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Abstract. Data assimilation (DA) approaches, including
variational and the ensemble Kalman filter methods, provide
a computationally efficient framework for solving the CO2
source–sink estimation problem. Unlike DA applications for
weather prediction and constituent assimilation, however, the
advantages and disadvantages of DA approaches for CO2
flux estimation have not been extensively explored. In this
study, we compare and assess estimates from two advanced
DA approaches (an ensemble square root filter and a varia-
tional technique) using a batch inverse modeling setup as a
benchmark, within the context of a simple one-dimensional
advection–diffusion prototypical inverse problem that has
been designed to capture the nuances of a real CO2 flux es-
timation problem. Experiments are designed to identify the
impact of the observational density, heterogeneity, and un-
certainty, as well as operational constraints (i.e., ensemble
size, number of descent iterations) on the DA estimates rela-
tive to the estimates from a batch inverse modeling scheme.
No dynamical model is explicitly specified for the DA ap-
proaches to keep the problem setup analogous to a typical
real CO2 flux estimation problem. Results demonstrate that
the performance of the DA approaches depends on a complex
interplay between the measurement network and the opera-
tional constraints. Overall, the variational approach (contin-
gent on the availability of an adjoint transport model) more
reliably captures the large-scale source–sink patterns. Con-
versely, the ensemble square root filter provides more realis-
tic uncertainty estimates. Selection of one approach over the
other must therefore be guided by the carbon science ques-
tions being asked and the operational constraints under which
the approaches are being applied.

1 Introduction

Data assimilation (DA) is best known as a tool in numeri-
cal weather prediction (NWP; e.g., Swinbank, 2010) and has
been applied to analyze complex data sets and estimate pa-
rameters in a variety of fields, including atmospheric con-
stituent (e.g., Lahoz and Errera, 2010; Elbern et al., 2010),
oceanographic (e.g., Haines, 2010), and land surface (e.g.,
Reichle, 2008; Houser et al., 2010) assimilation problems. In
all such applications, a DA system aims to optimally com-
bine the information from available observations with a prior
model estimate (or the background derived from a model
forecast) based on their respective uncertainty estimates.

DA approaches for estimating CO2 fluxes aim to constrain
the spatial and temporal distributions of CO2 sources and
sinks by integrating atmospheric, terrestrial and oceanic data
together into a common analysis framework. CO2-DA appli-
cations (e.g., ensemble-filter-based approaches; Peters et al.,
2005; Feng et al., 2009; Miyazaki et al., 2011; Chatterjee et
al., 2012; Kang et al., 2012); variational based approaches
(Rayner et al., 2005; Chevallier et al., 2005; Rödenbeck,
2005; Baker et al., 2006), and hybrid ensemble–variational
approaches such as the maximum likelihood ensemble filter
(Zupanski et al., 2007; Lokupitiya et al., 2008) have been in
vogue for nearly a decade and are viewed as an alternative
to more traditional batch inverse modeling schemes. Unlike
these newer DA applications, which use a combination of
numerical approximations and time-stepping approaches, the
batch schemes directly solve the linear system of equations
relating the fluxes and the atmospheric CO2 observations in
a single step. The DA approaches are attractive because of
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their computational efficiency (e.g., Rayner, 2010), but the
impact of their underlying numerical approximations on the
final estimates and their associated uncertainties is often un-
clear.

Chatterjee et al. (2012) pointed out fundamental dif-
ferences between the carbon flux estimation (i.e., the in-
verse framework) and the NWP/constituent (i.e., assimila-
tion framework) problems – namely that (a) the performance
of the DA approaches are not necessarily equivalent for the
two frameworks and (b) that only under specific inversion
scenarios are the DA approaches able to perform optimally.
Differences between the two frameworks are mainly driven
by the ill-conditioned and highly diffusive nature of the flux
estimation problem, as well as the absence of an explicit dy-
namical model that can evolve a set of estimated fluxes for-
ward in time. By propagating the state vector between differ-
ent assimilation time steps, a dynamical model directly con-
tributes to the growth of the eigenvalue spectrum of the state
covariance matrix in certain preferred directions and the de-
cay in others (Bengtsson et al., 2003; Furrer and Bengtsson,
2007). For the CO2 inverse problem, however, the dynam-
ics are embedded within the atmospheric transport and are
not used explicitly to inform the temporal evolution of the
state vector. A few recent studies have attempted to use an
explicit dynamical flux model (e.g., Kuppel et al., 2013), but
they note that model errors significantly reduce the perfor-
mance of the inversion in terms of the quality of the estimated
fluxes. Currently, in most carbon flux estimation studies, dy-
namical models are not used, resulting in a loss of potentially
valuable information to the DA system. The absence of this
information, coupled with the availability of only sparse ob-
servational data sets, may result in the DA approaches per-
forming suboptimally.

The authors are not aware of any study specifically related
to the CO2 flux estimation problem that attempts to evalu-
ate the relative performance of DA techniques. This is unlike
the weather forecasting community, where several studies
have evaluated the strengths and weaknesses of ensemble and
variational approaches for different weather-related applica-
tions ranging from simple to chaotic nonlinear systems (e.g.,
Lorenc, 2003; Caya et al., 2005; Fertig et al., 2007; Kalnay et
al., 2007; Liu et al., 2008; Whitaker et al., 2009; Buehner et
al., 2010a, b; Jardak et al., 2010; Zhang et al., 2011; also see
the special collection of papers on intercomparison athttp://
journals.ametsoc.org/page/Ensemble_Kalman_Filter). Apart
from NWP-related comparison studies, DA approaches have
also been intercompared for chemical (e.g., Carmichael et al.,
2008) and constituent (e.g., ozone – Wu et al., 2008) assim-
ilation problems. These comparison studies cannot be used
as a baseline, however, because of differences between the
flux estimation and the NWP/constituent DA frameworks, as
stated earlier.

The main purpose of this work is thus to fill this gap and
build on the existing body of intercomparison studies from
the perspective of the CO2 flux estimation problem. Specifi-

cally, this study aims to answer the following two questions:
(1) What is the relative performance of two state-of-the-art
DA approaches (ensemble square root filter, EnSRF (e.g.,
Whitaker and Hamill, 2002), and 4-dimensional variational,
4D-VAR (e.g., Talagrand, 2010) for solving the CO2 inverse
problem, and (2) how well can the DA approaches reproduce
the flux estimates and associated uncertainties from a batch
inverse modeling (BIM) scheme?

To facilitate the intercomparison, we consider here a one-
dimensional (1-D) passive tracer transport problem. Similar
to previous studies (e.g., Liu and Rabier, 2002; Park and
Kalnay, 2004), the 1-D framework allows us flexibility in
setting up the problem because multiple experiments can be
simulated in a computationally efficient manner. The low
computational cost associated with the 1-D problem enables
the implementation of a BIM approach in addition to the
DA approaches. The DA estimates are thus compared both
to the true signal and to the BIM estimates in order to iso-
late the degradation due to the underlying numerical approx-
imations in the DA approaches. This study assesses whether
these approximations limit the ability of the examined DA
approaches to be used as suitable long-term replacements for
the BIM approach under different inversion conditions.

