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Abstract. Atmospheric aerosols can contain thousands of or-1  Introduction

ganic compounds which impact aerosol surface tension, af-

fecting aerosol properties such as heterogeneous reactivity,

ice nucleation, and cloud droplet formation. We present newSurface-active organics (surfactants) self-assemble at the
experimental data for the surface tension of complex, reactivd)as—aqueous interface, where they may impact the heteroge-
organic—inorganic agueous mixtures mimicking tropospherich€ous reactivity and ice nucleating ability of aerosols (Mc-
aerosols. Each solution contained 2—6 organic compoundsd\eill et al., 2013). Surfactants can impact the cloud nucle-
including methylglyoxal, glyoxal, formaldehyde, acetalde- ating ability of atmospheric aerosols by lowering the sur-
hyde, oxalic acid, succinic acid, leucine, alanine, glycine,face tension at the moment of activation, thus influencing
and serine, with and without ammonium sulfate. We test twoth€ supersaturation required for cloud droplet activation as
semi-empirical surface tension models and find that mosglescribed by Kohler theory (Asa-Awuku et al., 2008; Fac-
reactive, complex, aqueous organic mixtures which do notchini etal., 1999, 2000; Hitzenberger et al., 2002; Kiss et al.,
contain salt are well described by a weighted Szyszkowski-2005; Novakov and Penner, 1993; Salma et al., 2006; Shul-
Langmuir (S-L) model which was first presented by Hen- man et al., 1996). Up to thousands of surface-active com-
ning et al. (2005). Two approaches for modeling the effectsPounds, many of which remain unspeciated, can be presentin
of salt were tested: (1) the Tuckermann approach (an extenr@mbient aerosols, and the combined effect of these species on
sion of the Henning model with an additional explicit salt Surface tension is highly dependent on aerosol composition
term), and (2) a new implicit method proposed here which (ionic content, pH) and environmental conditions (tempera-
employs experimental surface tension data obtained for eachire, relative humidity). Chemical reactions among aerosol
organic species in the presence of salt used with the Hencomponents may also influence surface tension.

ning model. We recommend the use of method (2) for surface N order to improve our understanding of surfactant film
tension modeling of aerosol systems because the Henninfprmation in mixed organic-inorganic aerosols, it is desir-
model (using data obtained from organic—inorganic systems?ble to model aerosol surface tension. In view of a bottom-
and Tuckermann approach provide similar modeling results4P approach to modeling surface tension in aerosols, lab-
and goodness-of-fit?) values, yet the Henning model is a oratory studies have been performed on aqueous solutions
simpler and more physical approach to modeling the effect€ontaining single organic species, with and without inor-

of salt, requiring less empirically determined parameters.  9anic electrolytes present (Aumann et al., 2010; Aumann
and Tabazadeh, 2008; Cosman et al., 2008; Cosman and

Bertram, 2008; Dash and Mohanty, 1997; Ekstréom et al.,
2009; Hyvérinen et al., 2006; Knopf and Forrester, 2011,
Noziére et al., 2010; Reid et al., 2011; Riipinen et al., 2007,
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Sareen et al., 2010; Schwier et al., 2012; Shapiro et al., 200%imilar procedure as Topping et al. (2007) and modelgd C
Shulman et al., 1996; Tuckermann, 2007; Varga et al., 2007)Cg straight-chain dicarboxylic acids with (NjpSO4, NaCl,
Fewer studies have focused on specific atmospherically relNa,SO4, or NH4NOs3 using three different thermodynamic
evant complex mixtures of organics (Henning et al., 2005;models. They found that no model accurately described the
Li et al., 2011; Schwier et al., 2010; Svenningsson et al.,experimental systems, although the methodology of Li and
2006; Topping et al., 2007; Tuckermann and Cammengalu (2001) performed the best, and they recommended in-
2004). The temperature-dependent relationship between okluding surface—bulk partitioning and “salting-out” of the or-
ganic carbon concentration and surface tension can be deanic material to improve the agreement between model and
scribed by the semi-empirical Szyszkowski—Langmuir (S-L) experiment.

equation (Langmuir, 1917), While much progress has been made on modeling non-
reactive systems, aqueous aerosols and cloud droplets pro-
o(T)=0o(T)—aTIn(1+bC), (1) vide an environment for chemical reactions between water-

