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Abstract. It has become possible to retrieve the global, long-
term trends of trace gases that are important to atmospheric
chemistry, climate, and air quality from satellite data records
that span more than a decade. However, many of the satellite
remote sensing techniques produce measurements that have
variable sensitivity to the vertical profiles of atmospheric
gases. In the case of constrained retrievals like optimal es-
timation, this leads to a varying amount of a priori informa-
tion in the retrieval and is represented by an averaging kernel
(AK). In this study, we investigate to what extent the esti-
mation of trends from retrieved data can be biased by tem-
poral changes of averaging kernels used in the retrieval al-
gorithm. In particular, the surface carbon monoxide data re-
trieved from the Measurements Of Pollution In The Tropo-
sphere (MOPITT) instrument from 2001 to 2010 were ana-
lyzed. As a practical example based on the MOPITT data,
we show that if the true atmospheric mixing ratio is continu-
ously 50 % higher or lower than the a priori state, the tempo-
ral change of the averaging kernel at the surface level gives
rise to an artificial trend in retrieved surface carbon monox-
ide, ranging from−10.71 to+13.21 ppbv yr−1 (−5.68 to
+8.84 % yr−1) depending on location. Therefore, in the case
of surface (or near-surface level) CO derived from MOPITT,
the AKs trends multiplied by the difference between true and
a priori states must be quantified in order to estimate trend
biases.

1 Introduction

Since the Industrial Revolution human activity has brought
about a significant change in atmospheric trace gas concen-
trations (Hansen et al., 2007), which has important conse-
quences for global air quality and the earth’s atmosphere ra-
diative budget, thus causing climate change (Forster et al.,
2007, IPCC AR4). One of the most important trace gases
is carbon monoxide (CO). It is produced by the oxidation
of methane (CH4) and non-methane hydrocarbons (NMHC),
and directly emitted by biomass burning and combustion of
fossil fuels (Wallace and Hobbs, 2006). It acts as a major
sink for the tropospheric hydroxyl radical (OH) (Crutzen,
1974). OH, in turn, regulates the lifetimes of various tropo-
spheric trace gases (Khalil and Rasmussen, 1990; Wallace
and Hobbs, 2006). The oxidation of CO also leads to the
formation of carbon dioxide (CO2) and tropospheric ozone
(O3) (Crutzen and Gidel, 1983; Fishman and Crutzen, 1978;
Burrows et al., 1995). Because of its moderately long life-
time (weeks to months) and inhomogeneous distribution in
the troposphere, CO is an ideal tracer for monitoring the air
pollution sources and transports (Cicerone, 1988; Logan et
al., 1981; Shindell et al., 2006; Lelieveld et al., 2001; Hoor
et al., 2005; Edwards et al., 2004, 2006; Pan et al., 1995;
Worden et al., 2013a; Liu et al, 2011, 2013).

Remote sensing from satellites provides the unique oppor-
tunity to study regional and global changes in atmospheric
composition (Burrows et al., 2011). Since its launch on
board the EOS-Terra satellite in 1999, MOPITT has provided
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global and long-term CO products, which may be used to es-
timate trends of tropospheric CO and the influence of an-
thropogenic emissions on atmospheric chemistry (Worden
et al., 2013a). To retrieve CO vertical profiles using MO-
PITT observations, the theory developed by Rodgers (1976,
2000) is employed in the retrieval algorithm (Pan et al., 1998;
Deeter et al., 2003). The algorithm is designed to use a pri-
ori profiles derived from a climatology based on simulations
by the Model for Ozone and Related chemical Tracers-4
(MOZART-4) model (Pan et al., 1998; Deeter et al., 2003;
Deeter, 2009; Worden et al., 2013a). The retrieval sensitivity
is generally evaluated through averaging kernels (AKs) (Pan
et al., 1998; Rodgers, 2000; Deeter et al., 2003; Eskes and
Boersma, 2003). The AKs are essential for meaningful com-
parisons of satellite products against in situ data and model
results (Rodgers, 2000; Rodger and Connor, 2003; Eskes and
Boersma, 2003). However, we will show that their temporal
change can lead to a significant error in the trend estimation
of retrieved CO.