When designing the 1-D problem, we focus on a frame-
work that allows us to examine anunderdetermined and fine-
scaleCO2 flux estimation problem. This setup is necessary to
mimic the challenges of a true CO2 flux estimation problem
in which atmospheric mixing coupled with the sparseness of
available observations results in the inverse problem being
highly underdetermined and ill posed. The underdetermined
nature of the problem is accentuated by the need for estimat-
ing CO2 fluxes at fine spatial and temporal scales, which is
necessary to not only avoid spatiotemporal aggregation er-
rors (e.g., Kaminski et al., 2001; Gourdji et al., 2012) but
also to improve the understanding of the fine-scale processes
driving the carbon cycle. This paradigm shift has brought
about a computational bottleneck in solving the BIM prob-
lem, which requires the atmospheric transport model to be
run either once per estimated flux region/period combination
or once per observation if an adjoint to the transport model is
available. This in turn has prompted the use of computation-
ally efficient alternatives, such as DA approaches, in which
the number of atmospheric transport model runs is propor-
tional to the number of ensemble members (in the ensemble
approach) or the number of descent iterations (in the varia-
tional approach), both of which are typically set to be orders
of magnitude lower than the number of estimated parameters
or available observations. Analogous to a real CO2 flux esti-
mation problem, no dynamical model is explicitly specified
for solving the 1-D problem.

The experiments are specifically targeted to evaluate the
impact of three factors on the two DA approaches: (a) the
impact of the observational density and homogeneity, (b) the
impact of the model–data mismatch covariance, and (c) the
impact of the operational parameters of the DA system (i.e.,
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ensemble size, number of iterations). While examining the
first two factors, issues of sampling and convergence error
are minimized by specifying a large number of ensemble
members and descent iterations for the EnSRF and the 4D-
VAR1 approaches, respectively. More realistic operational
constraints are subsequently imposed in a latter set of ex-
periments to not only evaluate the fundamental differences
between the two DA approaches but also the effect of the
compromises necessary to make the algorithms practically
applicable. This study represents the first comparison of the
EnSRF and the 4D-VAR approaches for a flux estimation
problem, and is expected to guide the development of future
intercomparison experiments with real data, including satel-
lite observations of atmospheric CO2.

2 Experimental framework

2.1 Estimation methods

In a Bayesian framework, prior information and likelihood
are expressed as probability density functions or pdfs (e.g.,
Enting, 2002). If the pdfs can be approximated as Gaus-
sian, then maximizing the posterior probability of the state
is equivalent to finding the minimum of a quadratic objective
function:

J (s) =
1

2
[z − h(s)]T R−1 [z − h(s)] +

1

2

[
s − sb

]T (
Qb

)−1[
s − sb

]
, (1)

wheres is am × 1 vector of the discretized state (e.g., CO2
flux), z is the n × 1 vector of observations (e.g., CO2 ob-
servations),h is a forward model that is often a combina-
tion of an observation operator and an atmospheric transport
model with embedded dynamics,R is then × n model–data
mismatch covariance matrix,sb is them × 1 prior estimate
of the state,Qb is them × m error covariance matrix of the
prior estimatesb, and the superscriptT denotes the matrix
transpose operation. Note that in the case of the atmospheric
CO2 inverse problem,h is linear and typically represented
via its matrix formH (i.e., sensitivity matrix with dimensions
n × m, or Jacobian matrix), which captures the sensitivity of
the observationsz to the fluxess (i.e., H i,j = ∂zi

/
∂sj). The

inverse problem as formulated via Eq. (1) determines a least-
squares fit of the state estimate to the observations and the

1Typically in the DA community the term 4D-VAR is used to
represent the three-dimensional space plus time. In this study, the
variational approach is applied to a one-dimensional space plus
time, which may suggest that the term “1 + 1D-VAR” may be more
appropriate. Within the geophysical community, however, the term
1-D in 1D-VAR specifically refers to the vertical column, and is
quite popular for radio occultation data (e.g., Eyre et al., 1993; Poli
et al., 2002), total column water vapor (e.g., Marécal and Mahfouf,
2002; Bauer et al., 2006), cloud (e.g., Janiskova et al., 2012) as-
similation etc. Since in the current study 1-D refers to a single di-
mension along the horizontal space and not necessarily the vertical
column, we persist with usage of the term 4D-VAR rather than the
term 1D-VAR.

prior, with the ultimate aim of estimating the posterior pdf of
the true state.

The estimate of the pdf of the true state is obtained here via
three approaches – BIM, EnSRF and 4D-VAR. For Gaussian
pdfs and a linear model, BIM analytically solves the linear
system of equations resulting from the minimization outlined
in Eq. (1) to obtain the parameters of the posterior pdf. 4D-
VAR and EnSRF provide numerical approximations of this
solution, and if perfectly implemented, they will yield the
same solution, which in practice is never feasible due to op-
erational constraints. The best estimate for EnSRF is defined
as the mean estimate across an ensemble of source–sink real-
izations, and the posterior uncertainties are defined based on
the ensemble spread at each location/time. The best estimate
for 4D-VAR is defined as the maximum likelihood estimate
that minimizes the misfit between a prior guess of the source–
sink estimate and the observations that are available over
a given assimilation window. The posterior analysis covari-
ances for 4D-VAR need to be calculated indirectly, however,
for example via a Monte Carlo algorithm (e.g., Chevallier et
al., 2007). In the Monte Carlo framework, different 4D-VAR
estimates based on perturbations of the observations (using
the specified model–data mismatch statistics), perturbations
of the prior (using the specified prior error statistics), and
combinations thereof. In practice, for a real CO2 flux inver-
sion problem it may not be computationally feasible to run
4D-VAR with a large number of perturbations. The compu-
tational efficiency of the one-dimensional framework in this
study allows us to be generous with the number of pertur-
bations (25 total) to assess the quality of the Monte Carlo-
algorithm-based error statistics relative to the uncertainty es-
timates obtained directly from the other two approaches.

A review of these approaches and their underlying mathe-
matical framework is available in Appendix A, along with an
exposition of the algorithmic choices necessary to adapt the
DA approaches for solving the CO2 flux estimation problem.

2.2 Problem description

A 1-D advection–diffusion problem of a passive tracer is
used to emulate the CO2 flux estimation problem. In the 1-D
illustration, the passive tracer represents atmospheric CO2.
Tracer fluxes get released from a series of locations over a fi-
nite duration and get transported by a tracer transport model
that emulates the physics of advection and diffusion. No sink
is specified, and there is therefore a gradual buildup of the
passive tracer within the domain. Observations of the tracer
are obtained at various locations and times within the do-
main. The locations and times of the observations as well as
their precision can be regulated to simulate a variety of inver-
sion scenarios. The inverse problem involves using the noisy
tracer observations along with the transport information to
infer the original tracer fluxes.

In the following description, the units of mass, length and
time are reported as [M], [L], and [T ] to keep the problem
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Fig. 1. (a)Spatiotemporal variability of the tracer flux.(b) True flux profile for a particular time period corresponding to the dashed white
line in (a). Also shown in(b) is the prior estimate of the tracer flux profile with its ±2σQ prior uncertainty (dashed lines).

generic. Both the length of the 1-D domain and the time pe-
riod of the experiment are arbitrarily discretized. The param-
eters for the experiment are: the grid size1x = 1 [L], the
domain lengthx = 300 [L], the time step of release1t = 1
[T ], the total number of time periods over which the tracer
flux is releasedt = 35 [T ], the longitudinal dispersion coeffi-
cientDL = 2.0 [L2T −1], and the advection velocityv = 50.0
[LT −1].

