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Abstract. A new modal aerosol parameterization scheme,
the statistical–numerical aerosol parameterization (SNAP),
was developed for studying aerosol processes and aerosol–
cloud interactions in regional or global models. SNAP ap-
plies statistical fitting on numerical results to generate ac-
curate parameterization formulas without sacrificing details
of the growth kernel. Processes considered in SNAP include
fundamental aerosol processes as well as processes related to
aerosol–cloud interactions. Comparison of SNAP with nu-
merical solutions, analytical solutions, and binned aerosol
model simulations showed that the new method performs
well, with accuracy higher than that of the high-order numer-
ical quadrature technique, and with much less computation
time. The SNAP scheme has been implemented in regional
air quality models, producing results very close to those us-
ing binned-size schemes or numerical quadrature schemes.

1 Introduction

Aerosol particles may strongly influence air pollution, cloud
and precipitation formation, and climate and environment
changes. Key factors that determine the influence of aerosols
are their size spectrum and chemical compositions. However,
these factors are highly variable and thus can be difficult
to simulate in either regional- or global-scale atmospheric
chemistry or air pollution models. Moreover, different par-
ticulate chemicals may coexist in a specific air parcel by ex-
ternal or internal mixing. These mixing states have additional
influence on the physical and optical properties of particles
(Chylek and Wong, 1995; Jacobson, 2000). The large number
of possible combinations between aerosols of different ori-
gins further complicates their roles in atmospheric processes
(Jacobson, 2001; Nenes et al., 2002). Therefore, increasingly

sophisticated analytical methods are required to fully under-
stand the roles of aerosols in the atmosphere.

Earlier regional models for studying aerosol processes,
such as RADM2 or CAMx, keep track of only the aerosol
mass concentration. Such bulk methods are insufficient in re-
solving size-sensitive processes, such as dry and wet depo-
sition, cloud drop activation, light scattering and absorption,
and impacts on health. Therefore, an increasing number of
models are adapting size-spectrum schemes. Size-spectrum
schemes can be incorporated into regional or global aerosol
models in different ways. One approach is to use sectional-
size models that categorize the particles into a manageable
number of bins according to their sizes (e.g., Gelbard et al.,
1980; Wexler et al., 1994; Jacobson, 1997; Russell and Se-
infeld, 1998; Yu and Luo, 2009; Bergman et al., 2012). The
accuracy of sectional models very much depends on the num-
ber of bins applied. Having fewer bins inevitably leads to
higher levels of error (Landgrebe and Pratsinis, 1990; Ku-
mar and Ramkrishna, 1996a). Numerical diffusion is a fun-
damentally challenging problem for the sectional methods
when solving the mass transfer among bins. The problem is
more serious for the collision–coagulation processes, which
need to be handled with advanced numerical techniques (e.g.,
Drake, 1972; Tzivion et al., 1987; Landgrebe and Pratsi-
nis, 1990; Chen and Lamb, 1994; Kumar and Ramkrishna,
1996b). Also, the growth kernel in each bin is often assumed
to be constant; in reality, however, the growth kernel usu-
ally is very sensitive to aerosol size and thus may vary sig-
nificantly between bin limits. Using a large number of bins
can reduce the numerical diffusion; at the same time, how-
ever, it results in an increase of the computational burden.
In particular, the computational time required for particle
coagulation processes is proportional to the square of the
bin number. Therefore, when computational resources are
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limited, sectional schemes are not suitable for regional- or
large-scale models.

Another frequently used approach for aerosol simulations
is the so-called modal scheme. In typical modal schemes,
a complete aerosol size distribution is composed of several
modes, and each mode is represented by a relatively simple
mathematical function. The evolution of the size distribution
is solved by deriving analytical solutions for an integral of the
size distribution multiplied by the growth kernel. Computa-
tion is less intensive for such modal approaches because the
number of variables that need to be tracked is significantly re-
duced. Zhang et al. (1999) evaluated several air quality mod-
els and showed that the modal approach is within reasonable
agreement of the sectional model, and requires only about
1% of the CPU time when calculating coagulation. A simi-
lar conclusion was reached by Mann et al. (2012), who com-
pared sectional and modal aerosol modules in a global chem-
ical transport model. Because of this, the modal approach has
been widely adopted in many current aerosol models (e.g.,
Seigneur et al., 1986; Whitby et al., 1991; Binkowski and
Shankar, 1995; Whitby and Mcmurry, 1997; Ackermann et
al., 1998; Harrington and Kreidenweis, 1998; Schell et al.,
2001; Wilson et al., 2001; Vignati et al., 2004; Mann et al.,
2010; Pringle et al., 2010; Liu et al., 2012).

The main weakness of modal parameterization is that an-
alytical solutions are needed for calculating the evolution of
size distribution, but the exact solutions are not always avail-
able due to complicated mathematical forms of the growth
equations. In such a situation, the growth equation must be
simplified to get an analytical solution; however, this sim-
plification can lead to large uncertainties. Therefore, we de-
veloped in this study a set of aerosol parameterization meth-
ods to provide better accuracy and computation efficiency for
aerosol simulations. These methods are applied to parame-
terize microphysical processes – such as ice nucleation, con-
densation, coagulation, and sedimentation; they are also used
to provide diagnostic equations, such as the Kelvin effect on
aerosol wet size.

2 Methodology

The basic concept behind our new approach is to perform of-
fline numerical integration over the aerosol size spectrum for
each aerosol process. The numerical integration for each in-
dividual process is performed under specified conditions that
cover all possible variations in atmospheric states and aerosol
size modal parameters. Properties and conversion rates for
each aerosol mode obtained from the numerical integration
are then analyzed statistically and fitted into so-called modal
(or bulk) formulas.

2.1 Size distribution function and its moments

The first step of our modal approach is to select a mathemati-
cal function that best represents the number density distribu-
tion of each modal population. Observational results showed
that aerosol size distribution can generally be represented
well by the multimode lognormal function (Whitby, 1978);
several studies have indicated that such a distribution is self-
preserving (Friedlander, 1960; Hidy, 1965; Liu and Whitby,
1968; Lai et al., 1972). Therefore, we select the lognormal
function to represent each modal distribution:

n(ln r) =
N

σ
√

2π
exp

[
−

ln2( r
µ
)

2σ 2

]
, (1)

wheren is the number density distribution function,r is the
particle size,N is the total number of particles,σ is the stan-
dard deviation (in the lnr coordinate), andµ is the modal
radius. The whole aerosol size distribution may be composed
of several such modal functions.