The goal of this paper is to investigate the uncertainty
caused by temporal AKs change in the trend estimation of
retrieved state. It is shown that without adequate knowledge
of the differences between the a priori and true profiles of the
observed trace gases, AKs uncertainty cannot be eliminated
in the trend estimation of retrieved state. Although MOPITT
monthly surface CO data were used in this study, we empha-
size that the uncertainties in trend estimations apply to any
remote sensing observations based on similar AKs concepts.

In Sect. 2, the MOPITT CO data and the standard method
used for trend estimation are described. Section 3 presents
the analysis of uncertainties and a practical example based on
MOPITT CO surface data. Section 4 analyzes possible issues
associated with statistically merging Level 3 MOPITT data,
and Sect. 5 summarizes this work and presents conclusions.

2 MOPITT surface CO and linear trend model

The MOPITT instrument on the EOS-Terra spacecraft pro-
vides tropospheric CO and CH4 distributions on a global
scale (Deeter et al., 2003). The temperature constraints of the
MOPITT radiometric calibration (University of Toronto and
NCAR MOPITT Team, 1996, MOPITT ATBD) are± 0.5 K
for the CO profile channels and± 1 K for the CO and CH4
column channels for the expected precisions, being 10 % for
CO and 1 % for CH4 products (Pan et al., 1995, 1998). The
global MOPITT retrieved CO data have been used for esti-
mating CO distributions, atmospheric transport, sources, and
sinks (e.g., Drori et al., 2012; Fortems-Cheiney et al., 2011;
Hooghiemstra et al., 2011; Kanakidou et al., 2011; Arellano
and Hess, 2006; Choi and Chang, 2010; Stroppiana et al.,
2010). Recently the MOPITT Version 5 (V5) Level 3 (L3)
thermal infrared (TIR) retrievals (in daytime) lead to an im-
proved sensitivity for the lower tropospheric CO retrieval,
a reduced retrieval bias drift associated with long-term in-

strumental degradation, and a more exact representation of
the effects of random errors in the radiances (Clerbaux et
al., 2009; Worden et al., 2010, 2013a; Deeter et al., 2007a,
2011, 2012, 2013), and are used in this study. Figure 1 shows
the global mean distribution of monthly surface CO products
(spatial resolution: 1°× 1◦) from 2001 to 2010.

The linear trends (ω) in a unit of ppbv yr−1 are estimated
using a linear least squares fit based on monthly data as fol-
lows:

yt = ωxt + ỹm
+ nt + µ, (1)

wherext , µ, nt , andỹm denote the time index term (t/12),
the constant term, the monthly noise for the analyzed periods
(t = 1...T ), and the monthly climatology mean ofyt (m =

1...12) (i.e., the climatological monthly varying pattern), re-
spectively. This linear trend model is applied to the data time
series for each point that represents complete yearly data sets
defined as encompassing at least 9 months of data per year.
Otherwise, the location is discarded to avoid statistical in-
consistencies. In general, the noise term can include random
and systematic measurement errors and autocorrelation due
to atmospheric variability (Weatherhead et al., 1998, 2002).

Figure 2 presents the linear trends of surface CO from
MOPITT V5 TIR L3 products during daytime from 2001
to 2010. Here we have included all the MOPITT V5 data,
including scenes that used water vapor climatology when
the NCEP (National Centers for Environmental Prediction)
Global Data Assimilation System (GDAS) product was not
available. The use of water vapor climatology can produce
anomalous results in the CO retrievals, as found by the MO-
PITT team, in particular, off the coast of California. There-
fore, we do not have confidence in the higher CO values or
trends that can be seen in this region in Figs. 1 and 2.