soluble organics. This has recently been identified as an im-
where g, is the surface tension of the solution in the ab- portant source of secondary organic aerosol (SOA) mate-
sence of organicsT is temperature (K)C is the molal- rial (Ervens and Volkamer, 2010; Li et al., 2011; Nopmong-
ity of the organic (mol carbon (kg ¥D)~1), anda andb col et al., 2007; Sareen et al., 2010; Schwier et al., 2010;
are fit parameters corresponding to the organic. This equaShapiro et al., 2009; Tan et al., 2010). Carbonyl-containing
tion has been used successfully to model surface tensiospecies, such as glyoxal, methylglyoxal, and acetaldehyde,
depression in aqueous solutions by both isolated organichave been shown to react with one another in aqueous solu-
and complex mixtures (Facchini et al., 1999; Li et al., 2011; tion (Li et al., 2011; Sareen et al., 2010; Shapiro et al., 2009)
Schwier et al., 2010, 2012; Tuckermann, 2007). In differentas well as with amino acids. Recently, Wang et al. (2010)
studies, Henning et al. (2005) and Tuckermann and Camproposed the Mannich reaction pathway to explain the pres-
menga (2004) used modified S-L equations to describe nonence of high molecular weight nitrogen-containing organic
reactive organic systems, assuming linearly additive contrisalts in collected urban Shanghai aerosol. Noziére and Cor-
butions of each organic species to the total surface tensiodova (2008) studied different amino acids and acetaldehyde
depression. Henning et al. (2005) was accurately able tat acidic conditions and determined that cross-reaction prod-
model the experimental results of binary mixtures of adipic ucts were formed either by the Mannich reaction pathway or
and succinic acid in 2% NaCl solutions (by mass), whereaghrough aldol condensation. De Haan and coworkers inves-
Tuckermann and Cammenga (2004) described complex mixtigated SOA formation of glyoxal and methylglyoxal with
tures of up to six organic components (humic acid, pinonicamino acids and amine functional groups and detected the
acid, azelaic acid, levoglucosan, 3-hydroxybenzoic acid, 3presence of high molecular weight oligomers and nitrogen-
hydroxybutanoic acid) well. containing compounds (De Haan et al., 2009a, b, 2010).

Other surface tension models capable of describing multi- Few studies have attempted to model the surface tension
component systems (multiple organics and electrolytes) havéehavior of complex systems where many of the species can
been developed based on thermodynamic principles and exnteract and undergo aqueous-phase reactions to form differ-
perimental data. Binary and higher-order inorganic systemsent compounds (Li et al., 2011; Schwier et al., 2010); unsur-
(with some addition of organic acids) have been described byprisingly, this task has proven challenging. The surface ten-
using thermodynamic analysis (Hu and Lee, 2004; Li et al.,sion depression of an aqueous mixture containing methyl-
1999; Li and Lu, 2001). Complex organic systems have alsaglyoxal and glyoxal, which undergo similar aqueous-phase
been described by thermodynamic analysis, requiring, for exchemistry, was successfully modeled using a sum of the indi-
ample, surface tension or adsorption isotherm data, molavidual organic contributions to surface tension, even though
surface area and surface pressure of the surfactants and sakoss-reactions were found to be responsible for a large por-
vent (Fainerman et al., 2002; Fainerman and Miller, 2001);tion of the organic mass present (Schwier et al., 2010). Based
however, many thermodynamic properties of the organicson the structure of the oligomers formed in this system (e.qg.,
relevant for atmospheric aerosols are unknown. Topping eSBareen et al., 2010; Schwier et al., 2010) it seems reasonable
al. (2007) studied binary and higher-order systems of organthat in a population of oligomers formed by methylglyoxal
ics (levoglucosan, succinic acid, fulvic acid, pinonic acid, ox- and glyoxal self- and cross-reactions, the surface tension de-
alic acid) in salt solutions ((Nf)2SOy, NaCl, NH;NO3) and pression is roughly proportional to the hydrophobic surface
compared experimental results with those of different model-area, which is contributed solely by the methylglyoxal free
ing techniques, including those of Li and Lu (2001), Suarezmethyl groups.
etal. (1989), and Tamura et al. (1955). They found that aque- However, the surface tension depression of tertiary re-
ous solutions of isolated and mixed organics were describedctive organic systems (acetaldehyde, formaldehyde, and
well by the model of Li and Lu (2001) or modified versions methylglyoxal) was consistently under-predicted by the ad-
thereof, but that the models did not perform as well afterditive Henning model (Li et al., 2011). The presence of inor-
inorganics were introduced. Booth et al. (2009) followed aganic components in these systems also brings in additional
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Table 1. Experimental mixtures studied in this work. All concentrations are given in molarity (M). The symbol “v” indicates that the
concentration of the organic was variable throughout the experiment. In Mixtures #14-16, the total organic concentration was either 0.5 or
0.05 M; in Mixture #17, the total organic concentration ranged from 0 to 1 M.kTjp@rameter was calculated using Eq. (6), as described in
Sect. 3.5. See text for more details.

Mixture  (NHg)2SO; Acetaldehyde Formaldehyde Glyoxal Methylglyoxal Alanine Glycine Serine Leucine Oxalic Acid  Succinic Acid

#1 3.1 0.05 <0.02 —0.06+0.03

#2 0 0.05 <0.02 -

#3 3.1 0.05 <0.02 0.08+0.05

#4 0 0.05 <0.02 -

#5 3.1 0.05 <0.02 0.02+0.04

#6 0 0.05 <0.02 -

#7 3.1 0.05 <0.02 —0.15+0.04

#8 0 0.05 <0.02 -

#9 3.1 0.05 <0.02 0.06+0.02

#10 3.1 0.05 <0.02 —6.86+0.38

#11 3.1 0.05 <0.02 —4.09+0.21

#12 31 0.05 <0.02 0.07+0.02

#13 3.1 0.05 <0.02 —1.64+0.13

#14 3.1 % v —1.45+0.11 (0.05M)
—1.424+0.05 (0.5M)

