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Abstract. The sensitivity of the process parameters of theuncertainties in the spatial description of ecosystem func-
Biosphere Energy Transfer HYdrology (BETHY) model to tions, we recommend a combined observing strategy.
choices of atmospheric concentration network, high fre-
quency terrestrial fluxes, and the choice of flux measurement
network is investigated by using a carbon cycle data assim-
ilation system. We use BETHY-generated fluxes as a proxyl Introduction
of flux measurements. Results show that monthly mean or
low-frequency observations of GQroncentration provide Uncertainties in the distribution of the carbon flux in the at-
strong constraints on parameters relevant for net flux (NEP)mosphere limit both the skill of predictive models and the
but only weak constraints for parameters controlling grossapplication of carbon accounting using measurements. Given
fluxes. The use of high-frequency @©@oncentration obser- the importance of this problem, various sources of mea-
vations, which has led to great refinement of spatial scales irsurements (including dedicated satellite missions) are avail-
inversions of net flux, adds little to the observing system inable and quite sophisticated systems have been built to use
the Carbon Cycle Data Assimilation System (CCDAS) casethem. There are two main approaches: the simplest are di-
This unexpected result is explained by the fact that the starect inversion systems in which atmospheric transport mod-
tions of the CQ concentration network we use are not well els and Bayesian estimation methods are used to infer surface
placed to measure such high frequency signals. Indeeg, COfluxes from atmospheric COconcentrations. These have
concentration sensitivities relevant for such high frequencybeen broadly used but their estimates vary widely due to dif-
fluxes are found to be largely confined in the vicinity of the ferences in setup, observational data, prior estimates of the
corresponding fluxes, and are therefore not well observedluxes and transport models (e.g., Gurney et al., 2002, 2004;
by background monitoring stations. In contrast, our resultsLaw et al., 2003; Baker et al., 2006; Rayner et al., 2008;
clearly show the potential of flux measurements to better conChevallier et al., 2010). A second approach uses a range of
strain the model parameters relevant for gross primary proobservations to constrain the possible trajectories of dynami-
ductivity (GPP) and net primary productivity (NPP). Given cal models of the carbon cycle. The process parameters of the
dynamical model are first constrained and then the optimized
model is used to predict the various quantities of interest. The
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uncertainties in the parameters of the dynamical model arallow the roles of particular parameters to be probed, even
projected forward into the output of the model constrained bythough model errors are strongly correlated in time (Cheval-
the observations. Because of the use of an explicit dynamilier et al., 2012). The major dampener on our optimism is the
cal carbon model, this approach is often termed carbon-cyclénherent difference in scales implicit in the two approaches.
data assimilation (analogous to data assimilation in numerCCDAS systems such as Rayner et al. (2005) constrain a
ical weather prediction). The trade-offs between these twosmall number of parameters (57 in that case). These mod-

approaches are discussed in Kaminski et al. (2002). ulate, via the model dynamics, structures in flux and hence
The Carbon Cycle Data Assimilation System (CCDAS) concentration. For the majority of parameters their spatial
used in the present work has two primary components: impact extends across the coverage of a particular plant func-

tional type (PFT). Other parameters have a global impact
since they apply to plants or soils everywhere. The main im-
pact of continuous observations in direct flux inversions has
been a refinement of scale, an advantage that may not ap-
ply in a CCDAS system. However, as noted by Rayner et
al. (2005) and Koffi et al. (2012), there are still many uncon-
to adjust a subset of the state variables, initial con-Strained parameters in CCDAS systems when using monthly

ditions and/or process parameters to reduce the misdimospheric C@ concentration, so it is worth asking the
match with observations. Usually any prior informa- quesuop whether higher resolution of such data may help to
tion on the variables which are adjusted are also takerPOnstrain them better. ,

into account (see Kaminski et al., 2002, 2003; Rayner There is another major dataset available on the terres-

et al.. 2005. and references therein for the underlyingtrial carbon cycle in the form of continuous measurements
methladolog'y). of fluxes at very small scales (e.g., Foken and Wichura,

1996; Aubinet et al., 2000; Baldocchi, 2003; Rebmann et al.,
The CCDAS can ingest many types of observations, e.g., at2005; Reichstein et al., 2005; Papale et al., 2006; Lasslop et
mospheric CQ@ (Rayner et al., 2005; Scholze et al., 2007; al., 2010; Kuppel et al., 2012; and references therein). Re-
Koffi et al., 2012), fAPAR (fraction of absorbed photosyn- cently, Williams et al. (2009) reviewed the use of the interna-
thetically active radiation) and atmospheric £@gether  tional flux measurement network FLUXNET data (Baldoc-
(Kaminski et al., 2012a), satellite-derived fAPAR at site level chi, 2003) for improving land surface models. These have
alone (Knorr et al., 2010) and its combination with eddy- afforded much information on processes affecting the terres-
correlation fluxes (Kato et al., 2013). It has proven difficult to trial carbon-cycle (e.g., Ciais et al., 2005; Piao et al., 2008).
assimilate multiple observations simultaneously, suggesting’hey have been used in various assimilation efforts (e.g.,
inconsistencies between the information in the data stream$Vang et al., 2001; Knorr and Kattge, 2005; Medvigy et al.,
and the model. To some extent this inconsistency is probably2009). They have also been tested in a simplified assimila-
due to limitations in state-of-the art models (Rayner, 2010).tion system (Kaminski et al., 2002) where they showed a
Models are, however, improving all the time, with recent large reduction in parameter uncertainty. Knorr et al. (2010)
success in transferring information from one site to anotherused satellite-derived fAPAR at site level alone and Kato et
(a precondition for general success) (Medvigy et al., 2009).al. (2013) combined it with eddy-correlation flux measure-
Thus, it is worth revisiting the constraint available from ob- ments of latent heat in a full CCDAS. Kaminski et al. (2012b)
servations beyond the monthly mean concentrations hithertalso used the full CCDAS to assess and analyze the constraint
used in global studies (Rayner et al., 2005; Koffi et al., 2012).of observational networks composed of continuous flux mea-
One motivation for such an exploration is recent advancesurements, and daily and monthly atmospheric concentration
in the use of high-frequency observations of £€ncen-  measurements. In particular they demonstrated, within the
tration in direct inversions. Law et al. (2003), Peylin et model framework, the power of a small flux network to ob-
al. (2005), Peters et al. (2007, 2010), Zupanski et al. (2007)serve a region, provided that the network is complete, i.e.,
Lauvaux et al. (2009a, b), and Carouge et al. (2010a, b) havéhat it covers every plant functional type (PFT). They also
shown that there is considerable information on the distribu-demonstrated the complementarity of atmospheric networks
tion of CO, sources and sinks retrievable from the time seriesto flux networks, in particular incomplete ones. That study
of concentrations. There are reasons for optimism and pesdid not, however, exploit the full power of the biosphere
simism when applying continuous observations to the con-model since it did not consider at least the day-to-day varia-
straint of model parameters (the CCDAS approach). On thdions of flux in response to radiation and temperature. These
positive side is the obvious analogy between the direct invervariations are likely to reveal different sensitivities of fluxes
sion and the CCDAS methods, which both rely on informa- and concentrations that can provide additional constraints on
tion about fluxes. Furthermore, the time variations in fluxescarbon model parameters. Thus, our tasks here are to use
themselves (such as the response to changes in photosynthetily forcing data to assess, within a theoretical framework,
ically active radiation forced by changing cloudiness) maythe power of continuous concentration and flux observations

i. A deterministic dynamical model that calculates the
evolution of both the biosphere and soil fluxes given
an initial condition, forcing and a set of process pa-
rameters of the model.

