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Abstract. This paper presents the first quantitative metric
for aerosol population mixing state, defined as the distribu-
tion of per-particle chemical species composition. This new
metric, the mixing state indexχ , is an affine ratio of the
average per-particle species diversityDα and the bulk pop-
ulation species diversityDγ , both of which are based on
information-theoretic entropy measures. The mixing state in-
dex χ enables the first rigorous definition of the spectrum
of mixing states from so-called external mixture to inter-
nal mixture, which is significant for aerosol climate impacts,
including aerosol optical properties and cloud condensation
nuclei activity. We illustrate the usefulness of this new mix-
ing state framework with model results from the stochas-
tic particle-resolved model PartMC-MOSAIC. These results
demonstrate how the mixing state metrics evolve with time
for several archetypal cases, each of which isolates a specific
process such as coagulation, emission, or condensation. Fur-
ther, we present an analysis of the mixing state evolution for
a complex urban plume case, for which these processes occur
simultaneously. We additionally derive theoretical properties
of the mixing state index and present a family of generalized
mixing state indexes that vary in the importance assigned to
low-mass-fraction species.

1 Introduction

Our quantitative understanding of the aerosol impact on cli-
mate still has large gaps and hence introduces large uncer-
tainties in climate predictions (IPCC, 2007). One of the chal-
lenges is the inherently multi-scale nature of the problem:
the macro-scale impacts of aerosol particles are governed

by processes that occur on the particle-scale, and these mi-
croscale processes are difficult to represent in large-scale
models (Ghan and Schwartz, 2007).

An important quantity in this context is the so-calledmix-
ing stateof the aerosol population, which we define as the
distribution of the per-particle chemical species composi-
tions. Recent observations made in the laboratory and in the
field using single-particle measurement techniques have re-
vealed that the mixing states of ambient aerosol populations
are complex. Even freshly emitted particles can have com-
plex compositions by the time they enter the atmosphere. For
example, the mixing state of particles originating from ve-
hicle engines depends strongly on fuel type and operating
conditions (Toner et al., 2006). The initial particle composi-
tion is further modified in the atmosphere as a result ofaging
processesincluding coagulation, condensation of secondary
aerosol species, and heterogeneous reactions (Weingartner
et al., 1997).

While the extent to which mixing state needs to be rep-
resented in models is still an open research question, there
is evidence that mixing state matters for adequately model-
ing aerosol properties such as optical properties (Jacobson,
2001; Chung and Seinfeld, 2005; Zaveri et al., 2010), cloud
condensation nuclei activity (Zaveri et al., 2010), and wet re-
moval (Koch et al., 2009; Stier et al., 2006; Liu et al., 2012).
Therefore, in recent years, efforts have been made to repre-
sent mixing state in models to some extent. This is the case
for models on the regional scale (Riemer et al., 2003) as well
as on the global scale (Jacobson, 2002; Stier et al., 2005;
Bauer et al., 2008; Wilson et al., 2001).

In discussions about mixing state, the terms “external mix-
ture” and “internal mixture” are frequently used to describe
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how different chemical species are distributed over the par-
ticle population. An external mixture consists of particles
that each contain only one pure species (which may be dif-
ferent for different particles), whereas an internal mixture
describes a particle population where different species are
present within one particle. If all particles consist of the same
species mixture and the relative abundances are identical, the
term “fully internal mixture” is commonly used.

While these terms may be appropriate for idealized cases,
observational evidence shows that ambient aerosol popula-
tions rarely fall in these two simple categories. In this paper
we present the first quantitative measure of aerosol mixing
state, themixing state indexχ , based on diversity measures
derived from the information-theoretic entropy of the chem-
ical species distribution among particles.

The measurement of species diversity and distribution us-
ing information-theoretic entropy measures has a long his-
tory in many scientific fields. In ecology, the study of animal
and plant species diversity within an environment dates back
to Good (1953) and MacArthur (1955), but rose to promi-
nence with the work ofWhittaker(1960, 1965, 1972). Whit-
taker proposed measuring species diversity by the species
richness (number of species), the Shannon entropy, and the
Simpson index, which are now referred to as generalized di-
versities of order 0, 1, and 2, respectively (see AppendixA
for details).

Whittaker also introduced the fundamental concepts of al-
pha, beta, and gamma diversity, where alpha diversityDα

measures the average species diversity within a local area,
beta diversityDβ measures the diversity between local areas,
andDγ measures the overall species diversity within the en-
vironment, given as the product of alpha and beta diversities.
In the context of aerosols, we regard alpha diversity as mea-
suring the average species diversity within a single particle,
beta diversity as quantifying diversity between particles, and
gamma diversity as describing the overall diversity in bulk
population (see Section2 for details). From these measures
we construct the mixing state indexχ as an affine ratio of
alpha and gamma diversity.

The ecology literature in the 1960s and 1970s contains
much work on species diversity and distribution, although
there was also significant confusion about the underly-
ing mathematical framework (Hurlbert, 1971; Hill , 1973).
Within the last decade, the profusion of diversity mea-
sures have been largely categorized (Tuomisto, 2013, 2012,
2010), although disagreement in the literature is still present
(Tuomisto, 2011; Gorelick, 2011; Jurasinski and Koch, 2011;
Moreno and Rodríguez, 2011). Despite the current contro-
versies, certain principles are now well-established, such as
the use of the effective number of species as the fundamen-
tally correct way to measure diversity (Hill , 1973; Jost, 2006;
Chao et al., 2008, 2010; Jost et al., 2010).

As well as the basic mathematical framework of mea-
suring diversity, there has also been much effort on under-
standing its ecological impacts, with a particular interest in

the relationship between ecosystem stability and diversity
(MacArthur, 1955; Goodman, 1975; McCann, 2000; Ives and
Carpenter, 2007). Other important research questions include
the sources of diversity (Tsimring et al., 1996; De’ath, 2012),
extensions of diversity to include a concept of species dis-
tanceChao et al.(2010); Leinster and Cobbold(2012); Feoli
(2012); Scheiner(2012), and techniques for measuring di-
versity (Chao and Shen, 2003; Schmera and Podani, 2013;
Gotelli and Chao, 2013), despite the well-known difficulties
in estimating entropy in an unbiased fashion (Harris, 1975;
Paninski, 2003). Beyond ecology, the study of diversity is
also important in economics (Garrison and Paulson, 1973;
Hannah and Kay, 1977; Attaran and Zwick, 1989; Malizia
and Ke, 1993; Drucker, 2013), immunology (Tsimring et al.,
1996), neuroscience (Panzeri and Treves, 1996; Strong et al.,
1998), and genetics (Innan et al., 1999; Rosenberg et al.,
2002; Falush et al., 2007).

This paper is organized as follows. In Sect.2 we define
the well-established entropy and diversity measures, adapted
to the aerosol context, and use these to define our new mix-
ing state indexχ . This section also contains examples of di-
versity and mixing state and a summary of the properties of
these measures. Section3 presents a suite of simulations for
archetypal cases using the stochastic particle-resolved model
PartMC-MOSAIC (Riemer et al., 2009; Zaveri et al., 2008).
These simulations show how the diversity and mixing state
measures evolve under common atmospheric processes, in-
cluding emissions, dilution, coagulation, and gas-to-particle
conversion. A more complex urban plume simulation is then
considered in Sect.4, for which the above processes occur
simultaneously. AppendixA presents a generalization of the
diversity and mixing state measures to ascribe different lev-
els of importance to low-mass-fraction species, while Ap-
pendixB contains mathematical proofs for the results sum-
marized in Sect.2.