#15 3.1 v v —1.79+0.04

#16 31 \Y \ \Y —1.56+0.12 (1:1)
—1.90+0.12 (1:3)

#17 31 \Y Y \Y \Y v \Y —0.40+0.03

uncertainties since the inorganic species may participate itific), and L-serine (Sigma Aldrich). The amino acids were
the aqueous chemistry (Noziére et al., 2009, 2010; Nozierehosen for this study due to their known presence in atmo-
and Cordova, 2008; Sareen et al., 2010; Schwier et al., 2010xpheric aerosols and ice nucleation activity (Szyrmer and Za-
in addition to nonreactive salt—organic interactions (such asvadzki, 1997; Zhang and Anastasio, 2003) as well as their
salting-out) which may influence surface tension (Li et al., surfactant character (i.e., hydrophobicity from the —R side
1998; Matijevic and Pethica, 1958; Setschenow, 1889). Curgroup). The different mixtures studied in this work are shown
rently, few datasets exist with surface tension informationin Table 1. Most solutions were tested at atmospherically rel-
for organics in near-saturated salt solutions, typical of atmo-evant concentrations and beyordi M total organic) in or-
spheric aerosols (Li et al., 2011; Schwier et al., 2010, 2012)der to elucidate the behavior of the mixture as a function of
so the effect of salts is still not well parameterized for use inorganic concentration; however, Zhang and Anastasio (2003)
models of aerosol surface tension. was used as a basis for atmospherically relevant amino acid
Here, we present experimental measurements of surfaci-particle concentrations. The concentration range was also
tension in complex, reactive, aqueous organic—inorganic syslimited by amino acid solubility. For the ternary mixtures, we
tems (2—6 organic compounds). We use this dataset to testsed available data from Li et al. (2011).
semi-empirical approaches for modeling the surface tension Solutions were made in Millipore water alone or with
of mixed organic—inorganic aqueous solutions and provideammonium sulfate at near-saturated concentrations (3.1 M
recommendations for modeling surface tension depression iiNH4)>SQy) in order to mimic the composition of aqueous
aerosol systems. aerosols (Tang et al., 1997; Tang and Munkelwitz, 1994).
The natural pH of solutions containing (MHSO, varied
from 2.7 to 5.9; in HO, the pH was slightly higher, typi-

2 Experimental methods cally between 4.3 and 5.7 (though it reached pH 8 for some
. _ mixtures). Mixtures using methylglyoxal and glyoxal were
2.1 Solution preparation slightly acidic due to the presence of trace impurities of

. pyruvic acid and glyoxylic acid from the 40 wt% stock so-
Aqueous solutions were prepared and tested at 24 h aftq[iions, respectively. All of the reaction mixtures fell within
mixing for all systems analyzed (in ordgr to allow the re- the hounds of atmospherically relevant pH for tropospheric
actlve_ sys_tem to eqwll_bra'_[e). The following organics Were 5erosols pH 0-8) (Keene et al., 2004; Zhang et al., 2007).
used in different comb|_nat|0ns and concentrations to modekhe solutions were stored in 100 mL Pyrex volumetric flasks
complex surface tension effects: methylglyoxal (40Wt% gt ampient temperature, without further protection from am-
aqueous stock solution, Aldrich), glyoxal (40 wt% aqueousiien light. The complex mixture involving 6 organics was
stock solution, Alfa Aesar), formaldehyde (37 wt% aqueousgy,gied at different total organic concentrations, but always
stock solution, Sigma Aldrich), acetaldehyde (99.5%, Sigmayith the same fixed relative ratios of the organics to one
Aldrich), oxalic acid (dihydrate, Fisher Scientific), succinic another, based on ambient field measurements: ambient in-

acid (99 %, Acros Organics), DL-leucine (Sigma Aldrich), particle concentrations of methylglyoxal, glyoxal, oxalic and
DL-alanine (99 %, Acros Organics), glycine (Fischer Scien-
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Table 2. Ambient in-particle concentrations used to calculate the complex organic mixture ratios.

Species Ambient in-particle Reference
concentration (ng m3)
Acetaldehyde 406 .
Formaldehyde 264 Grosjean (1982)
Glyoxal 16.4
Methylglyoxal 214 .
Oxalic acid 233 Kawamura and Yasui (2005)
Succinic acid 53.9
succinic acids were taken from Kawamura and Yasui (ZOOS)U(T) = 6o(T) — Z Viai TIN(L+b;C), 3)
i

and acetaldehyde and formaldehyde in-particle concentra-

tions were used from Grosjean (1982); all concentrations

(ngn3) are shown in Table 2. These concentrations werewherey; is the carbon content of théh organic within the
used to determine the in-particle mass wt% of each compoComplex mixture ¢; = C;C 1), anda; andb; are the fit pa-
nent. Assuming a specified total organic concentration (i.e.fameters of théth organic.