ii. An assimilation system that consists of an algorithm
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to constrain model parameters; and, if the constraint is useful,

Uncertainties in process parameters |

to understand the sources of the information in the measure- » e

ments and make recommendations for their use. For the flux ctany b €O, fluxes o

measurements, we use as a proxy the generated fluxes of th Jacobians dmidx Hourly Jacobians

Biosphere Energy Transfer HYdrology (BETHY) model. ,mﬂj';;d""d* o, LWt | | [EMPELR e pici)
To achieve the above mentioned objectives, we use the T BETHY-FLUXNET

CCDAS (Rayner et al., 2005) built around the biosphere EYVAR

model BETHY (Biosphere Energy Transfer HYdrology) and | seimsn sxdfeme: 2003) (Hourin e 2008

some functionalities of the general Bayesian optimization i R

PYthon VARIiational (PYVAR; Chevallier et al., 2005) sys- ,

tem. The outline of the paper is as follows: we describe in

CCDAS

Sect. 2 the main pieces that compose both CCDAS and the : E——
PYVAR assimilation system. The formalism used to com- sl il SRt T
pute the uncertainty in parameters of the biosphere mode| -eterclogical data y

is defined in Sect. 3. The data are described in Sect. 4. The
values and uncertainties

different model/data configurations used to achieve the ob-

jectives of the paper are detailed in Sect. 5. The constraintig. 1. Methodology used to calculate the uncertainties in the pro-
of the parameters available from (i) high frequency observacess parameters of BETHY when using different temporal resolu-
tions of CQ concentrations, (i) BETHY daily flux integrals, tions of meteorological and phenological data to compute the bio-
and (iii) BETHY hourly generated fluxes as a proxy of flux spheric fluxes, as well as two different types of data (i.e., Can-
measurements are given in Sect. 6. In Sect. 7, results are disentration and flux) to constrain these parameters. Flow chart shows

cussed. Finally, conclusions are presented in Sect. 8. the different settings (i.eMtm3z, PYV, PYVqi, Mpyy, MMpyy,
DMpyy, DDpyy, BETHY-PFT, BETHY-FLUXNET) used to in-

vestigate the sensitivities of the process parameters to (i) the tem-
o poral resolutions of both meteorological and phenological data and
2 Assimilation systems the modeled BETHY fluxes (i.e., NPP and NEP), and (ii) the type
of measurements, as described in SecinStands for the simu-
In this section, we describe both the CCDAS and PYVAR lated CQ concentration, as used in the Eq. (1). The uncertainties
system and how their elements are combined to fulfil the ob-in the observations are characterized by the standard deviation

jectives of the paper. The acronyms CCDAS and PYVAR are described in Sect. 2. Note
that for the sake of clarity, the transport model TM3 is not put in the
2.1 Overall methodology block of CCDAS, as described in Sect. 2.2.

Our task is to quantify the information content of various

sources of measurements that can be ingested by an assimil@cholze et al. (2007) against a different observational net-
tion system. We quantify the information by the reduction in work and with a different transport model.

the uncertainty of model parameters, operationally defined BETHY is a process-based model of the terrestrial bio-
using the ratio of posterior and prior standard deviations.sphere that simulates carbon assimilation and plant and soil
Under the linear Gaussian assumption, the posterior uncerespiration, embedded within a full energy and water bal-
tainty is dependent only on the prior uncertainty, the assumeeénce (Knorr, 2000). BETHY uses 13 plant functional types
uncertainty for the measurements, and the sensitivity of th§PFTs; see Fig. 2). The base temporal resolution of BETHY
simulated observations to changes in the parameter (usuallgimulation is 1 h, but one day is used for variables related to
called the Jacobian). Thus, the main technical task describedoil respiration. A grid cell can contain up to three different
below is the calculation of these Jacobians for various classeBFTs, with the amount specified by their fractional coverage.
of observations. A flow chart of the methodology is given in A complete description of BETHY for the assimilation of

Fig. 1 and described in detail in following sections. CO, concentrations is given in Rayner et al. (2005) and the
version used in this study is detailed in Koffi et al. (2012).
2.2 CCDAS Therefore, we briefly define the BETHY fluxes together with

their relevant parameters, which we use later. BETHY com-
CCDAS combines the biosphere model BETHY (Knorr, putes the gross primary productivity (GPP) using the param-
2000) and an atmospheric transport model. We use the vereterizations of Farquhar et al. (1980) and Collatz et al. (1992)
sion of Koffi et al. (2012), which includes the atmospheric for C3 and C4 plants, respectively. The net primary produc-
model TM3 (Heimann and Kdérner, 2003). The process pa-tivity (NPP) is computed as a gross uptake of Q4 the
rameters of BETHY we use are summarized in Table 1. Notdeaves (GPP) minus total autotrophic respiration, which in-
that Kaminski et al. (2012b) used the same process parantludes plant maintenance respiration and growth respiration.
eters, but different values, taken from an optimization by Then, the net C@flux between the atmosphere and the net
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Table 1.Controlling parameters of the biosphere model BETHY and their prior values: Unitéasepmol(CG) m—2s™1; aj, T activation
parameter (C1); ar,7 Hmol(CQ) mol(air)~1(C)~1; activation energie%, Jmot1; and ¢, years; all other parameters are unitless and
correspond to values at 2&. K¢ is multiplied by 1. These parameters have been optimized by Koffi et al. (2012) and widely described

in Rayner et al. (2005). Gaussian PDFs are used for the 14 parameters marked with the asterisk sympgal, g,y (PFT dependent,

thus 13 parameters); for all others a log-normal PDF is assumed. The definitions of the acronyms of the PFTs are given in the caption of
Fig. 2. The parameters related to gross primary productivity (GPP)ai& as, v, Eviao Ekor Eker Ek» @gs @, Kc, Ko, anda,, 7); those

related to the net primary productivity NPP afg, . T Rgrowtt andEg,. Note thatfg,.., (leaf respiration) a”(ngrowm (growth respiration)

are also linked to the autotrophic respiration. The parameters relevant for the net flux NER&ag®, Q10s i, «, and fs, among which

0O10f: Q10s Tf, k, and fs parameters are also linked to the heterotrophic respiration.

Parameters Prior Prior Parameters Prior Prior
values uncertainty values uncertainty
Vmax (TrEv) 60. 12. Qjof 15 15
Vmax (TrDec) 90. 18. Qi0s 15 15
Vmax (TmpEVv) 41. 8.2 15 1.5 3.0
Vmax (TmpDec) 35. 7. « 1. 10.0
Vmax (EvCn) 29. 58 fs 0.2 2.0
Vmax (DecCn) 53. 10.6 Ep, 45000. 2250.0
Vmax (EvShr) 52. 10.4 Ey,,, 58 520. 2926.0
Vmax (DecShr) 160. 32. Eg, 35948. 1797.4
Vmax (C3Gr) 42. 8.4 Eg, 59 356. 2967.8
Vmax (C4Gr) 8. 16 E; 50967. 2548.35
Vmax (Tund) 20. 4. a4 0.28 0.014
Vmax (Wetl) 20. 4, w; 0.04 0.002
Vmax (Crop) 117. 23.4 K¢ 460. 23.
ayjy (TrEv)* 1.96 0.098 Ko 330. 16.5
ajv (TrDec)* 1.99 0.0995 ar’T* 1.7 0.085
ayjy (TmpEv)* 2.00 0.1 B (TrEv) 1 0.25
ayjy (TmpDec)* 2.00 0.1 B (TrDec) 1 0.25
ay.y (EVCn)* 1.79 0.0895 B (TmpEV) 1 0.25
ajy (DecCn)* 1.79 0.0895 B (TmpDec) 1 0.25
ayjy (EvShr)* 1.96 0.098 B (EvCn) 1 0.25
ayjy (DecShr)* 1.66 0.083 B (DecCn) 1 0.25
ayjy (C3Gr)* 1.90 0.095 g (EvShr) 1 0.25
ayjy (CAGr)* 140. 28. B (Decshr) 1 0.25
ayy (Tund)* 1.85 0.0925 B (C3Gr) 1 0.25
ayy (Wetl)* 1.85 0.0925 g (C4Gr) 1 0.25
ayjy (Crop)* 1.88 0.094 B (Tund) 1 0.25
S Riear 0.4 0.1 B (Welt) 1 0.25
T Rgrowtn 1.25 0.0625 B (crop) 1 0.25