The tracer fluxs [M L−1T −1] that is released (Fig. 1a) is
modeled as

s (xr, t r) = 0.25(36− t r)exp

[
−

(xr − 70)2

200

]
+ exp

[
−

(xr − 130)2

50

]

+exp

[
−

(xr − 150)2

50

]
+ 0.25(t r)exp

[
−

(xr − 220)2

200

]
, (2)

where xr represents the locations along the 1-D domain
(xr = 1, 2, 3,. . . , 299, 300 [L]) over which the tracer flux is
released continuously over 35 fixed intervals (t r = 1, 2, 3,. . . ,
34, 35 [T ]), with each interval being a duration of 1 [T ].
Equation 2 is designed to model two large peaks with fluctu-
ating amplitudes (Fig. 1b) between 50 and 100 [L] and be-
tween 200 and 250 [L], as well as a smaller consistent dou-
ble peak (Fig. 1b) between 100 and 200 [L]. Even though
the spatial tracer flux profiles are different for each time pe-
riod, the spatially averaged flux has a constant value of 0.84
[M L−1T −1] across all time periods. Note that the true tracer
flux s is used only for simulating the observations and is later
assumed unknown throughout the analysis.

The tracer is sampled at locationsxo (xo = 1, 2,. . . ,
299, 300 [L]) for 35 consecutive time periods (to = 1.5,
2.5,. . . , 34.5, 35.5 [T ]) to obtain the observational data setz

[M L−1], such that the observation times are offset from the
release times. The initial random error with a prespecified

variance (10 [M2L−2]) is added to the tracer observations to
simulate measurement, transport, aggregation, and represen-
tation errors. Later in the study, different configurations ofxo
and error variances variances (σR2) are prescribed to test the
impact of factors.

The tracer observations (z) and the tracer fluxes (s) are
related in the following fashion:

z = Hs + ν, whereν ∼ N (0,R) , (3)

whereH is the sensitivity matrix that is generated using a
1-D tracer transport model as

Ho,r =
1

2

[
erfc

(
(xo − xr) − vto

2
√

DLto

)
− erfc

(
(xo − xr) − v (to − tr)

2
√

DL (to − t r)

)]
, (4)

wherexr andt r are the tracer flux release locations and times,
xo and to are the tracer observation locations and times,
erfc represents the complementary error function. The tracer
transport model embedded in Eq. (4) assumes conservation
of mass and is based on a well-known one-dimensional an-
alytical solution for a conservative tracer with a continuous
source under steady-state conditions (e.g., Ogata and Banks,
1961; Runkel, 1996).

The tracer observations obtained at a particular time step
are sensitive to the tracer flux released at multiple previous
time steps. Given that the total length of the domain is 300
[L] and the advection velocity is 50 [LT −1], the maximum
residence time of the tracer within the domain is approxi-
mately 6 [T ]. Based on the form of Eq. (2), however, the
majority of fluxes occur atxr >50 [L] (Fig. 1b), and the typ-
ical residence time is therefore <5 [T ]. This means that an
observation taken at timeto [T ] provides information about
the tracer flux approximately up to timeto − 5 [T ]. In all
subsequent experiments, the lag window size for the DA ap-
proaches is thus set to 5 [T ], such that this “long” lag window
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Fig. 2. Observations of the tracer obtained from the three network configurations – REF(a), HM (b), and HT(c). Note that going from the
REF to the HM and the HT networks, the total number of observations decreases by a factor of 12, whereas in going from the HM to the HT
network, the observational network becomes more heterogeneous in space and time.

allows nearly all of the flux influence on observations to be
represented within the DA approaches. The finite lag win-
dow also recognizes the operational limitations associated
with the implementation of DA approaches in a real-world
setting, and we foresee this as a realistic scenario for future
global inversions (see Appendix A for a more detailed dis-
cussion).

The final piece of information necessary for setting up the
inverse problem is the prior estimate (sb) of the tracer flux
and its error characteristics (Fig. 1b).sb is chosen here to be
constant across all time periods:

sb (xr, t r) = exp

[
−

(xr − 150)2

2000

]
. (5)

Its error covariance matrixQb is based on an exponential
decay model in space, with a correlation length (3lQ) of 90
[L] and variance (σ 2

Q) of 3 [M2L−2T −2].
The 1-D framework was designed to capture most of the

characteristic features of the CO2 flux estimation problem.
For a real CO2 inversion, units are most typically [µmol
(m2s)−1] for s and σQ, [ppm] for z and σR, [ppm µmol−1

(m2 s−1)] for H, and [km] forlQ .

2.3 Experiments

Experiments are designed to explore the impact of three fac-
tors on the ability of the DA approaches to solve the inverse
problem: (a) the observational density and homogeneity, (b)
the model–data mismatch covariance, and (c) the operational
constraints of the DA system (i.e., ensemble size, number
of descent iterations). In all the experiments, the size of the
state vector or the total number of fluxes to be inferred is
10 500× 1 (i.e., 300 locations× 35 times).

The first set of experiments (Table 1 – experiments A
through C) aims to investigate the effect of the density and

spatiotemporal homogeneity of the observational network.
Three different observational networks are designed (Fig. 2).
In the first network configuration (denoted as REF – “ref-
erence observational set” as outlined in Sect. 2.2), observa-
tions are obtained throughout the domain (xo = 1, 2,. . . , 299,
300 [L]) and for all 35 measurement times (to = 1.5, 2.5,. . . ,
34.5, 35.5 [T ]) (Fig. 2a). The total number of observations
available is thus 10 500 (i.e., 300 locations× 35 times). In
the second network configuration (denoted as HM – “homo-
geneous”), observations are obtained at 25 equally spaced
locations within the 1-D domain (xo = 10, 22, 34. . . , 298
[L]) for all 35 time periods (to = 1.5, 2.5,. . . , 34.5, 35.5 [T ])
(Fig. 2b). The total number of observations is thus reduced
to 875 (i.e., 25 locations× 35 times). In the final configu-
ration (denoted as HT – “heterogeneous”), observations are
taken at 25 randomly selected locations for each measure-
ment time (to = 1.5, 2.5,. . . , 34.5, 35.5 [T ]) (Fig. 2c), and
these locations vary from one time to the next. Similarly to
HM, the total number of observations in HT is 875 (i.e., 25
locations× 35 times), but the observations are neither uni-
form in space nor consistent in time. Note that unlike REF,
both HM and HT represent underdetermined inversion prob-
lems where the total number of observations is substantially
lower than the number of unknowns in the state space to be
estimated. In reality, the HT network configuration scheme
is the closest to current CO2 monitoring networks where dif-
ferent monitoring locations (ground based or remote sensing)
can come online and go offline over different periods.

