a model
timation problem. Experiments are designed to identify theforecast) based on their respective uncertainty estimates.
impact of the observational density, heterogeneity, and un- DA approaches for estimating G@luxes aim to constrain
certainty, as well as operational constraints (i.e., ensembléhe spatial and temporal distributions of &®ources and
size, number of descent iterations) on the DA estimates relaSinks by integrating atmospheric, terrestrial and oceanic data
tive to the estimates from a batch inverse modeling schemeiogether into a common analysis framework. £OA appli-

No dynamical model is explicitly specified for the DA ap- cations (e.g., ensemble-filter-based approaches; Peters et al.,
proaches to keep the problem setup analogous to a typicad005; Feng et al., 2009; Miyazaki et al., 2011; Chatterjee et
real CQ flux estimation problem. Results demonstrate that@l-» 2012; Kang et al., 2012); variational based approaches
the performance of the DA approaches depends on a complebRayner et al., 2005; Chevallier et al., 2005; Rodenbeck,
interplay between the measurement network and the operg2005; Baker et al., 2006), and hybrid ensemble—variational
tional constraints. Overall, the variational approach (contin-8PProaches such as the maximum likelihood ensemble filter
gent on the availability of an adjoint transport model) more (Zupanski et al., 2007; Lokupitiya et al., 2008) have been in
reliably captures the large-scale source-sink patterns. Corogue for nearly a decade and are viewed as an alternative
versely, the ensemble square root filter provides more realisto more traditional batch inverse modeling schemes. Unlike
tic uncertainty estimates. Selection of one approach over théhese newer DA applications, which use a combination of
other must therefore be guided by the carbon science quediumerical approximations and time-stepping approaches, the

tions being asked and the operational constraints under whicRatch schemes directly solve the linear system of equations
the approaches are being applied. relating the fluxes and the atmospheric @bservations in

a single step. The DA approaches are attractive because of
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their computational efficiency (e.g., Rayner, 2010), but thecally, this study aims to answer the following two questions:
impact of their underlying numerical approximations on the (1) What is the relative performance of two state-of-the-art
final estimates and their associated uncertainties is often urbA approaches (ensemble square root filter, EnSRF (e.g.,
clear. Whitaker and Hamill, 2002), and 4-dimensional variational,
Chatterjee et al. (2012) pointed out fundamental dif- 4D-VAR (e.g., Talagrand, 2010) for solving the g®@verse
ferences between the carbon flux estimation (i.e., the inproblem, and (2) how well can the DA approaches reproduce
verse framework) and the NWP/constituent (i.e., assimila-the flux estimates and associated uncertainties from a batch
tion framework) problems — namely that (a) the performanceinverse modeling (BIM) scheme?
of the DA approaches are not necessarily equivalent for the To facilitate the intercomparison, we consider here a one-
two frameworks and (b) that only under specific inversion dimensional (1-D) passive tracer transport problem. Similar
scenarios are the DA approaches able to perform optimallyto previous studies (e.g., Liu and Rabier, 2002; Park and
Differences between the two frameworks are mainly drivenKalnay, 2004), the 1-D framework allows us flexibility in
by the ill-conditioned and highly diffusive nature of the flux setting up the problem because multiple experiments can be
estimation problem, as well as the absence of an explicit dysimulated in a computationally efficient manner. The low
namical model that can evolve a set of estimated fluxes forcomputational cost associated with the 1-D problem enables
ward in time. By propagating the state vector between differ-the implementation of a BIM approach in addition to the
ent assimilation time steps, a dynamical model directly con-DA approaches. The DA estimates are thus compared both
tributes to the growth of the eigenvalue spectrum of the statdo the true signal and to the BIM estimates in order to iso-
covariance matrix in certain preferred directions and the deiate the degradation due to the underlying numerical approx-
cay in others (Bengtsson et al., 2003; Furrer and Bengtssorimations in the DA approaches. This study assesses whether
2007). For the C@inverse problem, however, the dynam- these approximations limit the ability of the examined DA
ics are embedded within the atmospheric transport and arapproaches to be used as suitable long-term replacements for
not used explicitly to inform the temporal evolution of the the BIM approach under different inversion conditions.
state vector. A few recent studies have attempted to use an When designing the 1-D problem, we focus on a frame-
explicit dynamical flux model (e.g., Kuppel et al., 2013), but work that allows us to examine amderdetermined and fine-
they note that model errors significantly reduce the perfor-scaleCO, flux estimation problem. This setup is necessary to
mance of the inversion in terms of the quality of the estimatedmimic the challenges of a true G@lux estimation problem
fluxes. Currently, in most carbon flux estimation studies, dy-in which atmospheric mixing coupled with the sparseness of
namical models are not used, resulting in a loss of potentiallyavailable observations results in the inverse problem being
valuable information to the DA system. The absence of thishighly underdetermined and ill posed. The underdetermined
information, coupled with the availability of only sparse ob- nature of the problem is accentuated by the need for estimat-
servational data sets, may result in the DA approaches peiing CO; fluxes at fine spatial and temporal scales, which is
forming suboptimally. necessary to not only avoid spatiotemporal aggregation er-
The authors are not aware of any study specifically relatedors (e.g., Kaminski et al., 2001; Gourdji et al., 2012) but
to the CQ flux estimation problem that attempts to evalu- also to improve the understanding of the fine-scale processes
ate the relative performance of DA techniques. This is unlikedriving the carbon cycle. This paradigm shift has brought
the weather forecasting community, where several studiesbout a computational bottleneck in solving the BIM prob-
have evaluated the strengths and weaknesses of ensemble dath, which requires the atmospheric transport model to be
variational approaches for different weather-related applicatun either once per estimated flux region/period combination
tions ranging from simple to chaotic nonlinear systems (e.g.or once per observation if an adjoint to the transport model is
Lorenc, 2003; Caya et al., 2005; Fertig et al., 2007; Kalnay etavailable. This in turn has prompted the use of computation-
al., 2007; Liu et al., 2008; Whitaker et al., 2009; Buehner etally efficient alternatives, such as DA approaches, in which
al., 2010a, b; Jardak et al., 2010; Zhang et al., 2011, also sethe number of atmospheric transport model runs is propor-
the special collection of papers on intercomparisontig:// tional to the number of ensemble members (in the ensemble
journals.ametsoc.org/page/Ensemble_Kalman_[Filegrart approach) or the number of descent iterations (in the varia-
from NWP-related comparison studies, DA approaches haveional approach), both of which are typically set to be orders
also been intercompared for chemical (e.g., Carmichael et alof magnitude lower than the number of estimated parameters
2008) and constituent (e.g., ozone — Wu et al., 2008) assimer available observations. Analogous to a reab@lOx esti-
ilation problems. These comparison studies cannot be usenhation problem, no dynamical model is explicitly specified
as a baseline, however, because of differences between tHer solving the 1-D problem.
flux estimation and the NWP/constituent DA frameworks, as The experiments are specifically targeted to evaluate the
stated earlier. impact of three factors on the two DA approaches: (a) the
The main purpose of this work is thus to fill this gap and impact of the observational density and homogeneity, (b) the
build on the existing body of intercomparison studies from impact of the model-data mismatch covariance, and (c) the
the perspective of the CQlux estimation problem. Specifi- impact of the operational parameters of the DA system (i.e.,
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ensemble size, number of iterations). While examining theprior, with the ultimate aim of estimating the posterior pdf of
first two factors, issues of sampling and convergence errothe true state.