2 Entropy, diversity, and mixing state index

We consider a population ofN aerosol particles, each con-
sisting of some amounts ofA distinct aerosol species. The
mass of speciesa in particlei is denotedµa

i , for i = 1, . . . ,N

anda = 1, . . . ,A. From this basic description of the aerosol
particles we can construct all other masses and mass frac-
tions, as detailed in Table1. Using the distribution of aerosol
species within the aerosol particles and within the popula-
tion, we can now define mixing entropies, species diversi-
ties, and the mixing state index, as shown in Table2. Note
that entropy and diversity are equivalent concepts, and that
either could be taken as fundamental. We retain both in this
paper to enable connections with the historical and current
literature.

The entropyHi or diversityDi of a single particlei mea-
sures how uniformly distributed the constituent species are
within the particle. This ranges from the minimum value

Atmos. Chem. Phys., 13, 11423–11439, 2013 www.atmos-chem-phys.net/13/11423/2013/



N. Riemer and M. West: Quantifying aerosol mixing state 11425

Table 1.Aerosol mass and mass fraction definitions and notations.
The number of particles in the population isN , and the number of
species isA.

Quantity Meaning

µa
i mass of speciesa in particlei

µi =

A∑
a=1

µa
i total mass of particlei

µa
=

N∑
i=1

µa
i total mass of speciesa in population

µ =

N∑
i=1

µi total mass of population

pa
i =

µa
i

µi
mass fraction of speciesa in particlei

pi =
µi

µ
mass fraction of particlei in population

pa
=

µa

µ
mass fraction of speciesa in population

(Hi = 0, Di = 1) when the particle is a single pure species,
to the maximum value (Hi = lnA, Di = A) when the parti-
cle is composed of equal amounts of allA species. As shown
in Fig. 1, the diversityDi of a particle measures the effec-
tive number of equally distributed species in the particle. If
the particle is composed of equal amounts of 3 species then
the number of effective species is 3, for example, while 3
species unequally distributed will result in an effective num-
ber of species somewhat less than 3.

Extending the single-particle diversityDi to an entire pop-
ulation of particles gives three different measures of popula-
tion diversity.Alpha diversityDα measures the average per-
particle diversity in the population,beta diversityDβ mea-
sures the inter-particle diversity, andgamma diversityDγ

measures the bulk population diversity. The bulk population
diversity (Dγ ) is the product of diversity on the per-particle
level (Dα) and diversity between the particles (Dβ ), giving

Dα︸︷︷︸
per-particle

diversity

× Dβ︸︷︷︸
inter-particle

diversity

= Dγ .︸︷︷︸
bulk population

diversity

(1)

Alpha diversityDα measures the average per-particle effec-
tive number of species in the population, and ranges from
1 when all particles are pure (each composed of just one
species, not necessarily all the same), to a maximum when
all particles have identical mass fractions. Gamma diversity
Dγ measures the effective number of species in the bulk pop-
ulation, ranging from 1 if the entire population contains just
one species, to a maximum when there are equal bulk mass
fractions of all species. Beta diversityDβ is defined by an
affine ratio of gamma to alpha diversity, so it measures inter-
particle diversity and ranges from 1 when all particles have
identical mass fractions, to a maximum when every particle
is pure but the bulk mass fractions are all equal. Table3 sum-

N. Riemer and M. West: Quantifying Aerosol Mixing State 3

Di = 1 Di = 1.4 Di = 1.9 Di = 2 Di = 2.5 Di = 3

1 2 3

Fig. 3: Particle diversities Di of representative particles. The
particle diversity measures the effective number of species
within a particle, so a pure single-species particle has Di = 1
and a particle consisting of 2 or 3 species in even proportion
will have Di = 2 or Di = 3, respectively. A particle with un-
equal amounts of 2 species will have an effective number of
species somewhat less than 2, while a particle with unequal
amounts of 3 species will have effective species below 3, and
possibly even below 2 if the distribution is very unequal.
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the well-established entropy and diversity measures, adapted
to the aerosol context, and use these to define our new mix-
ing state index �. This section also contains examples of di-
versity and mixing state and a summary of the properties of
these measures. Section 3 presents a suite of simulations for140

archetypal cases using the stochastic particle-resolved model
PartMC-MOSAIC (Riemer et al., 2009; Zaveri et al., 2008).
These simulations show how the diversity and mixing state
measures evolve under common atmospheric processes, in-
cluding emissions, dilution, coagulation, and gas-to-particle145

conversion. A more complex urban plume simulation is then
considered in Section 4, for which the above processes oc-
cur simultaneously. Appendix A presents a generalization of
the diversity and mixing state measures to ascribe different
levels of importance to low-mass-fraction species, while Ap-150
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Fig. 4: Generalized per-particle diversity qDi of order q for
varying q, shown for three different particles (inset square
plots). Left: a particle with equal amounts of two species.
Center: a particle with two species in unequal amounts.
Right: a particle with three species in unequal amounts. The
order q controls the importance of species with small mass
fraction. When q = 0 all species are taken to be equally
present, irrespective of mass fraction, so 0Di is simply the
number of species present in the particle. When q = 1 the
generalized diversity is equal to the regular diversity defined
from the Shannon entropy in Section 2. When q = 2 the gen-
eralized diversity 2Di is the inverse of the Simpson index
�i =

PA
a=1

(pa
i )2 for particle i (Simpson, 1949), often used

in the form of the Gini-Simpson index 1��i (Peet, 1974;
Jost, 2006).
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sisting of some amounts of A distinct aerosol species. The
mass of species a in particle i is denoted µa

i , for i = 1, . . . ,N
and a = 1, . . . ,A. From this basic description of the aerosol
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aerosol species within the aerosol particles and within the
population, we can now define mixing entropies, species di-
versities, and the mixing state index, as shown in Table ??.
Note that entropy and diversity are equivalent concepts, and
that either could be taken as fundamental. We retain both in165

this paper to enable connections with the historical and cur-
rent literature.

The entropy Hi or diversity Di of a single particle i mea-
sures how uniformly distributed the constituent species are
within the particle. This ranges from the minimum value170

(Hi = 0, Di = 1) when the particle is a single pure species,
to the maximum value (Hi = lnA, Di = A) when the parti-
cle is composed of equal amounts of all A species. As shown
in Figure 3, the diversity Di of a particle measures the effec-
tive number of equally distributed species in the particle. If175

the particle is composed of equal amounts of 3 species then
the number of effective species is 3, for example, while 3
species unequally distributed will result in an effective num-
ber of species somewhat less than 3.

Fig. 1. Particle diversitiesDi of representative particles. The par-
ticle diversity measures the effective number of species within a
particle, so a pure single-species particle hasDi = 1 and a particle
consisting of 2 or 3 species in even proportion will haveDi = 2 or
Di = 3, respectively. A particle with unequal amounts of 2 species
will have an effective number of species somewhat less than 2,
while a particle with unequal amounts of 3 species will have effec-
tive species below 3, and possibly even below 2 if the distribution is
very unequal.

marizes the conditions under which the diversity measures
attain their maximum and minimum values.

The two population diversitiesDα (per-particle) andDγ

(bulk) can be combined to give the singlemixing state index
χ , which measures the homogeneity or heterogeneity of the
population. It ranges fromχ = 0 when all particles are pure (a
fully externally mixedpopulation) toχ = 1 when all particles
have identical mass fractions (a fullyinternally mixedpopu-
lation). For example, a population with a mixing state index
of χ = 0.3 (equivalently,χ = 30 %) can be interpreted as be-
ing 30 % internally mixed, and thus 70 % externally mixed.

Examples for different population diversities and mixing
states are shown graphically in Fig.2. Because the popula-
tion diversityDγ cannot be less than the per-particle diver-
sity Dα, only a triangular region is accessible on the mixing
state diagram. Representative populations and their diversi-
ties are indicated on this diagram, as listed in Table4.