ecosystem productivity (NEP) is derived using conventionalinversions of tracer fluxes. It can be interfaced to several at-
formulations for the time variation of soil respiration and a mospheric transport models. In this case we use the global at-
parameterization of storage efficiency to set the overall magmospheric transport model LMDz (Hourdin et al., 2006). PY-
nitude (Rayner et al., 2005; see Egs. 17-22). 56 parameteMAR can ingest various sources of measurements such as sur-
affect the photosynthesis scheme and both the autotrophiface flask samples and continuous £f@ncentrations (e.g.,
and heterotrophic respiration schemes. These parameters atdevallier et al., 2010) and satellite @@ata (Chevallier at
of two kinds: 3 parameters are PFT-specific (i.e., 39 paramal., 2007). The PYVAR system also allows for interpolating
eters) and 17 are global parameters. There are 35, 3, and X¥mulated concentrations to the locations of the stations of
parameters related to GPP, autotrophic respiration, and hethe observing network.
erotrophic respiration, respectively (Table 1).

2.4 Combining CCDAS and PYVAR
2.3 The PYVAR system

In our case we do not use the optimization capabilities of
The PYVAR system (Chevallier et al., 2005) is a generic PYVAR. For our error analysis, we require the sensitivity of
Bayesian optimization system used for global and regionathe observations to the model parameters. For concentration
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3 Computation of uncertainty

Crap

Welt
Tund
C4Br
C36r
DecShr
EvShr
DecCn
ECn

The formalism used to calculate the uncertainties in the pa-
rameters is first defined. Then, the methods used to quantify
the sensitivity of the parameters to observations from both
CO, concentration and flux measurement networks are de-
scribed.

3.1 CO, concentration network

TmpDe hi d . . h f f ..
gl In this stu Yy, we |nveSt|gate the pertormance o eXIStIng or

e potential measurement networks. To compute the uncertainty
- in BETHY parameters with such networks, we apply the net-
work design approach described by Kaminski and Rayner
(2008) and demonstrated by Kaminski et al. (2010, 2012b):
in brief, the parameters we use were optimized by using a
Bayesian inference scheme (Enting, 2002; Tarantola, 2005).
This inference scheme minimizes a cost functibiv) rep-
resenting the negative log likelihood functiah(x) includes
contributions from the model—observation mismatch and the
departure of parameter values from their prior estimates and
is defined as follows:

i=1

1 1
Jx) == T (m; —d)? 1
) 2[2:(0@.))2("’ ) (1)

, @ —x0)" Clxo) Hx - xo)]

wherex is the parameter vector to be optimized with prior
Fig. 2. The networks of C@ concentration measurements together Value xo with uncertainty covariance€ (xo). n is the num-
with the spatial coverage of the 13 plant functional types (PFT)ber of observations/; are the observed GQroncentrations
of BETHY with zoom over Europe (bottom) are shown. In each and m; the corresponding values simulated by the trans-
BETHY grid cell, only the dominant PFT is shown. Circles are port model. The standard deviatiend;) is derived from
the network stations with monthly Gxoncentration used by both  the quadratic summed uncertainty (here variance) in the ter-
TM3 (used inMt3) and LMDz (used infMpyy, PYV,and PY\a) - restrial model (here BETHY), the transport model, and con-
models. Squares are stations with high frequency 6&a thatare  cantration observations. The parameter errors (or uncertain-
qsed only in LMDz (g;ed in PYV and PYay). Big dots are sta- __ties) as well as the observation errors are uncorrelated in our
tions measuring additional monthly data used in LMDz (used in . A .
PYVg)). For details on the definition of the different settings men- formulation. We caI(?uIate_ the second dervative or Hessian

all
tioned above, see Sect. 5.1. The label definitions of the PFTs aréH) Qf th? cost function with respgct tg the parameters (e.g.,
Crop — crop plant, Wetl — swamp vegetation, Tund — tundra, C4GrK_amInSkI and Rayner, 2008; Kamlnsk! etal., 2010). We con-
— C4 grass, C3Gr — C3 grass, DecShr — deciduous shrub, EvShr Sider only the contribution of observations to the Hesgian
evergreen shrub, DecCn — deciduous coniferous tree, EvCn — evefeferred to agi,,, and given by
green coniferous tree, TmpDec — temperate broadleaved deciduous )
n

tree, TmpEv — temperate broadleaved evergreen tree, TrDec: trop- 1 dm; 2 d m;
ical broadleaved deciduous tree, TrEv — tropical broadleaved everfn = Z o (d;)? “dx +(mi —di) dx2 K @
green tree. =1

where dn/dx is the first derivative (Jacobian) of the simu-

observations, we obtain these by first calculating the sensil-ateoI CQ concentration with respect to the parametert

tivity of NEP with respect to parameters, then transportingm is linear, its second derivative is 0 and we have a simple

these sensitivities with LMDz via the PYVAR system (see iﬁﬂg:;:gggigmcg]v;::nscgf(itle ig;gkz))l?g 't#eni?f,;zgje “r
Fig. 1 and Sect. 3.1 for details on the formalism). = "

and we see that (as noted by Hardt and Scherbaum, 1994)
neither the values of the prior parameters nor the observa-
tions appear directly i, (Eq. 2). For a nonlinear model
such as BETHY, the sensitivities are, of course, dependent
on the value of the optimized parameters.
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The total derivative @ /dx can be written as a function of 4 Data

partial derivatives as follows:
4.1 CCDAS
dn _im df _ of ®
dc  3f 9x = 9x’ The system needs both forcing data to drive BETHY and
o atmospheric C@ concentration data for the assimilation.

where f sta_mds fqr NEPM represents the derivative of GO BETHY is driven by observed monthly climate and radia-
concentrationn with respect tof (i.e.,dm/df). 3f/dx reép-  ion data over the period 1979-2001 (Nijssen et al., 2001). In
resents the sensitivity of with respect to the parameter addition, daily values of such data are available for the period

The Jacobian matrix:d/dx is computed by chaining the 1996-2006. For both the photosynthesis and soil schemes in

tangent linear (TL) code of BETHY and the TL code of geTHy, the phenological data, i.e., leaf area index (LAI) and
LMDz via the PYVAR system. The TL code of BETHY is  pjant available soil moisture (as a fraction of maximum

generated by the automatic differentiation tool Transforma-gq; water capacity) are also available for the two above men-

tion of Algorithms in Fortran (TAF; Giering and Kaminski,  tioned periods. We assumed atmospheric concentration mea-

1998; Kaminski et al., 2003), while the TL code of LMDz g,rements are available at the 68 stations used by Koffi et
has been coded manually by Chevallier et al. (2005). We,| (2012).

