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Abstract. The sensitivity of the process parameters of the
Biosphere Energy Transfer HYdrology (BETHY) model to
choices of atmospheric concentration network, high fre-
quency terrestrial fluxes, and the choice of flux measurement
network is investigated by using a carbon cycle data assim-
ilation system. We use BETHY-generated fluxes as a proxy
of flux measurements. Results show that monthly mean or
low-frequency observations of CO2 concentration provide
strong constraints on parameters relevant for net flux (NEP)
but only weak constraints for parameters controlling gross
fluxes. The use of high-frequency CO2 concentration obser-
vations, which has led to great refinement of spatial scales in
inversions of net flux, adds little to the observing system in
the Carbon Cycle Data Assimilation System (CCDAS) case.
This unexpected result is explained by the fact that the sta-
tions of the CO2 concentration network we use are not well
placed to measure such high frequency signals. Indeed, CO2
concentration sensitivities relevant for such high frequency
fluxes are found to be largely confined in the vicinity of the
corresponding fluxes, and are therefore not well observed
by background monitoring stations. In contrast, our results
clearly show the potential of flux measurements to better con-
strain the model parameters relevant for gross primary pro-
ductivity (GPP) and net primary productivity (NPP). Given

uncertainties in the spatial description of ecosystem func-
tions, we recommend a combined observing strategy.

1 Introduction

Uncertainties in the distribution of the carbon flux in the at-
mosphere limit both the skill of predictive models and the
application of carbon accounting using measurements. Given
the importance of this problem, various sources of mea-
surements (including dedicated satellite missions) are avail-
able and quite sophisticated systems have been built to use
them. There are two main approaches: the simplest are di-
rect inversion systems in which atmospheric transport mod-
els and Bayesian estimation methods are used to infer surface
fluxes from atmospheric CO2 concentrations. These have
been broadly used but their estimates vary widely due to dif-
ferences in setup, observational data, prior estimates of the
fluxes and transport models (e.g., Gurney et al., 2002, 2004;
Law et al., 2003; Baker et al., 2006; Rayner et al., 2008;
Chevallier et al., 2010). A second approach uses a range of
observations to constrain the possible trajectories of dynami-
cal models of the carbon cycle. The process parameters of the
dynamical model are first constrained and then the optimized
model is used to predict the various quantities of interest. The
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uncertainties in the parameters of the dynamical model are
projected forward into the output of the model constrained by
the observations. Because of the use of an explicit dynami-
cal carbon model, this approach is often termed carbon-cycle
data assimilation (analogous to data assimilation in numer-
ical weather prediction). The trade-offs between these two
approaches are discussed in Kaminski et al. (2002).

The Carbon Cycle Data Assimilation System (CCDAS)
used in the present work has two primary components:

i. A deterministic dynamical model that calculates the
evolution of both the biosphere and soil fluxes given
an initial condition, forcing and a set of process pa-
rameters of the model.

ii. An assimilation system that consists of an algorithm
to adjust a subset of the state variables, initial con-
ditions and/or process parameters to reduce the mis-
match with observations. Usually any prior informa-
tion on the variables which are adjusted are also taken
into account (see Kaminski et al., 2002, 2003; Rayner
et al., 2005, and references therein for the underlying
methodology).

The CCDAS can ingest many types of observations, e.g., at-
mospheric CO2 (Rayner et al., 2005; Scholze et al., 2007;
Koffi et al., 2012), fAPAR (fraction of absorbed photosyn-
thetically active radiation) and atmospheric CO2 together
(Kaminski et al., 2012a), satellite-derived fAPAR at site level
alone (Knorr et al., 2010) and its combination with eddy-
correlation fluxes (Kato et al., 2013). It has proven difficult to
assimilate multiple observations simultaneously, suggesting
inconsistencies between the information in the data streams
and the model. To some extent this inconsistency is probably
due to limitations in state-of-the art models (Rayner, 2010).
Models are, however, improving all the time, with recent
success in transferring information from one site to another
(a precondition for general success) (Medvigy et al., 2009).
Thus, it is worth revisiting the constraint available from ob-
servations beyond the monthly mean concentrations hitherto
used in global studies (Rayner et al., 2005; Koffi et al., 2012).

One motivation for such an exploration is recent advances
in the use of high-frequency observations of CO2 concen-
tration in direct inversions. Law et al. (2003), Peylin et
al. (2005), Peters et al. (2007, 2010), Zupanski et al. (2007),
Lauvaux et al. (2009a, b), and Carouge et al. (2010a, b) have
shown that there is considerable information on the distribu-
tion of CO2 sources and sinks retrievable from the time series
of concentrations. There are reasons for optimism and pes-
simism when applying continuous observations to the con-
straint of model parameters (the CCDAS approach). On the
positive side is the obvious analogy between the direct inver-
sion and the CCDAS methods, which both rely on informa-
tion about fluxes. Furthermore, the time variations in fluxes
themselves (such as the response to changes in photosynthet-
ically active radiation forced by changing cloudiness) may

allow the roles of particular parameters to be probed, even
though model errors are strongly correlated in time (Cheval-
lier et al., 2012). The major dampener on our optimism is the
inherent difference in scales implicit in the two approaches.
CCDAS systems such as Rayner et al. (2005) constrain a
small number of parameters (57 in that case). These mod-
ulate, via the model dynamics, structures in flux and hence
concentration. For the majority of parameters their spatial
impact extends across the coverage of a particular plant func-
tional type (PFT). Other parameters have a global impact
since they apply to plants or soils everywhere. The main im-
pact of continuous observations in direct flux inversions has
been a refinement of scale, an advantage that may not ap-
ply in a CCDAS system. However, as noted by Rayner et
al. (2005) and Koffi et al. (2012), there are still many uncon-
strained parameters in CCDAS systems when using monthly
atmospheric CO2 concentration, so it is worth asking the
question whether higher resolution of such data may help to
constrain them better.

There is another major dataset available on the terres-
trial carbon cycle in the form of continuous measurements
of fluxes at very small scales (e.g., Foken and Wichura,
1996; Aubinet et al., 2000; Baldocchi, 2003; Rebmann et al.,
2005; Reichstein et al., 2005; Papale et al., 2006; Lasslop et
al., 2010; Kuppel et al., 2012; and references therein). Re-
cently, Williams et al. (2009) reviewed the use of the interna-
tional flux measurement network FLUXNET data (Baldoc-
chi, 2003) for improving land surface models. These have
afforded much information on processes affecting the terres-
trial carbon-cycle (e.g., Ciais et al., 2005; Piao et al., 2008).
They have been used in various assimilation efforts (e.g.,
Wang et al., 2001; Knorr and Kattge, 2005; Medvigy et al.,
2009). They have also been tested in a simplified assimila-
tion system (Kaminski et al., 2002) where they showed a
large reduction in parameter uncertainty. Knorr et al. (2010)
used satellite-derived fAPAR at site level alone and Kato et
al. (2013) combined it with eddy-correlation flux measure-
ments of latent heat in a full CCDAS. Kaminski et al. (2012b)
also used the full CCDAS to assess and analyze the constraint
of observational networks composed of continuous flux mea-
surements, and daily and monthly atmospheric concentration
measurements. In particular they demonstrated, within the
model framework, the power of a small flux network to ob-
serve a region, provided that the network is complete, i.e.,
that it covers every plant functional type (PFT). They also
demonstrated the complementarity of atmospheric networks
to flux networks, in particular incomplete ones. That study
did not, however, exploit the full power of the biosphere
model since it did not consider at least the day-to-day varia-
tions of flux in response to radiation and temperature. These
variations are likely to reveal different sensitivities of fluxes
and concentrations that can provide additional constraints on
carbon model parameters. Thus, our tasks here are to use
daily forcing data to assess, within a theoretical framework,
the power of continuous concentration and flux observations
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to constrain model parameters; and, if the constraint is useful,
to understand the sources of the information in the measure-
ments and make recommendations for their use. For the flux
measurements, we use as a proxy the generated fluxes of the
Biosphere Energy Transfer HYdrology (BETHY) model.