An overall decrease of the surface CO from biomass burn-
ing over South America/Africa (Wallace and Hobbs, 2006;
Liu et al., 2011) and fossil-fuel combustion over Eastern
USA, Western Europe and Southeast Asia (Wallace and
Hobbs, 2006; Liu et al., 2011; Buchwitz et al., 2007) is
indicated. This tendency is consistent with the decreasing
trends in total CO columns retrieved from MOPITT, the
Atmospheric InfraRed Sounder (AIRS), the Tropospheric
Emission Spectrometer (TES), and the Infrared Atmospheric
Sounding Interferometer (IASI), which are reported in Wor-
den et al. (2013a). However, the trends in Fig. 2 are affected
by intrinsic uncertainty due to temporal changes of averaging
kernels (AKs).

3 Uncertainty from temporal change of averaging
kernels

The V5 MOPITT CO retrieval algorithm is based on the max-
imum a posteriori (MAP) that is an iterative optimal estima-
tion technique (Pan et al., 1998; Rodgers, 2000; Deeter et
al., 2003, 2010). The V5 algorithm employs the log (VMR:
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Figure 1. Total mean distribution of global surface CO from MOPITT Version 5 TIR Level 3 2 

product, referring to daytime from 2001 to 2010. 3 
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Fig. 1.Total mean distribution of global surface CO from MOPITT Version 5 TIR Level 3 product, referring to daytime from 2001 to 2010.
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 1 

Figure 2. The linear trends of surface CO from MOPITT (Version 5 TIR, Level 3, daytime) 2 

from 2001 to 2010. “Not Enough Data” represents the data series discarded to avoid statistical 3 

inconsistencies. Complete yearly datasets encompass at least 9 months of data over the year. 4 

5 

Fig. 2. The linear trends of surface CO from MOPITT (Version 5 TIR, Level 3, daytime) from 2001 to 2010. “Not Enough Data” represents
the data series discarded to avoid statistical inconsistencies. Complete yearly data sets encompass at least nine months of data over the year.

Volume Mixing Ratio) retrievals (Deeter et al., 2013) that are
the basis of this study. A statistical technique to solve the
inversion problem is employed to find the optimal CO re-
trieval using the MOPITT measured radiances, based on a
priori defined CO vertical profiles. If the forward model er-
ror is neglected, the relation equation between retrieved and
true states can be expressed as follows (Rodgers, 1990; Pan
et al., 1998; Deeter et al., 2003, 2010):

x̂ ∼= x0 + A (x − x0) = Ax + (I − A)x0, (2)

wherex̂, x0, andx represent the retrieved, the a priori, and
the true states of the atmosphere, respectively, which are ar-
ranged in 10 rows and 1 column for the 10 layers from sur-
face to 100 hPa.A andI denote the AKs and identity matrices
with 10 rows and 10 columns, respectively. For the surface
layer, Eq. (2) is given as follows:

x̂surface∼= xsurface
0 + Asurface(x − x0) (3)

= Asurfacex +

(
Isurface

− Asurface
)
x0,

wherex̂surface, xsurface
0 , IsurfaceandAsurfacerepresent the re-

trieved, the a priori surface CO data (arranged in 1 row and 1
column), the surface identity, and the surface AK (arranged
in 1 row and 10 columns), respectively.

The AKs matrix (A), which reflects the sensitivity of the
retrieved state to the true state, is the most important diagnos-
tics of the retrieval (Pan et al., 1998; Rodgers, 2000; Deeter
et al., 2003; Eskes and Boersma, 2003). When the AKs ma-
trix is exactly equal to the identity matrix, the retrieved state
is identical to the representation of the true atmospheric state
on the altitude grid of the retrieval. However, in practice, the
AKs matrix does not match up withI . For example, Fig. 3
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Figure 3. Mean MOPITT averaging kernel for surface CO, a priori, and retrieved CO profiles 2 

over the grid cell defined by 30°E, 45°E, 110°N, and 120°N over East China on October 3 

2002. The relative difference between retrieved CO with a priori profiles is shown to estimate 4 

the difference of true with a priori states ( x− x0 ). The retrieved CO at the surface is about 5 