are minimized by specifying a large number of ensemble The estimate of the pdf of the true state is obtained here via
members and descent iterations for the EnSRF and the 4Dthree approaches — BIM, EnSRF and 4D-VAR. For Gaussian
VAR?! approaches, respectively. More realistic operationalpdfs and a linear model, BIM analytically solves the linear
constraints are subsequently imposed in a latter set of exsystem of equations resulting from the minimization outlined
periments to not only evaluate the fundamental differencesn Eq. (1) to obtain the parameters of the posterior pdf. 4D-
between the two DA approaches but also the effect of theVAR and EnSRF provide numerical approximations of this
compromises necessary to make the algorithms practicallgolution, and if perfectly implemented, they will yield the
applicable. This study represents the first comparison of thesame solution, which in practice is never feasible due to op-
EnSRF and the 4D-VAR approaches for a flux estimationerational constraints. The best estimate for EnSRF is defined
problem, and is expected to guide the development of futureas the mean estimate across an ensemble of source-sink real-
intercomparison experiments with real data, including sateldzations, and the posterior uncertainties are defined based on
lite observations of atmospheric GO the ensemble spread at each location/time. The best estimate
for 4D-VAR is defined as the maximum likelihood estimate
that minimizes the misfit between a prior guess of the source—
sink estimate and the observations that are available over
a given assimilation window. The posterior analysis covari-
ances for 4D-VAR need to be calculated indirectly, however,

In a Bayesian framework, prior information and likelihood for €xample via a Monte Carlo algorithm (e.g., Chevallier et
are expressed as probability density functions or pdfs (e.g.2l-» 2007). In the Monte Carlo framework, different 4D-VAR
Enting, 2002). If the pdfs can be approximated as GausEstimates based on perturbations of the observations (using
sian, then maximizing the posterior probability of the state the specified model-data mismatch statistics), perturbations

is equivalent to finding the minimum of a quadratic objective ©f the prior (using the specified prior error statistics), and
function: combinations thereof. In practice, for a real £fux inver-

1 1 r 1 sion problem it may not be computationally feasible to run
)= le=h @I R z=h@)+3[s=s"] (@) "[s=s"]. (1)  4D-VAR with a large number of perturbations. The compu-
tational efficiency of the one-dimensional framework in this
study allows us to be generous with the number of pertur-
bations (25 total) to assess the quality of the Monte Carlo-
rf;[\lgorithm-based error statistics relative to the uncertainty es-
timates obtained directly from the other two approaches.

A review of these approaches and their underlying mathe-
of the stateQ? is them x m error covariance matrix of the maticgl-framework Is a\_/aila.ble in Appendix A, along with an
exposition of the algorithmic choices necessary to adapt the

prior estimates?, and the superscrigt denotes the matrix : e
transpose operation. Note that in the case of the atmospherl[cgA approaches for solving the G@lux estimation problem.

CO, inverse problem# is linear and typically represented
via its matrix formH (i.e., sensitivity matrix with dimensions

n x m, or Jacobian matrix), which captures the sensitivity ofA 1-D advection—diffusion problem of a passive tracer is

the observationg to the fluxess (i.e., Hjj = 9z /dsj). The L
; 3 ( 1j =021/ S.J) used to emulate the GOlux estimation problem. In the 1-D
inverse problem as formulated via Eq. (1) determines a least- : ) .
squares fit of the state estimate to the observations and t lustration, the passive tracer represents atmospherig. CO
h'Fracer fluxes get released from a series of locations over a fi-
ITypically in the DA community the term 4D-VAR is used to nite duration and get transported by a tracer transport model
represent the three-dimensional space plus time. In this study, théhat emulates the physics of advection and diffusion. No sink
variational approach is applied to a one-dimensional space plugs specified, and there is therefore a gradual buildup of the
time, which may suggest that the term “1 + 1D-VAR" may be more passive tracer within the domain. Observations of the tracer

appropriate. Within the geophysical community, however, the terma e gptained at various locations and times within the do-
1-D in 1D-VAR specifically refers to the vertical column, and i ain The |ocations and times of the observations as well as

quite popular for radio occultation data (e.g., Eyre et al.,, 1993, POIItheir recision can be regulated to simulate a variety of inver-
et al., 2002), total column water vapor (e.g., Marécal and Mahfouf, P 9 Yy

2002; Bauer et al., 2006), cloud (e.g., Janiskova et al., 2012) asS!ON Scenarios. .The inverse problem involves gsmg th? noisy
similation etc. Since in the current study 1-D refers to a single di- tracer observations along with the transport information to
mension along the horizontal space and not necessarily the verticdnfer the original tracer fluxes.

column, we persist with usage of the term 4D-VAR rather than the  In the following description, the units of mass, length and
term 1D-VAR. time are reported as\{], [L], and [I'] to keep the problem

2 Experimental framework

2.1 Estimation methods

wheres is am x 1 vector of the discretized state (e.g., £0
flux), z is then x 1 vector of observations (e.g., G@b-
servations)/: is a forward model that is often a combina-
tion of an observation operator and an atmospheric transpo
model with embedded dynamidR,is thern x n model-data
mismatch covariance matrix? is them x 1 prior estimate

2.2 Problem description
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Fig. 1. (a) Spatiotemporal variability of the tracer fluXb) True flux profile for a particular time period corresponding to the dashed white
line in (a). Also shown in(b) is the prior estimate of the tracer flux profile with itsag2 prior uncertainty (dashed lines).

generic. Both the length of the 1-D domain and the time pe-variance (10 /2 L~2]) is added to the tracer observations to
riod of the experiment are arbitrarily discretized. The param-simulate measurement, transport, aggregation, and represen-
eters for the experiment are: the grid sizaea =1 [L], the tation errors. Later in the study, different configurations of
domain lengthy =300 [L], the time step of releasAr =1 and error variances variancesgt) are prescribed to test the
[T1], the total number of time periods over which the tracer impact of factors.

flux is released = 35 [T], the longitudinal dispersion coeffi- The tracer observationg)(and the tracer fluxes) are
cient D =2.0 [L2T 1], and the advection velocity=50.0  related in the following fashion:
[LT~1.