The lognormal distribution requires three parameters for
description:N , σ , andµ. However, these modal parameters
are not extensive properties and thus cannot be used as prog-
nostic variables in atmospheric models. In practice, the desir-
able tracking variables are the moments of the size distribu-
tion, such as the zeroth moment (i.e., number concentration)
and third moment (i.e., volume or mass concentration). The
kth moment is defined as

Mk =

∫
rkn(r)dr. (2)

For n(r) in the lognormal form, an analytical solution for
Eq. (2) can be solved as

Mk = M0µ
k exp

(
k2σ 2

2

)
. (3)

The zeroth and third moments are logical choices for track-
ing variables because of their direct relevance to many phys-
ical properties. Yet the selection of the next moment is op-
tional. For example, in cloud microphysical parameteriza-
tion, Milbrandt and Yau (2005) used the zeroth, third, and
sixth moments. The sixth moment represents the radar re-
flectivity, which is an important characteristic of large pre-
cipitation particles. Binkowski and Shankar (1995) (hereafter
BS95) also selected the sixth moment for their aerosol pa-
rameterization because it allows for easier derivation of an-
alytical solutions. However, the cross-sectional area, repre-
sented by the second moment, is important to light scatter-
ing and atmospheric radiation and is consequently more rel-
evant to aerosol studies. Thus, we select the second moment
as the third tracking variable for this study. Note that the cur-
rent modal aerosol module in USEPA Models-3 Community
Multiscale Air Quality (CMAQ) model, although based on
BS95, does not track the sixth moment but instead consid-
ers the second moment (Binkowski and Roselle, 2003). Also
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note that this CMAQ model will be used to test our scheme
in Sect. 4.2.

To further reduce computation time, some of the modal
aerosol models (such as in NCAR CAM5) actually applied
only two prognostic variables. These models typically keep
track of the changes in number and mass moments, but use
fixed spectral widths (σ ) for the lognormal size distribution.
Mann et al. (2012) found that such two-moment modal mod-
ule may produce strong bias in aerosol. They also showed
that the choice ofσ can have significant impacts on the
model results. Thus, including a third variable is important
in achieving high model accuracy.

The size distribution parameters in Eq. (1) can be diag-
nosed from the three moments as

σ 2
=

1

3
[ln M0+2ln M3] − ln M2, (4)

which can then be used to calculate the modal size:

µ =

[
M3

M0exp
(
4.5σ 2

)] 1
3

. (5)

Note that the methodology shown in the next section is not
restricted to the lognormal size distribution. It can also be
applied to the gamma-type distribution functions, which are
mathematically and numerically attractive for the representa-
tion of particle size spectrums. But in this study we focus on
the lognormal distribution.

2.2 Parameterization methods

After the mathematical form and the key parameters of the
size distribution are determined, the evolution of size distri-
bution can be described in terms of the rate change of the
moments:

dMk

dt
≡Ik =

∫
Kkn(r)dr =

∫
drk

dt
n(r)dr, (6)

where Kk is the growth kernel for thekth moment. This
growth kernel represents the fundamental growth equation
for each process. A few examples of the growth kernel will
be discussed in detail in Sect. 3. When the growth kernel is
not in a simple form, solving such integrals requires com-
putationally intensive numerical techniques, such as Gauss–
Legendre or Gauss–Hermite numerical quadrature. There-
fore, parameterization of Eq. (6), which enables the efficient
and accurate calculation of aerosol and cloud microphysical
processes, is desirable for many meteorological and air pol-
lution models.

Common treatments of Eq. (6) include the use of lookup
tables and kernel simplification. The lookup table approach
calculates the kernel or the whole integral as a function of
their key parameters and then arranges the results in tables
that, when applied in models, can be searched according to
the current values of those parameters. This method has the

advantage of fast calculation, as it primarily involves search-
ing, and has high accuracy when the tables are large enough.
Some sectional models also applied lookup tables to reduce
computational costs (e.g., Yu and Luo, 2009). However, the
method may become cumbersome to use when the process
involves too many parameters that require large table dimen-
sions. In addition, the lookup table method usually cannot
be used directly for physical interpretation or analysis of the
functional dependence on key parameters. Alternatively, the
kernel simplification approach is commonly applied in the
parameterization of both aerosol and cloud microphysics. Its
specific purpose is to allow for easy evaluation of Eq. (6) into
analytical solutions. However, such simplifications are often
too rough and can result in large errors.

We investigated four methods of parameterization:
(A) mean-size approximation, (B) kernel transformation,
(C) integral transformation, and (D) optimal-size approxima-
tion. The mean-size approximation approach can be consid-
ered as a no-skill method. We will show that the other three
methods are significantly more accurate and will be further
selected for our final parameterization based on the accuracy
of the analyses. Since the last three methods apply statistical
fitting on numerically integrated results, our overall method
is named the statistical–numerical aerosol parameterization
(SNAP).

2.2.1 Mean-size approximation method

Mean-size approximation (hereafter called MSA) is achieved
by replacing all or some of the size variabler in the growth
kernel with a constant sizer so that the kernel, or part of the
kernel, can be taken out of the integral in Eq. (6). It is math-
ematically possible to approximate the growth kernelK(of
any moment) by a polynomial function ofr with sufficient
number of terms, i.e.,K =

∑
i

air
i . We apply such a poly-

nomial function here just to demonstrate the error associated
with MSA. The corresponding growth rate for each term of
orderi (neglecting the coefficientai) can be written as

8i =

∫
r i

·n(r)dr. (7)

This equation has an exact solutionMi as given earlier in
Eq. (3). On the other hand, the mean size approximation is

8̃i =

∫
r i

·n(r)dr. = r iM0 (8)

Several forms of the mean sizer can be used for MSA.
A group of these forms is called the moment-weighted
mean sizern ≡

(
Mn

/
M0
)1/n. For example,r2 andr3 are the

surface- and volume-weighted mean sizes, respectively. Ac-
cording to Eq. (3),rn can be converted to

rn =
(
Mn

/
M0
)1/n

= µ · exp(nσ 2
/

2). (9)
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Let us use8̃i,rn to represent the approximate solution using
thesenth-moment-weighted sizes. Its ratio to the exact solu-
tion 8i can be derived as

8̃i,rn

8i

= exp[(n−i)iσ 2/2]. (10)

Other forms of the mean size include the modal sizeµ in
Eq. (1) and the effective radiusre ≡ M3/M2, which is com-
monly used for radiation budget calculation. Ratios of the so-
lution using these two mean-size approximations to the exact
solution can be derived as

8̃i,µ

8i

= exp[−i2σ 2/2] (11)

8̃i,re

8i

= exp[(5−i)iσ 2/2]. (12)

The approximations usingµ and re are special cases of
Eq. (10), withn = 0 andn = 5, respectively. Thus,µ and re
may be called the zeroth- and fifth-moment-weighted sizes,
respectively. Figure 1 shows the errors associated with these
mean-size approximations, which exhibit the following fea-
tures: (1) the error increase with the width of the size spec-
trum (i.e.,σ ), the order of the kernel (i.e.,i), and the differ-
ence betweenn andi (i.e.,|n − i|) in Eq. (10). Therefore, the
error can be minimized ifn is set as equal toi. (2) The er-
ror is positive forn > i and negative forn < i. This indicates
that the signs of error may be opposite for the growth of dif-
ferent moments. For growth kernels containing several poly-
nomial terms, it would be best to selectn that lies between
the orders of all dominating terms, such that their errors may
cancel each other.