1 M) and an average molecular weight of all the organic e proposed previously (Schwier et al., 2010) to model
species, the relative mass amount (or volume amount) of eachurface tension depression in reactive inorganic—organic sys-

species was calculated based on the mass wt%. tems as a direct linear combination of the contribution of
each organic species to the surface tension based on its con-

2.2 Surface tension measurements centration:

Our approach for surface tension measurements has preve(T) = oo(T) — Za,-TIn(1+b,-C,-). 4)

ously been described (Shapiro et al., 2009). Briefly, droplets i
of the bulk solutions formed at the tip of a 1@ syringe, This model was found to describe surface ten-
where they equilibrated over timescales of 2-5 minutes a

. | o Gion depression in mixed aqueous ammonium sul-
room temperature (approximately 251 C). Image capture fate / glyoxal / methylglyoxal solutions well (Schwier et

software was used to take an image of the droplet before ity 5410 since it does not take into account competition
detached and fell from the syringe following the methodol- between organic species at the gas—aqueous interface, its

ogy of Anastasiadis et al. (1987). An edge detect_ion SOﬂv"ar‘aapplication is limited to relatively low total surfactant
program was then used to analyze the droplet in MATLAB concentrations,

7.0 (The MathWork;, Inc.) following Canny (1986). Surface o s equation has been used to describe aqueous or-
tension was determined by Adamson and Gast (1997): ganic solutions and organics in dilute salt solutions (Facchini

Apgd? et al., 1999; Henning et al., 2005; Tuckermann and Cam-
o=y (2) menga, 2004), although most aerosols are saturated with re-
whereo is the surface tensiomyp is the difference in the ~SP€ct to the inorganic (Tang et al., 1997; Tang and Munkel-
density between the surrounding gas medium (air) and th&itz, 1994). Tuckermann (2007) extended the S-L equation
droplet, g is the acceleration due to gravig is the equa- to_model the_eﬁ_ects of glectrolytes on_the surface tension of
torial diameter of the droplet an#l is the shape factor cal- Mixed organic—inorganic solutions, with a separate term to
culated following Juza (1997). An average of 5-8 drops wasAccount for salt-organic interactions as follows:
used to calculate the surface tension. The density of each so- Ao
lution was determined in triplicate using an analytical bal- o (T) = om0 (T) + (AcSan) Csalt

—aT IN(14bC) + kesan(1 4 bC), (5)

ance (Denver Instruments).

2.3 Surface tension modeling

wherecsgt is the inorganic concentratimz,AcT"alt is the change
Henning et al. (2005) modified the S-L equation to describein surface tension due to the inorganic species,aisda fit
surface tension depression in complex nonreactive systemgarameter. They found thatehaved as a function @f, and
The model accounts for a linear combination of the hypo-that at smallC concentrations@ < 0.01g L) k was posi-
thetical total surface tension depression if each species adive, while at largeiC concentrationg became negative and
counted for all the organic material in the system, weightedmost likely converged. They stated that the term describing
by the fractional contribution of that species to total carbonsalt—organic interactions would need to be further specified

content: from future studies. We have taken two approaches toward
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accounting for the effects of electrolytes in this study. In the 75
first approach, we modified Eq. (5) as follows to describe
complex systems with multiple organics: <70
R 5
o c 65
T)= T >
o(T)=o0m0(T)+ <ACsaIt> Csalt %
> i@ TINA+b;C) + kesary_ ¥iIn(A+5;C). (6) oo T i
- : : 2_ . 2_
’ ' ) i S I | i e i PR
In the second approach, which we introduce for the first time 0.10 0.15 020 0.10 0.15 0.20
here, we determined the fit parametersidb) from exper- C (mol C (kg HZO)'1) C (mol C (kg HZO)'1)

imental measurements of surface tension depression by the
individual organics in 3.1 M (Nk)2SOy solutions, and used  Fig. 1.0.05 M acetaldehyde and varying amounts of leucine in Mil-

these parameters in Egs. (3) or (4) without any additional palipore HO. (A) and (B) are the Henning semi-empirical model
rameters. (Eg. 3) and the Schwier2010 semi-empirical model (Eq. 4) with

In the following sections, for aqueous solutions of organ- water fit parameters (W), respectively. In all figures, the black dots

ics with no salt present, we present experimental data anaepresent the experimental data, the black line is the semi-empirical

. . ’ . - model result, and the gray lines show the 95 % confidence interval
semi-empirical model results using the fit parameters of theof the model result
organics in water in Egs. (3) and (4), represented as “Hen- '

ning” or “Schwier2010”, respectivelysf, = 72.5). For aque-

ous mixtures containing organics and 3.1M (N804, we 31, (2008) for such a treatment). The confidence intervals
present experimental data and complex semi-empirical modpf the complex mixtures were then found by propagating

eled results using (1) the fit parameters of the organics in wathe confidence regions from the isolated species based on
ter ("W"), and (2) the fit parameters of the organics in 3.1 M gijther the Henning model or the Schwier2010 model (see the
(NH4)2S0, (“S”), in Egs. (3) and (4), represented as Hen- sypplement for more details).