The tracer fluxs [M L~17 1] that is released (Fig. 1a)is ¢=Hs*v, wherev ~ N (R, ®)
modeled as whereH is the sensitivity matrix that is generated using a
702 1202 1-D tracer transport model as

s (r ) = 0.25(36— £ exp| — F =107 | | exp| - K= 1397
200 50 oo }[em:((xo—xr)—vto) _erfc<(xo—xr)—v(to—t,)):| (4)
(xr — 1507 (xr — 22072 o2 2/Dito 2D (to— 1) ’
r— r—
+eXp[—50 } + 0-25(“)9)(9[— 200 } . @) wherex, andt, are the tracer flux release locations and times,

xo and ¢ty are the tracer observation locations and times,

where x, represents the locations along the 1-D domainerfc represents the complementary error function. The tracer
(xr=1, 2, 3,..., 299, 3001(]) over which the tracer flux is transport model embedded in Eq. (4) assumes conservation
released continuously over 35 fixed intervals{(1, 2, 3,...,  of mass and is based on a well-known one-dimensional an-
34, 35 [r']), with each interval being a duration of T']. alytical solution for a conservative tracer with a continuous
Equation 2 is designed to model two large peaks with fluctu-source under steady-state conditions (e.g., Ogata and Banks,
ating amplitudes (Fig. 1b) between 50 and 100 §nd be-  1961; Runkel, 1996).
tween 200 and 250, as well as a smaller consistent dou-  The tracer observations obtained at a particular time step
ble peak (Fig. 1b) between 100 and 2dq.[Even though are sensitive to the tracer flux released at multiple previous
the spatial tracer flux profiles are different for each time pe-time steps. Given that the total length of the domain is 300
riod, the spatially averaged flux has a constant value of 0.84L] and the advection velocity is 5[’ ~1], the maximum
[M L~ T~1 across all time periods. Note that the true tracer residence time of the tracer within the domain is approxi-
flux s is used only for simulating the observations and is latermately 6 [I']. Based on the form of Eq. (2), however, the
assumed unknown throughout the analysis. majority of fluxes occur at; >50 [L] (Fig. 1b), and the typ-

The tracer is sampled at locationg (xo=1, 2,..., ical residence time is therefore <] This means that an
299, 300 L]) for 35 consecutive time periodgy=1.5, observation taken at timg [T] provides information about
2.5,...,34.5, 35.57]) to obtain the observational data get the tracer flux approximately up to tinrg —5 [T]. In all
[M L~1], such that the observation times are offset from thesubsequent experiments, the lag window size for the DA ap-
release times. The initial random error with a prespecifiedproaches is thus set to B], such that this “long” lag window
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Fig. 2. Observations of the tracer obtained from the three network configurations {a&RE#M (b), and HT(c). Note that going from the
REF to the HM and the HT networks, the total number of observations decreases by a factor of 12, whereas in going from the HM to the HT
network, the observational network becomes more heterogeneous in space and time.

allows nearly all of the flux influence on observations to be spatiotemporal homogeneity of the observational network.

represented within the DA approaches. The finite lag win-Three different observational networks are designed (Fig. 2).

dow also recognizes the operational limitations associatedn the first network configuration (denoted as REF — “ref-

with the implementation of DA approaches in a real-world erence observational set” as outlined in Sect. 2.2), observa-

setting, and we foresee this as a realistic scenario for futur¢ions are obtained throughout the domaig €1, 2,..., 299,

global inversions (see Appendix A for a more detailed dis-300 [L]) and for all 35 measurement timeg €1.5, 2.5,. ..,

cussion). 34.5, 35.5 1)) (Fig. 2a). The total number of observations
The final piece of information necessary for setting up theavailable is thus 10500 (i.e., 300 location85 times). In

inverse problem is the prior estimat€’) of the tracer flux  the second network configuration (denoted as HM — “homo-

and its error characteristics (Fig. 1bJ.is chosen here to be geneous”), observations are obtained at 25 equally spaced

constant across all time periods: locations within the 1-D domainx( =10, 22, 34..., 298
[L]) for all 35 time periodsf,=1.5, 2.5,..., 34.5, 35.9))

(5) (Fig. 2b). The total number of observations is thus reduced
to 875 (i.e., 25 locationg 35 times). In the final configu-
ration (denoted as HT — “heterogeneous”), observations are

Its error covariance matriQ’ is based on an exponential taken at 25 randomly selected locations for_ each measure-

decay model in space, with a correlation lengthyjf 90 ~ ment time (,=1.5, 2.5,..., 34.5, 35.57])) (Fig. 2c), and

[L] and varianced?2) of 3 [M2L~2T~2]. these locations vary from one time to the next. Similarly to

The 1-D framework was designed to capture most of theHM, the total number of observations in HT is 875 (i.e., 25

(m2s)1] for s andog, [ppm] for z and or, [ppm umott both HM and HT represent underdetermined inversion prob-

b | r—1502
N (xr,tr)—exp[ —2000 .

(m2s~1)] for H, and [km] forlq, . lems where the total number of observations is substantially
lower than the number of unknowns in the state space to be
2.3 Experiments estimated. In reality, the HT network configuration scheme

is the closest to current GAnonitoring networks where dif-

Experiments are designed to explore the impact of three facferent monitoring locations (ground based or remote sensing)
tors on the ability of the DA approaches to solve the inversecan come online and go offline over different periods.
problem: (a) the observational density and homogeneity, (b) For all the three network configurations (experiments A
the model-data mismatch covariance, and (c) the operationahrough C), random errors with a variance of ]M2[L—2]
constraints of the DA system (i.e., ensemble size, numbetre added to the observations to represent measurement,
of descent iterations). In all the experiments, the size of theransport, aggregation, and representation errors encountered
state vector or the total number of fluxes to be inferred isin real applications. The model-data mismatch covariance
10500x 1 (i.e., 300 locations 35 times). matrix R (Eq. 1) has this same variance as its diagonal el-

The first set of experiments (Table 1 — experiments Aements. In contrast to the prior error covariance, the errors
through C) aims to investigate the effect of the density and
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Table 1. Summary of the experiments outlined in Sect. 2.3. The following parameters are held constant for all the experiments in this study:
s (Eq. 5), 3g =90 [L] anda(% =3[M2L 2712