To achieve the above mentioned objectives, we use the
CCDAS (Rayner et al., 2005) built around the biosphere
model BETHY (Biosphere Energy Transfer HYdrology) and
some functionalities of the general Bayesian optimization
PYthon VARiational (PYVAR; Chevallier et al., 2005) sys-
tem. The outline of the paper is as follows: we describe in
Sect. 2 the main pieces that compose both CCDAS and the
PYVAR assimilation system. The formalism used to com-
pute the uncertainty in parameters of the biosphere model
is defined in Sect. 3. The data are described in Sect. 4. The
different model/data configurations used to achieve the ob-
jectives of the paper are detailed in Sect. 5. The constraint
of the parameters available from (i) high frequency observa-
tions of CO2 concentrations, (ii) BETHY daily flux integrals,
and (iii) BETHY hourly generated fluxes as a proxy of flux
measurements are given in Sect. 6. In Sect. 7, results are dis-
cussed. Finally, conclusions are presented in Sect. 8.

2 Assimilation systems

In this section, we describe both the CCDAS and PYVAR
system and how their elements are combined to fulfil the ob-
jectives of the paper.

2.1 Overall methodology

Our task is to quantify the information content of various
sources of measurements that can be ingested by an assimila-
tion system. We quantify the information by the reduction in
the uncertainty of model parameters, operationally defined
using the ratio of posterior and prior standard deviations.
Under the linear Gaussian assumption, the posterior uncer-
tainty is dependent only on the prior uncertainty, the assumed
uncertainty for the measurements, and the sensitivity of the
simulated observations to changes in the parameter (usually
called the Jacobian). Thus, the main technical task described
below is the calculation of these Jacobians for various classes
of observations. A flow chart of the methodology is given in
Fig. 1 and described in detail in following sections.

2.2 CCDAS

CCDAS combines the biosphere model BETHY (Knorr,
2000) and an atmospheric transport model. We use the ver-
sion of Koffi et al. (2012), which includes the atmospheric
model TM3 (Heimann and Körner, 2003). The process pa-
rameters of BETHY we use are summarized in Table 1. Note
that Kaminski et al. (2012b) used the same process param-
eters, but different values, taken from an optimization by
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Fig. 1: Methodology used to calculate the uncertainties in the process parameters of BETHY 3 

when using different temporal resolutions of meteorological and phenological data to compute 4 

the biospheric fluxes, as well as two different types of data (i.e., CO2 concentration and flux) 5 

to constrain these parameters. The different settings (i.e., MTM3, PYV, PYVall, MPYV, MMPYV, 6 

DMPYV, DDPYV, BETHY-PFT, BETHY-FLUXNET) used to investigate the sensitivities of 7 

the process parameters to i) the temporal resolutions of both meteorological and phenological 8 

data and the modeled BETHY fluxes (i.e., NPP and NEP) and ii) the type of measurements 9 

are described in Section 5. m stands for the simulated CO2 concentration, as used in the 10 

equation (1). The uncertainties in the observations are characterized by the standard deviation 11 

σ. The acronyms CCDAS and PYVAR are described in Section 2. Note that for the sake of 12 

Fig. 1. Methodology used to calculate the uncertainties in the pro-
cess parameters of BETHY when using different temporal resolu-
tions of meteorological and phenological data to compute the bio-
spheric fluxes, as well as two different types of data (i.e., CO2 con-
centration and flux) to constrain these parameters. Flow chart shows
the different settings (i.e.,MTM3, PYV, PYVall, MPYV, MMPYV,
DMPYV, DDPYV, BETHY-PFT, BETHY-FLUXNET) used to in-
vestigate the sensitivities of the process parameters to (i) the tem-
poral resolutions of both meteorological and phenological data and
the modeled BETHY fluxes (i.e., NPP and NEP), and (ii) the type
of measurements, as described in Sect. 5.m stands for the simu-
lated CO2 concentration, as used in the Eq. (1). The uncertainties
in the observations are characterized by the standard deviationσ .
The acronyms CCDAS and PYVAR are described in Sect. 2. Note
that for the sake of clarity, the transport model TM3 is not put in the
block of CCDAS, as described in Sect. 2.2.

Scholze et al. (2007) against a different observational net-
work and with a different transport model.

BETHY is a process-based model of the terrestrial bio-
sphere that simulates carbon assimilation and plant and soil
respiration, embedded within a full energy and water bal-
ance (Knorr, 2000). BETHY uses 13 plant functional types
(PFTs; see Fig. 2). The base temporal resolution of BETHY
simulation is 1 h, but one day is used for variables related to
soil respiration. A grid cell can contain up to three different
PFTs, with the amount specified by their fractional coverage.
A complete description of BETHY for the assimilation of
CO2 concentrations is given in Rayner et al. (2005) and the
version used in this study is detailed in Koffi et al. (2012).
Therefore, we briefly define the BETHY fluxes together with
their relevant parameters, which we use later. BETHY com-
putes the gross primary productivity (GPP) using the param-
eterizations of Farquhar et al. (1980) and Collatz et al. (1992)
for C3 and C4 plants, respectively. The net primary produc-
tivity (NPP) is computed as a gross uptake of CO2 by the
leaves (GPP) minus total autotrophic respiration, which in-
cludes plant maintenance respiration and growth respiration.
Then, the net CO2 flux between the atmosphere and the net
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Table 1.Controlling parameters of the biosphere model BETHY and their prior values: Units areVmax, µmol(CO2) m−2 s−1; aJ,T activation
parameter (C−1); a0,T µmol(CO2) mol(air)−1(C)−1; activation energiesE, J mol−1; andτf , years; all other parameters are unitless and

correspond to values at 25◦C. KC is multiplied by 106. These parameters have been optimized by Koffi et al. (2012) and widely described
in Rayner et al. (2005). Gaussian PDFs are used for the 14 parameters marked with the asterisk symbol, i.e.,a0,T , aJ,V (PFT dependent,
thus 13 parameters); for all others a log-normal PDF is assumed. The definitions of the acronyms of the PFTs are given in the caption of
Fig. 2. The parameters related to gross primary productivity (GPP) areVmax, aJ,V , EVmax, EKo, EKc, Ek , αq , αi , Kc, Ko, andaγ T ); those
related to the net primary productivity NPP arefRleaf, fRgrowth, andERd. Note thatfRleaf (leaf respiration) andfRgrowth (growth respiration)
are also linked to the autotrophic respiration. The parameters relevant for the net flux NEP areβ, Q10f, Q10s, τf , κ, andfs, among which
Q10f, Q10s, τf , κ, andfs parameters are also linked to the heterotrophic respiration.