ning or Schwier2010, respectively. In both semi-empirical

models, for both fit parameters (W and S), we dse 78.5,
the surface tension of 3.1 M (NpbSOy, taken from Wash- 3 Results
burn (2003). Water fit parameters have been shown previ-
ously to describe organic mixtures in low concentrations of The following sections compare the ability of the different
salt (Henning et al., 2005); this approach carries with it themodeling methods characterized in Sect. 2.3 to describe each
implicit assumption that the addition of salt does not en- experimental dataset. Figures 1 and S1-S3, organics in aque-
hance the surface tension depression behavior of the organimus solutions, have 2 plots: (a) and (b) are the Henning semi-
in H,O, via salting-out or any organic—inorganic reactions empirical model (Eqg. 3) and the Schwier2010 semi-empirical
that may be occurring. Water fit parameters have been detemodel (Eq. 4) with water fit parameters (W), respectively.
mined experimentally for multiple organics (Gaman, 2004; Figures 2—7 and S4-S12, organics in ionic solutions, have 4
Svenningsson et al., 2006). Few experimental datasets exigliots: (a) and (c) are the Henning semi-empirical model and
for organics in high ionic concentration solutions, yet it has Schwier2010 semi-empirical model with (MHSOy fit pa-
been shown that surface tension depression can deviate sigameters (S), respectively; (b) and (d) are the same with water
nificantly in the presence of inorganic species. Some of the fifit parameters (W), respectively. In all figures, the black dots
parameters have been previously published from this groupepresent the experimental data, the black solid line is the
(Lietal., 2011; Sareen et al., 2010); a list of all fit parameterssemi-empirical model result, and the gray dotted lines show
in H20 and (NH;)2SOy used in this study can be found in the the 95 % confidence interval of the semi-empirical model re-
Supplement. Semi-empirical model results were determinedult. For some complex mixtures, the confidence interval is
by using a nonlinear least squares fit method, weighted by théruncated in one or more of the subplots; this is because ex-
standard deviation of the experimental surface tension data.perimental data to determine confidence intervals were not
Using IGOR Pro, we determined the carbon- available for one or all of the organic species at high enough
concentration-dependent 95% confidence interm‘Fs’,(C), concentrations. Additionally, for some modeling methods,
accounting for the correlation between the fit parametersthe confidence interval data were not available at all for some
a andb, for our isolated organic speciésn both aqueous species at higher organic concentrations. For these instances,
and ionic solutions (for nonlinear equations, IGOR uses thethe confidence intervals used were constant values calcu-
linear term of a Taylor expansion). Due to the nonlinearity lated as the average confidence interval over a range of lower
of the S-L equation, a Bayesian inference approach shouldoncentrations where data were available for the necessary
be used for the most rigorous confidence interval treatmenbrganic species. The relevant figures have this information
of correlated variables (we refer the reader to Blau etlisted in the captions. The black dashed line is the reference
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Fig. 3. 0.05M glyoxal with varying amounts of serine in 3.1 M
Fig. 2. 0.05M acetaldehyde and varying amounts of leucine in (NH4)2S0y4. (A) and(C) are the Henning semi-empirical model and
3.1 M (NHg)2SO4. (A) and (C) are the Henning semi-empirical Schwier2010 semi-empirical model with (§}$SOy fit parameters
model and Schwier2010 semi-empirical model with N8Oy fit (S), respectively(B) and(D) are the same with water fit parame-
parameters (S), respective(8) and(D) are the same with water fit  ters (W), respectively. The abbreviated confidence intervéB)jns
parameters (W), respectively. The average confidence interval valudue to the lack of serine surface tension data at high enough organic
of leucine at lower concentrations (0—0.12 m) was used for the conconcentrations (>0.15m).
fidence interval contribution from leucine {#®\) due to a lack of
experimental data at high serine concentrations (>0.12m).

in salt solutions the Schwier2010 semi-empirical model us-

ing water fit parameters best describes the system (Fig. 2d,
surface tension of each solution in the absence of all organy2=0.070). The overestimation using salt parameters by
ics (72.5 dyncm for aqueous solutions, 78.5dyncifor  hoth models indicates that any reaction products forming
ionic solutions). Ther axis is always given in terms of total petween acetaldehyde and leucine must be less surface ac-
organic carbon concentration (mol carbon (kg ), SO tive than the contributions of the individual organics. The
when applicable the first point of each figure is that of the Schwier2010 model using either water or salt fit parame-

constant concentration organic (Figs. 1-4, S1-9). ters has a slightly larger confidence interval than the Hen-
The “goodness of fit" £ %) of the semi-empirical model fit ning model; this is due to the lack of a weighted tenm,
is also shown in each plot, calculated by which acts to narrow the deviation spread (Figs. 1b, 2c, d).
v ) In Fig. 2, the salt fit parameters over-predict the surface ten-
$2= Z (9modeln — Oexpn) ’ @) sion depression of the experimental data. The Henning model
—= Oexpn (Eq. 3) describes the acetaldehyde—serine experimental data

in both O and (NH;)2SOs well (Fig. S3a (2=0.097) and
where N is the number of observations in a given dataset,Sg (ngg ~0.201)), while the Schwier2010 model slightly
omodeln 1S the semi-empirical model surface tension predic- overestimates surface tension depression. In control exper-

tion, andoexp . is the experimental surface tension value.  iments, no surface tension depression was observed in so-
] ) lutions of glycine or alanine in 3.1M (Nf>SOy. The
3.1 Acetaldehyde +amino acids acetaldehyde—glycine and acetaldehyde—alanine mixtures in