. . Observation parameters DA parameters
Impact considered Experiment
Network Model-data mismatch Ensemble size  Descent iterations
Variances3
A REF 10 1000 250
Observational density B HM 10 1000 250
and homogeneity
HT 10 1000 250
AR REF 400 1000 250
Model-data mismatch BR HM 400 1000 250
CR HT 400 1000 250
AO REF 10 100 25
Operational limitations BO HM 10 100 o5
CO HT 10 100 25

have no spatial or temporal correlation. Finally, all three ap-3 Results
proaches use the same numerical realization of errors, thus
ensuring that they are solving the same inverse problem. In the sections that follow, results from the nine experiments
The second set of experiments (Table 1 — experiments ARare interpreted at both the native and aggregated spatial
through CR) examines the effect of the model-data mismatclscales, and estimates from the EnSRF and the 4D-VAR ap-
variance on the best estimates and their associated uncertaiproaches are compared both to the truth and to the estimates
ties. For all the network configurations, the variance of thefrom the BIM approach. Taylor diagrams (Taylor, 2001) are
random errors is increased to 400F L—2] with the diag-  used to assess the root-mean-square difference (RMSD) and
onal values of the model-data mismatch covariance matrixhe correlation coefficient (CC) between the flux estimates
R increased accordingly. All other parameters are kept theand the truth, as well as the standard deviation (SD) of the
same as in the first set of experiments. flux estimates and the truth. These metrics are calculated
The third set of experiments (Table 1 — experiments AOacross 30 time periods,=6, 7,..., 34, 35T]) to be rep-
through CO) explores the impact of operational constraintsfesentative of the overall experiment after discarding the first
which are always an important consideration in implement-five time periods as spin-up.
ing a DA system. To minimize numerical approximations and
avoid sampling or convergence errors, the ensemble size (fo3.1  Impact of observational density and homogeneity
EnSRF) and the number of descent iterations (for 4D-VAR)
for the first two sets of experiments (Table 1 — experimentsFor the REF network (experiment A), all three approaches
A-C and experiments AR—CR) are set to 1000 and 250, reperform well in recovering the true flux (e.g., Fig. 3a), and
spectively. The number of descent iterations is prescribed tdn fitting the observations within the specified model-data
be lower than the number of ensemble members, keeping ifismatch errors (results not shown). For the sample time
mind that 4D-VAR typically requires more model integra- period presented in Fig. 3a, both the 4D-VAR and the En-
tions (i.e., both forward and adjoint model run) than EnSRF.SRF estimates capture the flux profile, including its large
Given that it is not feasible to either run a large number ofand small peaks. These results are typical of the performance
ensemble members or specify a large number of descent i©of the three approaches across other estimation times. The
erations for real atmospheric applications, these numbers arfeerformance across the full examined time period is summa-
reduced to 100 ensemble members for EnSRF and 25 ddized in Fig. 4a, where all three approaches show a high CC
scent iterations for 4D-VAR in the third set of experiments. (~0.97), low RMSD (0.3 [M L~ T~1]), and standard de-
The noise added to the observations is kept the same as in théations ¢~1.5 [M L~*7 1)) that are similar to that of the
first set of experiments, namely 10/ L—2], to allow fora  true fluxes.
direct comparison with experiments A—C. The performance of all three approaches degrades as the
observational density and homogeneity decrease in going
from experiments A to C. This is evident by looking at
Fig. 3b and c, where the estimates fail to capture the smaller
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Fig. 3. Example of estimated tracer fluxes (lines) and associ#t®el uncertainties (shaded areas) for the different approaches assessed in
this study. All values are shown for the 25th time period, which is representative of the observed performance over other time periods. The
panel titles correspond to the different experiments outlined in Table 1.

double peak around 100—-200][ and the Taylor diagrams in  tios of the predicted posterior uncertainty of the individual
Fig. 4b and c show a corresponding drop in CC and an influx estimates in EnSRFs{_ ) and 4D-VAR (3, \,g) 1O
crease in RMSD. In general, for observations with spatiallythose from BIM 65, ) are approximately 0.98 and 0.84, re-
uncorrelated model-data mismatch errors such as those ussgectively; that is, on average, EnSRF and 4D-VAR under-
here, decreasing the observational density is expected to destimate the posterior uncertainties by 2 and 16 %, respec-
crease the analysis accuracy. The response of the two DA apively, relative to BIM (Fig. 5a). As the observational density
proaches mirrors the BIM approach in such cases, includinghanges, EnSRF overestimates the uncertainty by 2 and 6 %
the inference of an incorrect flux pattern for the HT network for HM and HT, respectively, while 4D-VAR underestimates
around 100 L] in Fig. 3c. This result indicates that in the ab- the uncertainty substantially, by 22 and 18 %, respectively
sence of operational constraints, best estimates from the DAFig. 5b, c). For all cases, the 4D-VAR uncertainties for indi-
approaches are consistent with the BIM estimate even for aridual locations/times over- or underestimates the BIM esti-
underdetermined inverse problem. mates even more substantially than evidenced by the average
In terms of the recovered posterior uncertainty estimatesstatistics, however, as seen by the spread in the histograms in
the EnSRF uncertainty estimates are more consistent witlfrig. 5.
the BIM uncertainty estimates relative to 4D-VAR (Fig. 3a— In the EnSRF framework, the uncertainties are directly re-
¢). For the REF observational configuration, the average ratated to the ensemble spread. In the absence of a dynamical
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Fig. 4. Performance of the BIM, the EnSRF, and the 4D-VAR approaches for the different experiments outlined in Table 1. For each experi-
ment, statistics are calculated between the estimates and the true fluxes across all locations and all 30 time periods and are represented or
Taylor diagram. For each Taylor diagram, the true flux is represented by a point along the abscissa corresponding to the standard deviatior
of the true fluxes (“Truth”). All other points (“BIM”, “EnSRF”, “4D-VAR"), which represent the estimated fluxes, are positioned such that
their standard deviation is the radial distance from the origin, the correlation coefficient between the estimates and the truth is the cosine of
the azimuthal angle, and the root-mean-square difference (RMSD) between the estimates and the truth is the distance to the observed poin
In the limit of perfect agreement, these other points would coincide with “Truth” (i.e., RMSD =0, CC =1, and SD of the estimates would be
the same as that of the truth).

model, there is little source of variability for the ensemble to mention here that the magnitudes of the inflation factors
to maintain a consistent spread. As observations are assimare very small in experiments A—C. This is not surprising
lated, the ensemble members tend to collapse to the ensergiven that a large number of ensemble members have been
ble mean and the adaptive inflation (see Appendix A.3) hasspecified and the sampling error is hence quite low.