first compute the quantitiely/dx using the TL code of CC-
DAS and map them onto the LMDz grid. Then, the TL code 4 1 1 BETHY fluxes
of LMDz is used to transport these sensitivities to derive

dm/dx, as given in (Eq. 3). In the standard setup of CCDAS, BETHY is run such that it
simulates hourly GPP and NPP for one representative day
in a month. In this study, in addition to the standard run,

We note again that this is a synthetic data study where, folVe adapt the BETHY output to calculate for each day of

lowing our assumption of linearity (as shown in the former :heBrgg_r::} r\1/1Ve dusl,e h:)ur;Iy tserns%'t':/'tlss cr)f rr;oder!?dt;\q/uagtltu?i
equation by replacing: by f), we can calculate the con- ° 0de! parameters Tor one representatve day

straint on the parameters without the use of actual data. wé month. To quantify the contribution of hourly flux mea-

do need reasonable values for the parameters since these gﬁgengggtﬁgorlth,e\lgle:iuggog orl;un%?rﬁéngfs_;aep;gar:eée;:
fect the linearization and, as noted earlier, these are take u urly proxy ' 9

from the optimized values of Koffi et al. (2012). In fact iciency scheme is not appropriate for calculating hourly het-

around the optimized values, the assumption of IinearizationerOtrODhIC respiration. We assume that the magnitude of the

. diurnal cycle (noted by Knorr and Kattge (2005) as the key
is reasonable. N

We use the same linearity assumptions as those used footbsirvable frorr?_ hourly_flu>_< measuremenr:s) IS dnv_edn b_y NP::'
concentrations so that the critical quantity becomes the Ja;-;ot eterotrophic resplrat:i)n. | enhce,r:/_v en.cEnS| ering the
cobian of the fluxes with respect to parameters (0.£/9x). ux measurement network, only the thirty-eight parameters

These are also calculated by the tangent linear mode of TA'geIevant for NPP are first analyzed (Table 1). There is no clear
qlgorithm for assigning uncertainties to flux data in CCDAS

and here we have no need of an atmospheric transport mOdesince it varies widely with conditions (Hagen et al., 2006)
and depends on the capability of the model itself (Cheval-

lier et al., 2012). However, random flux measurement uncer-

The contribution of the observations to the Hessian, Hg., ~ tainty, expressed as a standard deviation, was found to vary
(Eq. 2; with the second derivative equals zero), is used tgvith the flux magnitude (Richardson and Hollinger, 2005;

approximate the inverse of the covariance matrix that quanRichardson et al., 2008; Laslop et al., 2008). The authors
tifies the uncertainty ranges on the parameters. We use thehowed that the error distribution in NEE (net ecosystem ex-
standard deviation obtained from the inversefbf (Eq. 2) change) is leptokurtic (i.e., the peaks result from the data be-
to characterize the uncertainty in the parameters. Followinging highly concentrated around the mean) and it is described
e.g., Kaminski et al. (1999), we quantify the reduction of the Petter by a double exponential (Laplace) than a Gaussian dis-

uncertainty (hereafteb/r) in a selected parameter from its tribution. However, when grouping the data according to the
prior as follows: flux magnitude, Lasslop et al. (2008) found that high flux

magnitudes follow a Gaussian distribution and that the lep-
oy tokurtic error distribution found for all the data is largely due
Ur(%) = 100 (1 - a) ’ (4) to low flux magnitudes. In addition, the parameters in the er-
ror distributions are dependent on the observational site. In
whereo, (derived from Egs. 2—3) angl,o (Table 1) are the  this study, we therefore choose a conservative value of 25 %
posterior and prior uncertainties in the parameterespec-  of the hourly observed quantity. Note that this will trans-
tively. late into much larger percentage errors in diurnal and annual

3.2 The Flux measurement network

3.3 Uncertainty reduction

Atmos. Chem. Phys., 13, 10558:0572 2013 www.atmos-chem-phys.net/13/10555/2013/



E. N. Koffi et al.: Constraining biospheric process parameters by surface C@observations 10561

sums (where fluxes partially cancel but errors do not). Thus4.2 PYVAR
the uncertainties in BETHY hourly NPP observations are as-

sumed to be equal to 25 % of the corresponding NPP valuesrhe pyyaR system allows CPfluxes to be estimated at

To test the sensitivity of flux measurements to the paramete|atively high temporal resolution (up to 8 three-hour time
ters strongly related to NEP, we use a “pseudo” hourly NEP\;indows per day). The fluxes and G@oncentrations are
computed by dividing the daily heterotrophic respiration into |jnked in the PYVAR system by the LMDz model (Hourdin
24 equal-sized hourly fluxes and subtract these fluxes fromy 51 | 2006). LMDz has 19 levels and a horizontal resolution
the hourly NPP, as performed in Kaminski et al. (2012b). As ot 2 5 in [atitude and 3.75in longitude. LMD, is an on-line

for the NPP observations, we assume that the measuremep{ogel, i.e., it generates its dynamics internally along with
uncertainties in these NEP are equal to 25% of the corréyacer transport. To ensure realistic simulation of actual mete-
sponding NPP values. When NPP equals zero, we considgfq|agical conditions the model is nudged towards ECMWF
larger uncertainties to be 25 % of the maximum of the NPP, g ropean Centre for Medium-Range Weather Forecasts) re-
which is obtained from all the grid cells of BETHY and over gnajyses. We then archive mass fluxes and run the model of-
the selected period. fline. The ECMWF reanalyses for 1989-2006 are used.

To represent the C£xoncentration measurement network,
we use the same data as Chevallier et al. (2010). These data
come from three large data bases: The NOAA Earth Sys-
tem Laboratory (ESRL) archive, the CarboEurope IP project,
and the World Data Centre for Greenhouse Gases (WD-
CGG) of the World Meteorological Organization (WMO)
Global Atmospheric Watch Programme. The three databases

for carbon balance NEP, the uncertainties are assumed to chlude both in situ measurements made by automated quasi-

large since there is little knowledge of these parameters (Tacontinuous analyzers and air samples collected in flasks and
ble 1). Finally, prior information not only includes results of later analyzed at central facilities. The data treatments are

fully discussed in Chevallier et al. (2010). Data collected

4.1.2 Prior values of the parameters and uncertainties

The uncertainties in prior parameters of BETHY are those
of Koffi et al. (2012). For bio-physical parameters (e.g., the
carboxylation capacity of the leafinay); the prior values are
taken from literature summarized in Knorr (2000). For other
parameters such as the beta storage efficiefigyrdlevant

previous studies but also knowledge of the physical limits ; ; .
of the parameters. For example, many parameters are physfitom up to 104 stations are considered (see Fig. 2 for loca-

cally limited to positive values. A log-normal PDF was con- tions of.the stations). The errors in the.LMDz model are in-
sidered for these bounded parameters while a Gaussian PDc‘#uded in the observational error following Tarantola (2905).
was applied to those parameters that do not have such criticgihe treatment of these errors follows that of Chevallier et
threshold values (marked by an asterisk in Table 1; Koffi et2l- (2010). Values range from 0.37 ppm to about 30 ppm, de-

al., 2012) pending on the temporal resolution of the observations (see
’ Table A2 in the Supplement). The large values for some ob-
4.1.3 Transport model and CQ concentrations servations compensate for the absence of explicit correla-

tions in the assigned transport model errors for temporally
For the tracer transport, we use the precomputed transportense data. There is also a contribution from model error in
Jacobians of the TM3 model (Heimann and Kérner, 2003).BETHY. For concentrations we assume this is small com-
TM3 has a resolution of 4 degrees latitude by 5 degrees lonpared to transport error while for fluxes we treat it by as-
gitude with 19 levels. It uses NCEP (National Centers for signing errors of 259%, much larger than the observational
Environmental Prediction) meteorological fields as input. Weerror (see Sect. 4.1.1). Sensitivity studies for the uncertainty
use the monthly averaged precomputed transport Jacobiang concentrations showed little sensitivity of most posterior
of Roedenbeck et al. (2003) over the 1979-2001 period withparameter values to increasing the observational error in con-
meteorological forcing that varied each year. The error in thecentrations by 2 ppm.
TM3 model is considered in the observation error budget, as
given hereafter. , 4.3 Combination of CCDAS and PYVAR data