Solutions of 0.05M acetaldehyde and varying concentra-:zoodeﬁlg(\jlvgl\:'?Stsi%ts;e ?s;grr:gs%fb&;;ostgstehrzl-searnpl;Ilt_:al
tions of alanine, glycine, leucine or serine (0-0.02 M) were ' P P

. rameters describe the experimental data better (Figs. S1, S2,
tested in both water and 3.1 M (N} SOy. Acetaldehyde has S4, and S5),

previously been shown to depress surface tension in aque-
ous and ionic solutions (Li et al., 2011). Figures 1 and 2
show acetaldehyde—leucine mixtures inHand in 3.1 M
(NH4)2SQy, respectively. The Henning approach describes
the experimental data in water best (Fig. $4= 0.077), but
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3.2 Glyoxal/methylglyoxal + amino acids

Experimental data of 0.05M glyoxal with varying concen-
trations of serine (0-0.02 M) is similarly represented by both
semi-empirical models (Fig. 3,X§Vg:0.749)). Glyoxal is

not surface active in water or salt solutions (Shapiro et al.,
2009), yet serine is. It is possible that glyoxal is affecting
the ability of serine to depress surface tension by occupy-
ing available surface sites at the interface; reaction products
between glyoxal and serine that are less surface active than
serine itself could also be forming. This could explain why
the semi-empirical models slightly overestimate the surface
tension of the experimental data. Mixtures of 0.05 M glyoxal
and varying amounts of glycine (0-0.02 M) in (WSO

have no visible surface tension depression (Fig. S7), because
neither isolated organic was found to be surface active in
(NH4)2S0O4. Models using salt fit parameters give a nearly
straight linec ~78.5 (Fig. S7a, cx?=0.033). Glycine is
surface active in HO though, so water fit parameters over-
estimate the surface tension depression of these organics in
(NH4)2SOy solutions (Fig. S7b, ¢4,,= 0.434). Modeling
mixtures of 0.05 M methylglyoxal and amino acids (leucine,
glycine and serine) in (N§2SOy also represent the exper-
imental data (Figs. 4, S8, and Sg% > 1.950) poorly. Both

of leucine at lower concentrations (0-0.12 m) was used for the conS€Mi-empirical models overestimate the surface tension de-

fidence interval contribution from leucine {#) due to a lack of

pression using salt fit parameters, and underestimate with

experimental data at high leucine concentrations (>0.12m). The abwater fit parameters; however, the Henning model using salt
breviated confidence interval () is due to the same reason.

o (dyn cm'1)

o (dyn em )

Fig. 5.0.05 M total organic with varying amounts of acetaldehyde
and methylglyoxal in 3.1 M (Ni)»>SO4. (A) and(C) are the Hen-

80F T T . LN Y B 1L =Y
25l 1 | -]
70| N 4 F .
i i\ IBE: |
60 ¢ - $-
0.05 M, Henning, S, x°=0.594 0.05 M, Henning, W, x’=7.181

551 1 | 1 | L H o | L | L +H
80 + T | T I T + T I T I T @
75 4+ =
70| 4 F -
o5 E 1 L¢ ]
60 \E\E | L E |

0.05 M, Schwier2010, S, X’=0.080|  [.05 M, Schwier2010, W, x°=4.873
1] S O B S NN T

0.11 0.12 0.13 0.14 0.11 0.12 0.13 0.14

C (mol C (kg H,0)")

C (mol C (kg H,0)")

fit parameters describes the experimental data best.
3.3 Methylglyoxal/formaldehyde/acetaldehyde

The experimental results of these mixtures have been pre-
viously published (Li et al., 2011). 0.05 M total organic bi-
nary mixtures of acetaldehyde—methylglyoxal clearly show
that the Schwier2010 semi-empirical model and the Henning
semi-empirical model describe the experimental data well
(Fig. 5a, ¢), and that the experimental data trend is clearly
modeled using the salt fit parametey%?\/gzo.%?) instead

of the water fit parametersf,,=6.027) for both models.
Similar results are visible for 0.5 M total organic concentra-
tions of acetaldehyde—methylglyoxal and 0.5 M total organic
binary mixtures of formaldehyde—methylglyoxal (Figs. S10
and S11), although the Henning semi-empirical model per-
formed better. Ternary mixtures of all three organics simi-
larly show that both semi-empirical models using the salt pa-
rameter fits represent the experimental data well (Figs. 6 and
S12).