Parameters Prior Prior Parameters Prior Prior
values uncertainty values uncertainty

Vmax (TrEv) 60. 12. Q10f 1.5 1.5
Vmax (TrDec) 90. 18. Q10s 1.5 1.5
Vmax (TmpEv) 41. 8.2 τf 1.5 3.0
Vmax (TmpDec) 35. 7. κ 1. 10.0
Vmax (EvCn) 29. 5.8 fs 0.2 2.0
Vmax (DecCn) 53. 10.6 ERd 45 000. 2250.0
Vmax (EvShr) 52. 10.4 EVmax 58 520. 2926.0
Vmax (DecShr) 160. 32. EKo 35 948. 1797.4
Vmax (C3Gr) 42. 8.4 EKc 59 356. 2967.8
Vmax (C4Gr) 8. 1.6 Ek 50 967. 2548.35
Vmax (Tund) 20. 4. αq 0.28 0.014
Vmax (Wetl) 20. 4. αi 0.04 0.002
Vmax (Crop) 117. 23.4 Kc 460. 23.
aJ,V (TrEv)* 1.96 0.098 Ko 330. 16.5
aJ,V (TrDec)* 1.99 0.0995 a0,T * 1.7 0.085
aJ,V (TmpEv)* 2.00 0.1 β (TrEv) 1 0.25
aJ,V (TmpDec)* 2.00 0.1 β (TrDec) 1 0.25
aJ,V (EvCn)* 1.79 0.0895 β (TmpEv) 1 0.25
aJ,V (DecCn)* 1.79 0.0895 β (TmpDec) 1 0.25
aJ,V (EvShr)* 1.96 0.098 β (EvCn) 1 0.25
aJ,V (DecShr)* 1.66 0.083 β (DecCn) 1 0.25
aJ,V (C3Gr)* 1.90 0.095 β (EvShr) 1 0.25
aJ,V (C4Gr)* 140. 28. β (DecShr) 1 0.25
aJ,V (Tund)* 1.85 0.0925 β (C3Gr) 1 0.25
aJ,V (Wetl)* 1.85 0.0925 β (C4Gr) 1 0.25
aJ,V (Crop)* 1.88 0.094 β (Tund) 1 0.25
fRleaf 0.4 0.1 β (Welt) 1 0.25
fRgrowth 1.25 0.0625 β (crop) 1 0.25

ecosystem productivity (NEP) is derived using conventional
formulations for the time variation of soil respiration and a
parameterization of storage efficiency to set the overall mag-
nitude (Rayner et al., 2005; see Eqs. 17–22). 56 parameters
affect the photosynthesis scheme and both the autotrophic
and heterotrophic respiration schemes. These parameters are
of two kinds: 3 parameters are PFT-specific (i.e., 39 param-
eters) and 17 are global parameters. There are 35, 3, and 18
parameters related to GPP, autotrophic respiration, and het-
erotrophic respiration, respectively (Table 1).

2.3 The PYVAR system

The PYVAR system (Chevallier et al., 2005) is a generic
Bayesian optimization system used for global and regional

inversions of tracer fluxes. It can be interfaced to several at-
mospheric transport models. In this case we use the global at-
mospheric transport model LMDz (Hourdin et al., 2006). PY-
VAR can ingest various sources of measurements such as sur-
face flask samples and continuous CO2 concentrations (e.g.,
Chevallier et al., 2010) and satellite CO2 data (Chevallier at
al., 2007). The PYVAR system also allows for interpolating
simulated concentrations to the locations of the stations of
the observing network.

2.4 Combining CCDAS and PYVAR

In our case we do not use the optimization capabilities of
PYVAR. For our error analysis, we require the sensitivity of
the observations to the model parameters. For concentration
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Fig. 2: The networks of CO2 concentration measurements together with the spatial coverage 3 

of the 13 Plant Functional Types (PFT) of BETHY with zoom over Europe (bottom) are 4 

shown. In each BETHY grid cell, only the dominant PFT is shown. Circles are for the 5 

network stations with monthly CO2 concentration used by both TM3 (used in MTM3) and 6 

LMDz (used in MPYV, PYV, and PYVall) models. Squares are for stations with high frequency 7 

CO2 data that are used only in LMDz (used in PYV and PYVall).  Big dots are stations 8 

measuring additional monthly data used in LMDz (used in PYVall). For details on the 9 

definition of the different settings mentioned above, see Section 5.1. The labels of the PFTs 10 

are: Crop: Crop plant, Wetl: Swamp vegetation, Tund: Tundra, C4Gr: C4 grass, C3Gr: C3 11 
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16 

Fig. 2. The networks of CO2 concentration measurements together
with the spatial coverage of the 13 plant functional types (PFT)
of BETHY with zoom over Europe (bottom) are shown. In each
BETHY grid cell, only the dominant PFT is shown. Circles are
the network stations with monthly CO2 concentration used by both
TM3 (used inMTM3) and LMDz (used inMPYV, PYV, and PYVall)

models. Squares are stations with high frequency CO2 data that are
used only in LMDz (used in PYV and PYVall). Big dots are sta-
tions measuring additional monthly data used in LMDz (used in
PYVall). For details on the definition of the different settings men-
tioned above, see Sect. 5.1. The label definitions of the PFTs are
Crop – crop plant, Wetl – swamp vegetation, Tund – tundra, C4Gr
– C4 grass, C3Gr – C3 grass, DecShr – deciduous shrub, EvShr –
evergreen shrub, DecCn – deciduous coniferous tree, EvCn – ever-
green coniferous tree, TmpDec – temperate broadleaved deciduous
tree, TmpEv – temperate broadleaved evergreen tree, TrDec: trop-
ical broadleaved deciduous tree, TrEv – tropical broadleaved ever-
green tree.

observations, we obtain these by first calculating the sensi-
tivity of NEP with respect to parameters, then transporting
these sensitivities with LMDz via the PYVAR system (see
Fig. 1 and Sect. 3.1 for details on the formalism).

3 Computation of uncertainty

The formalism used to calculate the uncertainties in the pa-
rameters is first defined. Then, the methods used to quantify
the sensitivity of the parameters to observations from both
CO2 concentration and flux measurement networks are de-
scribed.

3.1 CO2 concentration network

In this study, we investigate the performance of existing or
potential measurement networks. To compute the uncertainty
in BETHY parameters with such networks, we apply the net-
work design approach described by Kaminski and Rayner
(2008) and demonstrated by Kaminski et al. (2010, 2012b):
in brief, the parameters we use were optimized by using a
Bayesian inference scheme (Enting, 2002; Tarantola, 2005).
This inference scheme minimizes a cost functionJ (x) rep-
resenting the negative log likelihood function.J (x) includes
contributions from the model–observation mismatch and the
departure of parameter values from their prior estimates and
is defined as follows:

J (x) =
1

2

[
n∑

i=1

1

(σ (di))
2 (mi − di)

2 (1)

+(x − x0)
T C(x0)

−1 (x − x0)
]

,

wherex is the parameter vector to be optimized with prior
valuex0 with uncertainty covarianceC(x0). n is the num-
ber of observations.di are the observed CO2 concentrations
and mi the corresponding values simulated by the trans-
port model. The standard deviationσ(di) is derived from
the quadratic summed uncertainty (here variance) in the ter-
restrial model (here BETHY), the transport model, and con-
centration observations. The parameter errors (or uncertain-
ties) as well as the observation errors are uncorrelated in our
formulation. We calculate the second derivative or Hessian
(H) of the cost function with respect to the parameters (e.g.,
Kaminski and Rayner, 2008; Kaminski et al., 2010). We con-
sider only the contribution of observations to the HessianH ,
referred to asHm, and given by