For CCDAS, we use monthly mean atmospheric ,CO

concentration data from 68 sites from the GLOBALVIEW . i ) L
database [GLOBALVIEW-C@, 2004) and some additional C_CDAS provides monthly or daily NEP and their sensitivi-
CO, measurement sites for which the TM3 Jacobians ardi®S With respect to BETHY parameters to the PYVAR sys-
available. The uncertainties in these data include those froni€M (S€e Fig. 1). To use high frequency observations of CO
models (BETHY and transport) and measurement errors an&oncentratlons, PYVAR divides the day into 8 three-hour

range from 0.50 ppm to about 5.0 ppm (see Table A2 in thelime windows in which the flux is constant. When using
Supplement), as described in Koffi et al. (2012). monthly fluxes from CCDAS within PYVAR, the value of

the flux for a month is considered representative for the days
of the month and for each of the 8 time windows of a day.
For daily NEP, the value of the flux for a day is considered
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Table 2. Model/data configurations for Groncentration networks are shown. Fofiys, Mpyv, PYV, and PY\4, the period of the study
is 1989-2001. For the configurations Mivk/, DMpyy, and DDpyy, we consider single years over the 1998-2005 period. The minimum
and maximum numbers of stations derived for each year over this 1998-2005 period are given.

Model/data Temporal resolutions of forcing| Temporal resolutions of Temporal resolutions of ~ Number of
configurations data (meteo and pheno) for BETHYinferred BETHY fluxes COy, concentrations stations
Monthly Daily | Monthly Daily | Monthly  Continuous

Mtm3 X X X 62

Mpyy X X X 62

PYV X X X X 62

PYVai X X X X 104

MM pyv X X X X 72-88

DMpyy X X X X 72-88

DDpyv X X X X 72-88
representative for each of the 8 time windows of PYVAR. — PYVy: as for PYV configuration, but for all the sta-
The used Jacobians correspond to full-day averages. tions used in Chevallier et al. (2010). In total, we con-

sider 104 stations over the period 1989-2001.

The differences betweeMTyz and Mpyy configurations
give information on the sensitivity of parameters to the trans-

The different configurations of model/data used to study thePOrt models whileVpyy, PYV, and PY\4 give the sensitiv-
sensitivity of the parameters to (i) high frequency observa-ity of the parameters to number, frequency, and type of obser-
tions of CQ concentrations and (i) temporal resolution of Vations. The observing networks of @@oncentrations for

meteorological and phenological data used to force BETHYthe configurations defined above are shown inFig. 2.
are first defined. Then, the configurations relevant for flux Here we summarize the characteristics of flask and contin-

measurement network are given. uous measurements for the stations used fos Gdhcentra-
tions:

5 Experimental setup

5.1 Configurations using observing network of CQ

concentration — 77 flask measurements, among which 62 are com-

mon between CCDAS (i.eMtv3) and PYVAR (i.e.,

To test the sensitivity of the parameters to high frequency Mpyv). The remaining 15 sites are only for PYVAR
CO, concentration data, we first use BETHY monthly NEP (PYV and PY\Van). We used full-day averages of flask
over the period 1989—-2001 to compute various versions of measurements. The uncertainties in these measure-
the Jacobian relating parameters to atmospheric concentra- ~ MeNts, including model errors, are summarized in Ta-
tions (see Eq. 3). The following configurations, which are ble A2 of the Supplement.

summarized in Table 2 and Fig. 1, are considered: . . .
! izedi '9 ! — 27 sites with continuous measurements used only by

— Mqmz: monthly CQ observations at 62 sites (i.e., the PYVAR, among which 9 sites also have flask measure-
number of stations that are common for both CCDAS ments. We averaged data from continuous sites into 3h
and PYVAR) over the period of 1989-2001 by using windows in the PYVAR system.

ians of TM3. o .
Jacobians o 3 — The measurement uncertainties, which here represent

both the model and observation uncertainties, are pro-
vided in the supplementary material (Table A2) for all
the sites used in this study.

— PYV: the PYVAR system is used for the 62 com-
mon sites and for the period 1989-2001. Only the
monthly NEP from CCDAS is considered. The treat-
ment of these fluxes in PYVAR is given in Sect. 4.3.
We use continuous C{roncentrations when available 52 Configurations using daily fluxes
at these stations. For noncontinuous sites, the data fre-
guency is weekly or biweekly. To test the sensitivity of the parameters to the temporal res-

olution of the meteorological and phenological data used

— Mpyy: the results obtained by averaging PYV data to force BETHY, and hence to the temporal resolution of
monthly and for which data fromMty3 exist. This is BETHY fluxes, we use the following configurations, which
the closest comparable caseMs. are also summarized in Table 2 and Fig. 1:
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Table 3. Characteristics of the flux measurement networks are given. BETHY-PFT is a network composed of 13 pixels of BETHY with
dominant PFTs. The fractions of these PFTs are indicated. BETHY-FLUXNET is the network based on the stations of the international
FLUXNET network. The dominant PFTs of BETHY at these stations are indicated.

PFT acronym BETHY-PFT BETHY-FLUXNET

Maximum of the fractions of
coverage of the dominant PFT

Number of pixels (or
stations) per PFT

Fractions of coverage
of the dominant PFT

TreEv 0.9 14 0.9
TrDec 1.00 3 1.00
TmpEv 0.92 3 0.92
TmpDec 1.00 14 1.00
EvCn 1.00 18 1.00
DecCn 0.517 1 0.517
EvShr 1.00 2 1.00
DecShr 0.517 1 0.517
C3Gr 1.00 44 1.00
C4Gr 0.867 28 0.517
Tund 1.00 9 1.00
Wetl 1.00 1 0.867
Crop 1.00 35 1.00

— MMpyy: both monthly meteorological and phenolog-
ical data are used to force BETHY. The simulated
monthly fluxes by BETHY are considered.

— DMpyy: both daily meteorological and phenological
data are used to force BETHY. Daily fluxes are cal-
culated from BETHY, but monthly mean values from
these daily fluxes are considered. Comparison with
MM pyy tests the sensitivity to the assumption of a sin-
gle representative day made in BETHY.

— DDpyy: both daily meteorological and phenological
data are used to force BETHY. Daily fluxes computed
by BETHY are considered.

The differences between Mpfy and DMpyy give infor-
mation on the sensitivity of the parameters to the tempo-
ral resolution of the meteorological and phenological data.
The configurations MMyy and DDpyy probe the sensitiv-
ity of the parameters to the temporal resolution of BETHY
fluxes. For these three configurations, all the available sta-
tions of the observing network of GQconcentrations that
can be handled by the PYVAR system are used. Results of
MM pyy, DMpyy, and DDpyy are derived for several single
years drawn from the period 1996-2006.