For all the three network configurations (experiments A
through C), random errors with a variance of 10 [M2L−2]
are added to the observations to represent measurement,
transport, aggregation, and representation errors encountered
in real applications. The model–data mismatch covariance
matrix R (Eq. 1) has this same variance as its diagonal el-
ements. In contrast to the prior error covariance, the errors
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Table 1.Summary of the experiments outlined in Sect. 2.3. The following parameters are held constant for all the experiments in this study:
sb (Eq. 5), 3lQ = 90 [L] andσ2

Q = 3 [M2 L−2 T −2].

Impact considered Experiment
Observation parameters DA parameters

Network Model–data mismatch Ensemble size Descent iterations
Varianceσ2

R

Observational density
A REF 10 1000 250

and homogeneity
B HM 10 1000 250

C HT 10 1000 250

Model–data mismatch
AR REF 400 1000 250

BR HM 400 1000 250

CR HT 400 1000 250

Operational limitations
AO REF 10 100 25

BO HM 10 100 25

CO HT 10 100 25

have no spatial or temporal correlation. Finally, all three ap-
proaches use the same numerical realization of errors, thus
ensuring that they are solving the same inverse problem.

The second set of experiments (Table 1 – experiments AR
through CR) examines the effect of the model–data mismatch
variance on the best estimates and their associated uncertain-
ties. For all the network configurations, the variance of the
random errors is increased to 400 [M2L−2] with the diag-
onal values of the model–data mismatch covariance matrix
R increased accordingly. All other parameters are kept the
same as in the first set of experiments.

The third set of experiments (Table 1 – experiments AO
through CO) explores the impact of operational constraints,
which are always an important consideration in implement-
ing a DA system. To minimize numerical approximations and
avoid sampling or convergence errors, the ensemble size (for
EnSRF) and the number of descent iterations (for 4D-VAR)
for the first two sets of experiments (Table 1 – experiments
A–C and experiments AR–CR) are set to 1000 and 250, re-
spectively. The number of descent iterations is prescribed to
be lower than the number of ensemble members, keeping in
mind that 4D-VAR typically requires more model integra-
tions (i.e., both forward and adjoint model run) than EnSRF.
Given that it is not feasible to either run a large number of
ensemble members or specify a large number of descent it-
erations for real atmospheric applications, these numbers are
reduced to 100 ensemble members for EnSRF and 25 de-
scent iterations for 4D-VAR in the third set of experiments.
The noise added to the observations is kept the same as in the
first set of experiments, namely 10 [M2L−2], to allow for a
direct comparison with experiments A–C.

3 Results

In the sections that follow, results from the nine experiments
are interpreted at both the native and aggregated spatial
scales, and estimates from the EnSRF and the 4D-VAR ap-
proaches are compared both to the truth and to the estimates
from the BIM approach. Taylor diagrams (Taylor, 2001) are
used to assess the root-mean-square difference (RMSD) and
the correlation coefficient (CC) between the flux estimates
and the truth, as well as the standard deviation (SD) of the
flux estimates and the truth. These metrics are calculated
across 30 time periods (t r = 6, 7,. . . , 34, 35 [T ]) to be rep-
resentative of the overall experiment after discarding the first
five time periods as spin-up.

3.1 Impact of observational density and homogeneity

For the REF network (experiment A), all three approaches
perform well in recovering the true flux (e.g., Fig. 3a), and
in fitting the observations within the specified model–data
mismatch errors (results not shown). For the sample time
period presented in Fig. 3a, both the 4D-VAR and the En-
SRF estimates capture the flux profile, including its large
and small peaks. These results are typical of the performance
of the three approaches across other estimation times. The
performance across the full examined time period is summa-
rized in Fig. 4a, where all three approaches show a high CC
(∼0.97), low RMSD (∼0.3 [M L−1T −1]), and standard de-
viations (∼1.5 [M L−1T −1]) that are similar to that of the
true fluxes.

The performance of all three approaches degrades as the
observational density and homogeneity decrease in going
from experiments A to C. This is evident by looking at
Fig. 3b and c, where the estimates fail to capture the smaller
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Fig. 3. Example of estimated tracer fluxes (lines) and associated± 2σŝ uncertainties (shaded areas) for the different approaches assessed in
this study. All values are shown for the 25th time period, which is representative of the observed performance over other time periods. The
panel titles correspond to the different experiments outlined in Table 1.

double peak around 100–200 [L], and the Taylor diagrams in
Fig. 4b and c show a corresponding drop in CC and an in-
crease in RMSD. In general, for observations with spatially
uncorrelated model–data mismatch errors such as those used
here, decreasing the observational density is expected to de-
crease the analysis accuracy. The response of the two DA ap-
proaches mirrors the BIM approach in such cases, including
the inference of an incorrect flux pattern for the HT network
around 100 [L] in Fig. 3c. This result indicates that in the ab-
sence of operational constraints, best estimates from the DA
approaches are consistent with the BIM estimate even for an
underdetermined inverse problem.

In terms of the recovered posterior uncertainty estimates,
the EnSRF uncertainty estimates are more consistent with
the BIM uncertainty estimates relative to 4D-VAR (Fig. 3a–
c). For the REF observational configuration, the average ra-

tios of the predicted posterior uncertainty of the individual
flux estimates in EnSRF (σŝEnSRF) and 4D-VAR (σŝ4D−VAR ) to
those from BIM (σŝBIM ) are approximately 0.98 and 0.84, re-
spectively; that is, on average, EnSRF and 4D-VAR under-
estimate the posterior uncertainties by 2 and 16 %, respec-
tively, relative to BIM (Fig. 5a). As the observational density
changes, EnSRF overestimates the uncertainty by 2 and 6 %
for HM and HT, respectively, while 4D-VAR underestimates
the uncertainty substantially, by 22 and 18 %, respectively
(Fig. 5b, c). For all cases, the 4D-VAR uncertainties for indi-
vidual locations/times over- or underestimates the BIM esti-
mates even more substantially than evidenced by the average
statistics, however, as seen by the spread in the histograms in
Fig. 5.

In the EnSRF framework, the uncertainties are directly re-
lated to the ensemble spread. In the absence of a dynamical
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Fig. 4. Performance of the BIM, the EnSRF, and the 4D-VAR approaches for the different experiments outlined in Table 1. For each experi-
ment, statistics are calculated between the estimates and the true fluxes across all locations and all 30 time periods and are represented on a
Taylor diagram. For each Taylor diagram, the true flux is represented by a point along the abscissa corresponding to the standard deviation
of the true fluxes (“Truth”). All other points (“BIM”, “EnSRF”, “4D-VAR”), which represent the estimated fluxes, are positioned such that
their standard deviation is the radial distance from the origin, the correlation coefficient between the estimates and the truth is the cosine of
the azimuthal angle, and the root-mean-square difference (RMSD) between the estimates and the truth is the distance to the observed point.
In the limit of perfect agreement, these other points would coincide with “Truth” (i.e., RMSD = 0, CC = 1, and SD of the estimates would be
the same as that of the truth).

model, there is little source of variability for the ensemble
to maintain a consistent spread. As observations are assimi-
lated, the ensemble members tend to collapse to the ensem-
ble mean and the adaptive inflation (see Appendix A.3) has
to compensate for this degeneracy by inflating the ensem-
ble spread. In the HT case, however, the inflation technique
has a delayed response in adjusting to the heterogeneity in
the observational network, as different observation locations
come into and out of the network. For the adaptive inflation
component to function well, we find it beneficial to have a
consistent set of observations to maintain a reasonable en-
semble spread (e.g., Chatterjee et al., 2012). It is worthwhile

to mention here that the magnitudes of the inflation factors
are very small in experiments A–C. This is not surprising
given that a large number of ensemble members have been
specified and the sampling error is hence quite low.