Hm =

n∑
i=1

1

σ(di)2

[(
dmi

dx

)2

+ (mi − di)

(
d2mi

dx2

)]
, (2)

where dm/dx is the first derivative (Jacobian) of the simu-
lated CO2 concentration with respect to the parametersx. If
m is linear, its second derivative is 0 and we have a simple
expression forHm in terms of the Jacobian. Under these cir-
cumstances the covariance (i.e., (dx/dm)2) is the inverseHm

and we see that (as noted by Hardt and Scherbaum, 1994)
neither the values of the prior parameters nor the observa-
tions appear directly inHm (Eq. 2). For a nonlinear model
such as BETHY, the sensitivities are, of course, dependent
on the value of the optimized parameters.
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The total derivative dm/dx can be written as a function of
partial derivatives as follows:

dm

dx
=

∂m

∂f
·
∂f

∂x
= M

∂f

∂x
, (3)

wheref stands for NEP.M represents the derivative of CO2
concentrationm with respect tof (i.e.,∂m/∂f ). ∂f/∂x rep-
resents the sensitivity off with respect to the parameterx.

The Jacobian matrix dm/dx is computed by chaining the
tangent linear (TL) code of BETHY and the TL code of
LMDz via the PYVAR system. The TL code of BETHY is
generated by the automatic differentiation tool Transforma-
tion of Algorithms in Fortran (TAF; Giering and Kaminski,
1998; Kaminski et al., 2003), while the TL code of LMDz
has been coded manually by Chevallier et al. (2005). We
first compute the quantities∂f/∂x using the TL code of CC-
DAS and map them onto the LMDz grid. Then, the TL code
of LMDz is used to transport these sensitivities to derive
dm/dx, as given in (Eq. 3).

3.2 The Flux measurement network

We note again that this is a synthetic data study where, fol-
lowing our assumption of linearity (as shown in the former
equation by replacingm by f ), we can calculate the con-
straint on the parameters without the use of actual data. We
do need reasonable values for the parameters since these af-
fect the linearization and, as noted earlier, these are taken
from the optimized values of Koffi et al. (2012). In fact,
around the optimized values, the assumption of linearization
is reasonable.

We use the same linearity assumptions as those used for
concentrations so that the critical quantity becomes the Ja-
cobian of the fluxes with respect to parameters (i.e.,∂f/∂x).
These are also calculated by the tangent linear mode of TAF
and here we have no need of an atmospheric transport model.

3.3 Uncertainty reduction

The contribution of the observations to the Hessian, i.e.,Hm

(Eq. 2; with the second derivative equals zero), is used to
approximate the inverse of the covariance matrix that quan-
tifies the uncertainty ranges on the parameters. We use the
standard deviation obtained from the inverse ofHm (Eq. 2)
to characterize the uncertainty in the parameters. Following,
e.g., Kaminski et al. (1999), we quantify the reduction of the
uncertainty (hereafterUR) in a selected parameter from its
prior as follows:

UR(%) = 100·

(
1−

σx

σx0

)
, (4)

whereσx (derived from Eqs. 2–3) andσx0 (Table 1) are the
posterior and prior uncertainties in the parameterx, respec-
tively.

4 Data

4.1 CCDAS

The system needs both forcing data to drive BETHY and
atmospheric CO2 concentration data for the assimilation.
BETHY is driven by observed monthly climate and radia-
tion data over the period 1979–2001 (Nijssen et al., 2001). In
addition, daily values of such data are available for the period
1996–2006. For both the photosynthesis and soil schemes in
BETHY, the phenological data, i.e., leaf area index (LAI) and
plant available soil moistureω (as a fraction of maximum
soil water capacity) are also available for the two above men-
tioned periods. We assumed atmospheric concentration mea-
surements are available at the 68 stations used by Koffi et
al. (2012).

4.1.1 BETHY fluxes

In the standard setup of CCDAS, BETHY is run such that it
simulates hourly GPP and NPP for one representative day
in a month. In this study, in addition to the standard run,
we adapt the BETHY output to calculate for each day of
the month. We use hourly sensitivities of modeled quantities
to BETHY model parameters for one representative day in
a month. To quantify the contribution of hourly flux mea-
surements to the reduction of uncertainties in parameters,
we used hourly NPPs as a proxy of NEPs. The storage ef-
ficiency scheme is not appropriate for calculating hourly het-
erotrophic respiration. We assume that the magnitude of the
diurnal cycle (noted by Knorr and Kattge (2005) as the key
observable from hourly flux measurements) is driven by NPP,
not heterotrophic respiration. Hence, when considering the
flux measurement network, only the thirty-eight parameters
relevant for NPP are first analyzed (Table 1). There is no clear
algorithm for assigning uncertainties to flux data in CCDAS
since it varies widely with conditions (Hagen et al., 2006)
and depends on the capability of the model itself (Cheval-
lier et al., 2012). However, random flux measurement uncer-
tainty, expressed as a standard deviation, was found to vary
with the flux magnitude (Richardson and Hollinger, 2005;
Richardson et al., 2008; Laslop et al., 2008). The authors
showed that the error distribution in NEE (net ecosystem ex-
change) is leptokurtic (i.e., the peaks result from the data be-
ing highly concentrated around the mean) and it is described
better by a double exponential (Laplace) than a Gaussian dis-
tribution. However, when grouping the data according to the
flux magnitude, Lasslop et al. (2008) found that high flux
magnitudes follow a Gaussian distribution and that the lep-
tokurtic error distribution found for all the data is largely due
to low flux magnitudes. In addition, the parameters in the er-
ror distributions are dependent on the observational site. In
this study, we therefore choose a conservative value of 25 %
of the hourly observed quantity. Note that this will trans-
late into much larger percentage errors in diurnal and annual
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sums (where fluxes partially cancel but errors do not). Thus,
the uncertainties in BETHY hourly NPP observations are as-
sumed to be equal to 25 % of the corresponding NPP values.
To test the sensitivity of flux measurements to the parame-
ters strongly related to NEP, we use a “pseudo” hourly NEP
computed by dividing the daily heterotrophic respiration into
24 equal-sized hourly fluxes and subtract these fluxes from
the hourly NPP, as performed in Kaminski et al. (2012b). As
for the NPP observations, we assume that the measurement
uncertainties in these NEP are equal to 25 % of the corre-
sponding NPP values. When NPP equals zero, we consider
larger uncertainties to be 25 % of the maximum of the NPP,
which is obtained from all the grid cells of BETHY and over
the selected period.

4.1.2 Prior values of the parameters and uncertainties

The uncertainties in prior parameters of BETHY are those
of Koffi et al. (2012). For bio-physical parameters (e.g., the
carboxylation capacity of the leaf,Vmax); the prior values are
taken from literature summarized in Knorr (2000). For other
parameters such as the beta storage efficiency (β) relevant
for carbon balance NEP, the uncertainties are assumed to be
large since there is little knowledge of these parameters (Ta-
ble 1). Finally, prior information not only includes results of
previous studies but also knowledge of the physical limits
of the parameters. For example, many parameters are physi-
cally limited to positive values. A log-normal PDF was con-
sidered for these bounded parameters while a Gaussian PDF
was applied to those parameters that do not have such critical
threshold values (marked by an asterisk in Table 1; Koffi et
al., 2012).