2.2.2 Kernel transformation

A complicated growth kernel prohibits the derivation of an
analytical solution for Eq. (6). However, it is possible to
transform such kernels into manageable mathematical forms.
We call this approach SNAP-KT. For a lognormaln(r), use-
ful mathematical forms include the power-law functionra ,
the exponential function exp(b ln2 r), or their combinations.
The conversion of growth kernels into such functional forms
is done by statistical fitting of the numerically solved results.
Some examples will be given in the next section.

These fitting functions can be generalized as
raexp(b ln2 r), which can also be expressed as
exp(aln r + b ln2 r). This allows Eq. (6) to be expressed as

Ik =
N

√
2πσ

∫
ra exp

(
b ln2 r

)
rkexp

[
−

ln2(r/µ
)

2σ 2

]
dr

=
N

√
2πσ

∫
exp

[
(a + k) ln r + bln2r

]
exp

[
−

ln2(r/µ
)

2σ 2

]
dr.(13)

Its solution can be derived by introducing the variable ex-

changex≡αln r−γ , whereα≡

√
1

2σ2 − b, β ≡ a + k+
lnµ

σ2 ,

andγ≡
β
2α

. We then have

Ik =
N

√
2πσ

1

α
exp

(
γ 2

−
ln2µ

2σ 2

)∫
exp

(
−x2

)
dx

=
N

2
√

2σα
exp(γ 2

−
ln2µ

2σ 2
) ≡ F(a+k,b). (14)

One can verify that Eq. (14) reduces to Eq. (3) whena = b =

0. In other words, Eq. (3) is the special case ofF(k,0).

2.2.3 Integral transformation

SNAP-KT formulations, such as Eq. (14), are computation-
ally efficient. Yet satisfactory fitting of the growth kernel, as
discussed above, is not always available. When this is the
case, we can turn to the integral transformation method (here-
after called SNAP-IT), which involves two steps: (1) solv-
ing Eq. (6) numerically by discretizing the size spectrum
into fine bins (as fine as possible) for a wide range of am-
bient conditions and size spectrum parameters (e.g.,µ and
σ ); and (2) analyzing the results by statistical fitting to ob-
tain a transformed formula. However, a technical problem
may arise while performing the fitting. Besides the three mo-
ments, the growth equation often contains other dependent
variables, such as air temperature and pressure. Few statisti-
cal software packages can handle nonlinear fitting on multi-
ple variables. For example, the commercial software we are
using can handle only two variables at a time. Processing all
of the variables may require intensive trial by error or iter-
ation before a satisfactory parameterization formula can be
acquired. Consequently, a conversion of the growth kernel
for the purpose of variable separation before performing the
numerical integration may be necessary. However, such vari-
able separation is not always easy, and this greatly limits the
application of this approach.

We overcome this deficiency by taking advantage of the
MSA method in which the dependence on ambient param-
eters is largely retained in the simplified kernel. We obtain
SNAP-IT first by rewriting Eq. (6) as

Ik
∼=Ĩk·g1,k, (15)

whereĨk is the modal-value approximation (cf. Eq. 11) ofIk,
andg1 is a correction factor that brings̃Ik closer toIk. The
correctorg1 should depend strongly on the spectral widthσ

becauseĨk is calculated by assuming a monodisperse size
distribution (and thusσ = 0). We deriveg1 by integrating
Eq. (6) numerically for a range ofσ , as well as other size
distribution parameters and ambient parameters to obtain the
“true” value ofIk. EachIk value is then divided by the MSA
valueĨk, and their ratios are fitted to obtaing1 as a function of
σ and other parameters. In this way, the ambient-parameter
dependence is largely retained inĨk, while the dependence
on the spectral widthσ is largely contained ing1. Note that
some computational efficiency is lost by keeping the details
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1 

 
Figure 1: Ratios of different mean-size approximation ܫሚ௜ to the true moment ܫ௜ as a function of the 

size distribution spread () for various i values in Eq. (10). 

 

  

Fig. 1. Ratios of different mean-size approximationĨi to the true momentIi as a function of the size distribution width (σ ) for variousi

values in Eq. (10).

of the growth kernel inĨk, as compared with a direct inte-
gral transformation (i.e., without utilizing MSA). This loss
in computational efficiency is well compensated by the accu-
racy that is gained.

2.2.4 Optimal-size approximation

In the MSA approach, we assume thatIk
∼= Ĩk(µ), and in

SNAP-IT, we find a correction factor to improve this approx-
imation. The deviation of̃Ik(µ) from Ik indicates that the
modal valueµ (or any other mean size) may not be the best
representative size. In fact, we showed in Eq. (10) that this
“best size” is actually a function of the order of the kernel
and spectral widthσ , and potentially some ambient parame-
ters as well. Thus, instead of using a specific mean size (i.e.,
µ) and then correcting the whole integral withg1, as done in
SNAP-IT, it may be possible to find in advance an optimal
mean size, which can be adjusted with the imposed condi-
tions to provide an accurate value ofĨk directly according to
the following relationship:

Ik
∼=Ĩk(µ·g2,k) ≡ Ĩk(µ

′

). (16)

To determine the formula for the optimal sizeµ
′

for this
SNAP-OS method, we first calculateIk for a range of rele-
vant parameters. For eachIk value, we search by iteration for
a value ofµ

′

that, when placed intõIk, gives an exact value
of Ik. Afterward, the ratios ofµ

′

to µ (i.e.,g2) under various
conditions are analyzed statistically to fit into a function of
the key parameters, such asσ or µ.

The SNAP methods can be summarized as follows:
(1) SNAP-KT: kernel transformation to obtain a semianalyt-
ical solution for the integral; (2) SNAP-IT: integral trans-
formation that provides a modification factor to the MSA
method; and (3) SNAP-OS: parameterization of optimal size
that replaces the constant size in MSA. The MSA method
is taken as a benchmark, and we will demonstrate that the
SNAP parameterization methods are all significantly more
accurate and thus have high skills.

3 Parameterization of microphysical processes

In this section, we apply the above methods to various
aerosol microphysical processes and analyze the parameteri-
zation accuracy by comparison with the numerical solutions.
The numerical solutions forIk are obtained by discretizing
the size spectrum with 10 bins per decade, and then sum-
ming the rates from individual bins. Higher bin resolutions
are also tested. Figure 2 shows the dependence of precision
on bin resolution using 100 bins per decade as a reference.
The example given is for intramodal coagulation, which will
be mentioned in Section 3.4. One can see that the error de-
creases by over two orders of magnitude for an order increase
in bin number. The difference between 10-bin and 100-bin
calculations is less than 0.5 %, which can be regarded as
the precision of the numerical solutions. For noncollisional
processes the error is generally smaller as their fundamen-
tal equations contain only a single integral. In this study,
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2 

 
Figure 2: Dependence of computation precision on bin resolution (number of bins per decade change 

in size) for intra-modal coagulation rates.  The errors are calculated by comparing with the 100 bins 

per decade results. 