5.3 Configurations using the flux measurement network

In our model, a flux measurement samples the flux over a
particular grid cell. The sensitivities of flux measurements to
the model parameters are computed as described in Sect. 3.2.
We design two configurations for two potential networks of
flux measurements. We use BETHY-generated hourly NPP
and NEP as a proxy of flux measurements (Fig. 1):

www.atmos-chem-phys.net/13/10555/2013/

— BETHY-PFT: we use 13 sites that cover the 13 PFTs

of the BETHY model. The stations are selected on the
basis of the dominant PFTs of BETHY. Table 3 gives
the percentages of coverage of the 13 PFTs over their
corresponding BETHY grid cell (Fig. 3). Note that this
network is constructed similarly to the 9 PFT networks
over Europe used in Kaminski et al. (2012b), except
that Kaminski et al. (2012b) assigned 100 % coverage
of the dominant PFTs.

BETHY-FLUXNET: we consider a network based on
both the international FLUXNET network (Baldocchi,
2003 and Papale et al., 2006; see the dedicated website
http://www.fluxnet.ornl.goyand three BETHY PFTs.
We first consider the BETHY grid cells that cover at
least one site of the FLUXNET network. We obtain
a network with 172 BETHY pixels. For each of these
grid cells, we consider the dominant PFT. When doing
so, three PFTs of BETHY are missing. They are decid-
uous coniferous (DecCn), deciduous shrub (DecShr),
and swamp vegetation (Wetl). Kaminski et al. (2012b)
has shown that as soon as a PFT is left unsampled by
the flux network, it dominates the uncertainty in area-
integrated flux. Thus, we have added three hypotheti-
cal sites to get a network with 175 sites (or BETHY
grid cells) (Table 3). It is worth noting that some
PFTs of BETHY are overrepresented in the BETHY-
FLUXNET network (Table 3). For example, the C4
grass PFT is represented by 28 grid cells of BETHY
(or stations), while only 1 grid cell is used for swamp
vegetation (Wetl). Also, for some PFTs, the percent-
ages of coverage over their relevant BETHY pixels are
low (Table 3). The networks relevant to BETHY-PFT

Atmos. Chem. Phys., 13, 1088572 2013
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Fig. 4. Uncertainty reduction (H) for the 56 parameters of
BETHY. Results fromMTpm3, Mpyv, PYV, and PY\4 configura-
Fig. 3. The networks of flux measurements we use (top) with a zoom{ions that cover 19892001 period are shown. The number of obser-
over Europe (bottom) are shown. Rectangle symbols are stationgat'or‘?N for each configuration is indicated. Thg mo_del/data con-
of the network based on the 13 PFTs of BETHY (called BETHY- figurationsMtus, Mpyv, PYV, and PY\jy are defined in Sect. 5.1
PFT). Circles are locations of FLUXNET stations. The big dots @nd Table 2. See Fig. 2 for the definition of the acronyms of the
correspond to locations of 3 PFTs (6, 8, and 12) of BETHY usedF 15 and Table 1 for the prior values of the parameters.
to complete the FLUXNET stations. In total, there are 175 stations
(dot and circle symbols) representing our large flux measurement
network (i.e., BETHY-FLUXNET). See Fig. 2 for the definition of nition of the parameters) when considerigrys, Mpyv,
the acronyms of the PFTs. . .
and PYV, and PYY) configurations (see Sect. 5.1). We
have 4236 pairs of observations for btz and Mpyy,
and BETHY-FLUXNET configurations are shown in 198335 observations for PYV, and 441 873 observations for
Fig. 3. PYVa, respectively. Overall, the uncertainty reductions in
) the parameters are not significantly sensitive to the transport
Since we use BETHY fluxes as a proxy of FLUXNET flux odels. SimilarUr values are found betweeWtys (TM3
measurements, we have compared BETHY hourly fluxes tomodel) andpyy (LMDz model). The differences itig be-
observed ones obtained from some selected FLUXNET Site%NeenMTMg and Mpyy are less than 25 % for 55 of the 56
Ioca_ted around the world. Results sh_ow that BETHY ﬂuxesparameters (Fig. 4). The largest difference (44 %) is obtained
are in reasonably goqd agreem_ent with the observations (seg; NEP parametef for the temperate evergreen forest (Tm-
the Supplement provided for this paper). pEv). We also investigated the differences betwaénys
and Mpyy (not shown). We have run thipyy setup with
the uncertainty from théftys setup. On average, the un-

6 Results e . .
certainties assigned to the concentrations when ukfigs
6.1 Uncertainty reduction with high frequency and setup are 1.8 lower than those fbfpyy (see Table A2 in
continuous CO, concentrations the Supplement). Compared to the defadlyy setup, this
increases the uncertainty reduction for all parameters.
Figure 4 shows the reduction of the uncertaintigg)(for the As expected, the uncertainties in the parameters are more

56 studied parameters of BETHY (see Table 1 for the defi-strongly reduced as the number of observations increases but
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the reduction becomes relatively small between two large 1 GPPV__parameters
sets of observations. As an example, ¥ax of the tropical
evergreen forest/r values are 59 % and 81 % when using
4326 (Mpyy) and 198 335 (PYV) observations, respectively. :
It is only 88 % from 441873 observations. When consider- n, Te_ Twp, Top,_ v, Dec_ Ev, Dec_ C3Gi CiGr Tud Well Crop
ing the PY\j configuration (which represents the largest GPP a parameters

number of observations used), the largest uncertainty reduc:  «E
tions (> 90 %) are obtained for almost all the parameters re- £ ©:
lated to carbon balance NEP (i.8), and to soil respiration ~ sE
(i.e., Q1ot, Quos T, K, fs). The smallest reduction (75 %) e T Tun, Ton Bv. Des v, Do Cie Gitr Ted Wek Gop
is found for theg parameter relevant for swamp vegetation GPP global parameters

(Wetl PFT). These results agree with those reported in Ziehn
et al. (2011), who investigated the sensitivity of the uncer- =
tainty reductions in BETHY parameters to the spatial varia- ~
tions of the PFTs. The authors also found large uncertainty
reductions in the parameters, but less than the reductions ob
tained when considering original PFTs.

For the PY\4 configuration, the uncertainties ifrq and
freaf (i.€., leaf respiration) parameters relevant for NPP are
reduced by 60 % and 90 % from their prior values, respec-
tively (Fig. 4). Only a weak reduction is obtained for the pa-
rameter fr growth relevant for the growth respiration of the 100F
plant (about 40 %). Significant reductions (between 60 % and g«
90 %) are found for th&max parameters, with the largest re- = ;01
duction being forVmax for temperate deciduous (TmpDec) 0
forest. The smallest reduction is again obtained for swamp Tl T 110 WSl 00 S " B (50 Sl SEC S0

vegetation (i.e., Wetl PFT). We obtain relatively small uncer- Fig. 5. As for Fig. 4, but for the model/data configurations I,
tainty reductions for the parametersy (<15%). Note that  pmpyy, DDpyy and for the year 2000. The number of observa-
ay,v is the slope of the linear relationship between the maxi-tions for the year 2000 is 30 332 and this for each of the configura-
mum electron transport arighax at 25°C. The uncertainties  tions.
are also weakly reduced (<40 %) for almost all the global
parameters relevant for photosynthesis (iBx,, Ex, 0;2s,
Ko). Among these global parameters, only the uncertaintiege.g., Williams et al., 2009; Moore et al., 2008; Zobitz et al.,
in both Evy,,, anda, parameters are significantly reduced 2008; Richardson et al., 2010).
(about 60 %).