For 4D-VAR the posterior uncertainties are obtained via
the Monte Carlo technique. For the time period shown in
Fig. 3a–c, the 4D-VAR uncertainties not only underestimate
the BIM uncertainties on average but they are also a lot more
variable (i.e., too high or too low) for individual fluxes rel-
ative to BIM. We believe this heterogeneity in the posterior
uncertainty estimates to be a result of the number of perturba-
tions specified for the Monte Carlo technique. A sensitivity
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Fig. 5.Histogram showing the ratio of the estimated posterior uncertainties from the EnSRF (σŝEnSRF
) and the 4D-VAR (σŝ4D-VAR

) approaches
to the posterior uncertainties from the BIM (σŝBIM

) approach. The ratios are calculated for each estimated flux time/location over all 30 time
periods to be representative of the overall experiments outlined in Table 1. In the ideal case – that is, if the posterior uncertainty from a DA
approach is equal to the posterior uncertainty from BIM – the histogram would be a single line centered around 1.

test in which the total number of perturbations is increased
(or decreased) indicated that the heterogeneity of the uncer-
tainty estimates obtained via the Monte Carlo technique de-
creased (or increased) correspondingly. When averaged over
all the time periods (Fig. 5a–c), the posterior uncertainty esti-
mates clearly underestimate the BIM uncertainty. Even then,
the large spread in the histograms shown in Fig. 5a–c rein-
forces our earlier conclusions that the uncertainty estimates
for individual fluxes over/underestimate the BIM uncertainty
estimates substantially.

Overall, we find that both 4D-VAR and EnSRF can repro-
duce the performance of BIM in terms of the best estimates
of the fluxes for all three observational network configura-
tions. Even though small discrepancies are noticeable, the
impact of a sparse and/or heterogeneous observational net-

work is similar for the DA approaches compared to the BIM
approach. Both the DA approaches have some difficulty in
reproducing the BIM posterior uncertainty estimates, albeit
for different reasons. In the absence of any operational con-
straints, however, EnSRF provides more realistic and useful
uncertainty bounds than 4D-VAR.

3.2 Impact of model–data mismatch covariance

For all the network configurations, the quality of the esti-
mates degrades when a higher model–data mismatch error
is prescribed (comparing Fig. 3ar–cr with Fig. 3a–c), al-
though the heterogeneous network estimates show the most
pronounced degradation. An increase inσ 2

R leads to higher
uncertainties for the estimates, indicative of the decreased
confidence in the analysis. Analogous to the first set of
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experiments, EnSRF and 4D-VAR best estimates respond
similarly to BIM when the model–data mismatch covariance
changes, and both the approaches track the BIM best esti-
mates quite well for all the three experiments. Figure 4ar–cr
confirm that the best estimates from all the three approaches
have a lower CC, higher RMSD, and lower SD when com-
pared to Fig. 4a–c.

The standard deviation of the flux estimates change con-
siderably between Fig. 4ar (∼1.45–1.5 [M L−1T −1]) and
4cr (∼0.94–1.00 [M L−1T −1]) for the three approaches. In-
creasing theσ 2

R to 400 [M2L−2] results in the analysis reject-
ing the information from the observations and giving more
weight to the prior, yielding overly smooth a posteriori es-
timates. A typical example of this is seen by comparing the
estimated peak around 50–100 [L] in Fig. 3c and cr. Esti-
mates in both these panels are based on the same observa-
tional network but the estimates in Fig. 3cr do not capture
the amplitude of the two large peaks in the true flux signal.

For experiments AR–CR, the posterior uncertainty esti-
mates for all the three approaches are higher compared to
experiments A–C, as expected due to the higher prescribed
model–data mismatch error. Similarly to experiments A–
C, the 4D-VAR uncertainty estimates for individual loca-
tions/times are too variable relative to BIM (Fig. 5). Aver-
aged over time and space, the 4D-VAR uncertainty estimates
underestimate the BIM uncertainty estimates by approxi-
mately 25 % (Fig. 5ar–cr). Thus, even though the 4D-VAR
uncertainty estimates for experiments AR–CR are higher
than the corresponding uncertainty estimates for experiments
A–C, they fail to capture the full magnitude of the BIM un-
certainty estimates. This makes intuitive sense due to the
indirect approach adopted for generating the 4D-VAR un-
certainty estimates. Conversely, as the observational net-
work becomes sparser and more heterogeneous, the EnSRF
slightly overestimates the BIM average uncertainties by 3 %
(HM; Fig. 5br) and 5 % (HT; Fig. 5cr), while it underesti-
mates the uncertainty by only 1 % for the reference network
(Fig. 5ar). The EnSRF uncertainty estimates for individual
locations/times are more closely distributed around the BIM
estimates (Fig. 5). The better performance of EnSRF in terms
of the uncertainty estimation can be directly related to the en-
semble spread. Relative to experiments A–C, when the pre-
scribed model–data mismatch error is high in experiments
AR–CR, the initial ensemble spread is reduced by a lower
amount as observations are now being given less weight
and hence have lower impact on the ensemble spread. Con-
sequently, the ensemble members maintain a large spread
throughout the analysis and results in large posterior uncer-
tainty estimates that are more realistic relative to 4D-VAR.

Experiments AR–CR reconfirm that in the absence of op-
erational limitations, an increase (or decrease) in the model–
data mismatch covariance does not affect the ability of the
DA approaches to reproduce the BIM best estimates. Similar
to experiments A–C, in terms of the posterior uncertainty es-
timates, however, (a) both the DA approaches are less skilled

at reproducing the uncertainty estimates from BIM, and (b)
the uncertainty estimates from 4D-VAR severely underesti-
mate the BIM uncertainty estimates and are less realistic than
the EnSRF uncertainty estimates.

3.3 Impact of operational constraints

Operational constraints hinder the performance of the DA ap-
proaches, and the impact is further intensified as the obser-
vational network becomes more heterogeneous.

For 4D-VAR, an inadequate number of iterations may lead
to a failure to find the minimum of the quadratic objective
function (convergence results not shown here). When the ob-
servational network is heterogeneous, the minimization has
even more difficulty in finding the path towards the mini-
mum. Thus, comparing Fig. 4ao–co, the 4D-VAR estimates
diverge from the BIM estimates for the HT network configu-
ration. In general, we find that for the HT network, 4D-VAR
needs approximately 50 iterations to converge completely for
the case studies presented here. Conversely, for the REF and
the HM network, 4D-VAR requires only approximately 20
to 30 iterations to reach full convergence. For all the three
experiments, however, the value of the objective function is
reduced relative to that for the prior fluxes, indicating an im-
provement over the prior estimates. As pointed out by Rö-
denbeck (2005), the minimization determines the large-scale
gradient in the initial iterations, while in subsequent itera-
tions fine-scale tuning is performed to capture the optimum.
By artificially limiting the number of iterations in experi-
ments AO–CO, the ability of 4D-VAR to make small-scale
adjustments is hindered, which manifests itself clearly in ex-
periment CO (panel co in Figs. 3, 4 and 5).