  

Fig. 2. Dependence of computation precision on bin resolution
(number of bins per decade change in size) for intramodal coag-
ulation rates. The errors are calculated by comparing with the 100-
bins-per-decade results.

the error is defined as abs〈exp{6j

i=1[abs(ln Ĩk/Ik)]/j} − 1〉,
wherej is the number of conditions selected for evaluation.

3.1 Ice nucleation

Heterogeneous ice nucleation from insoluble aerosol parti-
cles (which are thus called ice nuclei) such as mineral dust,
soot or bio-aerosols is an important factor in the glaciation of
clouds. This process is usually not considered in traditional
aerosol models, which do not emphasize aerosol–cloud inter-
actions. On the other hand, current cloud models generally do
not consider the emission and production of aerosol particles,
so the ice nucleation process is highly parameterized due to
the lack of realistic ice nuclei. Because of the importance
in climate and hydrological cycle, detailed aerosol–cloud in-
teractions have become an essential component in advanced
regional and global models, for which ice nucleation is a crit-
ical mechanism that badly needs improvement (cf. Tao et al.,
2012). According to the classical theory, the heterogeneous
ice nucleation rate can be generalized into the following form
for several pathways of nucleation (cf. Chen et al., 2008):

JHN= 4πr2A
√

f exp

(
−1ga−f ·1gg

kBT

)
, (17)

where r is the radius of the ice nuclei,A is a parameter
that depends on the ambient conditions only,f is a size-
dependent geometric factor,1ga is the activation energy,
1gg is the homogeneous germ formation energy, andkB is
the Boltzmann constant. The overall nucleation rate for a
population of ice nuclei is then expressed as

Ik =

∫
JHN ·rk

·n(r)dr, (18)

which represents the rate of decrease in ice nuclei concentra-
tion due to conversion into cloud ice. This integral cannot be

solved analytically, as the geometric factorf , which appears
twice in the kernelJHN , has a very complicated form:

f =
1

2

{
1+

(
1−mq

φ

)3

+q3

[
2− 3

(
q−m

φ

)
+

(
q−m

φ

)3
]

+3mq2
(

q−m

φ
−1

)}
, (19)

wherem ≡ cos(θ), θ is the contact angle,q ≡ r
/
rg is the

ratio of the nuclei size to the nucleation-germ size, and
φ ≡

√
1−2mq + q2. There are several pathways of heteroge-

neous ice nucleation. Here, we take the immersion freezing
nucleation as an example. Its key parameters include temper-
ature and saturation vapor pressure over water (with solute
and curvature effects) of the supercooled droplet wherein the
ice nuclei are immersed.

Applying MSA to Eq. (18) is straightforward:

Ik≈J̃HNµk

∫
n(r)dr = J̃HNµkM0, (20)

where J̃HN is Eq. (17) calculated withr replaced by the
modal sizeµ. One may also keep the prefactorr2 of JHN

and therk term staying in the integral to getIk≈J̃
′

HNMk+2,

whereJ̃
′

HN is calculated withJ
′

HN = JHN/r2. For the pa-
rameterization using SNAP-KT, the parameterf in Eq. (17)
should be transformed into functions likera or exp(bln2r) in
order to derive a semianalytical solution for Eq. (18). The fol-
lowing is a readily available formula from Chen et al. (2008):

lnf ≈a1+a2 ln(1−m)+a3 ln
r

rg
, (21)

wherea1, a2, anda3 are constants. This formula is suitable
for converting the first term that containsf in Eq. (17) into√

f ≈a4r
a3/2, (22)

where a4 ≡
√

exp(a1 + a2 ln(1− m) − a3 lnrg) is indepen-
dent ofr. However, this formula is not useful for simplify-
ing f in the exponential term. Thus, we produced another
transformation formula:

lnf ≈ ln

(
b1+b2 ln

r

rg

)
+b3+b4 ln(1−m)+b5 (1−m), (23)

whereb1 = 4.51029,b2 = −0.11301,b3 = −1.60130,b4 =

2.00589, andb5 = −0.458392. With this approximation, we
have

exp(Bf )≈exp(c1)r
c2, (24)

where B≡
1gg

kBT
, c1 = B(b1 − b2lnrg)exp(b

′

3), and c2 =

Bb2exp(b
′

3) are all independent ofr. The R2 of fitting for
Eqs.(21) and (23) both reached 0.9998 forθ in the range of
1 to 110◦ andq from 10 to 400; it could be more accurate
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Figure 3:  Fitting surface for the correction factors for the immersion freezing process.  Left: ݃ଵ 

for SNAP-IT; Right: ݃ଶ for SNAP-OS.  The dots are the original values, and the vertical bars 

indicate their deviation from the fitting surface.  The degree of deviation is also indicated by the 

color of the dots: blue, green, and yellow represent less than 1, 2 and 3 standard error, respectively, 

whereas red denotes greater than 3 standard error.  The standard errors of fitting for the left and 

right panels are 0.83 and 0.04, respectively. 

 

  

Fig. 3. Fitting surface for the correction factors for the immersion freezing process. Left:g1 for SNAP-IT; right:g2 for SNAP-OS. The dots
are the original values, and the vertical bars indicate their deviation from the fitting surface. The degree of deviation is also indicated by the
color of the dots: blue, green, and yellow represent less than 1, 2, and 3 standard errors, respectively, whereas red denotes greater than 3
standard error. The standard errors of fitting for the left and right panels are 0.83 and 0.04, respectively.

if the ranges were divided into a few sectors, each with its
own fitting coefficients. With Eqs. (22) and (24), the overall
nucleation rates for a spectrum of ice nuclei can be derived
as

Ik =

∫
JHN rkn(r)dr

≈ 4πAa4exp

(
c1−

1ga

kBT

)
M2+k+c2+

a3
2
. (25)

For SNAP-IT, we first perform numerical integration on
Eq. (18) and then compare the results with the modal approx-
imation Eq. (20) to obtain a fitting ong1. The selection of the
fitting parameters is not a trivial task. Hints of the proper
parameters may emerge while examining the fundamental
physics and its mathematical formulation. For example, one
may recognize thatq in Eq. (19) is the most pertinent pa-
rameter for heterogeneous ice nucleation. On the other hand,
Eqs. (3) and (10) indicate that the varianceσ 2 is a key to the
representation of size spectrum. Thus, we selectedq≡µ/rg
andσ 2 as statistical fitting parameters. This indeed results in
one of the better fitting formulas:

g1 = exp
[
a1·σ

2
+a2·exp(−q)

]
. (26)

Similarly, the optimal size correction factorg2 for SNAP-
OS can be derived as

g2 = exp

(
a1·σ

2
+

a2

q2

)
. (27)

Figure 3 shows that these two formulas provide reasonably
good fittings. It also reveals that large corrections are nec-
essary whenq is small and, at least in the case ofg2, σ is
large. Note that there are numerous fitting formulas for our
selection, and we often select those that are easier to use and
can reflect physical meanings but are not of the highest accu-
racy. For example, in addition to maintaining the “exp(σ 2)”

dependence, Eq. (26) was selected to warrant a unit value
toward the extreme conditions ofσ→ 0 andq→ ∞.