4.1.3 Transport model and CO2 concentrations

For the tracer transport, we use the precomputed transport
Jacobians of the TM3 model (Heimann and Körner, 2003).
TM3 has a resolution of 4 degrees latitude by 5 degrees lon-
gitude with 19 levels. It uses NCEP (National Centers for
Environmental Prediction) meteorological fields as input. We
use the monthly averaged precomputed transport Jacobians
of Roedenbeck et al. (2003) over the 1979–2001 period with
meteorological forcing that varied each year. The error in the
TM3 model is considered in the observation error budget, as
given hereafter.

For CCDAS, we use monthly mean atmospheric CO2
concentration data from 68 sites from the GLOBALVIEW
database [GLOBALVIEW-CO2, 2004) and some additional
CO2 measurement sites for which the TM3 Jacobians are
available. The uncertainties in these data include those from
models (BETHY and transport) and measurement errors and
range from 0.50 ppm to about 5.0 ppm (see Table A2 in the
Supplement), as described in Koffi et al. (2012).

4.2 PYVAR

The PYVAR system allows CO2 fluxes to be estimated at
relatively high temporal resolution (up to 8 three-hour time
windows per day). The fluxes and CO2 concentrations are
linked in the PYVAR system by the LMDz model (Hourdin
et al., 2006). LMDz has 19 levels and a horizontal resolution
of 2.5◦ in latitude and 3.75◦ in longitude. LMDZ is an on-line
model, i.e., it generates its dynamics internally along with
tracer transport. To ensure realistic simulation of actual mete-
orological conditions the model is nudged towards ECMWF
(European Centre for Medium-Range Weather Forecasts) re-
analyses. We then archive mass fluxes and run the model of-
fline. The ECMWF reanalyses for 1989–2006 are used.

To represent the CO2 concentration measurement network,
we use the same data as Chevallier et al. (2010). These data
come from three large data bases: The NOAA Earth Sys-
tem Laboratory (ESRL) archive, the CarboEurope IP project,
and the World Data Centre for Greenhouse Gases (WD-
CGG) of the World Meteorological Organization (WMO)
Global Atmospheric Watch Programme. The three databases
include both in situ measurements made by automated quasi-
continuous analyzers and air samples collected in flasks and
later analyzed at central facilities. The data treatments are
fully discussed in Chevallier et al. (2010). Data collected
from up to 104 stations are considered (see Fig. 2 for loca-
tions of the stations). The errors in the LMDz model are in-
cluded in the observational error following Tarantola (2005).
The treatment of these errors follows that of Chevallier et
al. (2010). Values range from 0.37 ppm to about 30 ppm, de-
pending on the temporal resolution of the observations (see
Table A2 in the Supplement). The large values for some ob-
servations compensate for the absence of explicit correla-
tions in the assigned transport model errors for temporally
dense data. There is also a contribution from model error in
BETHY. For concentrations we assume this is small com-
pared to transport error while for fluxes we treat it by as-
signing errors of 25 %, much larger than the observational
error (see Sect. 4.1.1). Sensitivity studies for the uncertainty
in concentrations showed little sensitivity of most posterior
parameter values to increasing the observational error in con-
centrations by 2 ppm.

4.3 Combination of CCDAS and PYVAR data

CCDAS provides monthly or daily NEP and their sensitivi-
ties with respect to BETHY parameters to the PYVAR sys-
tem (see Fig. 1). To use high frequency observations of CO2
concentrations, PYVAR divides the day into 8 three-hour
time windows in which the flux is constant. When using
monthly fluxes from CCDAS within PYVAR, the value of
the flux for a month is considered representative for the days
of the month and for each of the 8 time windows of a day.
For daily NEP, the value of the flux for a day is considered
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Table 2.Model/data configurations for CO2 concentration networks are shown. For MTM3, MPYV, PYV, and PYVall, the period of the study
is 1989–2001. For the configurations MMPYV, DMPYV, and DDPYV, we consider single years over the 1998–2005 period. The minimum
and maximum numbers of stations derived for each year over this 1998–2005 period are given.

Model/data Temporal resolutions of forcing Temporal resolutions of Temporal resolutions of Number of
configurations data (meteo and pheno) for BETHYinferred BETHY fluxes CO2 concentrations stations

Monthly Daily Monthly Daily Monthly Continuous

MTM3 x x x 62
MPYV x x x 62
PYV x x x x 62
PYVall x x x x 104
MMPYV x x x x 72–88
DMPYV x x x x 72–88
DDPYV x x x x 72–88

representative for each of the 8 time windows of PYVAR.
The used Jacobians correspond to full-day averages.

5 Experimental setup

The different configurations of model/data used to study the
sensitivity of the parameters to (i) high frequency observa-
tions of CO2 concentrations and (ii) temporal resolution of
meteorological and phenological data used to force BETHY
are first defined. Then, the configurations relevant for flux
measurement network are given.

5.1 Configurations using observing network of CO2
concentration

To test the sensitivity of the parameters to high frequency
CO2 concentration data, we first use BETHY monthly NEP
over the period 1989–2001 to compute various versions of
the Jacobian relating parameters to atmospheric concentra-
tions (see Eq. 3). The following configurations, which are
summarized in Table 2 and Fig. 1, are considered:

– MTM3: monthly CO2 observations at 62 sites (i.e., the
number of stations that are common for both CCDAS
and PYVAR) over the period of 1989–2001 by using
Jacobians of TM3.

– PYV: the PYVAR system is used for the 62 com-
mon sites and for the period 1989–2001. Only the
monthly NEP from CCDAS is considered. The treat-
ment of these fluxes in PYVAR is given in Sect. 4.3.
We use continuous CO2 concentrations when available
at these stations. For noncontinuous sites, the data fre-
quency is weekly or biweekly.

– MPYV: the results obtained by averaging PYV data
monthly and for which data fromMTM3 exist. This is
the closest comparable case toMTM3.

– PYVall: as for PYV configuration, but for all the sta-
tions used in Chevallier et al. (2010). In total, we con-
sider 104 stations over the period 1989–2001.

The differences betweenMTM3 andMPYV configurations
give information on the sensitivity of parameters to the trans-
port models whileMPYV, PYV, and PYVall give the sensitiv-
ity of the parameters to number, frequency, and type of obser-
vations. The observing networks of CO2 concentrations for
the configurations defined above are shown in Fig. 2.

Here we summarize the characteristics of flask and contin-
uous measurements for the stations used for CO2 concentra-
tions:

– 77 flask measurements, among which 62 are com-
mon between CCDAS (i.e.,MTM3) and PYVAR (i.e.,
MPYV). The remaining 15 sites are only for PYVAR
(PYV and PYVall). We used full-day averages of flask
measurements. The uncertainties in these measure-
ments, including model errors, are summarized in Ta-
ble A2 of the Supplement.

– 27 sites with continuous measurements used only by
PYVAR, among which 9 sites also have flask measure-
ments. We averaged data from continuous sites into 3 h
windows in the PYVAR system.

– The measurement uncertainties, which here represent
both the model and observation uncertainties, are pro-
vided in the supplementary material (Table A2) for all
the sites used in this study.

5.2 Configurations using daily fluxes

To test the sensitivity of the parameters to the temporal res-
olution of the meteorological and phenological data used
to force BETHY, and hence to the temporal resolution of
BETHY fluxes, we use the following configurations, which
are also summarized in Table 2 and Fig. 1:
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Table 3. Characteristics of the flux measurement networks are given. BETHY-PFT is a network composed of 13 pixels of BETHY with
dominant PFTs. The fractions of these PFTs are indicated. BETHY-FLUXNET is the network based on the stations of the international
FLUXNET network. The dominant PFTs of BETHY at these stations are indicated.