For EnSRF, the degradation is attributable to sampling er-
ror caused by the limited ensemble size. This reduces the es-
timation accuracy (both flux estimates and their uncertain-
ties) and makes the filter sensitive to the observational den-
sity. Note that a Schur-based localization scheme was imple-
mented for EnSRF (see Appendix A3). Since the localiza-
tion length scale is dependent on the ensemble size, when
an ensemble size of 1000 was used (experiments A–C, or
AR–CR), a long localization length scale of 90–120 [L] can
be used. The localization length scale is determined subjec-
tively based on sensitivity tests, and hence a range of values
(i.e., 90–120 [L]) is acceptable within which the EnSRF esti-
mates are not contaminated by spurious noise. Reducing the
ensemble size to 100 requires the use of a shorter localization
length scale. It was found beneficial to have different length
scales for the different observational networks, namely 10–
30 [L] for the REF network and 45–60 [L] for the sparser
networks. Specifying a longer localization length scale than
30 [L] for the REF network led to a divergence of the En-
SRF system. In this case, the spurious noise in the ensemble
outweighs the positive impact of the observations. The com-
plex interplay between the ensemble size and the observa-
tional density makes it difficult to identify a mathematical or
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physical basis for selecting an appropriate localization length
scale. We refer the reader to Chatterjee et al. (2012), as well
as the sensitivity tests presented therein, for a more detailed
discussion of the role of localization for the CO2 source–sink
estimation problem.

Furthermore, when operational constraints are imposed,
the posterior flux uncertainty estimates obtained using both
EnSRF and 4D-VAR are unable to reproduce those from
BIM. The degree to which posterior uncertainties from both
DA approaches over/underestimate the BIM uncertainties for
individual locations and times increases. This is clearly evi-
dent in Figs. 3 and 5, panels ao–co. Averaged over all time
periods and locations, the posterior uncertainty estimates
from EnSRF are still closer to the BIM uncertainty estimates,
being within 10 % of the averaged BIM uncertainties for ex-
periments AO, BO, and CO, whereas the average 4D-VAR
uncertainties underestimate the BIM uncertainties by up to
25 %. The degradation in the uncertainty estimates provided
by 4D-VAR and EnSRF is due to different reasons. While for
EnSRF the large sampling error plays a dominant role, for
4D-VAR the perturbations in the Monte Carlo technique are
unable to capture the true range of the posterior uncertainties.
The impact for 4D-VAR is accentuated for experiments BO
and CO, where the sparse network exacerbates the need for
more iterations to reach convergence.

An important caveat here is that the results for both the
DA approaches could potentially be improved through fur-
ther tuning of each algorithm. For example, the implementa-
tion of more sophisticated algorithms to precondition and ob-
tain faster convergence, or stronger localization schemes to
dampen the spurious noise in the ensemble members, might
provide slightly different responses and reduce the error in-
curred due to the numerical approximations. In spite of hav-
ing state-of-the-art algorithms, however, once the underlying
numerical approximations come into play, (a) EnSRF fails
to reproduce the BIM best estimates, with the EnSRF per-
formance decreasing as the observational network becomes
sparser and more heterogeneous, and (b) 4D-VAR also fails
to reproduce the BIM best estimates when the observational
network is heterogeneous but still performs better than En-
SRF. The better performance of 4D-VAR in terms of the flux
estimates is offset by the fact that EnSRF provides more re-
alistic uncertainty bounds on the recovered flux estimates.

The DA approaches are particularly sensitive to the infor-
mation flow from the observations because of the lack of an
explicit dynamical model. As discussed in Sect. 1, a dynam-
ical model adds to the information content of the system, al-
beit at the cost of additional model errors that must be taken
into account. Identifying/developing an appropriate dynami-
cal model relevant to the CO2 flux estimation problem, and
subsequently repeating experiments such as those presented
here, may further inform the assessment of the interplay be-
tween the operational constraints and the observational net-
work.

3.4 Examining results at aggregated spatial and
temporal scales

In the previous sections, the performance of the DA and
the BIM approaches were analyzed and reported at the na-
tive estimation scales (both in space and time). In con-
temporary CO2 inversion studies, the fine-scale estimates
and their uncertainties are typically averaged a posteriori in
space and/or in time to coarser scales (e.g., daily grid-scale
fluxes averaged to monthly continental scales) for additional
interpretation.

To represent this process, the domain used here is divided
into two subregions, 1–150 [L] and 151–300 [L], and the true
flux and the flux estimates are aggregated over each of these
areas and examined across time. This is qualitatively anal-
ogous to aggregating fluxes a posteriori to “large regions”
(e.g., biomes, continents) within the inversion domain. Be-
cause the true flux differs between these two subregions, and
these differences themselves vary in time, it is possible to ex-
amine the ability of the various approaches to capture these
spatiotemporal variations. Figure 6 presents the comparison
at the aggregated scales in the form of a Taylor diagram. For
all the 9 experiments, 4D-VAR is able to match the tempo-
ral variation of the spatially aggregated BIM estimates bet-
ter than EnSRF. Even when the number of descent iterations
is reduced (Fig. 6ao–co), the differences between the BIM
and the 4D-VAR best estimates are negligible at the exam-
ined spatially aggregated scales. Comparing Figs. 4co and
6co demonstrates that the differences observed at fine scales
are substantially reduced when aggregating the estimates to
a coarser resolution.

Because there is no explicit dynamical model to evolve the
information between assimilation time periods, the EnSRF
estimates are always contaminated with small-scale sampling
errors, but these errors partially cancel out when the esti-
mates are spatially aggregated. Overall, the EnSRF estimates
still, however, exhibit more spurious variability relative to
the 4D-VAR estimates. Especially when the number of en-
semble members is reduced (Fig. 6ao–co), both the sampling
error as well as the observational density and heterogeneity
start to play a role, leading to less reliable estimates at ag-
gregated scales. For example, in Fig. 6ao and 6co, the CC
between the spatially aggregated EnSRF and the true flux es-
timates drops from 0.99 to 0.90, and the RMSD increases
from 0.03 to 0.21 [M L−1T −1]. The standard deviation of
these spatially aggregated EnSRF estimates also increases
from 0.37 to 0.40 [M L−1T −1], leading to an overestima-
tion relative to the true flux, which has a standard deviation
of 0.36 [M L−1T −1].

Analysis at aggregated scales demonstrates that when
operational constraints are not imposed, both the DA ap-
proaches provide aggregated estimates that are close to
the aggregated BIM estimates. Even when operational con-
straints are imposed, the aggregated flux estimates for En-
SRF and 4D-VAR (Fig. 6co) have substantially higher CC
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Fig. 6.Performance of BIM, EnSRF, and 4D-VAR at spatially aggregated scales for the different experiments outlined in Table 1. The details
of the plot are as described in the caption of Fig. 4.

and lower RMSD than the corresponding estimates at the fine
scale (Fig. 4co). This is encouraging from the perspective of
a real CO2 flux estimation problem, as it implies that the DA
approaches may provide reliable flux estimates at aggregated
scales, even under circumstances when their performance at
fine scales is compromised.