to compensate for this degeneracy by inflating the ensem- For 4D-VAR the posterior uncertainties are obtained via
ble spread. In the HT case, however, the inflation techniqguehe Monte Carlo technique. For the time period shown in
has a delayed response in adjusting to the heterogeneity iRig. 3a—c, the 4D-VAR uncertainties not only underestimate
the observational network, as different observation locationghe BIM uncertainties on average but they are also a lot more
come into and out of the network. For the adaptive inflationvariable (i.e., too high or too low) for individual fluxes rel-
component to function well, we find it beneficial to have a ative to BIM. We believe this heterogeneity in the posterior
consistent set of observations to maintain a reasonable enincertainty estimates to be a result of the number of perturba-
semble spread (e.g., Chatterjee et al., 2012). It is worthwhilgions specified for the Monte Carlo technique. A sensitivity
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Fig. 5. Histogram showing the ratio of the estimated posterior uncertainties from the Ea§RE 0 and the 4D-VAR §;, . .. ) approaches

to the posterior uncertainties from the BIM(,,, ) approach. The ratios are calculated for each estimated flux time/location over all 30 time
periods to be representative of the overall experiments outlined in Table 1. In the ideal case — that is, if the posterior uncertainty from a DA
approach is equal to the posterior uncertainty from BIM — the histogram would be a single line centered around 1.

test in which the total number of perturbations is increasedwork is similar for the DA approaches compared to the BIM
(or decreased) indicated that the heterogeneity of the unceapproach. Both the DA approaches have some difficulty in
tainty estimates obtained via the Monte Carlo technique defeproducing the BIM posterior uncertainty estimates, albeit
creased (or increased) correspondingly. When averaged ovéor different reasons. In the absence of any operational con-
all the time periods (Fig. 5a—c), the posterior uncertainty esti-straints, however, EnSRF provides more realistic and useful
mates clearly underestimate the BIM uncertainty. Even thenuncertainty bounds than 4D-VAR.

the large spread in the histograms shown in Fig. 5a—c rein-

forces our earlier conclusions that the uncertainty estimate$.2 Impact of model-data mismatch covariance

for individual fluxes over/underestimate the BIM uncertainty ] ) ) _
estimates substantially. For all the network configurations, the quality of the esti-

Overall, we find that both 4D-VAR and EnSRF can repro- Mates degrades when a higher model-data mismatch error
duce the performance of BIM in terms of the best estimatedS Prescribed (comparing Fig. 3ar—cr with Fig. 3a—c), al-
of the fluxes for all three observational network configura- though the heterogeneous network estimates show the most
tions. Even though small discrepancies are noticeable, th@ronounced degradation. An increasesf leads to higher

confidence in the analysis. Analogous to the first set of
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experiments, EnSRF and 4D-VAR best estimates respondt reproducing the uncertainty estimates from BIM, and (b)
similarly to BIM when the model-data mismatch covariance the uncertainty estimates from 4D-VAR severely underesti-
changes, and both the approaches track the BIM best estimate the BIM uncertainty estimates and are less realistic than
mates quite well for all the three experiments. Figure 4ar—crthe EnSRF uncertainty estimates.

confirm that the best estimates from all the three approaches

have a lower CC, higher RMSD, and lower SD when com-3.3 Impact of operational constraints

pared to Fig. 4a—c.

The standard deviation of the flux estimates change con©Operational constraints hinder the performance of the DA ap-
siderably between Fig. 4ar(.45-1.5 M L~17-1]) and proaches, and the impact is further intensified as the obser-
4cr (~0.94-1.00 M L~1T~1)) for the three approaches. In- vational network becomes more heterogeneous.
creasing theré to 400 [M?2 L~2] results in the analysis reject- For 4D-VAR, an inadequate number of iterations may lead
ing the information from the observations and giving more to a failure to find the minimum of the quadratic objective
weight to the prior, yielding overly smooth a posteriori es- function (convergence results not shown here). When the ob-
timates. A typical example of this is seen by comparing theservational network is heterogeneous, the minimization has
estimated peak around 50-100][in Fig. 3c and cr. Esti- even more difficulty in finding the path towards the mini-
mates in both these panels are based on the same observaum. Thus, comparing Fig. 4ao—co, the 4D-VAR estimates
tional network but the estimates in Fig. 3cr do not capturediverge from the BIM estimates for the HT network configu-
the amplitude of the two large peaks in the true flux signal. ration. In general, we find that for the HT network, 4D-VAR

For experiments AR—CR, the posterior uncertainty esti-needs approximately 50 iterations to converge completely for
mates for all the three approaches are higher compared tthe case studies presented here. Conversely, for the REF and
experiments A—C, as expected due to the higher prescribethe HM network, 4D-VAR requires only approximately 20
model-data mismatch error. Similarly to experiments A—to 30 iterations to reach full convergence. For all the three
C, the 4D-VAR uncertainty estimates for individual loca- experiments, however, the value of the objective function is
tions/times are too variable relative to BIM (Fig. 5). Aver- reduced relative to that for the prior fluxes, indicating an im-
aged over time and space, the 4D-VAR uncertainty estimateprovement over the prior estimates. As pointed out by Ro-
underestimate the BIM uncertainty estimates by approxi-denbeck (2005), the minimization determines the large-scale
mately 25 % (Fig. 5ar—cr). Thus, even though the 4D-VAR gradient in the initial iterations, while in subsequent itera-
uncertainty estimates for experiments AR—CR are highettions fine-scale tuning is performed to capture the optimum.
than the corresponding uncertainty estimates for experimentBy artificially limiting the number of iterations in experi-
A-C, they fail to capture the full magnitude of the BIM un- ments AO—-CO, the ability of 4D-VAR to make small-scale
certainty estimates. This makes intuitive sense due to thadjustments is hindered, which manifests itself clearly in ex-
indirect approach adopted for generating the 4D-VAR un-periment CO (panel co in Figs. 3, 4 and 5).
certainty estimates. Conversely, as the observational net- For EnSRF, the degradation is attributable to sampling er-
work becomes sparser and more heterogeneous, the EnSRé&r caused by the limited ensemble size. This reduces the es-
slightly overestimates the BIM average uncertainties by 3 %timation accuracy (both flux estimates and their uncertain-
(HM; Fig. 5br) and 5% (HT; Fig. 5cr), while it underesti- ties) and makes the filter sensitive to the observational den-
mates the uncertainty by only 1 % for the reference networksity. Note that a Schur-based localization scheme was imple-
(Fig. 5ar). The EnSRF uncertainty estimates for individual mented for EnSRF (see Appendix A3). Since the localiza-
locations/times are more closely distributed around the BIMtion length scale is dependent on the ensemble size, when
estimates (Fig. 5). The better performance of EnSRF in term&n ensemble size of 1000 was used (experiments A-C, or
of the uncertainty estimation can be directly related to the enAR—-CR), a long localization length scale of 90-12( gan
semble spread. Relative to experiments A—C, when the prebe used. The localization length scale is determined subjec-
scribed model-data mismatch error is high in experimentdively based on sensitivity tests, and hence a range of values
AR-CR, the initial ensemble spread is reduced by a lower(i.e., 90-120 L]) is acceptable within which the EnSRF esti-
amount as observations are now being given less weightmates are not contaminated by spurious noise. Reducing the
and hence have lower impact on the ensemble spread. Comnsemble size to 100 requires the use of a shorter localization
sequently, the ensemble members maintain a large spreddngth scale. It was found beneficial to have different length
throughout the analysis and results in large posterior uncerscales for the different observational networks, namely 10—
tainty estimates that are more realistic relative to 4D-VAR. 30 [L] for the REF network and 45-6Q.] for the sparser