The diversity measures and mixing state index behave in
characteristic ways when the particle population undergoes
coagulation or when two particle populations are mixed, as
is the case when particles are emitted into a pre-existing pop-
ulation. This is summarized in Table5. The population mix-
ing results (Table5 and Theorem3) show that the diversities
and entropies are intensive quantities. For example, doubling
the size of particlei leavesHi unchanged, and doubling the
population leavesHα unchanged. Extensive versions of these
quantities can be defined by mass-weighting, so that the total
mass-extensive entropy isH =

∑
i µiHi , for example.

3 Single-process studies

Having established the key quantities to characterize mixing
state, and having explored their properties and their physical
interpretation, we illustrate in this section their behavior with
a suite of simulation scenarios. The cases presented in this
section are “single-process” simulations. They are designed
to isolate the impacts of emission, coagulation, and conden-
sation on the aerosol mixing state, and exemplify how each
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Table 2. Definitions of aerosol mixing entropies, particle diversities, and mixing state index. In these definitions we take 0ln0= 0 and
00

= 1.

Quantity Name Units Range Meaning

Hi =

A∑
a=1

−pa
i lnpa

i mixing entropy of
particlei

– 0 to lnA Shannon entropy of species dis-
tribution within particlei

Hα =

N∑
i=1

piHi average particle
mixing entropy

– 0 to lnA average Shannon entropy per
particle

Hγ =

A∑
a=1

−pa lnpa population bulk
mixing entropy

– 0 to lnA Shannon entropy of species dis-
tribution within population

Di = eHi =

A∏
a=1

(pa
i )−pa

i particle diversity
of particlei

effective
species

1 toA effective number of species in
particlei

Dα = eHα =

N∏
i=1

(Di)
pi average particle

(alpha) species
diversity

effective
species

1 toA average effective number of
species in each particle

Dγ = eHγ =

A∏
a=1

(pa)−pa
bulk population
(gamma) species
diversity

effective
species

1 toA effective number of species in
the population

Dβ =
Dγ

Dα
inter-particle
(beta) diversity

– 1 toA amount of population species di-
versity due to inter-particle di-
versity

χ =
Dα − 1

Dγ − 1
mixing state index – 0 to 100 % degree to which population is

externally mixed (χ = 0) versus
internally mixed (χ = 100 %)

Table 3.Conditions under which the maximum and minimum diversity values are reached. See Fig.2 for a graphical representation of this
information, and see Theorem1 for precise statements.

Quantity Minimum value Maximum value

Di 1 when particlei is pure A when particlei has all mass fractions equal
Dα 1 when all particles are pure Dγ when all particles have identical mass frac-

tions
Dβ 1 when all particles have identical mass frac-

tions
A when all particles are pure and the bulk

mass fractions are all equal
Dγ Dα when all particles have identical mass frac-

tions
A when all bulk mass fractions are equal

χ 0 % when all particles are pure 100 % when all particles have identical mass frac-
tions

process impacts the quantitiesDα, Dγ andχ . Expanding on
this, in Sect.4 we analyze a more complex urban plume case
with emission, dilution, coagulation and condensation occur-
ring simultaneously.

We used the particle-resolved model PartMC-MOSAIC
(Particle Monte Carlo Model for Simulating Aerosol Inter-
actions and Chemistry) (Riemer et al., 2009; Zaveri et al.,
2008) for this study (PartMC version 2.2.0). This stochas-
tic particle-resolved model explicitly resolves the composi-
tion of individual aerosol particles in a population of differ-

ent particle types in a Lagrangian air parcel. PartMC simu-
lates particle emissions, dilution with the background, and
Brownian coagulation stochastically by generating a realiza-
tion of a Poisson process. Gas- and aerosol-phase chemistry
are treated deterministically by coupling with the MOSAIC
chemistry code. The governing model equations and the nu-
merical algorithms are described in detail inRiemer et al.
(2009). Since the model tracks the per-particle composition
as the population evolves over time, we can calculate the
mixing state quantities as detailed in Sect.2. We excluded

Atmos. Chem. Phys., 13, 11423–11439, 2013 www.atmos-chem-phys.net/13/11423/2013/
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Table 4.Representative particle populations shown on Fig.2, with the average per-particle diversityDα , the bulk population diversityDγ ,
and the mixing state indexχ listed for each population.

Population
Per-part.
div. Dα

Bulk div.
Dγ

Mix. state
indexχ

Description

51 1 1 undefined all particles identical and just one bulk species

52 3 3 100 %
all particles identical (fully internally mixed)
with identical bulk fractions

53 1 3 0 %
all particles pure (1 effective species per par-
ticle, fully externally mixed) but identical bulk
fractions (3 effective bulk species)

54 1 1.89 0 %
all particles pure (1 effective species per par-
ticle, fully externally mixed) but less than two
effective bulk species

55

P5

2.37 3 68 %
each particle has less than three effective
species (unequal fractions) but bulk fractions
are identical (3 effective bulk species)

56 1.89 1.89 100 %
all particles are identical (fully internally
mixed) but less than 2 effective bulk species

57 1.35 2.37 26 % generic state with partial mixing

Table 5.Change in population diversities and mixing state index due to change in the particle population. For population combinations the
superscript indicates the population for which a quantity is evaluated. For coagulation,Dα , Dβ , andχ stay constant when all particles have
identical mass fractions. See Theorems2 and3 for precise statements.

Quantity Change due to coagulation Combination of populations5X and5Y into 5Z

Dα increases (or constant) min(DX
α ,DY

α ) ≤ DZ
α ≤ max(DX

α ,DY
α )

Dβ decreases (or constant) min(DX
β ,DY

β ) ≤ DZ
β

Dγ constant min(DX
γ ,DY

γ ) ≤ DZ
γ

χ increases (or constant) χZ
≤ max(χX,χY )

aerosol water from calculating total particle masses of par-
ticles (i.e., we use dry mass to define the mass fractions in
Table1). Note that from the information on per-particle com-
position, it is straightforward to calculate per-particle prop-
erties, such as hygroscopicity (Riemer et al., 2010; Zaveri
et al., 2010; Ching et al., 2012; Tian et al., 2013), optical
properties (Zaveri et al., 2010), or particle reactivity (Kaiser
et al., 2011).

3.1 Single-process case descriptions

The following model setup applies to the cases listed in Ta-
ble 6. The simulation time was 24 h, and 105 computational
particles were used to initialize the simulations. To simplify
the interpretation of the results, we applied a flat weight-
ing function in the sense ofDeVille et al. (2011). The tem-
perature was 288.15 K, the pressure was 105 Pa, the mixing
height of the box was 300 m, and the relative humidity (RH)
was 0.7. Dilution with background air was not simulated.
Each initial monodisperse mode was defined by an initial

www.atmos-chem-phys.net/13/11423/2013/ Atmos. Chem. Phys., 13, 11423–11439, 2013
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Table 6. List of single-process case studies. Column “Chem.” indicates if gas and aerosol phase chemistry were simulated, and column
“Coag.” indicates if coagulation was simulated.

Case Aerosol initial Aerosol emissions Chem. Coag.Dα χ

1 1 monodisperse mode
73 % SO4, 27 % NH4, Di = 1.8

monodisperse
100 % BC,Di = 1

No No decr. decr.

2 2 monodisperse modes
(1) 50 % SO4, 50 % OIN,Di = 2
(2) 50 % BC, 50 % OC,Di = 2

monodisperse
50 % OC, 50 % BC,Di = 2

No No const. incr.

3 1 monodisperse mode
100 % BC,Di = 1

monodisperse
73 % SO4, 27 % NH4, Di = 1.8

No No incr. incr.