Next, we compare the four parameterization approaches
(MSA and SNAPs) against the detailed numerical solution.
The results for immersion freezing are shown in Fig. 4,
for which the ranges of values tested are the following: 6
modal sizes (µ) between 0.02 and 4.0 µm, 10 modal widths
(σ ) between 0.26 and 0.95, 8 temperatures between−5 and
−40◦ C, and 4 water activities between 0.82 and 1.0. The
mean errors inI0 are 317 % for MSA, 22% for SNAP-KT,
63 % for SNAP-IT, and 16 % for SNAP-OS. These errors
tend to increase toward higher moments. They are 2800, 25,
60, and 12 %, respectively, forI2, and are 15 100, 34, 73, and
22 %, respectively, forI3. One can see that the SNAP-OS
method performed significantly better than the other meth-
ods do. These errors seem to be large even for SNAP-OS.
Fortunately, large deviations usually occur when the abso-
lute values are close to negligible. The CPU time required
for SNAP-KT, SNAP-IT, and SNAP-OS are 73, 26, and 18 %
more than for the MSA method, respectively. Note that there
exist feather-like features in Fig. 4, and each filament repre-
sents a set of values with differentσ values. In the left panel
of Fig. 4 we highlighted the MSA points with the largestσ

values with filled circles. One can see that the largest error is
associated with the highestσ , and the error approaches zero
for a monodisperse distribution (i.e., very smallσ ). Using
the above example, we demonstrated the details of all SNAP
methods. We will omit similar details when discussing the
parameterization for other processes.

3.2 Gravitational sedimentation

The gravitational sedimentation velocity takes the form of

Vsed= VStokesCC =

2gr2ρp

9η

{
1+KN

[
1.246+ 0.42· exp

(
−

0.87

KN

)]}
, (28)
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Figure 4: Comparing parameterized immersion freezing rates (ordinate) against the numerical 

solutions (abscissa).  Panels from left to right are rates of the zeroth, second, and third moments, 

respectively.  Results from MSA, SNAP-KT, SNAP-IT and SNAP-OS are represented by the blue 

circles, purple crosses, red dots, and green triangles, respectively.  At the lower right corner of each 

panel is a zoom up of the central section.  In the left panel, MSA points with the largest  are 

highlighted with cyan dots.   

  

Fig. 4.Comparing parameterized immersion freezing rates (ordinate) against the numerical solutions (abscissa). Panels from left to right are
rates of the zeroth, second, and third moments, respectively. Results from MSA, SNAP-KT, SNAP-IT, and SNAP-OS are represented by the
blue circles, purple crosses, red dots and green triangles, respectively. At the lower right corner of each panel is a close-up of the central
section. In the left panel, MSA points with the largestσ are highlighted with cyan dots.
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Figure 5: (a) Cunningham slip-flow correction as a function of the Knudsen number KN (left 

ordinate). The exact solution, BS95 and SNAP-KT results are given as the black solid line, blue 

squares and red dots, respectively.  Also shown on the right ordinate are the ratios of BS95 (blue 

dash-dotted line) and SNAP-KT (red dashed line) results to the exact solution. (b) Comparison of 

parameterized group sedimentation velocity (ordinate) against the exact numerical solution 

(abscissa).  
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where VStokes is the Stokes’ law fall speed,CC ≡

1+KN

[
1.246+ 0.42· exp(−0.87/KN )

]
is the Cunningham

slip-flow correction,g is the normal gravitational accelera-
tion, ρp is the particle density,η is the dynamic viscosity
of air, KN ≡ λ/r is the Knudsen number, andλ is the mean
free path of air molecules. Note thatCC may take a form
somewhat different from Eq. (28) (cf. Seinfeld and Pandis,
2006, p. 407), but our parameterization procedure works the
same with both forms. Sedimentation flux for the whole size
distribution (also termed the group sedimentation flux) is ex-
pressed as

Ik =

∫
Vsed(r)r

kn(r)dr. (29)

As the analytical solution for this equation cannot be read-
ily obtained, BS95 simply ignores the exponential term in
Eq. (28) to reach the following solution:

Ik =
2gρp

9η

∫
r2
(

1+ 1.246
λ

r

)
rkn(r)dr

=
2gρp

9η
(Mk+2+1.246λMk+1) . (30)
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Under standard atmospheric conditions, omitting the expo-
nential term inCC would cause an underestimation in sed-
imentation speed by 4 and 26 % for particles of 0.1 and
0.01 µm radii, respectively (Fig. 5a). Such underestimations
actually contribute to a small absolute error in the group sed-
imentation flux; the percentage error is significant only for
small particles, whose gravitational fall speed is low. How-
ever, an accurate description ofCC may still be important for
other calculations. For example,CC is an important parame-
ter in the Brownian coagulation kernel (see Sect. 3.4).

If one wants to consider the exponential term for better
accuracy, we can apply SNAP-KT by calculatingCC for a
realistic range ofKN and then apply statistical fitting of the
results using commercially available software. For example,
after calculatingCC for a range ofKN values, their relation
can be curve-fitted into the following:

CC≈ 1+a1K
a2
N = 1+a1(

λ

r
)a2. (31)

wherea1 = 1.43089 anda2 = 1.0295 are the fitting coeffi-
cients. From Fig. 5a, one can see that the above fitting is quite
accurate, with less than 5% error (R2 of fitting = 0.9999) for
all relevant values ofKN . Adding more terms to Eq. (31) may
give even higher accuracy, but is not necessary for practical
purposes. This transformation allows Eq. (29) to be evaluated
analytically as

Ik≈
2gρp

9η

(
M2+k+a1λ

a2M2+k−a2

)
. (32)

Note that Whitby et al. (1991) applied a similar transforma-
tion but used differenta2 values for differentKN regimes
to gain better accuracy. Figure 5b shows the comparison of
gravitational sedimentation parameterizations. One can see
that Eq. (32) gives good results comparing to the exact so-
lution, whereas Eq. (30) (i.e., BS95) produces large error at
small values. As SNAP-KT can already produce very good
results, we will omit applying SNAP-IT and SNAP-OS to
the gravitational sedimentation.

3.3 Condensation

Under the assumption of a steady-state diffusion process,
the kernel of condensation growth following the two-stream
Maxwellian kinetic theory with a steady-state assumption
is commonly expressed as (cf. Pruppacher and Klett, 1997,
p. 506)

dm

dt
= 4πrDfgfv

(
ρv,∞−ρv,p

)
, (33)

where D is the diffusion coefficient;fg is the modifica-
tion due to the gas kinetic effect (Fuchs, 1959, 1964);fv

is the ventilation coefficient, which can be ignored for small
aerosol particles;ρv,∞ is the ambient vapor density; andρv,p

is the surface vapor density. The parametersD, ρv,∞, fg,

and ρv,p are species dependent, whereasfg and ρv,p are
also size dependent. Furthermore,ρv,p is influenced by latent
heating/cooling during condensation/evaporation. A quasi-
analytical solution can be obtained to account for this effect
(cf. Pruppacher and Klett, 1997, p. 511), but the details will
not be elaborated here.