3.4 Complex organic mixtures

ning semi-empirical model and Schwier2010 semi-empirical modelFigure 7 shows a complex mixture of acetaldehyde,

with (NH4)2SOy fit parameters (S), respectivel{B) and (D) are

the same with water fit parameters (W), respectively.

www.atmos-chem-phys.net/13/10721/2013/

formaldehyde, glyoxal, methylglyoxal, oxalic acid, and suc-
cinic acid in 3.1 M (NH)2SOs (total organic concentration
ranged from 0 to 1 M). The Henning semi-empirical model,
S, describes the data best (Fig. %&=0.820); using the
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Fig. 6. 0.05M total organic with varying amounts of ac- fiq 7 Complex organic mixture (acetaldehyde, formaldehyde,
etaldehyde :formaldehyde (1:1) and methylglyoxal in 3.1M g1 641 methylglyoxal, oxalic acid, succinic acid) in 3.1M
(NH4)2S0y. (A) and(C) are the Henning semi-empirical modeland  (\,),50,. (A) and(C) are the Henning semi-empirical model and
SchW|er201_O semi-empirical model with (I\A_)-LSO4 fit parameters Schwier2010 semi-empirical model with (M}SOy fit parameters
(S), respectively(B) and(D) are the same with water fit parameters g respectively(B) and(D) are the same with water fit parameters
(W), respectively. (W), respectively.

water fit parameters tends to underestimate the surface teM~1 (determined from the International Critical Tables,
sion depression of the organics. The Schwier 2010 semip.464 (Washburn, 2003)), arfd=298 K. Using Eg. (6), we
empirical model, S, clearly overestimates the surface tensiomsed the same parameters to deterrhimalues for our com-
depression of the experimental mixtures (Fig. 7c). This couldplex mixtures, shown in Table 1. These values were both
be explained by the idea that most of the organic speciepositive and negative, and the sign /ofappears to be de-
present in this mixture are surface active and all are compendent on the dominant organic species present (i.e., most
peting over a finite number of surface sites to form an or-mixtures with acetaldehyde and methylglyoxal have a nega-
ganic monolayer coating. The Schwier2010 model does notive k value, while those with glyoxal typically have a pos-
take into account surface competition and assumes that eagdtive k value). Table 3 shows a comparison of the goodness
organic depresses the surface tension to its maximum capaf fit (x2) of the different methods of salt incorporation: (1)
bility, while in actuality the surface composition will be a using the modified Tuckermann equation (Eq. 6) or (2) us-
mixture of the different organics with the excess organic ining either the Henning model (Eq. 3) or Schwier2010 semi-
the bulk phase. Each organic has a different surface activityempirical model (Eg. 4) with salt fit parameters. Overall, the
so the actual surface tension of the mixture is higher thanTuckermann semi-empirical model describes the experimen-
the idealized Schwier2010 semi-empirical model. However,tal data better for binary systems of different classes of organ-
at lower total organic concentrations, this issue should not bécs (amino acid carbonyl), but does not accurately describe

important. binary and tertiary carbonyl reactive systems.
Additionally, Setschenow constant&, have been used
3.5 Explicit incorporation of salt—organic interactions to describe the salting-out potential of organic compounds in

high ionic strength solutions (Setschenow, 1889). However,
While we have demonstrated the use of the salt fit parammost atmospherically relevant organics do not have known
eters to incorporate salt effects directly into the S-L equa-K; terms in (NH;)2SO, and these cannot be easily calcu-
tion, we also tested the Tuckermann and modified Tuckerdated. We have not incorporated the use of Setschenow con-
mann equations (Egs. 5, 6) to investigate the different methstants in this work, although they do provide an additional
ods of incorporating salt into the semi-empirical models. In modeling method for incorporating salt effects.
control studies, we used Eq. (5) to determinalues for all
the isolated organics in 3.1 M (NhbSOy (Table S2), using
00=725dyncm?, cear=3.1M, 22 =2.1701dyncm?

Acsalt
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Table 3. Experimental mixtures comparing the goodness offf)from the Henning and Schwier2010 semi-empirical models (Egs. 3 and
4, respectively), both using salt fit parameters, as well as from the modified Tuckermann equation (Eq. 6).

Mixture Goodness of fit2) using salt fit parameters Goodness of it) using ex-
plicit salt—organic term

Henning model (Eq. 3) Schwier2010 model (Eq.4) Tuckermann model (Eq. 6)

#1 0.06 0.07 0.05

#2 - - -

#3 0.34 0.41 0.13

#4 - - -

#5 0.23 0.76 0.08

#6 - - -

#7 2.13 7.55 0.22

#8 - - -

#9 0.03 0.03 0.21

#10 1.95 3.35 0.46

#11 3.88 17.05 0.76

#12 0.26 0.58 0.21

#13 2.63 7.88 141

#14 0.59 (0.05M) 0.08 (0.05 M) 2.54 (0.05M)
0.59 (0.5M) 6.76 (0.5M) 2.64 (0.5M)

#15 0.65 3.38 2.48

#16 0.38 (1:1) 0.35 (1:1) 3.15 (1:1)
0.63 (1:3) 0.23 (1:3) 4.81 (1:3)