Experiments AR—CR reconfirm that in the absence of op-networks. Specifying a longer localization length scale than
erational limitations, an increase (or decrease) in the model-30 [L] for the REF network led to a divergence of the En-
data mismatch covariance does not affect the ability of theSRF system. In this case, the spurious noise in the ensemble
DA approaches to reproduce the BIM best estimates. Similaoutweighs the positive impact of the observations. The com-
to experiments A—C, in terms of the posterior uncertainty es-plex interplay between the ensemble size and the observa-
timates, however, (a) both the DA approaches are less skilletional density makes it difficult to identify a mathematical or
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physical basis for selecting an appropriate localization lengtt3.4 Examining results at aggregated spatial and
scale. We refer the reader to Chatterjee et al. (2012), as well  temporal scales
as the sensitivity tests presented therein, for a more detailed
discussion of the role of localization for the @8ource—sink  In the previous sections, the performance of the DA and
estimation problem. the BIM approaches were analyzed and reported at the na-
Furthermore, when operational constraints are imposedtive estimation scales (both in space and time). In con-
the posterior flux uncertainty estimates obtained using bothemporary CQ inversion studies, the fine-scale estimates
EnSRF and 4D-VAR are unable to reproduce those fromand their uncertainties are typically averaged a posteriori in
BIM. The degree to which posterior uncertainties from both space and/or in time to coarser scales (e.g., daily grid-scale
DA approaches over/underestimate the BIM uncertainties foffluxes averaged to monthly continental scales) for additional
individual locations and times increases. This is clearly evi-interpretation.
dent in Figs. 3 and 5, panels ao—co. Averaged over all time To represent this process, the domain used here is divided
periods and locations, the posterior uncertainty estimateinto two subregions, 1-15@] and 151-3004], and the true
from EnSRF are still closer to the BIM uncertainty estimates, flux and the flux estimates are aggregated over each of these
being within 10 % of the averaged BIM uncertainties for ex- areas and examined across time. This is qualitatively anal-
periments AO, BO, and CO, whereas the average 4D-VARogous to aggregating fluxes a posteriori to “large regions”
uncertainties underestimate the BIM uncertainties by up to(e.g., biomes, continents) within the inversion domain. Be-
25 %. The degradation in the uncertainty estimates providedause the true flux differs between these two subregions, and
by 4D-VAR and EnSRF is due to different reasons. While for these differences themselves vary in time, it is possible to ex-
EnSRF the large sampling error plays a dominant role, foramine the ability of the various approaches to capture these
4D-VAR the perturbations in the Monte Carlo technique are spatiotemporal variations. Figure 6 presents the comparison
unable to capture the true range of the posterior uncertaintiesat the aggregated scales in the form of a Taylor diagram. For
The impact for 4D-VAR is accentuated for experiments BO all the 9 experiments, 4D-VAR is able to match the tempo-
and CO, where the sparse network exacerbates the need faal variation of the spatially aggregated BIM estimates bet-
more iterations to reach convergence. ter than EnSRF. Even when the number of descent iterations
An important caveat here is that the results for both theis reduced (Fig. 6ao—co), the differences between the BIM
DA approaches could potentially be improved through fur- and the 4D-VAR best estimates are negligible at the exam-
ther tuning of each algorithm. For example, the implementa-ined spatially aggregated scales. Comparing Figs. 4co and
tion of more sophisticated algorithms to precondition and ob-6co demonstrates that the differences observed at fine scales
tain faster convergence, or stronger localization schemes tare substantially reduced when aggregating the estimates to
dampen the spurious noise in the ensemble members, migla coarser resolution.
provide slightly different responses and reduce the error in- Because there is no explicit dynamical model to evolve the
curred due to the numerical approximations. In spite of hav-information between assimilation time periods, the EnSRF
ing state-of-the-art algorithms, however, once the underlyingestimates are always contaminated with small-scale sampling
numerical approximations come into play, (a) EnSRF failserrors, but these errors partially cancel out when the esti-
to reproduce the BIM best estimates, with the EnSRF permates are spatially aggregated. Overall, the EnSRF estimates
formance decreasing as the observational network becomestill, however, exhibit more spurious variability relative to
sparser and more heterogeneous, and (b) 4D-VAR also failthe 4D-VAR estimates. Especially when the number of en-
to reproduce the BIM best estimates when the observationademble members is reduced (Fig. 6ao—co), both the sampling
network is heterogeneous but still performs better than En-error as well as the observational density and heterogeneity
SRF. The better performance of 4D-VAR in terms of the flux start to play a role, leading to less reliable estimates at ag-
estimates is offset by the fact that EnSRF provides more regregated scales. For example, in Fig. 6ao and 6co, the CC
alistic uncertainty bounds on the recovered flux estimates. between the spatially aggregated EnSRF and the true flux es-
The DA approaches are particularly sensitive to the infor-timates drops from 0.99 to 0.90, and the RMSD increases
mation flow from the observations because of the lack of arfrom 0.03 to 0.21 }/ L~17~1]. The standard deviation of
explicit dynamical model. As discussed in Sect. 1, a dynam-these spatially aggregated EnSRF estimates also increases
ical model adds to the information content of the system, al-from 0.37 to 0.40 }/ L~1 71, leading to an overestima-
beit at the cost of additional model errors that must be takertion relative to the true flux, which has a standard deviation
into account. Identifying/developing an appropriate dynami-of 0.36 [M L~17-1].
cal model relevant to the COlux estimation problem, and Analysis at aggregated scales demonstrates that when
subsequently repeating experiments such as those presentefderational constraints are not imposed, both the DA ap-
here, may further inform the assessment of the interplay beproaches provide aggregated estimates that are close to
tween the operational constraints and the observational nethe aggregated BIM estimates. Even when operational con-
work. straints are imposed, the aggregated flux estimates for En-
SRF and 4D-VAR (Fig. 6¢co) have substantially higher CC
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Fig. 6. Performance of BIM, EnSRF, and 4D-VAR at spatially aggregated scales for the different experiments outlined in Table 1. The details
of the plot are as described in the caption of Fig. 4.