Equation (33) can be generalized for the simultaneous con-
densation of multiple species. Let the volume change due to
condensation bedv = dm/ρL, wherev = 4πr3/3 andρL is
the density of the condensate. From this, the bulk growth rate
of thekth moments can be expressed as

Ik =

∫
drk

dt
n(r)dr =

∫
k

4π
rk−3dv

dt
n(r)dr

=

∫
kDfg

(
ρv,∞−ρv,p

)
ρL

rk−2n(r)dr. (34)

Note that in this formula the rate change of the total number
(k = 0) for the condensation process necessarily equals zero.
If we assume thatDfg

(
ρv,∞ − ρv,p

)
is size-independent,

then an analytical solution can be easily derived as

Ik =
kDfg

(
ρv,∞−ρv,p

)
ρL

∫
rk−2n(r)dr

=
kDfg

(
ρv,∞−ρv,p

)
ρL

Mk−2. (35)

However, in reality the size dependence offg andρv,p can-
not be ignored, particularly for small aerosol particles. The
Kelvin effect onρv,p will be further discussed in later sec-
tions. Here, we focus on the parameter for the surface gas-
kinetic effect, which is generally expressed as

fg =
1[

r
r+1

+
4D
ανr

,
] (36)

where1 is the vapor jump distance and is on a scale sim-
ilar to that of the mean free pathλ, α is the mass accom-
modation coefficient, andν is the mean thermal velocity of
the gas molecules (cf. Fuchs, 1959; Pruppacher and Klett,
1997). Considering the dependence of1 on λ, Fuchs and
Sutugin (1970) provided an empirical formula forfg as a
function ofKN andα:

fg =
0.75α(1+KN )

K2
N+KN+0.283KNα+0.75α

. (37)

It is difficult to arrive at analytical solutions to Eq. (34) with
the formulas forfg given in Eqs. (36) and (37). An approach
to resolving such a problem, as suggested by Pratsinis (1988)
and adopted by the BS95 method, is to consider the harmonic
mean of growth in the free-molecular regime and continuum
regime:

Ik ≈
IM,kIC,k

IM,k+IC,k

, (38)
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where IM,k is calculated with the free-molecular regime
growth kernelKM = πr2αν

(
ρv,∞ − ρv,p

)
, andIC,k with the

continuum regime kernelKC = 4πrD
(
ρv,∞ − ρv,p

)
. Since

IM,k andIC,k can be solved analytically as a function ofMk

andMk−1, respectively, Eq. (34) can be evaluated analyti-
cally. Although Pratsinis (1988) indicated that the harmonic
mean can approximate the results well usingfg from the
equation developed by Fuchs and Sutugin (1970) shown in
Eq. (37), it inevitably contains some inaccuracy, which we
will evaluate below. Fukuta and Walter (1970) suggested a
slightly different form offg, which, in effect, excludes the
term1 in Eq. (36), and is, for practical purposes, a harmonic
mean ofKM andKC:

f
′

g =
1[

1+
4D
ανr

] . (39)

Below we omit the application of the SNAP-KT method be-
cause the fitting formula becomes too cumbersome for prac-
tical purposes. Additionally, we omit the SNAP-OS method
because the SNAP-IT method is sufficient. The SNAP-IT fit-
ting formula that we derived is as follows:

g1= exp
{
σ [a1+a2exp

(
−lnKN

)
+ a3σ ]

}
, (40)

whereKN ≡ λ/µ represents a mean Knudsen number. Fig-
ure 6 shows the comparison between various parameteriza-
tion methods for the condensation growth process. Note that
the number concentration does not change during the con-
densation process (i.e.,I0 = 0), so onlyI2 and I3 are pre-
sented. MSA gives good results only whenσ is small, but
it is biased toward lower values for increasingly largerσ

values (i.e., the true value increases withσ , but MSA does
not). The overall error for MSA is 17 % inI2 and 92 % in
I3. SNAP-IT performed rather well, with 0.74 and 1.3 % er-
ror in I2 and I3, respectively. The BS95 method produced
significantly larger discrepancies, with 10.7 and 57.1 % er-
ror in M2 andM3, respectively. However, the BS95 compu-
tation time is 21 % less than that of the SNAP-IT method.
In Fig. 6 we also plotted the numerical solutions usingf

′

g

from Fukuta and Walter (1970). The strong positive biases
(around 83 %) indicate a significant error associated with the
harmonic mean approximation.

3.4 Brownian coagulation

Calculation of the rate change of moments caused by
collision–coagulation processes involves double integrals
over the size spectra of the two aerosol modes involved. For
coagulation between two particles of sizesrA and rB , the

coagulated particle has a sizerC = (r3
A + r3

B)
1/3

. It follows
that the changes in theirkth moments are−rk

A and−rk
B , re-

spectively, for each original particle, and+rk
C for the coagu-

lated particle. With these parameters defined, the fundamen-
tal equation for coagulation between particles in the collector

modeA and the contributor modeB can be expressed as

Ik,A =

∫ ∫ [
rk
C−rk

A

]
K(rA,rB ,Cair)nA(rA)nB(rB)drAdrB (41)

Ik,B =

∫ ∫ [
−rk

B

]
K(rA,rB ,Cair)nA(rA)nB(rB)drAdrB , (42)

where the coagulation kernelK is usually a nonlinear func-
tion of the two particle sizes and environment properties de-
noted by the parameterCair. Note that the coagulated par-
ticle is placed back into modeA as indicated in Eq. (40).
In these generalized equations one can easily verify that the
number concentration (M0) in the collector mode remains
unchanged (i.e.,I0,A = 0) and that the total volume is con-
served (i.e.,I3,A = −I3,B ). Hence, a total of four conversion
rates are needed, i.e.,I0,B , I2,A, I2,B , andI3,A (or−I3,B ). For
the intramodal coagulation (i.e.,A = B), the number of rates
reduces to two, and all coagulation rates in Eqs. (41) and (42)
should be divided by 2 to correct for double counting.