PFT acronym BETHY-PFT BETHY-FLUXNET

Fractions of coverage Number of pixels (or Maximum of the fractions of
of the dominant PFT stations) per PFT coverage of the dominant PFT

TrEv 0.9 14 0.9
TrDec 1.00 3 1.00
TmpEv 0.92 3 0.92
TmpDec 1.00 14 1.00
EvCn 1.00 18 1.00
DecCn 0.517 1 0.517
EvShr 1.00 2 1.00
DecShr 0.517 1 0.517
C3Gr 1.00 44 1.00
C4Gr 0.867 28 0.517
Tund 1.00 9 1.00
Wetl 1.00 1 0.867
Crop 1.00 35 1.00

– MMPYV: both monthly meteorological and phenolog-
ical data are used to force BETHY. The simulated
monthly fluxes by BETHY are considered.

– DMPYV: both daily meteorological and phenological
data are used to force BETHY. Daily fluxes are cal-
culated from BETHY, but monthly mean values from
these daily fluxes are considered. Comparison with
MMPYV tests the sensitivity to the assumption of a sin-
gle representative day made in BETHY.

– DDPYV: both daily meteorological and phenological
data are used to force BETHY. Daily fluxes computed
by BETHY are considered.

The differences between MMPYV and DMPYV give infor-
mation on the sensitivity of the parameters to the tempo-
ral resolution of the meteorological and phenological data.
The configurations MMPYV and DDPYV probe the sensitiv-
ity of the parameters to the temporal resolution of BETHY
fluxes. For these three configurations, all the available sta-
tions of the observing network of CO2 concentrations that
can be handled by the PYVAR system are used. Results of
MMPYV, DMPYV, and DDPYV are derived for several single
years drawn from the period 1996–2006.

5.3 Configurations using the flux measurement network

In our model, a flux measurement samples the flux over a
particular grid cell. The sensitivities of flux measurements to
the model parameters are computed as described in Sect. 3.2.
We design two configurations for two potential networks of
flux measurements. We use BETHY-generated hourly NPP
and NEP as a proxy of flux measurements (Fig. 1):

– BETHY-PFT: we use 13 sites that cover the 13 PFTs
of the BETHY model. The stations are selected on the
basis of the dominant PFTs of BETHY. Table 3 gives
the percentages of coverage of the 13 PFTs over their
corresponding BETHY grid cell (Fig. 3). Note that this
network is constructed similarly to the 9 PFT networks
over Europe used in Kaminski et al. (2012b), except
that Kaminski et al. (2012b) assigned 100 % coverage
of the dominant PFTs.

– BETHY-FLUXNET: we consider a network based on
both the international FLUXNET network (Baldocchi,
2003 and Papale et al., 2006; see the dedicated website
http://www.fluxnet.ornl.gov) and three BETHY PFTs.
We first consider the BETHY grid cells that cover at
least one site of the FLUXNET network. We obtain
a network with 172 BETHY pixels. For each of these
grid cells, we consider the dominant PFT. When doing
so, three PFTs of BETHY are missing. They are decid-
uous coniferous (DecCn), deciduous shrub (DecShr),
and swamp vegetation (Wetl). Kaminski et al. (2012b)
has shown that as soon as a PFT is left unsampled by
the flux network, it dominates the uncertainty in area-
integrated flux. Thus, we have added three hypotheti-
cal sites to get a network with 175 sites (or BETHY
grid cells) (Table 3). It is worth noting that some
PFTs of BETHY are overrepresented in the BETHY-
FLUXNET network (Table 3). For example, the C4
grass PFT is represented by 28 grid cells of BETHY
(or stations), while only 1 grid cell is used for swamp
vegetation (Wetl). Also, for some PFTs, the percent-
ages of coverage over their relevant BETHY pixels are
low (Table 3). The networks relevant to BETHY-PFT
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 3  Fig. 3.The networks of flux measurements we use (top) with a zoom
over Europe (bottom) are shown. Rectangle symbols are stations
of the network based on the 13 PFTs of BETHY (called BETHY-
PFT). Circles are locations of FLUXNET stations. The big dots
correspond to locations of 3 PFTs (6, 8, and 12) of BETHY used
to complete the FLUXNET stations. In total, there are 175 stations
(dot and circle symbols) representing our large flux measurement
network (i.e., BETHY-FLUXNET). See Fig. 2 for the definition of
the acronyms of the PFTs.

and BETHY-FLUXNET configurations are shown in
Fig. 3.

Since we use BETHY fluxes as a proxy of FLUXNET flux
measurements, we have compared BETHY hourly fluxes to
observed ones obtained from some selected FLUXNET sites
located around the world. Results show that BETHY fluxes
are in reasonably good agreement with the observations (see
the Supplement provided for this paper).

6 Results

6.1 Uncertainty reduction with high frequency and
continuous CO2 concentrations

Figure 4 shows the reduction of the uncertainties (UR) for the
56 studied parameters of BETHY (see Table 1 for the defi-
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Fig. 4. Uncertainty reduction (UR) for the 56 parameters of
BETHY. Results fromMTM3, MPYV, PYV, and PYVall configura-
tions that cover 1989–2001 period are shown. The number of obser-
vationsN for each configuration is indicated. The model/data con-
figurationsMTM3, MPYV, PYV, and PYVall are defined in Sect. 5.1
and Table 2. See Fig. 2 for the definition of the acronyms of the
PFTs and Table 1 for the prior values of the parameters.

nition of the parameters) when consideringMTM3, MPYV,
and PYV, and PYVall configurations (see Sect. 5.1). We
have 4236 pairs of observations for bothMTM3 andMPYV,
198 335 observations for PYV, and 441 873 observations for
PYVall, respectively. Overall, the uncertainty reductions in
the parameters are not significantly sensitive to the transport
models. SimilarUR values are found betweenMTM3 (TM3
model) andMPYV (LMDz model). The differences inUR be-
tweenMTM3 andMPYV are less than 25 % for 55 of the 56
parameters (Fig. 4). The largest difference (44 %) is obtained
for NEP parameterβ for the temperate evergreen forest (Tm-
pEv). We also investigated the differences betweenMTM3
andMPYV (not shown). We have run theMPYV setup with
the uncertainty from theMTM3 setup. On average, the un-
certainties assigned to the concentrations when usingMTM3
setup are 1.8 lower than those forMPYV (see Table A2 in
the Supplement). Compared to the defaultMPYV setup, this
increases the uncertainty reduction for all parameters.

As expected, the uncertainties in the parameters are more
strongly reduced as the number of observations increases but
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the reduction becomes relatively small between two large
sets of observations. As an example, forVmax of the tropical
evergreen forest,UR values are 59 % and 81 % when using
4326 (MPYV) and 198 335 (PYV) observations, respectively.
It is only 88 % from 441 873 observations. When consider-
ing the PYVall configuration (which represents the largest
number of observations used), the largest uncertainty reduc-
tions (> 90 %) are obtained for almost all the parameters re-
lated to carbon balance NEP (i.e.,β) and to soil respiration
(i.e., Q10f, Q10s, τf , κ, fs). The smallest reduction (75 %)
is found for theβ parameter relevant for swamp vegetation
(Wetl PFT). These results agree with those reported in Ziehn
et al. (2011), who investigated the sensitivity of the uncer-
tainty reductions in BETHY parameters to the spatial varia-
tions of the PFTs. The authors also found large uncertainty
reductions in the parameters, but less than the reductions ob-
tained when considering original PFTs.