#17 0.82 41.58 0.63

4 Discussion and conclusions actants and products), which leads to systems that can be well

described by the S-L equation and parameters solely based

From all the experimental data and modeling framework pre-On the reactants (Schwier et al., 2010). However, if cross-

sented, the Henning semi-empirical model (Eq. 3) and théeaction products have very different properties from the re-

Schwier2010 semi-empirical model (Eq. 4) perform simi- actants, additional terms may be needed to describe surface

larly in reproducing experimental surface tension data oftensi_o_n depresgion in the reactive mixtu_re. Neither the semi-
complex organic mixtures in #0 and (NH),SQy, though emplrlcal Hennlng model nor the SchW|er2910 mgdel cr_]ar-
the Henning semi-empirical model typically provides better 2cterizes the mixtures of methylglyoxal with amino acids
x?2 values. The Henning model accounts for surface compey"e"' This may .b.e becau;e the Mannich reaction .p.rod'ucts
tition through the weighting termy;. This makes physical may have S|gn_|f|_cantly d|fferent surface—bulk partitioning
sense and also mathematically results in a reduced standaff'd Surface-activity behavior than the reactants due to a large
deviation for each semi-empirical model result. Unsurpris—Change n hydrophobic surface area, or becapse |n.termolecu-
ingly, applying salt S-L fit parameters (determined individ- lar reactions between the carbonyls and amino acids are not

ually for each organic species in (MJHSQy) where appro- well represented within the semi-empirical models based on

priate within the Henning model represents the experimen-the S-L equation. . .
The compositions of the experimental systems described

tal data more accurately than using water fit parameters in hin th K mimi I diti o
carbonyl reactive organic systems (methylglyoxal, formalde-W1thin this work mimic aerosol conditions near 100%RH
hyde, acetaldehyde). The standard deviation in some figure _ear—saturgtlon sa!t _concentratlons). For aerosol systems at
is very large: in these cases, the S-L equation does not addigner relative humidity (>100% RH), i.e., those at the con-
quately describe the surface tension depression data for tHtion Of particle activation, the use of salt parameters may
isolated organic species, leading to wider-range confidenc@€ inappropriate due to the higher water content at this point.
intervals than for other isolated species Based on our results for organics in aqueous systems (Figs. 1,
Model performance is generally better for reactive sys_81—3), to describe particle activation, if the dilute salt con-

tems consisting of structurally similar organic molecules c&ntration is known, the Tuckermann approach (Egs. 5 or 6)

with moderate surface tension depression. For carbony

is preferred; if the ionic concentration is unknown, we rec-
containing species, cross-reaction products appear to ha mefr_1d the use of the Henning semi-empirical model with
similar average surface-activity behavior to the reactantdVater fit parameters.

(possibly due to similar hydrophobic surface areas of the re-
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For aerosol conditions (up to 100 % RH), we recommendAumann, E., Hildemann, L. M., and Tabazadeh, A.: Measuring and
the use of salt fit parameters in the Henning semi-empirical modeling the composition and temperature-dependence of sur-
model (Eq. 3) over the Tuckermann approach, which uses face tension for organic solutions, Atmos. Environ., 44, 329-337,
water fit parameters (known more readily than salt fit param-_ d0i:10.1016/}.atmosenv.2009.10.02910.
eters) but also requires an additional empirically determinecP!U; G.. Lasinski, M., Orcun, S., Hsu, S-H., Caruthers,
parameterk. The Henning (with salt parameters) and Tuck- Y Delgass, N., and Venkatasubramanian, V.. High fi-

ermann semi-empirical models provide similar modeling re- delity mathematical model building with experimental data:
P P 9 A Bayesian approach, Comp. Chem. Eng., 32, 971-989,

sults and goodness-of-fik ) values, yet the Henning model 410’1 016/j.compchemeng, 2007.04.02608.

is overall a simpler and more physical approach, requiringgggth, A. M., Topping, D. O., McFiggans, G., and Percival, C. J.:
less empirically determined parameters. We recommend that syrface tension of mixed inorganic and dicarboxylic acid aque-
the Henning model, with experimentally determined salt pa- ous solutions at 298.15 K and their importance for cloud acti-
rameters, be used to incorporate implicit salt effects on com- vation predictions, Phys. Chem. Chem. Phys., 11, 8021-8028,
plex mixtures in future aerosol surface tension studies and doi:10.1039/B906849.20089.

predictions of surfactant film formation in aerosols. Canny, J.: A Computational Approach to Edge Detec-
tion, |EEE Trans. Patt. Anal. Mach. Int.,, 8, 679-714,

doi:10.1109/TPAMI.1986.4767851986.

Supplementary material related to this article is Cosman, L. M. and Bertram, A. K.: Reactive Uptake 0jQ¢
available online athttp://www.atmos-chem-phys.net/13/ on Aqueous HSOy Solutions Coated with 1-Component and
10721/2013/acp-13-10721-2013-supplement.pdf 2-Component Monolayers, J. Phys. Chem. A, 112, 4625-4635,

doi:10.1021/jp8005462008.
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