Processes contributing to aerosol coagulation include
Brownian diffusion, convective Brownian diffusion enhance-
ment, gravitational collection, turbulent inertial motion, and
turbulent shear flow (Jacobson, 1997). Brownian diffusion is
the dominant coagulation process for fine aerosol particles
with radii typically in the range 0.01–1 µm. Here, we take
this most complicated kernel as an example for parameter-
ization, starting with the intramodal coagulation, which in-
volves only its own moments. By analogy of gas diffusion
formulation, Fuchs (1959) expressed the Brownian coagula-
tion kernelKBr between particlesA andB as

KBr = 8πrDpβ, (43)

wherer = (rA+rB)/2, Dp is the mean particle diffusion co-
efficient, andβ represents the modification due to concentra-
tion discontinuity near the surface of the receiving particle.
The mean particle diffusion coefficient is defined asDp =

(Dp,A+Dp,B)/2, whereDp,i =
kBT CC,i

6πηri
; CC is the Cunning-

ham slip flow correction factor, as shown in Eq. (28);kB is
the Boltzmann constant; andη is the dynamic viscosity of
air. The conventional form ofβ is

β =

(
4Dp

αpν
p
r
+

r

r+δ

)−1

, (44)

where αp is the sticking probability (usually assumed to

be unity) when two particles collide,νp =

√
ν2
p,A + ν2

p,B

in which νp,i =

√
8kBT
πmi

is the particle thermal veloc-

ity, m is particle mass,δ =

√
δ2
A + δ2

B in which δi =

(2ri+λp,i)
3
−

(
4r2

i +λ2
p,i

)3/2

6riλp,i
− 2ri represents a mean coagulation

distance,λp,i =
2Dp,i

πνp,i
is the mean free path of the particle,

and i is eitherA or B. The factorβ has a similar form to
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Figure 6: Comparison of parameterized diffusion growth rates (ordinate) with numerical solutions 

(abscissa): Left: second moment growth rate I2 (unit: m2/particle/s); Right: third moment growth rate 

I3 (unit: m3/particle/s).  MSA is shown in blue open circle, SNAP-IT is in red dot, and BS95 is in 

green triangle.  Also shown are the numerical solutions using ௚݂ from Fukuta and Walter [1970] 

(grey square; labeled as FW).  At the lower right corner of each panel is a zoom up of the central 

section.  All rates have been normalized by total number concentration.   
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Fig. 6. Comparison of parameterized diffusion growth rates (ordinate) with numerical solutions (abscissa): left: second-moment growth rate
I2 (unit: m2 particle−1 s−1); right: third-moment growth rateI3 (unit: m3 particle−1 s−1). MSA is shown as blue open circles, SNAP-IT
as red dots, and BS95 as green triangles. Also shown are the numerical solutions usingfg from Fukuta and Walter (1970) (grey square,
labeled as FW). At the lower right corner of each panel is a close-up of the central section. All rates have been normalized by total number
concentration.
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Figure 7: Comparison between various intra-modal Brownian coagulation rates from MSA (blue 

open circles), SNAP-IT (red dots), Gauss-Hermit quadrature (GHQ; green triangles), and BS95 

(purple crosses).  Left: rates for ܫ଴ (unit: 1/s); Right: rates for ܫଶ (unit: m2/particle/s).  At the 

lower right corner of each panel is a zoom up of the central section.  All rates have been normalized 

by total number concentration.   
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Fig. 7. Comparison between various intramodal Brownian coagulation rates from MSA (blue open circles), SNAP-IT (red dots), Gauss–
Hermite quadrature (GHQ: green triangles), and BS95 (purple crosses). Left: rates forI0 (unit: 1 s−1); right: rates for I2 (unit:
m2 particle−1 s−1). At the lower right corner of each panel is a close-up of the central section. All rates have been normalized by total
number concentration.

Eq. (36). However, the variables that it contains – namely
δ, Dp, andνp – are all complex functions of the particles’
sizes, and this makes the SNAP-KT method unfeasible to
use. For this coagulation process, Pratsinis (1988) applied the
harmonic-mean approximation. This approximation was also
applied in the BS95 method:

IBr≈
IBr,M·IBr,C

IBr,M+IBr,C
, (45)

whereIBr,M and IBr,C are the results with kernelsKBr,M =

2πr2αpνp andKBr,C = 8πrDp, respectively. However, the
complex forms ofCC, νp, andδ still prevent the derivation
of analytical solutions forIBr,M and IBr,C. Thus, following

Whitby et al. (1991), BS95 made a few algebraic manipu-
lations and combined them with lookup tables to solve the
harmonic mean.

For a similar reason, our parameterization for Brown-
ian coagulation focuses on MSA and SNAP-IT but ignores
SNAP-KT and SNAP-OS. There is a complication in using
MSA here, because the two modal sizes used for the cal-
culation are the same for intramodal coagulation. We found
it helpful to offset the modal radius and assignrA = µ · σ 2

and rB = µ/σ 2 in Eqs. (40) and (41) for calculating̃Ik in
Eq. (15). With this treatment, the correction factor forI0 is
obtained as
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g1,0= exp

[
a1+a2σ + a3lnKN

a4+a5σ+a6σ 2 + a7lnKN+a8lnKN
2

]
, (46)

which is used further to get the correction factor forI2

g1,2 = g1,0 · (a1 + a2 lnµ + a3σ
3). (47)

Figure 7 shows the results using MSA and SNAP-IT for
intramodal coagulations. Also compared is the harmonic-
mean approximation of BS95, as well as the numerical solu-
tions calculated with the fifth-order Gauss–Hermite quadra-
ture (GHQ), which is an accurate but computationally expen-
sive option in the CMAQ model. Note that the amount of data
for Brownian coagulation is much larger than that for the pre-
vious processes, so only a selected amount of data (e.g., 1 out
of every 5 or 10 consecutive points) is shown to avoid clut-
ter. One can see that BS95, GHQ, and SNAP-IT all perform
reasonably well. SNAP-IT produces 3.7 and 5.9 % errors in
I0 and I2, respectively, which are similar to those in GHQ
(4.5 and 4.0 %). The error in BS95 is about the same inI0
(4.5 %) but somewhat larger inI2 (22 %). The computation
time used for SNAP-IT and BS95 are 12 and 10 % of that for
GHQ, respectively.

The intermodal Brownian coagulation involves two size
distributions, so one would imagine its parameterization
must be more complicated than the intramodal coagulation.
However, using the SNAP-IT method, we found a rather sim-
ple but accurate formula for all intermodal rates:

g1 = exp
[
a1σ

2
A+a2σ

2
B

]
. (48)

It turns out thatg1 mainly depends on the two spectral widths
(i.e., σA and σB ), whereas the effects of other parameters,
such asλ, have been largely reflected in the modal mean,Ĩk,
and thus play little role ing1. Also, this formula agrees with
the exp

(
σ 2
)

dependence shown in Eq. (10). The two coef-
ficients vary with the moments (i.e., thek value), buta1 is
consistently much smaller thana2 (see Table A2), indicating
that intermodal coagulation is more sensitive to the spectral
width of the contributor mode (σB ) than that of the collector
mode (σA).

Figure 8 shows the accuracy of various evaluation meth-
ods for these rates. The MSA method again deviates from the
numerical solution more pronouncedly at largerσ , and the
mean error ranges from 18.1 to 74.1 % for various moments.
The SNAP-IT method is rather accurate, having errors rang-
ing from 2.6 to 4.5 % for the four conversion rates, which
are a little better than the errors of 4.8 to 5.4 % produced by
GHQ, and 4.8 to 7.4 % produced by BS95. The computation
time required for SNAP-IT and BS95 are 7.8 and 7.0 %, re-
spectively, of that for GHQ.