For the PYVall configuration, the uncertainties inERd and
fR,leaf (i.e., leaf respiration) parameters relevant for NPP are
reduced by 60 % and 90 % from their prior values, respec-
tively (Fig. 4). Only a weak reduction is obtained for the pa-
rameterfR,growth relevant for the growth respiration of the
plant (about 40 %). Significant reductions (between 60 % and
90 %) are found for theVmax parameters, with the largest re-
duction being forVmax for temperate deciduous (TmpDec)
forest. The smallest reduction is again obtained for swamp
vegetation (i.e., Wetl PFT). We obtain relatively small uncer-
tainty reductions for the parametersaJ,V (< 15 %). Note that
aJ,V is the slope of the linear relationship between the maxi-
mum electron transport andVmax at 25◦C. The uncertainties
are also weakly reduced (< 40 %) for almost all the global
parameters relevant for photosynthesis (i.e.,EK0, EK , σi25,
K0). Among these global parameters, only the uncertainties
in both EVmax and αq parameters are significantly reduced
(about 60 %).

We find that uncertainty reduction saturates for large num-
bers of observations (not shown). As discussed in Kamin-
ski et al. (2012a, b), we can understand the saturation of
the information provided by observations by considering the
eigenvectors of the Hessian. These describe particular direc-
tions in parameter space; the related eigenvalues are a mea-
sure of the information content in that direction. Increasing
the number of observations may well improve the informa-
tion content in a particular direction but not necessarily con-
strain new directions in parameter space. Eventually the un-
certainty in a particular direction approaches zero and the
uncertainty in a parameter is determined by its projection
onto the subspace spanned by the well-constrained direc-
tions. With 56 parameters we have 56 available directions
in parameter space. An analysis of the eigenvalues for our
different cases shows the observations constrain at most 40
of these directions. Observing these directions better will not
provide much more information; only new types of obser-
vations will constrain the remaining directions. This is sup-
ported by research at smaller scales using ecosystem models
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Fig. 5.As for Fig. 4, but for the model/data configurations MMPYV,
DMPYV, DDPYV and for the year 2000. The number of observa-
tions for the year 2000 is 30 332 and this for each of the configura-
tions.

(e.g., Williams et al., 2009; Moore et al., 2008; Zobitz et al.,
2008; Richardson et al., 2010).

6.2 Uncertainty reduction with daily fluxes

Our initial hypothesis was that the response of daily fluxes
to variations in forcing would contain information about the
model parameters and would, in turn, be visible in daily mea-
surements of CO2 concentration. We investigate this using
the MMPYV, DMPYV, and DDPYV configurations. Figure 5
showsUR for the year 2000. The number of observations
used is 30 332. Overall,UR for all three cases are roughly
comparable. This surprising result comes despite the well-
documented capability of high-frequency observations to re-
solve details of flux distributions (Law et al., 2003). It raises
the question whether this is a fundamental limit or a func-
tion of the placement of current stations. Following Koffi et
al. (2012), we investigate this by calculating global fields of
the sensitivity of concentration to parameters rather than the
Jacobians at stations. We simulate the sensitivity of surface
CO2 concentrations to parameters by using the LMDz model.
We use the sensitivities of NEP with respect toVmax for trop-
ical evergreen and temperate deciduous forests, respectively.
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Fig. 6. Root mean square (RMS) deviation (ppm) between surface
sensitivities of CO2 concentration to parameter obtained from the
sensitivities of monthly and daily NEP of BETHY with respect
to the parametersVmax for tropical evergreen forest (TrEv) (left)
and temperate deciduous forest (TmpDec) (right) are shown, re-
spectively. Simulations are performed through the global transport
model LMDz. The values are annual means (see Sect. 6.2 for more
details).

Sensitivities from the cases MMPYV and DDPYV are consid-
ered. We run the transport model LMDZ for 3 yr using the
two NEP sensitivities obtained for year 2000 as inputs. We
then analyze the surface fields of the last year of LMDz sim-
ulations. The differences between the two simulations are
quantified by the root mean square difference (rmsd) com-
puted both in space and time (Fig. 6). For both cases, the dif-
ferences between the daily and monthly cases are restricted
to the regions of the relevant PFTs. Thus, the impact of con-
sidering the daily flux responses to these two parameters does
not travel far enough to be observed by the sparse network.

6.3 Interannual variability of uncertainties in
parameters

Figure 7 showsUR for the years 1998, 2000, 2001, 2003 and
2005. These years were chosen to represent the interannual
variability in the forcing. We do not find large differences in
uncertainty reductions (less than 19 %) between the different
years. The relatively small differences between the selected
years occur despite large differences in the density of obser-
vations. As an example, the year 1998 exhibits similar un-
certainty reductions as the year 2005 forVmax relevant for
the tropical evergreen forest (TrEv), but 2005 has about 2.4
times the number of observations of 1998 (Fig. 7), with mean
uncertainty 1.4 times as large.

6.4 Uncertainty reduction with flux measurements

Figure 8 showsUR values obtained when using NPP
flux measurements for the year 2000 and for the two

cases BETHY-PFT and BETHY-FLUXNET. We have 3744
and 50 400 observations for BETHY-PFT and BETHY-
FLUXNET, respectively. There are dramatic uncertainty re-
ductions for all the GPPVmax parameters and the parameters
fR,leaf andfR,growth relevant to NPP. Except for the tundra
PFT, BETHY-PFT produces uncertainty reductions inVmax
of more than 80 %. This is more effective than the DDPYV
case (i.e., CO2 concentration network with daily BETHY
fluxes). Note that the number of observations used, e.g., for
BETHY-PFT, is only 12 % of that of DDPYV. This confirms
the result of Kaminski et al. (2012b), who found uncer-
tainty reductions of over 99 % in simulated NEP and NPP
over Europe with only 9 flux sites. Consequently, these re-
sults demonstrate the potential of high frequency flux mea-
surements in reducing the uncertainties inVmax parameters.
When using a larger number of flux measurements allowed
by the BETHY-FLUXNET configuration, very large uncer-
tainty reductions are obtained for all the parametersVmax of
GPP and the three parameters of NPP (between 85 % and
98 %), as shown in Fig. 8.

In contrast to observations of CO2 concentrations, flux
data significantly constrains other parameters such as the
aJ,V (PFT dependent) and global parameters related to pho-
tosynthesis (i.e., to GPP). As expected, the constraint in-
creases with the number of measurements, henceUR for
BETHY-FLUXNET is highly variable. For the C4 plant,aJ,V

is not sensitive to flux measurements (Fig. 8). Indeed, we do
not find any difference between BETHY-PFT and BETHY-
FLUXNET configurations, but BETHY-FLUXNET uses 28
times the number of observations of BETHY-PFT. This is
due to the fact that the Jacobians are close to zero for this pa-
rameter.EVmax, which appears in the descriptions of both C3
and C4 photosynthesis, showsUR of 91 % while most pa-
rameters that affect C3 photosynthesis only yield 48–85 %.
For C4 vegetation, the parameterEk does not show any UR,
suggesting thatVmax limitation is not active.