4 Discussion

Overall, the choice between 4D-VAR and EnSRF approaches
for the CO2 flux estimation problem should be based on
the carbon science questions being targeted, as well as the
tradeoff between the impact of incomplete convergence of
the minimization algorithm (for 4D-VAR) and the impact of
sampling error (for EnSRF) on the estimated fluxes and their
uncertainties.

When an adjoint for the atmospheric transport model is
available, and if the best estimates are the primary target, 4D-
VAR outperforms EnSRF, especially when the measurement
network is heterogeneous. With a small number of iterations,
4D-VAR may not converge to the minimum, but it still re-
liably captures the majority of the large-scale features, with
the final estimates close to those expected from a BIM so-
lution. The main disadvantages of the 4D-VAR approach, on
the other hand, are its more cumbersome implementation and
its inability to provide explicit estimates of the analysis error,
which can instead be obtained indirectly via the Monte Carlo
technique. In addition, the 4D-VAR approach may poten-
tially be more advantageous due to its ability to more easily
account for correlated model–data mismatch errors (O. Ta-
lagrand, personal communication, 2012). Although this spe-
cific issue has not been examined in this study, it is worth
keeping in mind with the increasing use of satellite-based
CO2 measurements. Recent work by Brankart et al. (2009)
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has demonstrated techniques to cope with such correlations
in an ensemble filter setting as well. Such techniques, how-
ever, are numerically efficient only for certain types of error
correlation structures.

In the absence of correlated model–data mismatch errors,
however, the serial EnSRF is easier to implement than a
4D-VAR system, and does not require the development and
maintenance of an adjoint model. Due to restrictions on the
size of the ensemble, however, it is necessary to adapt and
tune ancillary algorithms such as localization and inflation,
which improve the ensemble approximations to the full-rank
Kalman filter. Unlike adaptive inflation, the choices to be
made in implementing a localization scheme remain highly
subjective. Experiments in this study show, for example, that
the localization length scale is dependent on both the ensem-
ble size and the observational density. Will increasing vol-
umes of observations push us towards specifying shorter lo-
calization length scales? If so, what is the limit beyond which
decreasing the localization length scale may actually degrade
the analysis? It is necessary to identify more rigorously a ba-
sis for selecting the localization parameters (e.g., Anderson,
2012) or adaptive approaches that may be less sensitive to
variations in the observational network.

One critical requirement of an inverse problem is to ob-
tain reliable second-order statistical moments for the esti-
mated system states. Even though we have demonstrated that
posterior error statistics can be obtained for both EnSRF
(directly) and 4D-VAR (indirectly via a Monte Carlo tech-
nique), the EnSRF uncertainty estimates reproduce the BIM
uncertainty estimates consistently better. The indirect tech-
niques necessary for obtaining posterior error statistics for
4D-VAR has important caveats, as demonstrated by the large
over/underestimation of uncertainties for individual flux lo-
cations and times, as well as the underestimation of the pos-
terior uncertainties relative to BIM when averaged across all
locations and times. Therefore, EnSRF is more desirable for
attribution purposes, wherein source–sink estimates with re-
alistic confidence bounds can be used to gain a better un-
derstanding of the mechanistic processes driving the carbon
cycle or to reconcile estimates from top-down and bottom-up
approaches.

With both 4D-VAR and EnSRF, there is a direct trade-
off between computational savings and estimation accuracy,
which is intensified when solving an underdetermined prob-
lem with a heterogeneous observational network. For large-
scale flux estimation problems, operational constraints will
always exist, as will scarce and inconsistent observations,
transport model biases and uncertainties (thus further lim-
iting the use of available observations), etc. The HT scheme
with a limited number of ensemble members/descent itera-
tions (panel co in Figs. 3, 4 and 5) serves as the closest ana-
logue to a real inversion problem. Even if we account for the
increase in remote-sensing measurements of CO2, the obser-
vational network is going to be a complex hybrid between
the REF and the HT scheme. In this scenario, the accuracy

and precision of either of the DA approaches will be com-
promised relative to BIM, as demonstrated in this study.

5 Conclusions

We present a comparative assessment of two advanced DA
approaches with the BIM approach for the atmospheric CO2
inversion problem. The performance of the DA approaches is
found to depend on a complex interplay between the underly-
ing numerical approximations and the information available
from the observations. Overall, the 4D-VAR scheme is found
to be more robust for obtaining the best estimates, while the
EnSRF scheme has the advantage of providing direct esti-
mates of analysis error that are more realistic than those op-
erationally feasible for 4D-VAR. The relative performance of
4D-VAR and EnSRF best estimates, when a large and homo-
geneous set of observations is available, is consistent with
the conclusions obtained from intercomparison studies car-
ried out by other DA communities. The sensitivity of the ap-
proaches to the observational scheme in the absence of an
explicit dynamical model, and specifically for solving an un-
derdetermined inverse problem, however, had not previously
been thoroughly explored. Beyond CO2 source–sink estima-
tion problems, the conclusions of this study are therefore also
relevant to other DA problems where a dynamical model is
lacking.

The sensitivity experiments demonstrate that when a large
number of ensemble members or descent iterations is speci-
fied, the best estimates obtained from state-of-the-art imple-
mentations of the 4D-VAR and the EnSRF approaches are
similar to those from BIM, irrespective of the observational
characteristics. Even under these optimal conditions, how-
ever, the uncertainty estimates from 4D-VAR are unable to
reproduce those from BIM. When operational constraints are
imposed, both the characteristics of the observational net-
work and the numerical approximations play a greater role
in differentiating the performance of the two DA approaches.
Because such operational constraints are always present for
real CO2 source–sink estimation problems, the choice of an
approach should be based on (a) the carbon science ques-
tions being targeted (i.e., whether the science calls only for
best estimates of fluxes, or for flux estimates with realistic
uncertainties) and (b) the inversion conditions under which
they are being applied (i.e., characteristics of the observa-
tional network, such as data density and heterogeneity).

Recently, 4D-VAR and EnSRF have begun to influ-
ence each other’s development, and EnVar DA approaches
(Lorenc, 2013) may take center stage for solving the CO2
flux problem in the future. In addition, the emerging focus
on the assimilation of satellite CO2 observations will require
additional intercomparisons that go beyond the scope of the
work presented here, including the consideration of temporal
error correlations in the atmospheric CO2 observations.
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Appendix A

Estimation methods for solving the inverse problem

A1 Batch inverse modeling (BIM)

In the BIM approach (e.g., Enting, 2002), the analytical
solution for the a posteriori estimate and the associated
covariances of the objective function (Eq. 1) are given by

ŝ
a

= sb
+ K

(
z − Hsb

)
, (A1)

Qa
= (I − KH )Qb, (A2)

K = QbHT
(
HQbHT

+ R
)−1

. (A3)

where ŝa is the posterior best estimate of the state andQa

is the a posteriori covariance of the recovered best estimate.
The diagonal elements ofQa represent the predicted er-
ror variance (σ 2

ŝ
) of individual elements in̂sa . As stated in

Sect. 1, for CO2 inversion studies, the generation of the ma-
trix H requires an atmospheric transport model to be run
either once per estimated element of the state vector, or
once per observation. The large number of model runs ulti-
mately makes the BIM approach computationally intractable
for solving very large-scale problems.