4 2 monodisperse modes
(1) 100 % BC,Di = 1
(2) 100 % SO4, Di = 1

No No Yes incr. incr.

5 1 monodisperse mode
100 % BC,Di = 1

No Yes No incr. 100 %

6 1 monodisperse mode
37 % BC, 16 % SO4, 16 % NH4, 32 % NO3,
Di = 3.7

No Yes No decr. 100 %

7 2 monodisperse modes
(1) 65 % SO4, 24 % NH4, 10 % BC,Di = 2.35
(2) 7 % SO4, 3 % NH4, 90 % BC,Di = 1.5

No Yes No incr. incr.

8 2 monodisperse modes
(1) 92 % BC, 2 % NH4, 6 % NO3, Di = 1.4
(2) 89.3 % BC, 7.2 % SO4, 2.8 % NH4, 0.3 %
NO3, Di = 1.6

No Yes No incr. decr.

total number concentration ofNtot = 3× 107 m−3 and by an
initial diameter ofD = 0.1 µm.

For the cases that included particle emissions (Cases 1,
2, and 3), the diameter of the emitted particles wasD =

0.1 µm. The emitted particle flux wasE = 5× 107 m−2 s−1

for Case 1,E = 1.6× 1010 m−2 s−1 for Case 2, andE =

1.6× 108 m−2 s−1 for Case 3. For the cases that included
chemistry (Cases 5, 6, 7, and 8), the initial conditions for
the gas phase were 50 ppb O3, 4 ppb NH3 and 1 ppb HNO3.
The gas phase emissions of NO and NH3 were prescribed at
a constant rate of 60 nmol m−2 s−1 and 9 nmol m−2 s−1, re-
spectively. Photolysis rates were constant, corresponding to
a solar zenith angle of 0◦. Coagulation was not simulated ex-
cept for Case 4.

The results from the single-process studies are summa-
rized in Figs.3, 4, and 5. The left column of Figs.3 and
4 shows time series of the per-particle species diversity dis-
tribution, n(t,Di). The right column in these figures shows
the time series of the average per-particle diversityDα, the
population diversityDγ , and the corresponding mixing state
indexχ . Each simulation is also depicted in the mixing state
diagram in Fig.5. The next sections discuss the main features
of these results.

3.2 Emission cases (Cases 1, 2, and 3)

Cases 1, 2, and 3 explore the impact of particle emissions into
a pre-existing aerosol population. In these cases coagulation
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Fig. 24: Diversity and mixing state evolution for BC-
containing particles in the urban plume case. (a) Distribution
of per-particle diversity Di as a function of time. (b) Time
series of average particle diversity D↵, population diversity
D� , and the mixing state index �.

Fig. 25: Diversity and mixing state evolution for all particles
in the urban plume case. (a) Distribution of per-particle di-
versity Di as a function of time. (b) Time series of average
particle diversity D↵, population diversity D� , and the mix-
ing state index �.
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Fig. 26: Mixing state diagram to illustrate the relationship be-
tween per-particle diversity D↵, bulk diversity D� , and mix-
ing state index � for representative aerosol populations, as
listed in Table ??. See Section 2 and Table ?? for more de-
tails.

Fig. 2. Mixing state diagram to illustrate the relationship between
per-particle diversityDα , bulk diversityDγ , and mixing state index
χ for representative aerosol populations, as listed in Table4. See
Section2 and Table3 for more details.

and condensation were not simulated. Depending on the rel-
ative magnitudes of the per-particle diversities of the emitted
versus the pre-exisiting particles, emissions can have differ-
ent impacts on the aerosol mixing state.
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Fig. 3.Diversity and mixing state evolution for archetypal cases. Left column: Distributions of per-particle diversityDi as a function of time.
Right column: time series of average particle diversityDα , population diversityDγ , and the mixing state indexχ . Note that the left axis
showsDα andDγ , and the right axis showsχ . The rows correspond to Cases 1 to 4 as defined in Table6.

– Case 1: we considered an initial particle population
that contained ammonium sulfate (Di = 1.8 effective
species) combined with emissions of pure BC parti-
cles (Di = 1 effective species). This process is shown
in Fig. 3a with the number concentration of the am-
monium sulfate particles remaining constant, and the
number concentration of the emitted BC particles in-
creasing over time. Due to the emission of particles
with lower Di than the initial population, the average
per-particle diversityDα decreased (Fig.3b). On the
other hand, adding particles of a different species than
the initial particles increased the population species di-
versity Dγ . This results in a decreasing mixing state
index χ and is consistent with the particles becom-
ing on average more simple, and the population more
inhomogeneous. In this particular case the popula-
tion evolved from 100 % internally mixed (χ = 1) to
30 % internally mixed (χ = 0.3). The blue solid line in
Fig. 5 shows this process on the mixing state diagram.

– Case 2: we prescribed an initial particle population of
two monodisperse modes, with mode 1 consisting of

mineral dust (model species OIN, “other inorganics”)
and SO4, and mode 2 consisting of BC and OC. Since
all particles contained two species in equal amounts,
Di = 2 for all particles. The emissions consisted of
mode-2 particles. Since theDi-values of all particles
were identical, we only observe one line in Fig.3c, and
the average per-particle species diversityDα in Fig.3d
was constant with time. However, since the emitted
particles had the same composition as one of the ini-
tial modes,Dγ decreased in this simulation, hence the
mixing state indexχ increased from 33 % to 90 % in-
ternally mixed. This is an example of a process where
the average diversity on a particle-level did not change,
but on a population-level diversity decreased. The blue
dashed line in Fig.5 shows this process on the mixing
state diagram.

– Case 3: we considered an initial particle population of
pure BC particles (Di = 1 effective species) combined
with emissions of particles containing ammonium sul-
fate (Di = 1.8 effective species) (Fig.3e). This case
represents the opposite of Case 1. The emission of

www.atmos-chem-phys.net/13/11423/2013/ Atmos. Chem. Phys., 13, 11423–11439, 2013
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Fig. 4.Diversity and mixing state evolution for archetypal cases. Left column: distributions of per-particle diversityDi as a function of time.
Right column: time series of average particle diversityDα , population diversityDγ , and the mixing state indexχ . Note that the left axis
showsDα andDγ , and the right axis showsχ . The rows correspond to Cases 5 to 8 as defined in Table6.

mixed particles with a higher per-particle diversity
than that of the initial particles increasedDα, as the
particles became more diverse on average. At the same
time population diversityDγ also increased. As a re-
sult the mixing state indexχ increased, indicating that
the population became more homogeneous (Fig.3e).
The cyan line in Fig.5 shows this process on the mix-
ing state diagram.

3.3 Coagulation case (Case 4)

Case 4 explores the impact of coagulation. Emissions and
condensation were not simulated. We considered an initial
particle population that contained a subpopulation of pure
BC particles and another subpopulation of pure SO4, giving
Di = 1 effective species for all particles at the start of the
simulation. Coagulation of the particles produced mixed par-
ticles with 1≤ Di ≤ 2, as Fig.3g shows. The largest possible
value forDi was 2 effective species, resulting from coagula-
tion events that led to equal amounts of SO4 and BC in the
particles. Values ofDi smaller than 2 developed as a result
of multiple coagulation events, when one species dominated

the composition of the constituent particles. Since coagula-
tion produced mixed particles,Dα increased, indicating that
particles became more complex on average. In contrast, as
stated in Theorem2, the population diversityDγ remained
constant, as shown in Fig.3h. As a resultχ increased from
0 % to about 75 % internally mixed, indicating that the pop-
ulation became more homogeneous. The red line in Fig.5
shows this process on the mixing state diagram. Since in this
scenario the bulk amounts of SO4 and BC were equal, this
line traces the upper edge of the triangle in the mixing state
diagram.