We find that uncertainty reduction saturates for large num-6.2  Uncertainty reduction with daily fluxes
bers of observations (not shown). As discussed in Kamin-
ski et al. (2012a, b), we can understand the saturation oDur initial hypothesis was that the response of daily fluxes
the information provided by observations by considering theto variations in forcing would contain information about the
eigenvectors of the Hessian. These describe particular direanodel parameters and would, in turn, be visible in daily mea-
tions in parameter space; the related eigenvalues are a mesdrements of C@concentration. We investigate this using
sure of the information content in that direction. Increasingthe MMpyy, DMpyy, and DDpyy configurations. Figure 5
the number of observations may well improve the informa-showsUr for the year 2000. The number of observations
tion content in a particular direction but not necessarily con-used is 30332. Overall/r for all three cases are roughly
strain new directions in parameter space. Eventually the uneomparable. This surprising result comes despite the well-
certainty in a particular direction approaches zero and thelocumented capability of high-frequency observations to re-
uncertainty in a parameter is determined by its projectionsolve details of flux distributions (Law et al., 2003). It raises
onto the subspace spanned by the well-constrained diredhe question whether this is a fundamental limit or a func-
tions. With 56 parameters we have 56 available directiongion of the placement of current stations. Following Koffi et
in parameter space. An analysis of the eigenvalues for oual. (2012), we investigate this by calculating global fields of
different cases shows the observations constrain at most 4the sensitivity of concentration to parameters rather than the
of these directions. Observing these directions better will notJacobians at stations. We simulate the sensitivity of surface
provide much more information; only new types of obser- CO, concentrations to parameters by using the LMDz model.
vations will constrain the remaining directions. This is sup- We use the sensitivities of NEP with respec¥gay for trop-
ported by research at smaller scales using ecosystem modédlsal evergreen and temperate deciduous forests, respectively.
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Tropical Evergreen forest(TrEv) PFT Temperate Deciduous forest(TmpDec) PFT cases BETHY_PFT and BETHY_FLUXN ET We haVe 3744
IO TR W | | et R de ey | 2N 50400 obsewvations for BETHY-PET and BETHY

2 FLUXNET, respectively. There are dramatic uncertainty re-
ductions for all the GPWax parameters and the parameters
SR leaf and fr growth relevant to NPP. Except for the tundra
PFT, BETHY-PFT produces uncertainty reductions/ifiax
of more than 80 %. This is more effective than the i}
case (i.e., C@ concentration network with daily BETHY
fluxes). Note that the number of observations used, e.g., for

) % P ) , : . ’ BETHY-PFT, is only 12 % of that of DByy. This confirms
& ir e the result of Kaminski et al. (2012b), who found uncer-
- tainty reductions of over 99 % in simulated NEP and NPP
T | EESS— over Europe with only 9 flux .3|tes. Qonsequently, these re-
0.1 0.2 0.3 0.4 05 06 01 0.8 sults demonstrate the potential of high frequency flux mea-

_ o surements in reducing the uncertainties/ifax parameters.
Fig. 6. Root mean square (RMS) deviation (ppm) between surfacyhen ysing a larger number of flux measurements allowed
sensitivities of CQ concentration to parameter obtained from the by the BETHY-FLUXNET configuration, very large uncer-
sensitivities of monthly and daily NEP of BETHY with respect _ . . . !

tainty reductions are obtained for all the parametéggy of

to the parameter¥max for tropical evergreen forest (gy) (left)
and temperate deciduous forest (Tmap (right) are shown, re- GPP and the three parameters of NPP (between 85% and

spectively. Simulations are performed through the global transpor©8 %), s shownin Fig. 8. _
model LMDz. The values are annual means (see Sect. 6.2 for more [N contrast to observations of G@oncentrations, flux
details). data significantly constrains other parameters such as the

ajv (PFT dependent) and global parameters related to pho-
tosynthesis (i.e., to GPP). As expected, the constraint in-

Sensitivities from the cases My and DDbyy are consid- ~ creases with the number of measurements, héngefor
ered. We run the transport model LMOor 3yr using the ~ BETHY-FLUXNET is highly variable. For the C4 plant, v

two NEP sensitivities obtained for year 2000 as inputs. WeiS not sensitive to flux measurements (Fig. 8). Indeed, we do
then analyze the surface fields of the last year of LMDz sim-not find any difference between BETHY-PFT and BETHY-
ulations. The differences between the two simulations ard=LUXNET configurations, but BETHY-FLUXNET uses 28
quantified by the root mean square difference (rmsd) comdiimes the number of observations of BETHY-PFT. This is
puted both in space and time (Fig. 6). For both cases, the difdue to the fact that the Jacobians are close to zero for this pa-
ferences between the daily and monthly cases are restricteé@meter.Ey,,,,, which appears in the descriptions of both C3
to the regions of the relevant PFTs. Thus, the impact of conand C4 photosynthesis, show& of 91 % while most pa-
sidering the daily flux responses to these two parameters doggmeters that affect C3 photosynthesis only yield 48-85 %.

not travel far enough to be observed by the sparse network. For C4 vegetation, the paramet€f does not show any &l
suggesting thaVmay limitation is not active.

6.3 Interannual variability of uncertainties in As expected, eddy flux measurements allow us to greatly
parameters reduce the uncertainties in the parameters related to the car-
bon balance NEP (i.e8) (Fig. 9). Moreover, with NEP mea-
Figure 7 showd/r for the years 1998, 2000, 2001, 2003 and surements, uncertainty reductions for same, parameters
2005. These years were chosen to represent the interannuegllated to photosynthesis become larger (e.g., C4 grass and
variability in the forcing. We do not find large differences in Wetl) (Figs. 7, 8, and 9).
uncertainty reductions (less than 19 %) between the different As might be expected with the stronger constraint afforded
years. The relatively small differences between the selectedy flux measurements, combining flux and concentration
years occur despite large differences in the density of obsermeasurements does not improve much on the flux-only case
vations. As an example, the year 1998 exhibits similar un-(Figs. 7, 8, and 9).
certainty reductions as the year 2005 #gax relevant for The data uncertainty in fluxes is dominated by model er-
the tropical evergreen forest (TrEv), but 2005 has about 2.40r. We have carried out a sensitivity study (not shown) in
times the number of observations of 1998 (Fig. 7), with meanwhich we used as uncertainties in NEP 75 % of their corre-

uncertainty 1.4 times as large. sponding NPP values (see Sect. 4.1.1 for detail on the un-
certainty assignment). In this case, the smaller flux network
6.4 Uncertainty reduction with flux measurements BETHY-PFT still yielded reductions in parameter uncertain-

ties larger than with concentration measurements alone, but
Figure 8 showsUgr values obtained when using NPP here the differences were not so clear.
flux measurements for the year 2000 and for the two

Atmos. Chem. Phys., 13, 10553:0572 2013 www.atmos-chem-phys.net/13/10555/2013/



E. N. Koffi et al.: Constraining biospheric process parameters by surface C@observations 10567

GPP VW parameters

GPP V__ parameters

wldidids

Tr Tr. Tmp_ Tmp Ev Dec Ev Dec, C3Gr C4Gr Tund  Welt  Crop
Ev Dee Ev Dee o Cn e e Shr

GPP a  parameters

100
80
60

10

[l P NI NS A

] 1998 N=27395
W2000N-30332

Tr Tmp_ Tmp Ev Dec Ev_  Dec C3Gr C4Gr Tund  Welt  Crop
Dec Ev Dec  Cn Y Shr St

13
2005 N= 6()\60

el

20 GPP a , parameters
0 - 100 " ]

Ir er(\_ lmpL\ lmpuﬂ L\m Drt(” L\m D:‘c‘:lu C3Gr C4Gr Tund  Welt  Crop WCOo2 4
. g0 | MIBETHY PFT
GPP global parameters Ll CO2+BETHY_PFT
100 | MBETHY _FLUXNET