52% higher than the a priori CO mixing ratio. 6 

7 

Fig. 3. Mean MOPITT averaging kernel for surface CO, a priori,
and retrieved CO profiles over the grid cell defined by 30◦ E, 45◦ E,
110◦ N, and 120◦ N over East China on October 2002. The relative
difference between retrieved CO with a priori profiles is shown to
estimate the difference of true with a priori states (x − x0). The
retrieved CO at the surface is about 52 % higher than the a priori
CO mixing ratio.

shows the mean AK for surface CO (Asurface), a priori (x0),
and retrieved CO profiles (x̂) over the grid cell defined by
30◦ E, 45◦ E, 110◦ N, and 120◦ N in East China, where large
quantities of CO are emitted into the atmosphere from the
combustion of fossil fuels (see Fig. 1) (Liu et al., 2011; Buch-
witz et al., 2007). The AK theoretically represents how much
the true and a priori profiles contribute to the retrieved CO
at the surface (̂xsurface) as shown in Eq. (3). The surface re-
trieved CO is therefore the weighted mean contribution of the
true (x) and a priori profiles (x0) in multiple layers. However,
there is a clear difference between the a priori and retrieved
CO profiles as shown in Fig. 3. For example, the retrieved
CO at the surface is higher by about 52 % compared to the a
priori CO.

Most importantly, we are interested in the temporal change
of the retrieved state, and its possible connection to the true
trend. The retrieved trend can be expressed by the partial dif-
ferential of Eq. (2) as follows:

∂x̂

∂t
∼=

∂x0

∂t
+

∂A
∂t

(x − x0) + A
∂

∂t
(x − x0) (4)

= (I − A)
∂x0

∂t
+

∂A
∂t

(x − x0) + A
∂x

∂t
.

In the same manner, the trend of surface retrieved CO is given
from Eq. (3) as follows:

∂x̂surface

∂t
∼=

∂xsurface
0

∂t
+

∂Asurface

∂t
(x − x0) + Asurface∂

∂t
(x − x0)

=

(
Isurface

− Asurface
) ∂x0

∂t
+

∂Asurface

∂t
(x − x0) + Asurface∂x

∂t
. (5)

No temporal change is present in the a priori state (i.e.,
∂x0
∂t

= 0 and
∂xsurface

0
∂t

= 0), as it is obtained from a monthly
climatology of the Model for Ozone and Related chemical
Tracers-4 (MOZART-4), and does not represent interannual
variability (Pan et al., 1998; Deeter et al., 2003; Deeter, 2009;
Worden et al., 2013a). Therefore, Eqs. (4) and (5) can be
rewritten as follows:

∂x̂

∂t
∼=

∂A
∂t

(x − x0) + A
∂x

∂t
(6)

and

∂x̂surface

∂t
∼=

∂Asurface

∂t
(x − x0) + Asurface∂x

∂t
. (7)

Again, if the AKs matrix is the identity matrix (i.e.,A = I in
Eq. (7) andAsurface

= Isurfacein Eq. 7), the temporal change
of the retrieved state is the same as the change of the true state

( ∂x̂
∂t

=
∂x
∂t

and ∂x̂surface

∂t
=

∂xsurface

∂t
). Even if the AKs matrix is

not the identity matrix, but the AKs have no temporal change

(A 6= I , but ∂A
∂t

= 0 andAsurface
6= Isurface, but ∂Asurface

∂t
= 0)

then the change of the retrieved state is an averaged contri-
bution of the true changes in multiple layers (∂x̂

∂t
= A ∂x

∂t
and

∂x̂surface

∂t
= Asurface∂x

∂t
). In other words, no temporal change of

AKs ( ∂A
∂t

= 0 and ∂Asurface

∂t
= 0) is an ideal condition for the

trend estimation. However in fact, the AKs do have a signif-
icant variability because they are influenced by all variables
as inputs to the forward radiative transfer model (e.g., at-
mospheric temperature profile, surface pressure, and surface
temperature) (Deeter et al., 2003). In addition, the changes in
AK values over time are likely due to the changes in CO itself
since retrieval sensitivity depends on CO amount as shown in
Deeter et al. (2007b) and Worden et al. (2013b). Therefore,
the trend of the retrieved state (∂x̂

∂t
and ∂x̂surface

∂t
) can be biased

by the term (∂A
∂t

(x − x0) and ∂Asurface

∂t
(x − x0)), whose value

(and even sign) is unknown, as the true state (and hence its
difference with the a priori state) is unknown.