3.4 Condensation cases (Cases 5–8)

Cases 5–8 explore the impact of condensation. In these cases
particle emissions and coagulation were not simulated. Since
we only prescribed gas phase emissions of NO and NH3, only
ammonium nitrate formed as a secondary species. Similar
to the emission cases, the condensation cases illustrate that
the same process (here condensation) can lead to different
outcomes in terms of mixing state, depending on the con-
ditions of the scenario. As we will demonstrate below, on a
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Table 7. Initial, background, and emission aerosol populations for the urban plume case, giving the number concentrationNa or area rate of
emissionEa as appropriate. The aerosol population size distributions are log-normal and defined by the geometric mean diameterDg and
the geometric standard deviationσg.

Initial/background Na / cm−3 Dg / µm σg Composition by mass Di

Aitken mode 1800 0.02 1.45 50 % (NH4)2SO4 + 50 % SOA 2.7
Accumulation model 1500 0.116 1.65 50 % (NH4)2SO4 + 50 % SOA 2.7

Emission Ea / m−2 s−1 Dg / µm σg Composition by mass Di

Meat cooking 9× 106 0.086 1.91 100 % POA 1
Diesel vehicles 1.6× 108 0.05 1.74 30 % POA + 70 % BC 1.8
Gasoline vehicles 5× 107 0.05 1.74 80 % POA + 20 % BC 1.7
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Fig. 5. Mixing state diagram showing the normalized population
species diversityDγ versus the normalized average particle species
diversityDα for all single-process cases. The number labels refer to
the cases defined in Table6 and shown in Figs.3 and4.

population level, condensation can produce either more ho-
mogeneous or less homogeneous populations, and on a par-
ticle level, it can produce either less diverse or more diverse
particles.

– Case 5: we considered an initial monodisperse par-
ticle population of pure BC particles, henceDi was
initially 1 (Fig. 4a). Over the course of the simula-
tion, secondary ammonium nitrate formed on the par-
ticles, with the same amount on each particle. There-
fore Dα increased and was at all times equal toDγ .
This resulted in a constant valueχ = 1, as shown in
Fig. 4b. While the population was always 100 % inter-
nally mixed, the increase ofDα andDγ can be inter-
preted as an increase in diversity both on a per-particle

level and on a population level. This process is repre-
sented by the black solid line in the mixing state dia-
gram (Fig.5).

– Case 6: here we initialized each particle with a mix-
ture of BC, ammonium sulfate and ammonium ni-
trate, so the particles started out withDi = 3.7 effec-
tive species (Fig.4c). The formation of secondary am-
monium nitrate led to a decrease ofDα, again with
χ = 1 at all times for a 100 % internally mixed pop-
ulation (Fig.4d). The decrease ofDα andDγ can be
interpreted as a decrease in the complexity of the par-
ticles. This is consistent with the particle composition
becoming more dominated by the condensing species.
This process is represented by the black dashed line in
the mixing state diagram (Fig.5).

– Case 7: we initialized the population with two
monodisperse modes. One consisted predominantly of
BC with some ammonium sulfate (Di = 1.5 effec-
tive species). The other was mainly ammonium sul-
fate with a small amount of BC (Di = 2.35 effective
species). The condensation of ammonium nitrate on
all particles led to increasingDi for each subpopu-
lation (Fig. 4e). Ammonium nitrate condensed on all
particles, hence the overall population became more
homogeneous, indicated by increasingχ from 50 % to
about 75 % internally mixed (Fig.4f). This process is
represented by the green solid line in the mixing state
diagram (Fig.5).

– Case 8: we initialized the population with two
monodisperse modes. They both consisted predomi-
nantly of BC, but differed in their composition of inor-
ganic species (see Table6) and contained 1.4 and 1.6
effective species, respectively. This case was designed
so that differences would occur in the ammonium ni-
trate formation on the two modes based on differences
in aerosol water content (Fig.4g). The result was that
the two subpopulations diverged from each other in
composition. WhileDα increased,Dγ increased even

www.atmos-chem-phys.net/13/11423/2013/ Atmos. Chem. Phys., 13, 11423–11439, 2013
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Fig. 6.Evolution of bulk aerosol species for the urban plume case.

faster, henceχ decreased (Fig.4h) from 90 % to 78 %
internally mixed. In this case ammonium nitrate con-
densed preferentially on one of the two subpopula-
tions, hence condensation caused the overall popula-
tion to be more inhomogeneous. This process is rep-
resented by the green dashed line in the mixing state
diagram (Fig.5).

4 Complex urban plume simulation

4.1 Overview of urban plume case

In this section we discuss the case of a more complex urban
plume scenario. The details of this scenario are described in
Zaveri et al.(2010) and Ching et al.(2012). We assumed
that a Lagrangian air parcel containing background air was
advected within the mixed layer across a large urban area.
The start of the simulation was at 06:00 LT in the morn-
ing. During the first 12 h of simulation, while the air parcel
traveled over the urban area, we prescribed continuous gas
emissions NOx, SO2, CO, and volatile organic compounds
(VOCs), as well as emissions of three different particle types,
which originated from gasoline engines, diesel engines, and
meat-cooking activities. The specifics of the particle emis-
sions and the initial particle distributions, here initialized as
log-normal distributions, are listed in Table7. We slightly
modified two details of the original urban plume case pre-
sented inZaveri et al.(2010). The initial and background
particles of the urban plume case inZaveri et al.(2010) con-
tained small amounts of BC. Here we changed this, so that
these particle types only contained ammonium sulfate and
SOA, while BC is exclusively associated with particle emis-
sions. We also set the initial concentration of HCl to zero.

Both of these modifications simplify the discussion in this
section.

Unlike the single-process cases presented in Sect.3, this
urban plume case included diurnal variations of the mete-
orological variables (temperature, relative humidity, mixing
height and solar zenith angle). Dilution with background air
occured during the entire simulation period, and gas and
aerosol chemistry as well as coagulation amongst the par-
ticles modified the aerosol population further. For reference
we show the bulk time series of the aerosol species in Fig.6.
The BC and POA mass concentration increased during the
emission phase, and decreased thereafter due to dilution with
the background. The time series of the secondary aerosol
species sulfate and SOA were determined by the interplay
between loss by dilution and photochemical production. The
ammonium nitrate mass concentration depended on the gas
concentrations of its precursors, HNO3 and NH3. When the
two gas precursors were abundant during the emission phase,
ammonium nitrate formed rapidly. After emissions and pho-
tochemistry ceased, HNO3 and NH3 decreased due to dilu-
tion, and the ammonium nitrate evaporated.

4.2 Evolution of mixing state for urban plume case

To analyze the mixing state evolution for the urban plume
case, we graph the same quantities as for the single-process
cases. We show two versions of this analysis, first we only in-
clude the subpopulation of BC-containing particles in Fig.7,
and then we include the whole population in Fig.8.