CO2+BETHY FLUXNET

I 10 -
K“ 7 ] | ‘ ‘ | ‘ i
NPP and NEP global parameters 0 LA .l ome M II AR

I | I l I lI [ Tx“ ES » Tmp Twp, Ev, Dec Ev rm C3Gr CIGr Tund  Wel Crop
-

Qq

80

|
m;
bl
s
3

L
e
™

R
8o
o o o
T T[T TIr 7T

7

GPP and NPP global parameters

@
3
TR T
v lolenl
=
5

rala

|

NEP j parameters
A AT L

\IJ![I\I\I\I\I\I\Illml\ UL

E f E
Deo,, C3Gr G4Gr Tund Welt Cro %o Ke « a A 3 M est Rgown g

Fig. 8. Uncertainties reduction#/g) for the parameters of BETHY
relevant to GPP‘(max, ajv, EVmax’ EKo’ EKc’ Ek, g, o, Kc,

Ko, a, 1) and NPP fp, . . ngme, Eg4) are shown. The parame-
ters are defined in Table 1. Results for the year 2000 and from the

Fig. 7. Uncertainty reductionsl(r) for various years when using
daily meteorological and phenological data to force BETHY are
shown. BETHY modeled daily fluxes are considered to compute

the uncertainties (i.e., Dbyy configuration). The number of ob- network of CQ concentration (i.e., C§) derived from Dlbyy
servationsV for each year is indicated. See Fig. 2 for the definition configuration (which uses daily qux,es from BETHY within the PY-
of the acronyms of the PFTs and Table 1 for the prior values of theVAR system; see Sect. 5.1 for details) are shown. The model/data
parameters. configurations BETHY-PFT and BETHY-FLUXNET are defined in
Sect. 5.2 and Table 3. The number of observations used are 30 332
o ) (COyp), 3744 (BETHY-PFT), and 50 400 (BETHY-FLUXNET). See
6.5 Sensitivities of observations to parameters Fig. 2 for the definition of acronyms of the PFTs and Table 1 for the

prior values of the parameters.
Finally, we have investigated the sensitivities of both the CO

concentration (Eg. 3) and flux with respect to each of the 56

studied parameters (not shown). For &€@ncentrations, as 7 Discussion

expected the largest sensitivities are found for parameters re-

lated to soil respiration and carbon balance NEP. The largesthe above results raise two questions. Firstly, why are the
sensitivity is found for the parametgg, which describes the flux measurements so much more effective as a constraint
fraction of decomposition from the short-lived litter pool that in the CCDAS? Atmospheric concentrations, in the inverse
goes to the long-lived soil carbon pool. The weakest sensimethod we use here, are themselves an observation of in-
tivity is found for the parametek; relevant for the PEP case tegrated flux. Yet they are far less effective as a constraint
(i.e., the initial CQ fixating enzyme in C4 plants). Concern- on process parameters than the fluxes themselves. There are
ing the flux measurements (here NPP), the largest sensitivitwo likely reasons for this, both to do with the integrating ac-
ties are found for parameters relevant for NPP and some pation of atmospheric transport. Firstly, each concentration ob-
rametersVmax of GPP. The largest sensitivity is obtained for servation integrates information from many flux pixels. This
the parametef,.. the fraction of GPP used for the mainte- means they average out local variations in forcing that would
nance respiration of the plant. Again, the weakest sensitivityotherwise provide information on the response of processes.
is for E;. See Rayner et al. (2005) and Koffi et al. (2012) This effect is reduced for seasonal and interannual forcing
for details of the parameters and the physical quantities theyhere climate anomalies are usually spatially coherent but
affect. we still lose much small-scale information. The other reason

www.atmos-chem-phys.net/13/10555/2013/ Atmos. Chem. Phys., 13, 1088572 2013
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then for all the 56 studied parameters of BETHY. See Fig. 2 for the
definition of the acronyms of the PFTs and Table 1 for the prior
values of the parameters.

Constraining biospheric process parameters by surface G{bservations

The study showed large reductions of uncertainty for most
BETHY parameters. Throughout our process we noted the
dependence of this result on the magnitude of data uncertain-
ties we used and have therefore conducted sensitivity stud-
ies where possible to quantify this dependence. It is likely
that (unknown) correlations in the model errors significantly
dampen the real observation impact. However, model error
in BETHY is a contributor to uncertainties in both types of
observations, so an underestimate of this contribution will
affect both networks. It should therefore have less impact
on our conclusion that flux observations are a strong con-
straint compared to concentration observations. More im-
portant here is the conclusion from Ziehn et al. (2011) and
Kaminski et al. (2012b), who noted that increased complex-
ity (i.e., regionalization of the PFTs) of the biosphere de-
scription both reduced the impact of observations on param-
eter uncertainty but particularly reduced the impact of flux
observations.

This analysis is restricted to only two types of measure-
ments. Other data such as the fluorescence data from the
GOSAT satellite (Frankenberg et al., 2011), satellite-derived
fAPAR (Knorr et al.,, 2010; Kaminski et al., 2012a), and
leaf level observations (Ziehn et al., 2011) can be used as
additional data to constrain the parameters related to GPP
and NPP. Also, the inclusion of soil respiration observa-
tions should help in constraining the heterotrophic parame-
ters (Richardson et al., 2010).

8 Conclusions

We have studied the sensitivity of BETHY process parame-

has already been mentioned, the spatial confinement of sigl€s USing & carbon-cycle data assimilation system to choices
nals from high-frequency flux responses. Part of this problenf @tmospheric concentration network, high frequency terres-

may be addressed by spatially dense satellite measureme
of concentration (Kaminski et al., 2010).
The other point to be drawn from the study is the relative

value of flux and concentration measurements within a CC-

DAS. If our aim is limited to constraining parameters of bio-

,{{éal fluxes, and the choice of flux measurement network. Our

conclusions can be summarized as follows:

— Observations of C® concentrations allow us to
strongly constrain the parameters relevant for net
flux NEP but less for gross fluxes such as GPP.

sphere process models, our results alone would argue for a
substantial shift of resources from concentration to flux mea-
surements. Of course this is not the only purpose of atmo-
spheric measurements but it is an important one, contribut-
ing to the intensification of continental networks in the last
decade. A counterpoint to this conclusion is provided by the
recent study of Kaminski et al. (2012b). Using different met-
rics but similar techniques, they also showed a much greater
power of flux observations in reducing uncertainty of param-
eters in CCDAS and resultant calculated fluxes. Their results
were, however, highly sensitive to the assumed heterogeneity
of the biosphere. As soon as a PFT was left unsampled by the

This problem is not greatly ameliorated by includ-
ing high-frequency observations of flux since the rele-
vant concentration signatures of high-frequency bio-
sphere responses are spatially confined to the con-
tinents, whereas most GQ@oncentration monitoring
sites are located away from the continents and are
therefore missed by this signal.

Flux measurements can help to better constrain most of
the parameters relevant for gross primary productivity
and net primary productivity.

flux network it dominated the uncertainty in area-integrated Like Kaminski et al. (2012b), we suggest a combined use
flux. Since we can never be sure of the true process-levebf both CQ concentrations and flux measurement networks
heterogeneity, a combined observing strategy is clearly reto foster constraining most of the parameters related to ter-

quired.

Atmos. Chem. Phys., 13, 105580572 2013

restrial fluxes.
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