To estimate the general uncertainties caused by temporal
varying AKs, we make the assumption that the true state is
50 % more (less) than the a priori state (i.e.,x = x0±50%×

x0). This 50 % difference could be estimated from the dif-
ference between retrieved and a priori states at the surface as

Atmos. Chem. Phys., 13, 11307–11316, 2013 www.atmos-chem-phys.net/13/11307/2013/



J. Yoon et al.: Technical Note: Temporal change in averaging kernels 11311

 20 

 1 

Figure 4. Global distributions of (a) maximum and (b) minimum relative difference between 2 

retrieved and a priori CO at surface. 3 

4 

Fig. 4.Global distributions of(a) maximum and(b) minimum relative difference between retrieved and a priori CO at surface.

shown in Fig. 3. In addition, Fig. 4 shows the global distribu-
tions of maximum and minimum differences between them,
and demonstrates that the assumption is reasonable globally.
Eventually, the AKs uncertainty in the trend analysis of MO-
PITT CO at the surface is balancing between these extremes.

Following this assumption, the trend of the constructed
“true state” is the same as the trend of the a priori state,
which theoretically equals to zero (i.e.,∂x

∂t
=

∂x0
∂t

= 0) (Pan
et al., 1998; Deeter et al., 2003; Deeter, 2009; Worden
et al., 2013a). Nevertheless, some significant trends of the

hypothetically retrieved CO (∂x̂surface

∂t
) at the surface are

present, ranging from−10.71 to+13.21 ppbv yr−1 (−5.68
to +8.84 % yr−1) in Fig. 5. They are derived by fitting the
hypothetically retrieved MOPITT surface CO (i.e.,x̂surface

=

xsurface
0 +Asurface(±50%× x0)) to Eq. (1). The largest devia-

tion from a null trend is found over China where large surface
CO emissions are reported (Liu et al., 2011; Buchwitz et al.,
2007). Figure 5a is in contrast with Fig. 5b, as the difference
between true and a priori state (i.e.,(x − x0) in Eq. 7) is con-
stant in both figures but with a different sign. In general, the
magnitude of the uncertainty depends on the temporal AKs

change (∂Asurface

∂t
). For instance, in Fig. 5a, b when the differ-

ence is−50%× x0 (+50%× x0), the temporal increase of
the AK for surface CO state force an under- (over-) estima-

tion of the trends of retrieved state. Therefore, for both as-
sumed conditions of true state (i.e.,x = x0 ±50%×x0), the
trend of the retrieved data is determined by the AKs trends
multiplied by the difference between true and a priori states

( ∂Asurface

∂t
(x − x0)).

Since the true state (and hence its difference with the a
priori state) is unknown, it is impossible to estimate the ac-
tual AKs uncertainty. Furthermore, this issue is relevant for
all instrumentation and algorithms that rely on temporally
varying AKs. Therefore, future trend studies using similar
atmospheric sounding data like MOPITT retrievals, need to
first check the temporal changes of AKs. Furthermore, be-
cause the difference between true and a priori states could
be insignificant at higher level as shown in Fig. 3, the AKs
uncertainty could be less than the expectation.