and lower RMSD than the corresponding estimates at the fine When an adjoint for the atmospheric transport model is
scale (Fig. 4co). This is encouraging from the perspective ofavailable, and if the best estimates are the primary target, 4D-
a real CQ flux estimation problem, as it implies that the DA VAR outperforms EnSRF, especially when the measurement
approaches may provide reliable flux estimates at aggregateetwork is heterogeneous. With a small number of iterations,
scales, even under circumstances when their performance 4D-VAR may not converge to the minimum, but it still re-
fine scales is compromised. liably captures the majority of the large-scale features, with
the final estimates close to those expected from a BIM so-
lution. The main disadvantages of the 4D-VAR approach, on
the other hand, are its more cumbersome implementation and
Overall, the choice between 4D-VAR and EnSRF approac:heét S i_nability.to provide explif:it es_tim.ates of Fhe analysis error,

N which can instead be obtained indirectly via the Monte Carlo
for the CQ flux estimation problem should be based on

the carbon science questions being targeted, as well as t teechmque. In addition, the 4D-VAR approach may poten-

. : rally be more advantageous due to its ability to more easily
tradeoff between the impact of incomplete convergence o .
N . : account for correlated model-data mismatch errors (O. Ta-
the minimization algorithm (for 4D-VAR) and the impact of L .
. . .lagrand, personal communication, 2012). Although this spe-
sampling error (for EnSRF) on the estimated fluxes and their .- " : . : .
2 cific issue has not been examined in this study, it is worth
uncertainties. o : ; . .
keeping in mind with the increasing use of satellite-based

CO, measurements. Recent work by Brankart et al. (2009)

4 Discussion
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has demonstrated techniques to cope with such correlationsnd precision of either of the DA approaches will be com-
in an ensemble filter setting as well. Such techniques, howpromised relative to BIM, as demonstrated in this study.
ever, are numerically efficient only for certain types of error
correlation structures. .

In the absence of correlated model—data mismatch errore Conclusions

however, the serial EnSRF is easier to implement than .
3/Ve present a comparative assessment of two advanced DA

4D.VAR system, and qus not require the dev_elc_)pment an approaches with the BIM approach for the atmospherig CO
maintenance of an adjoint model. Due to restrictions on the . .

. o inversion problem. The performance of the DA approaches is
size of the ensemble, however, it is necessary to adapt anfi

tune ancillary algorithms such as localization and inflation, _ound to depend on a complex interplay between the underly-

. o ing numerical approximations and the information available
which improve the ensemble approximations to the full-rank . :
: i o . . from the observations. Overall, the 4D-VAR scheme is found
Kalman filter. Unlike adaptive inflation, the choices to be

- . L A to be more robust for obtaining the best estimates, while the
made in implementing a localization scheme remain highly

o . L EnSRF scheme has the advantage of providing direct esti-
subjective. Experiments in this study show, for example, that . o

o . mates of analysis error that are more realistic than those op-
the localization length scale is dependent on both the ensem-

. : ; - ; erationally feasible for 4D-VAR. The relative performance of
ble size and the observational density. Will increasing vol- .
. e 4D-VAR and EnSRF best estimates, when a large and homo-
umes of observations push us towards specifying shorter lo-

calization length scales? If so, what is the limit beyond which geneous set of observations is available, is consistent with

. . the conclusions obtained from intercomparison studies car-
decreasing the localization length scale may actually degrade o o

X ) . . . fied out by other DA communities. The sensitivity of the ap-
the analysis? It is necessary to identify more rigorously a ba-

. : N proaches to the observational scheme in the absence of an
sis for selecting the localization parameters (e.g., Anderson; " .~ : . .
. . explicit dynamical model, and specifically for solving an un-
2012) or adaptive approaches that may be less sensitive t . ; .
S . : erdetermined inverse problem, however, had not previously
variations in the observational network.

One critical requirement of an inverse problem is to ob- been thoroughly explored. Beyond g€ource—sink estima-

. . . -tion problems, the conclusions of this study are therefore also
tain reliable second-order statistical moments for the esti- . ;

relevant to other DA problems where a dynamical model is
mated system states. Even though we have demonstrated that

posterior error statistics can be obtained for both EnSR aCTkr:r(]egéensitivit experiments demonstrate that when a large
(directly) and 4D-VAR (indirectly via a Monte Carlo tech- y exp 9

nique), the ENSRF uncertainty estimates reproduce the Bl umber of ensemble members or descent iterations is speci-

. . . N ied, the best estimates obtained from state-of-the-art imple-
uncertainty estimates consistently better. The indirect tech- )
: L : o mentations of the 4D-VAR and the EnSRF approaches are
niques necessary for obtaining posterior error statistics forsimilar to those from BIM, irrespective of the observational
4D-VAR has important caveats, as demonstrated by the largé X P

L L S Characteristics. Even under these optimal conditions, how-

over/underestimation of uncertainties for individual flux lo- . .
. . L ever, the uncertainty estimates from 4D-VAR are unable to
cations and times, as well as the underestimation of the pos: . .
. o ) reproduce those from BIM. When operational constraints are
terior uncertainties relative to BIM when averaged across alll. o :
. . . . imposed, both the characteristics of the observational net-
locations and times. Therefore, EnSRF is more desirable for . N
L . . . X work and the numerical approximations play a greater role
attribution purposes, wherein source—sink estimates with re- "~ . .
in differentiating the performance of the two DA approaches.

alistic confidence bounds can be used to gain a better ung . .
. . - ecause such operational constraints are always present for
derstanding of the mechanistic processes driving the carbon

: . real CQ source—sink estimation problems, the choice of an
cycle or to reconcile estimates from top-down and bottom-up )
approaches. approach should be based on (a) the carbon science ques-

With both 4D-VAR and EnSRF, there is a direct trade- LO"S Peing targeted (i.e., whether the science calis only for
. : L best estimates of fluxes, or for flux estimates with realistic
off between computational savings and estimation accuracy,

L . . . uncertainties) and (b) the inversion conditions under which
which is intensified when solving an underdetermined prob- : ; ; .