Focusing on the BC-containing particles, Fig.7a shows
that the particle diversity valuesDi covered a wide range
at any point in time during the simulation, and this range
changed over the course of the simulation. To explain this,
we refer to Table7, which lists the initial particle diversity
values of the different particle types. Particles originating
from diesel engine emissions and gasoline engine emissions
entered the simulation withDi = 1.8 effective species and
Di = 1.7 effective species, respectively. However, coagula-
tion and, more importantly, condensation altered these ini-
tial values quickly. Given the particular mix of gas precursor
emissions, the number of secondary species in this simula-
tion was 8, and adding the primary species BC and POA, the
total number of species is 10, which is the maximum num-
ber of effective species for this simulation. Indeed, as shown
in Fig. 7a, many particles during the first 12 h of simulation
acquired diversity values of up to 9 effective species. At the
same time, due to fresh emissions, particles with lower parti-
cle diversity values were replenished, which maintained the
spread ofDi values during the emission period. During the
emission phase we also observe BC-containing particles with
Di values lower than their initial value of 1.7 or 1.8 effective
species. These arose due to coagulation with meat cooking
aerosol particles withDi = 1 (see Table7). After the emis-
sion period, and especially on the second day, the majority
of particles resided in a narrow range ofDi values between 6

Atmos. Chem. Phys., 13, 11423–11439, 2013 www.atmos-chem-phys.net/13/11423/2013/
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Fig. 7.Diversity and mixing state evolution for BC-containing particles in the urban plume case. (a) Distribution of per-particle diversityDi

as a function of time. (b) Time series of average particle diversityDα , population diversityDγ , and the mixing state indexχ .
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Fig. 8.Diversity and mixing state evolution for all particles in the urban plume case. (a) Distribution of per-particle diversityDi as a function
of time. (b) Time series of average particle diversityDα , population diversityDγ , and the mixing state indexχ .
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versityDα for the urban plume case presented in Fig.8 (all particles
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and 7 effective species. This is consistent with our notion of
“aging”, which results in a less diverse population. However
it is interesting to note that at all times a range of particles
still existed with lower number of effective species.
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Di = 1 Di = 1.4 Di = 1.9 Di = 2 Di = 2.5 Di = 3

1 2 3

Fig. 3: Particle diversities Di of representative particles. The
particle diversity measures the effective number of species
within a particle, so a pure single-species particle has Di = 1
and a particle consisting of 2 or 3 species in even proportion
will have Di = 2 or Di = 3, respectively. A particle with un-
equal amounts of 2 species will have an effective number of
species somewhat less than 2, while a particle with unequal
amounts of 3 species will have effective species below 3, and
possibly even below 2 if the distribution is very unequal.

(MacArthur, 1955; Goodman, 1975; McCann, 2000; Ives and
Carpenter, 2007). Other important research questions include120

the sources of diversity (Tsimring et al., 1996; De’ath, 2012),
extensions of diversity to include a concept of species dis-
tance Chao et al. (2010); Leinster and Cobbold (2012); Feoli
(2012); Scheiner (2012), and techniques for measuring di-
versity (Chao and Shen, 2003; Schmera and Podani, 2013;125

Gotelli and Chao, 2013), despite the well-known difficulties
in estimating entropy in an unbiased fashion (Harris, 1975;
Paninski, 2003). Beyond ecology, the study of diversity is
also important in economics (Garrison and Paulson, 1973;
Hannah and Kay, 1977; Attaran and Zwick, 1989; Malizia130

and Ke, 1993; Drucker, 2013), immunology (Tsimring et al.,
1996), neuroscience (Panzeri and Treves, 1996; Strong et al.,
1998), and genetics (Innan et al., 1999; Rosenberg et al.,
2002; Falush et al., 2007).

This paper is organized as follows. In Section 2 we define135

the well-established entropy and diversity measures, adapted
to the aerosol context, and use these to define our new mix-
ing state index �. This section also contains examples of di-
versity and mixing state and a summary of the properties of
these measures. Section 3 presents a suite of simulations for140

archetypal cases using the stochastic particle-resolved model
PartMC-MOSAIC (Riemer et al., 2009; Zaveri et al., 2008).
These simulations show how the diversity and mixing state
measures evolve under common atmospheric processes, in-
cluding emissions, dilution, coagulation, and gas-to-particle145

conversion. A more complex urban plume simulation is then
considered in Section 4, for which the above processes oc-
cur simultaneously. Appendix A presents a generalization of
the diversity and mixing state measures to ascribe different
levels of importance to low-mass-fraction species, while Ap-150

pendix B contains mathematical proofs for the results sum-
marized in Section 2.
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Fig. 4: Generalized per-particle diversity qDi of order q for
varying q, shown for three different particles (inset square
plots). Left: a particle with equal amounts of two species.
Center: a particle with two species in unequal amounts.
Right: a particle with three species in unequal amounts. The
order q controls the importance of species with small mass
fraction. When q = 0 all species are taken to be equally
present, irrespective of mass fraction, so 0Di is simply the
number of species present in the particle. When q = 1 the
generalized diversity is equal to the regular diversity defined
from the Shannon entropy in Section 2. When q = 2 the gen-
eralized diversity 2Di is the inverse of the Simpson index
�i =

PA
a=1

(pa
i )2 for particle i (Simpson, 1949), often used

in the form of the Gini-Simpson index 1��i (Peet, 1974;
Jost, 2006).

2 Entropy, diversity, and mixing state
index

We consider a population of N aerosol particles, each con-155

sisting of some amounts of A distinct aerosol species. The
mass of species a in particle i is denoted µa

i , for i = 1, . . . ,N
and a = 1, . . . ,A. From this basic description of the aerosol
particles we can construct all other masses and mass frac-
tions, as detailed in Table ??. Using the distribution of160

aerosol species within the aerosol particles and within the
population, we can now define mixing entropies, species di-
versities, and the mixing state index, as shown in Table ??.
Note that entropy and diversity are equivalent concepts, and
that either could be taken as fundamental. We retain both in165

this paper to enable connections with the historical and cur-
rent literature.

The entropy Hi or diversity Di of a single particle i mea-
sures how uniformly distributed the constituent species are
within the particle. This ranges from the minimum value170

(Hi = 0, Di = 1) when the particle is a single pure species,
to the maximum value (Hi = lnA, Di = A) when the parti-
cle is composed of equal amounts of all A species. As shown
in Figure 3, the diversity Di of a particle measures the effec-
tive number of equally distributed species in the particle. If175

the particle is composed of equal amounts of 3 species then
the number of effective species is 3, for example, while 3
species unequally distributed will result in an effective num-
ber of species somewhat less than 3.

Fig. 10.Generalized per-particle diversityqDi of orderq for vary-
ing q, shown for three different particles (inset square plots). Left:
a particle with equal amounts of two species. Center: a particle with
two species in unequal amounts. Right: a particle with three species
in unequal amounts. The orderq controls the importance of species
with small mass fraction. Whenq = 0 all species are taken to be
equally present, irrespective of mass fraction, so0Di is simply the
number of species present in the particle. Whenq = 1 the gener-
alized diversity is equal to the regular diversity defined from the
Shannon entropy in Sect.2. Whenq = 2 the generalized diversity
2Di is the inverse of theSimpson indexλi =

∑A
a=1(pa

i
)2 for parti-

cle i (Simpson, 1949), often used in the form of the Gini-Simpson
index 1− λi (Peet, 1974; Jost, 2006).

Figure7b shows the corresponding evolution ofDα, Dγ ,
andχ . The average particle diversityDα displayed a rapid
increase during the condensation period of the first 6 h of
simulation, consistent with the BC-containing particles be-
coming more complex in composition as condensation and
coagulation were at work. After this,Dα stayed essentially
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constant, with small modulations induced by the diurnal cy-
cle of evaporation and condensation of secondary material.
The importance of condensation is also reflected by the in-
crease in the bulk population diversityDγ . The mixing state
indexχ decreased from 70 % to 50 % internally mixed dur-
ing the first two hours because of the effect of meat cook-
ing aerosol emissions; some of these particles coagulated
with the BC-containing particles, making the subpopulation
of BC-containing particles more heterogeneous. During the
period of secondary aerosol formation on the first day (t = 2–
11 h), χ increased to 75 % internally mixed, which means
that the population of BC-containing particles became more
homogeneous during that time. After another day of process-
ing the aerosol in the air parcel, without fresh emissions, the
simulation period ended with the aerosol population being
82 % internally mixed.