As expected, eddy flux measurements allow us to greatly
reduce the uncertainties in the parameters related to the car-
bon balance NEP (i.e.,β) (Fig. 9). Moreover, with NEP mea-
surements, uncertainty reductions for someaJ,V parameters
related to photosynthesis become larger (e.g., C4 grass and
Wetl) (Figs. 7, 8, and 9).

As might be expected with the stronger constraint afforded
by flux measurements, combining flux and concentration
measurements does not improve much on the flux-only case
(Figs. 7, 8, and 9).

The data uncertainty in fluxes is dominated by model er-
ror. We have carried out a sensitivity study (not shown) in
which we used as uncertainties in NEP 75 % of their corre-
sponding NPP values (see Sect. 4.1.1 for detail on the un-
certainty assignment). In this case, the smaller flux network
BETHY-PFT still yielded reductions in parameter uncertain-
ties larger than with concentration measurements alone, but
here the differences were not so clear.
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Fig. 7. Uncertainty reductions (UR) for various years when using
daily meteorological and phenological data to force BETHY are
shown. BETHY modeled daily fluxes are considered to compute
the uncertainties (i.e., DDPYV configuration). The number of ob-
servationsN for each year is indicated. See Fig. 2 for the definition
of the acronyms of the PFTs and Table 1 for the prior values of the
parameters.

6.5 Sensitivities of observations to parameters

Finally, we have investigated the sensitivities of both the CO2
concentration (Eq. 3) and flux with respect to each of the 56
studied parameters (not shown). For CO2 concentrations, as
expected the largest sensitivities are found for parameters re-
lated to soil respiration and carbon balance NEP. The largest
sensitivity is found for the parameterfs, which describes the
fraction of decomposition from the short-lived litter pool that
goes to the long-lived soil carbon pool. The weakest sensi-
tivity is found for the parameterEk relevant for the PEP case
(i.e., the initial CO2 fixating enzyme in C4 plants). Concern-
ing the flux measurements (here NPP), the largest sensitivi-
ties are found for parameters relevant for NPP and some pa-
rametersVmax of GPP. The largest sensitivity is obtained for
the parameterfRleaf, the fraction of GPP used for the mainte-
nance respiration of the plant. Again, the weakest sensitivity
is for Ek. See Rayner et al. (2005) and Koffi et al. (2012)
for details of the parameters and the physical quantities they
affect.
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Fig. 8: Uncertainties reductions (UR) for the parameters of BETHY relevant to GPP (Vmax, 2 
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Fig. 8.Uncertainties reductions (UR) for the parameters of BETHY
relevant to GPP (Vmax, aJ,V , EVmax, EKo, EKc, Ek , αq , αi , Kc,
Ko, aγ T ) and NPP (fRleaf, fRgrowth, ERd) are shown. The parame-
ters are defined in Table 1. Results for the year 2000 and from the
network of CO2 concentration (i.e., CO2) derived from DDPYV
configuration (which uses daily fluxes from BETHY within the PY-
VAR system; see Sect. 5.1 for details) are shown. The model/data
configurations BETHY-PFT and BETHY-FLUXNET are defined in
Sect. 5.2 and Table 3. The number of observations used are 30 332
(CO2), 3744 (BETHY-PFT), and 50 400 (BETHY-FLUXNET). See
Fig. 2 for the definition of acronyms of the PFTs and Table 1 for the
prior values of the parameters.

7 Discussion

The above results raise two questions. Firstly, why are the
flux measurements so much more effective as a constraint
in the CCDAS? Atmospheric concentrations, in the inverse
method we use here, are themselves an observation of in-
tegrated flux. Yet they are far less effective as a constraint
on process parameters than the fluxes themselves. There are
two likely reasons for this, both to do with the integrating ac-
tion of atmospheric transport. Firstly, each concentration ob-
servation integrates information from many flux pixels. This
means they average out local variations in forcing that would
otherwise provide information on the response of processes.
This effect is reduced for seasonal and interannual forcing
where climate anomalies are usually spatially coherent but
we still lose much small-scale information. The other reason
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 6 

Fig. 9. As for Fig. 8, but considering NEP flux measurements and
then for all the 56 studied parameters of BETHY. See Fig. 2 for the
definition of the acronyms of the PFTs and Table 1 for the prior
values of the parameters.

has already been mentioned, the spatial confinement of sig-
nals from high-frequency flux responses. Part of this problem
may be addressed by spatially dense satellite measurements
of concentration (Kaminski et al., 2010).

The other point to be drawn from the study is the relative
value of flux and concentration measurements within a CC-
DAS. If our aim is limited to constraining parameters of bio-
sphere process models, our results alone would argue for a
substantial shift of resources from concentration to flux mea-
surements. Of course this is not the only purpose of atmo-
spheric measurements but it is an important one, contribut-
ing to the intensification of continental networks in the last
decade. A counterpoint to this conclusion is provided by the
recent study of Kaminski et al. (2012b). Using different met-
rics but similar techniques, they also showed a much greater
power of flux observations in reducing uncertainty of param-
eters in CCDAS and resultant calculated fluxes. Their results
were, however, highly sensitive to the assumed heterogeneity
of the biosphere. As soon as a PFT was left unsampled by the
flux network it dominated the uncertainty in area-integrated
flux. Since we can never be sure of the true process-level
heterogeneity, a combined observing strategy is clearly re-
quired.

The study showed large reductions of uncertainty for most
BETHY parameters. Throughout our process we noted the
dependence of this result on the magnitude of data uncertain-
ties we used and have therefore conducted sensitivity stud-
ies where possible to quantify this dependence. It is likely
that (unknown) correlations in the model errors significantly
dampen the real observation impact. However, model error
in BETHY is a contributor to uncertainties in both types of
observations, so an underestimate of this contribution will
affect both networks. It should therefore have less impact
on our conclusion that flux observations are a strong con-
straint compared to concentration observations. More im-
portant here is the conclusion from Ziehn et al. (2011) and
Kaminski et al. (2012b), who noted that increased complex-
ity (i.e., regionalization of the PFTs) of the biosphere de-
scription both reduced the impact of observations on param-
eter uncertainty but particularly reduced the impact of flux
observations.

This analysis is restricted to only two types of measure-
ments. Other data such as the fluorescence data from the
GOSAT satellite (Frankenberg et al., 2011), satellite-derived
fAPAR (Knorr et al., 2010; Kaminski et al., 2012a), and
leaf level observations (Ziehn et al., 2011) can be used as
additional data to constrain the parameters related to GPP
and NPP. Also, the inclusion of soil respiration observa-
tions should help in constraining the heterotrophic parame-
ters (Richardson et al., 2010).

8 Conclusions

We have studied the sensitivity of BETHY process parame-
ters using a carbon-cycle data assimilation system to choices
of atmospheric concentration network, high frequency terres-
trial fluxes, and the choice of flux measurement network. Our
conclusions can be summarized as follows:

– Observations of CO2 concentrations allow us to
strongly constrain the parameters relevant for net
flux NEP but less for gross fluxes such as GPP.
This problem is not greatly ameliorated by includ-
ing high-frequency observations of flux since the rele-
vant concentration signatures of high-frequency bio-
sphere responses are spatially confined to the con-
tinents, whereas most CO2 concentration monitoring
sites are located away from the continents and are
therefore missed by this signal.

– Flux measurements can help to better constrain most of
the parameters relevant for gross primary productivity
and net primary productivity.

Like Kaminski et al. (2012b), we suggest a combined use
of both CO2 concentrations and flux measurement networks
to foster constraining most of the parameters related to ter-
restrial fluxes.
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