. . they are being applied (i.e., characteristics of the observa-

lem with a heterogeneous observational network. For large;

scale flux estimation problems, operational constraints wiIItlonal network, such as data density and heterogeneity).

always exist, as will scarce and inconsistent observations Recently, 4D-VAR and EnSRF have begun to influ-
Y ' énce each other’s development, and EnVar DA approaches

f[r_ansport model blz_ises and unce_rtalntles (thus further lim- Lorenc, 2013) may take center stage for solving the, CO
iting the use of available observations), etc. The HT schem . - X
lux problem in the future. In addition, the emerging focus

with a limited number of ensemble members/descent itera- A : ) . .
. A on the assimilation of satellite Gbservations will require
tions (panel co in Figs. 3, 4 and 5) serves as the closest ana-

. : . additional intercomparisons that go beyond the scope of the
logue to a real inversion problem. Even if we account for the : : . .
. . ! work presented here, including the consideration of temporal
increase in remote-sensing measurements of @@ obser-

vational network is going to be a complex hybrid between error correlations in the atmospheric €@bservations.
the REF and the HT scheme. In this scenario, the accuracy
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Appendix A where E now becomes the control variable with respect
to which the objective function is minimized instead sof

Estimation methods for solving the inverse problem directly. The optimal preconditioning matrix to reduce the
number of iterations required to solve the minimization prob-

Al Batch inverse modeling (BIM) lem is the inverse Hessian (Axelsson and Barker, 2001). For a

) . real high-dimensional C@inversion problem, however, the
In the BIM approach (e.g., Enting, 2002), the analytical gjz¢ and structure of the prior covariance matrix may consti-
solution for the a posteriori estimate and the associateq, e 4 significant impediment for calculating the inverse Hes-
covariances of the objective function (Eq. 1) are given by gjan  Any algebraic manipulations, such as taking inverses

R or calculating the square roots for preconditioning purposes,

§=s"+K (Z B Hsb) ’ (AL) " pecome operationally cumbersome and thus matrix manipu-

QY= (I —KH)Qb, (A2) lation techniques (e.g., Yadav and Michalak, 2013) are nec-
1 essary to sidestep these operational challenges.

K =QPHT (HQbHT + R) ) (A3) The main caveat with the variational approaches, such as

4D-VAR, is that a direct estimate of the analysis error is not
wheres“ is the posterior best estimate of the state @fd  available (no clear analogue of Eq. A2). Mathematically this
is the a posteriori covariance of the recovered best estimatecan be obtained from the inverse of the Hessian (e.g., Le
The diagonal elements d@“ represent the predicted er- Dimet et al., 2002; Rédenbeck, 2005; Meirink et al., 2008)
ror variance (632) of individual elements ir§“. As stated in  but operational challenges restrict the calculation and stor-
Sect. 1, for CQ@ inversion studies, the generation of the ma- age of the Hessian for high-dimensional problems. Recent
trix H requires an atmospheric transport model to be runapplications of 4D-VAR for NWP problems have shown that
either once per estimated element of the state vector, ocomputationally efficient alternatives do exist (e.g., Cheng et
once per observation. The large number of model runs ulti-al., 2010; Gejadze et al., 2013). Although some of these tech-
mately makes the BIM approach computationally intractableniques are more suited for nonlinear problems (e.g., Gejadze

for solving very large-scale problems. et al., 2013), they retain potential applicability to the £O
_ _ o flux estimation problem as well. In this study, we use a Monte
A2 Four-dimensional variational (4D-VAR) Carlo technique (e.g., Chevallier et al., 2007) where both

the observations and the prior are perturbed multiple times

l,n 4',3 \éAR,lthe fluxeSch that rr_nnllmlée the_ OF’J?C“"S funp f with the prespecified model-data mismatch error statistics
tt;on InEq. (f) ar'(z)lsoug t|ter§1t|vey y r;lr;llmlzgngt € mis Ith and prior error statistics, respectively.

etween a feasible state trajectory and the observations that 4p, yaR s implemented with successive overlapping win-
are available over a given assimilation window. The over-

all approximation lies in the fact that the minimization can the atmosphere and (b) to avoid the operational cost associ-

be stopped by artificially limiting the number of iterations 04 with calculating the inverse of the full prior covariance
or by requiring that the norm of the gradient decreases by Iatrix Q" in Egs. (A4) and (A5). In order to determine the

predefined amount during each iteration. Most minimizationIength of the moving window, however, one needs to keep

schemes rely on the availability of the gradient of the objec-in mind two primary factors: (a) observations typically in-
tive function with respect to the state (or control vector in ¢, s ,xes over a finite period of time (e.g., 4- to 6-month

4D-VAR terms),

dows to (a) account for the long residence times ob @D

time frame based on the analysis reported in Bruhwiler et al.,
»\ L b Il 2005), and (b) temporal correlation in the prior flux errors
VI(s) = (Q ) [s —-s ]+H R™ [z —h(s)]. (A4)  (e.g., for the prior land flux errors Chevallier et al. (2012)
. . . . has suggested the temporal correlation to be strongly positive
Iﬂsttfaad ofgnalytlcally calgu:a_tlng tr:je gradient, thehadtgnt of sor lags <85 days and mildly positive for lags275 days).
the forward transport model Is used to compute the &fm ;0 5 sufficiently long window the 4D-VAR approach us-

directly, which is then added toin Eq. (A4) above. While ing a moving window will emulate the 4D-VAR approach
a variety of minimization schemes may be used (e.g., conju-

: . . using a single window, while at the same time providing sub-
ga_lte gradient or BFGS, e.g., N(_)c_ed_al and W_nght, 2006), Nstantial computational savings. In the absence of a dynami-
this study, we use a Lanczos minimizer algorithm (e.g., No

“cal model, this implementation of 4D-VAR becomes similar

cedal and Wright, 2006), which produces similar results a, e pGAT-3DVAR (Massart et al., 2010) variant occasion-
the conjugate-gradient technique in terms of the reduction o lly used within the NWP community

the cost function and gradient norm but converges substan-
tially faster. Additionally, a new variableq) is defined to

. A A3 Ensemble square root filter (EnSRF)
precondition the minimization as

_1 In the ensemble filter approach, the key innovation is to
- b\ "2 : . .
E= (Q ) s, (A5)  work in a reduced subspace of the error covariance matrices.
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Observations are assimilated to update the ensemble reprsistent across these algorithmic choices. We encourage the
sentation of the error covariance matrices. The optimal analyreader to look at Lorenc (2003) and Nichols (2010) (and ref-
sis states and an estimate of the analyses error are determinecences therein) for a more detailed discussion on these DA
in a similar fashion to Egs. (A1) and (A2), but the calculation approaches.

of Q?H” andHQ’HT is approximated by running transport

model using the ensemble members directly: i
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