The same analysis performed for all particles reveals a
qualitatively similar pattern for the distributions ofDi and
the time series ofDα, Dγ , andχ , with some differences in
the details, as shown in Fig.8. For example, during the first
12 h, when emissions were present, the minimum value of
the per-particle diversities wasDi = 1 effective species, due
to the meat cooking particle emissions (Fig.8a). The red line
at Di = 1.8 in Fig.8a can be attributed to background parti-
cles from which SOA components had evaporated once they
entered the air parcel, hence ammonium sulfate particles re-
mained. The values forχ from 2 h of simulation onwards
was lower when considering the whole population, compared
to χ of the subpopulation of BC-containing particles. This
makes sense, since including all particle types allows for
a more heterogeneous population. Figure9 shows the mix-
ing state diagram that corresponds to the urban plume case
shown in Fig.8. At the end of the two-day simulation period
the whole population was 75 % internally mixed.

5 Conclusions

With the advent of sophisticated measurement techniques
on a single-particle level, a wealth of information about the
composition of an aerosol population has become available.
The observations show that, on a particle level, aerosols are
complex mixtures of many species, and different particle
types can coexist within one population. This reflects the par-
ticles’ sources as well as their history during the transport in
the atmosphere. To describe this distribution of per-particle
compositions the term “mixing state” has been coined; how-
ever, so far this term has not been rigorously defined and no
concept existed to quantify it.

This paper, for the first time, presents a framework for
quantifying the mixing state of aerosol particle popula-
tions. In developing this framework we borrowed the idea
of entropy-derived “diversity parameters” from other disci-
plines, allowing us to define the per-particle species diversity

Di , the average particle diversityDα, the population diver-
sity Dγ , and the mixing state indexχ .

The average particle diversityDα is a measure for the
number of effective species on a per-particle level, whileDγ

quantifies the number of effective species of the bulk popu-
lation. An affine ratio of the two, represented by the mixing
state indexχ , measures how close the population is to an
external or internal mixture.

Using particle-resolved simulations to illustrate the evo-
lution of the mixing state metrics for selected test cases re-
vealed the following results. Coagulation always increases
the degree of internal mixture. The impact of emission and
condensation on mixing state is not as straightforward, and in
Sect.3 we showed examples of scenarios whereχ increased,
decreased or stayed constant as a result of emissions or con-
densation. However, in the case of emissions, perhaps the
most intuitive scenario is where “fresh” particles (lowDi) are
emitted into an “aged” population (highDi) which decreases
the degree of internal mixture and is reflected by decreasing
χ . Similarly, in the case of condensation, the most intuitive
case is where the same species condenses on all particles of
an initially low-χ population, increasing the mixing state in-
dex, consistent with our notion of “aging” as a process that
increases the degree of internal mixing.

We expect that the mixing state indexχ will prove useful
in communicating, discussing, and categorizing the aerosol
mixing state of both observed and modeled aerosol popu-
lations. This, in turn, will facilitate answering the key re-
search questions: (1) what is the mixing state at emission
and how does it evolve in the atmosphere; (2) what is the
impact of mixing state on climate-related and health-relevant
aerosol properties; and (3) to what extent do models need to
account for mixing state to answer these questions? In this
context, it would be very useful to obtain quantitative infor-
mation on per-particle composition from field observations
and laboratory experiments, together with measurements of
application-relevant bulk properties.

Appendix A

Generalized entropy and generalized diversity

The mixing entropy can be generalized to give more or less
importance to species with small mass fractions. This gen-
eralization was originally due toHavrda and Charvát(1967)
and then was independently rediscovered at least three times:
in information theory (Daróczy, 1970; Aczél and Daróczy,
1975), in ecology (Patil and Taillie, 1979, 1982), and in
physics (Tsallis, 1988, 2009). In the physics literature this
generalized entropy is frequently called the Tsallis entropy
or the HCDT (Havrda–Charvát-Daróczy–Tsallis) entropy.
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The per-particlegeneralized entropy of orderq ≥ 0 is de-
notedqHi and leads to generalized average mixing entropy
qHα and generalized population bulk entropyqHγ . These are
defined by

qHi =


|{a : pa

i > 0,a = 1, . . . ,A}| − 1 if q = 0

−
∑A

a=1pa
i lnpa

i if q = 1
1

q−1(1−
∑A

a=1(p
a
i )q) if q /∈ {0,1}

(A1)

qHα =

N∑
i=1

pi
qHi (A2)

qHγ =


|{a : pa > 0,a = 1, . . . ,A}| − 1 if q = 0

−
∑A

a=1pa lnpa if q = 1
1

q−1(1−
∑A

a=1(p
a)q) if q /∈ {0,1}.

(A3)

Note that forq = 0 the definition of0Hi is one less than the
number of species present in particlei. The special cases of
q = 0 andq = 1 are such that the generalized entropy is con-
tinuous inq. To convert a generalized entropy of orderq to a
corresponding generalized diversity, the conversion function
qf is defined by

qf (qH) =

{
e

qH if q = 1(
1− (q − 1)qH

)1/(1−q) if q 6= 1
(A4)

domqf =

{
[0,∞) if q ≤ 1

[0, 1
q−1) if q > 1,

(A5)

where the domain ofqf is as given.
Thegeneralized diversities of orderq are now defined by

qDi =
qf (qHi) =


|{a : pa

i
> 0,a = 1, . . . ,A}| if q = 0∏A

a=1(pa
i
)−pa

i if q = 1(∑A
a=1(pa

i
)q

)1/(1−q)
if q /∈ {0,1}

(A6)

qDα =
qf (qHα) =


∏N

i=1(Di)
pi if q = 1(∑N

i=1pi(
qDi)

1−q
)1/(1−q)

if q 6= 1

(A7)

qDγ =
qf (qHγ ) =


|{a : pa > 0,a = 1, . . . ,A}| if q = 0∏A

a=1(pa)−pa
if q = 1(∑A

a=1(pa)q
)1/(1−q)

if q /∈ {0,1}

(A8)

qDβ =

qDγ

qDα
. (A9)

For q = 0 the generalized diversity0Di is simply the num-
ber of species present in particlei. To see that the gener-
alized diversities are well-defined, we observe thatqHi is
maximized forpa

i =
1
A

(Theorem1), so forq > 1 we have

qHi ≤
1

q−1(1−A1−q) < 1
q−1, which is within the domain of

qf . For largeq the generalized diversity takes the limiting
value of

lim
q→∞

qDi =
1

pmax
i

, (A10)

wherepmax
i = maxa pa

i is the largest mass fraction of any
species in particlei. This is the exponential of themin-
entropy∞Hi = − lnmaxa pa

i of particlei.
From the generalized diversities, we can now define the

generalized mixing state index of orderq by

qχ =

qDα − 1
qDγ − 1

. (A11)

The per-particle generalized diversity of orderq is illus-
trated in Fig.10, and the population-level generalized diver-
sitiesqDα andqDγ behave similarly, with low-mass-fraction
species ranging from equally important atq = 0 to entirely
irrelevant asq → ∞.

The entropy and diversity measures defined in Sect.2
are theq = 1 case of the generalized entropy and diversity.
An alternative derivation of the generalized diversity can be
given using theRényi entropy of orderq (Rényi, 1961, 1977),
which is given by lnqD. This latter definition was origi-
nally used byHill (1973) to define the generalized diversi-
ties, for which reason these diversities are sometimes called
Hill numbersin the ecology literature.

Appendix B

Mathematical proofs

In this section we give precise statements and proofs for the
properties of the entropies, diversities, and mixing state index
listed in Tables3 and5. While many of these facts are clas-
sical (MacKay, 2003; Tsallis, 2009), we restate them here
in the aerosol particle setting for clarity, as well as adding re-
sults particular to aerosol particle populations and the mixing
state indexχ . The provided proofs aim to capture the essen-
tial properties that lead to the results, rather than being ex-
haustive derivations. Although Tables3 and5 only summa-
rize the properties for order parameterq = 1, the results hold
for all orders as indicated below, withq = 0 typically having
only sufficient conditions rather the necessary and sufficient
conditions for positive orders.