4 Temporal variation of Level 3 a priori

In Eqs. (6) and (7), we assumed that no trends are present

in the a priori profiles (i.e.,∂x0
∂t

= 0 and
∂xsurface

0
∂t

= 0). In
fact, the a priori profiles are obtained from the MOZART-
4 model, which does not present an interannual variability
(Pan et al., 1998; Deeter et al., 2003; Deeter, 2009; Worden et

www.atmos-chem-phys.net/13/11307/2013/ Atmos. Chem. Phys., 13, 11307–11316, 2013
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Figure 5. The linear trends of retrieved states under the assumption that the true state is (a) -3 

50% or (b) +50% higher than the a priori state (i.e. x = x0 ± 50%× x0 ). The trends of retrieved 4 

states range from -10.71 to +13.21 ppbv yr-1 (-5.68 to +8.84 % yr-1). 5 

6 

Fig. 5. The linear trends of retrieved states under the assumption that the true state is(a) −50 % or(b) +50 % higher than the a priori state
(i.e.,x = x0 ± 50%× x0). The trends of retrieved states range from−10.71 to + 13.21 ppbv yr−1 (−5.68 to+8.84 % yr−1).

al., 2013a). Nevertheless, this is strictly valid only for Level
2 (daily) products, where the model climatology is spatially
and temporally interpolated to the exact location and day of
the observation for each retrieval (Deeter et al., 2010). In
the Level 3 (monthly) data, instead, the surface a priori can

have small temporal variation globally (i.e.,
∂xsurface

0
∂t

6= 0), as
shown in Fig. 6a, even though it is negligible compared to

the trend of retrieved surface CO (∂x̂surface

∂t
) (see Fig. 2). This

small trend can be attributed to the mathematical/statistical
aggregation (e.g., cloud filtering-out process) to monthly
(Level 3) 1°× 1◦ data. Figure 6b shows the MOPITT a pri-
ori CO at the surface between 2001 and 2010 for the loca-
tion where the highest trend of the a priori CO is present
(i.e., +4.08 ppbv yr−1 at 89.5◦ E and 43.5◦ N, red star sym-
bol in Fig. 6a). The anomaly of surface a priori CO (i.e., the
difference between surface a priori and seasonal mean) in-
cludes an interannual variability and a net distinction in 2005.

Hence not only does the temporal variation of Level 3 a priori
data make it more difficult to predict the difference between
true and a priori states (i.e.,(x − x0)), it also creates the ad-
ditional uncertainty ((I − A)

∂x0
∂t

and
(
Isurface

− Asurface
)

∂x0
∂t

)
in the trend estimation as shown in Eqs. (4) and (5).

5 Summary and conclusions

Time varying AKs have been shown to be a significant source
of uncertainties/errors in the estimation of temporal varia-
tion in retrieved data. The uncertainty test applied in this
study, based on the MOPITT V5 TIR Level 3 CO prod-
ucts at the surface, demonstrates that the temporal changes
of AKs and the differences between true and a priori states
can cause significant uncertainties in the trend estimation.
Unfortunately, it is not possible to eliminate the AKs uncer-
tainty solely based on satellite observations, as the true state

Atmos. Chem. Phys., 13, 11307–11316, 2013 www.atmos-chem-phys.net/13/11307/2013/
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 2 

Figure 6. (a) The linear trends of surface a priori CO from MOPITT (V5 TIR Level 3) 3 

(daytime) from 2001 to 2010; the coordinates 89.5°E and 43.5°N are marked by a red star 4 

symbol; (b) MOPITT surface a priori and the seasonal CO are depicted. The anomaly of 5 

surface a priori CO shows that it varies considerably with time. 6 

Fig. 6. (a)The linear trends of surface a priori CO from MOPITT (V5 TIR Level 3) (daytime) from 2001 to 2010; the coordinates 89.5◦ E
and 43.5◦ N are marked by a red star symbol;(b) MOPITT surface a priori and the seasonal CO are depicted. The anomaly of surface a priori
CO shows that it varies considerably with time.

is unknown. Retrieved total column CO product might also
be affected, since it is the vertical integral of the retrieved CO
profiles (Worden et al., 2013a). However, the related uncer-
tainties at high altitudes are expected to be smaller than for
the near-surface layers because of smaller difference between
the true and a priori state. Future studies should investigate
this aspect. Furthermore, trend studies based on satellite- and
ground-based data products, which have been derived using
similar atmospheric sounding methods like the MOPITT re-
trieval, need to carefully estimate uncertainties and errors
that may be caused by time varying AKs.
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