A2 Four-dimensional variational (4D-VAR)

In 4D-VAR, the fluxesŝa that minimize the objective func-
tion in Eq. (1) are sought iteratively by minimizing the misfit
between a feasible state trajectory and the observations that
are available over a given assimilation window. The over-
all approximation lies in the fact that the minimization can
be stopped by artificially limiting the number of iterations
or by requiring that the norm of the gradient decreases by a
predefined amount during each iteration. Most minimization
schemes rely on the availability of the gradient of the objec-
tive function with respect to the state (or control vector in
4D-VAR terms),

∇J (s) =

(
Qb

)−1[
s − sb

]
+ HT R−1 [z − h(s)] . (A4)

Instead of analytically calculating the gradient, the adjoint of
the forward transport model is used to compute the termσ 2

ŝ
directly, which is then added tôs in Eq. (A4) above. While
a variety of minimization schemes may be used (e.g., conju-
gate gradient or BFGS, e.g., Nocedal and Wright, 2006), in
this study, we use a Lanczos minimizer algorithm (e.g., No-
cedal and Wright, 2006), which produces similar results as
the conjugate-gradient technique in terms of the reduction of
the cost function and gradient norm but converges substan-
tially faster. Additionally, a new variable (4) is defined to
precondition the minimization as

4 =

(
Qb

)−
1
2
s, (A5)

where 4 now becomes the control variable with respect
to which the objective function is minimized instead ofs

directly. The optimal preconditioning matrix to reduce the
number of iterations required to solve the minimization prob-
lem is the inverse Hessian (Axelsson and Barker, 2001). For a
real high-dimensional CO2 inversion problem, however, the
size and structure of the prior covariance matrix may consti-
tute a significant impediment for calculating the inverse Hes-
sian. Any algebraic manipulations, such as taking inverses
or calculating the square roots for preconditioning purposes,
become operationally cumbersome and thus matrix manipu-
lation techniques (e.g., Yadav and Michalak, 2013) are nec-
essary to sidestep these operational challenges.

The main caveat with the variational approaches, such as
4D-VAR, is that a direct estimate of the analysis error is not
available (no clear analogue of Eq. A2). Mathematically this
can be obtained from the inverse of the Hessian (e.g., Le
Dimet et al., 2002; Rödenbeck, 2005; Meirink et al., 2008)
but operational challenges restrict the calculation and stor-
age of the Hessian for high-dimensional problems. Recent
applications of 4D-VAR for NWP problems have shown that
computationally efficient alternatives do exist (e.g., Cheng et
al., 2010; Gejadze et al., 2013). Although some of these tech-
niques are more suited for nonlinear problems (e.g., Gejadze
et al., 2013), they retain potential applicability to the CO2
flux estimation problem as well. In this study, we use a Monte
Carlo technique (e.g., Chevallier et al., 2007) where both
the observations and the prior are perturbed multiple times
with the prespecified model–data mismatch error statistics
and prior error statistics, respectively.

4D-VAR is implemented with successive overlapping win-
dows to (a) account for the long residence times of CO2 in
the atmosphere and (b) to avoid the operational cost associ-
ated with calculating the inverse of the full prior covariance
matrix Qb in Eqs. (A4) and (A5). In order to determine the
length of the moving window, however, one needs to keep
in mind two primary factors: (a) observations typically in-
form fluxes over a finite period of time (e.g., 4- to 6-month
time frame based on the analysis reported in Bruhwiler et al.,
2005), and (b) temporal correlation in the prior flux errors
(e.g., for the prior land flux errors Chevallier et al. (2012)
has suggested the temporal correlation to be strongly positive
for lags<85 days and mildly positive for lags>275 days).
Given a sufficiently long window the 4D-VAR approach us-
ing a moving window will emulate the 4D-VAR approach
using a single window, while at the same time providing sub-
stantial computational savings. In the absence of a dynami-
cal model, this implementation of 4D-VAR becomes similar
to the FGAT-3DVAR (Massart et al., 2010) variant occasion-
ally used within the NWP community.

A3 Ensemble square root filter (EnSRF)

In the ensemble filter approach, the key innovation is to
work in a reduced subspace of the error covariance matrices.
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Observations are assimilated to update the ensemble repre-
sentation of the error covariance matrices. The optimal analy-
sis states and an estimate of the analyses error are determined
in a similar fashion to Eqs. (A1) and (A2), but the calculation
of QbHT andHQbHT is approximated by running transport
model using the ensemble members directly:

HQbHT
≈

1

N − 1

[
h(s′)

][
h(s′)

]T
, (A6)

QbHT
≈

1

N − 1
(s′)

[
h(s′)

]T
. (A7)

While several variants of the ensemble filter approach ex-
ist, here we have used a serial ensemble square root fil-
ter (Whitaker and Hamill, 2002) implemented in a fixed-lag
smoother form (e.g., Whitaker and Compo, 2002; Chatter-
jee et al., 2012). Similarly to an ensemble square root filter,
the ensemble smoother uses Monte Carlo estimates of the er-
ror covariances to compute a Kalman smoother gain matrix.
This is applied iteratively to a time series of observations,
where the analysis at the first time step is equivalent to an
ensemble square root filter analysis as it only utilizes obser-
vations taken up to and including the analysis time. All sub-
sequent time steps utilize observations taken a number of ob-
serving times past the analysis time. The localization scheme
(i.e., to cut down spurious noise in the ensemble members) is
based on Houtekamer and Mitchell (2001) using a fifth-order
Gaspari–Cohn function (Gaspari and Cohn, 1999), while the
adaptive inflation algorithm (i.e., to counter spurious vari-
ance deficiency among the ensemble members) is based on
Anderson (2009). Implementation of these algorithms within
an ensemble smoother framework is described in further de-
tail in Chatterjee et al. (2012). Despite these ancillary algo-
rithms, the overall implementation of EnSRF is quite simple
and computationally efficient.

A4 Sensitivity tests and additional approaches
considered

The setup of 4D-VAR (with overlapping time windows) and
EnSRF (expressed as a fixed-lag smoother) reflect state-of-
the-art implementations of these two DA approaches, keep-
ing in mind the nature of the atmospheric CO2 process, the
fact that CO2 observations only provide significant informa-
tion about fluxes over a finite preceding time window, and
the operational constraints for estimating CO2 fluxes at high
spatiotemporal scales (e.g., spatial∼1◦, temporal∼daily).
Note that we have implemented both approaches with a sin-
gle long window as a sensitivity test. Other than an increase
in the computational cost, the conclusions regarding the per-
formance of the approaches relative to the BIM approach
are the same as those reported in the manuscript. We have
also tested other varieties of the ensemble filter (EnKF with
perturbed observations (Evensen, 2003) and the variational
approach (PSAS; Courtier, 1997) and found that the over-
all conclusions from the presented experiments remain con-

sistent across these algorithmic choices. We encourage the
reader to look at Lorenc (2003) and Nichols (2010) (and ref-
erences therein) for a more detailed discussion on these DA
approaches.
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