The key observations that lead to the properties below are
(1) the functionqHi(p

1
i , . . . ,p

A
i ) is concave (strictly con-

cave forq > 0); and (2) the mapqf is strictly increasing
and convex on its domain (strictly convex forq > 0). Both
of these facts follow immediately from second-order deriva-
tive tests (Boyd and Vandenberghe, 2004, Sect. 3.1.4).

We use the notationµi = (µ1
i , . . . ,µ

A
i ) for the mass vector

describing particlei, and we regard a particle population5
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as a multiset (Knuth, 1998, p. 473) of particle mass vectors. A
multiset is, roughly speaking, a set where identical elements
can appear multiple times, and for which the set difference
operator\ and union operator] have been appropriately ex-
tended.

Theorem 1. The diversitiesqDi , qDα, andqDγ all lie in the
interval [1,A] and qDα ≤

qDγ . Furthermore, forq > 0, the
extreme values satisfy:qDi = 1 if and only if particle i is
pure (consists of a single species);qDi = A if and only if
particlei contains all species in equal mass fractions;qDα =

1 if and only if all particles are pure;qDγ = A if and only if
all species are present with equal bulk mass fractions; and
qDα = Dγ if and only if all particles have identical species
mass fractions.

Proof. Here we show the results for the entropies and this
implies the corresponding results for the diversities because
qf is strictly increasing on its domain.

It follows immediately from the definition thatqHi ≥ 0,
and similarly forHα andHγ . The domain of allowable mass
fractionspa

i is the probability simplex defined bypa
i ≥ 0 and∑

a pa
i = 1, which has normal vector(1,1, . . . ,1). Forq > 0,

qHi is a sum of identical functions of each componentpa
i

and so the gradient ofqHi is in the direction of the normal
vector if all pa

i are equal. The KKT conditions are thus sat-
isfied for all mass fractions equal (Boyd and Vandenberghe,
2004, Sect. 5.5.3), and by strong convexity ofqHi this is a
unique maximum. Evaluating atpA

i = 1/A gives the maxi-
mumqHi = lnA. Forq = 0 the upper bound is immediate.

The condition forqDγ = A follows from the same argu-
ment as above applied to the bulk mass fractionspa . The
condition for qDα = 1 is due to the fact thatqHα is the
weighted arithmetic mean of the particle entropies with pos-
itive weights, soqDα = 1 if and only if eachqHi = 0.

The restrictionqHα ≤
qHγ is simply Jensen’s inequal-

ity (Boyd and Vandenberghe, 2004, Sect. 3.1.8) for the con-
cave entropy function. This can be seen by checking that
pa

=
∑

i pip
a
i , and so the weightspi for combiningqHi into

qHα are the same as for combining the per-particle mass frac-
tions into the bulk mass fractions. Forq > 0, strict convexity
of the entropy implies that Jensen’s inequality is an equality
if and only if the per-particle mass fractions are all identi-
cal.

Theorem 2. If population 51 evolves into population
52 by coagulation, thenqDα(52) ≥

qDα(51), qDγ (52) =
qDγ (51), qDβ(52) ≤

qDβ(51), andqχ(52) ≥
qχ(51). For

q > 0, equality in the preceding inequalities occurs if and
only if all coagulating particles have identical mass frac-
tions.

Proof. It is sufficient to consider a single coagulation event
and then iterate the result, so without loss of generality we
assume that52

= 51
\{µi,µj }]{µc}, whereµc = µi +µj .

We observe that the total massµ is preserved by coagu-
lation andpc = pi + pj , where the mass fractions are com-

puted with respect to the relevant population51 or 52. Fur-
thermore,pcp

a
c = pip

a
i + pjp

a
j so concavity of the entropy

givespc
qHc ≥ pi

qHi +pj
qHj , with equality forq > 0 if and

only if pa
i = pa

j by strict convexity. All other per-particle
entropies in the populations are identical, sopc = pi + pj

implies qHα(52) ≥
qHα(51) with the same condition for

equality.
Because the bulk mass fractions are unchanged by coagu-

lation,qHγ (52) =
qHγ (51) and the inequalities forqHβ and

χ follow immediately. The fact thatqf is strictly increasing
transfers all results to diversities.

Theorem 3. If populations5X and 5Y are combined to
give population 5Z

= 5X
] 5Y then min(qDX

α ,qDY
α ) ≤

qDZ
α ≤ max(qDX

α ,qDY
α ), min(qDX

β ,qDY
β ) ≤

qDZ
β ,

min(qDX
γ ,qDY

γ ) ≤
qDZ

γ , and qχZ
≤

qmax(χX,χY ), where
superscripts denote the population.

Proof. As qf is strictly increasing it is sufficient to obtain
bounds for entropies, which then imply bounds on the corre-
sponding diversities.

Taking the total population mass fractionλ = µY /(µX
+

µY ) ∈ (0,1), then for particlesµx ∈ 5X and µy ∈ 5Y the
mass fractions in the combined population arepZ

x = (1−

λ)pX
x andpZ

y = λpY
y . ThusqHZ

α is the convex combination
qHZ

α = (1−λ)qHX
α +λqH Y

α and soqHZ
α lies strictly between

qHX
α andqH Y

α .
The bulk mass fractions satisfypZa

= (1−λ)pXa
+λpYa

and so concavity ofqHγ givesqHZ
γ ≥ (1−λ)qHX

γ +λqH Y
γ ≥

min(qHX
γ ,qH Y

γ ).

To obtain the lower bound forqHZ
β =

qf −1(qDZ
β ), we ob-

serve that

qHβ =

qHγ −
qHα

1− (q − 1)qHα

. (B1)

Using the expressions above forqHZ
α andqHZ

γ , this implies

qHZ
β ≥

(1− λ)qHX
γ + λqH Y

γ − (1− λ)qHX
α − λqH Y

α

(1− λ) + λ − (q − 1)(1− λ)qHX
α − (q − 1)λqH Y

α

=
(1− λ)(qHX

γ −
qHX

α ) + λ(qHX
γ −

qHX
α )

(1− λ)(1− (q − 1)qHX
α ) + λ(1− (q − 1)qH Y

α )
.

Rearranging (B1) givesqHγ −
qHα = (1− (q − 1)qHα)qHβ ,

so

qHZ
β ≥

(1− λ)(1− (q − 1)qHX
α )qHX

β + λ(1− (q − 1)qH Y
α )qH Y

β

(1− λ)(1− (q − 1)qHX
α ) + λ(1− (q − 1)qH Y

α )

≥ min(qHX
β ,qH Y

β ).
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Finally, to obtain the upper bound forqχZ we again use
the expressions forqHZ

α andqHZ
γ to compute

qχZ
=

exp(qHZ
α ) − 1

exp(qHZ
γ ) − 1

(B2)

≤
exp(qHX

α )(1−λ) exp(qH Y
α )λ − 1

exp(qHX
γ )(1−λ) exp(qH Y

γ )λ − 1
.

Recallingqχ ≥ 0, rearranging (B2) gives exp(qHα) = (1−
qχ) +

qχ exp(qHγ ) ≤
qχ exp(qHγ ), so

qχZ
≤

(qχX exp(qHX
γ ))(1−λ)(qχY exp(qH Y

γ ))λ − 1

exp(qHX
γ )(1−λ) exp(qH Y

γ )λ − 1

≤ max(qχX,qχY ),

where we additionally used the boundqχ ≤ 1.
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