3.5 Other processes and diagnostic parameters

A rate process that has not been discussed earlier is aerosol
scavenging by cloud drops or raindrops, which is also a
type of intermodal coagulation. The mechanisms that control
aerosol scavenging include Brownian diffusion, collection by
phoretic forces, and gravitational collection. For the two for-
mer mechanisms, Wang et al. (1978) provided a mathemati-
cal solution that combines the two kernels, which is adopted
for our parameterization. For the gravitational collection, we
used the kernel from Slinn (1977). Parameterization proce-
dures for these processes are quite similar to that for the
Brownian coagulation, so only the final results are listed in
Appendices A and B.

In earlier examples we showed that SNAP-IT and SNAP-
OS generally outperform SNAP-KT. However, for diagnos-
tics parameters that do not involve spectral integration ob-
viously cannot utilize SNAP-IT or SNAP-OS. For these pa-
rameters SNAP-KT comes in handy. In fact, we have already
shown parameterization on the parameterCC, which is used
to derive the group sedimentation velocity,Vsed, in Sect. 3.2.
In the below we demonstrate the application of SNAP-KT to
other diagnostic parameters.

An important microphysical process that does not directly
involve existing aerosol spectra is aerosol nucleation (new
aerosol production). The mechanisms that control aerosol
nucleation include homogeneous binary or ternary nucle-
ation (Nair and Vohra, 1975; Coffman and Hegg, 1995) and
ion-enhanced nucleation (Yu, 2006). Here we discuss the pa-
rameterization on homogeneous binary nucleation from wa-
ter and sulfuric vapors as an example. The rate of binary
nucleation depends mainly on the temperature and the sat-
uration ratios of water vapor and sulfuric vapor. We will not
focus on the details of the binary nucleation rates, which can
be found in textbooks such as that written by Seinfeld and
Pandis (2006). Instead, we will focus on a key parameter that
needs to be solved by iteration: the water–sulfuric acid mix-
ing proportion in the critical embryo. Once this parameter
is obtained, the calculation of nucleation rate is straightfor-
ward. In brief, we precalculated this mixture fraction numer-
ically for various ambient conditions and then fit the results
into certain formulas, as was done earlier using the SNAP-
KT methods. By applying this formula, the time required for
iteration can be saved. A similar approach was applied by
Kulmala et al. (1998) and Vehkamäki et al. (2002) to ob-
tain aerosol nucleation rates. Note that, although some stud-
ies suggest that the classical binary nucleation rate may be
too weak to explain observed new particle formation (e.g.,
Covert et al., 1992), Chen et al. (2011) indicated that earlier
studies may have significantly underestimated the nucleation
rates because they omitted the size dependence of surface
tension. Therefore, for the binary nucleation formula given
in Table A1, we adopted the method of Chen et al. (2011) for
calculating the rate parameters.

Atmos. Chem. Phys., 13, 10483–10504, 2013 www.atmos-chem-phys.net/13/10483/2013/
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Figure 8: Same as Figure 6, but for inter-modal coagulation.  Upper left: ܫ଴,஻; Upper right: ܫଷ,஺ or 

െܫଷ,஻; Lower left: ܫଶ,஺; Lower right: ܫଶ,஻.  
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Fig. 8.Same as Fig. 7, but for intermodal coagulation. Upper left:I0,B ; upper right:I3,A or −I3,B ; lower left: I2,A; and lower right:I2,B .

Another example of diagnostic parameter is the Kelvin
effect, which affects the equilibrium vapor pressure of the
droplet. The equilibrium radiusreq, and thus the water con-
tent of a hygroscopic particle, can be described by the Köhler
theory, which is a combination of the Raoult (or solute) ef-
fect and Kelvin (or curvature) effect. With the Kelvin effect,
the particles absorb less water and thus have smaller sizes
(Fig. 9). The size difference due to the Kelvin effect increases
with humidity, reaching about 50 % at 95 % relative humidity
and near infinity as the relative humidity approaches 100 %
for the case shown in Fig. 9. Apparently this effect cannot be
ignored, especially for high-humidity conditions. Yet many
modal aerosol models considered only water uptake due to
the Raoult effect (e.g., Jacobson, 1997; Mann et al., 2010). A
few that did take the Kelvin effect into account (e.g., Ghan
et al., 2001) need to utilize a convenient form of the Kelvin
equation that is applicable only for sufficiently dilute solu-
tions. Normally, rigorous calculation ofreq requires numer-
ical iteration. Here, we apply the SNAP approach to param-
eterizereq as a function of the ambient humidity and tem-

perature, particle dry size, and a kappa parameter that was
introduced by Petters and Kreidenweis (2007) to represent
particle composition. Note that for aerosol mixtures (soluble
or insoluble), the overall kappa parameter can be obtained by
a volume weighting of individual kappa parameters. A sim-
ilar formula is obtained for calculating the wet volume of a
whole aerosol mode. See Table A1 for the details of these
formulas.

Another useful diagnostic parameter related to the Köh-
ler curve is the activation cutoff size, which determines the
smallest aerosol particles that can be activated into cloud
drops under a certain supersaturation. Exact calculation of
this cutoff size is even more tedious than obtainingreq.
Hence, it is often derived by simplifying the Köhler equa-
tion to obtain an approximate but direct relationship between
the cutoff size and ambient supersaturation (cf. Pruppacher
and Klett, 1997, p. 178). Our SNAP approach is well suited
for parameterizing the cutoff size with high accuracy (<0.5 %
error) in a way similar to that for obtainingreq. As given in
Table A1, the cutoff size is expressed as a function of the
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Figure 9: Relationship between the ambient relative humidity and equilibrium size for an ammonium 

sulfate particle with 0.01 m dry radius.  The red dashed curve is the Köhler curve which includes 

both the Kelvin effect and Raout effect, whereas the blue curve considers only the Raoult effect.  

The grey dashed line indicates 100% relative humidity. 
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Fig. 9. Relationship between the ambient relative humidity and
equilibrium size for an ammonium sulfate particle with 0.01 µm dry
radius. The red dashed curve is the Köhler curve, which includes
both the Kelvin effect and Raout effect, whereas the blue curve con-
siders only the Raoult effect. The grey dashed line indicates 100 %
relative humidity.

supersaturation, temperature, particle dry size, and the kappa
parameter.

Other diagnostic parameters that we have provided in Ta-
ble A1 include the modal extinction coefficient and absorp-
tion coefficient, which are important for calculating aerosol
radiation effects. Another important parameter for radiation
calculation is the effective radius that, under the modal as-
sumption, has an analytical solutionre ≡ M3/M2 and thus
does not need parameterization. Coefficients for the parame-
terization formulas in Table A1 are given in Table A2.

4 Numerical verifications

In the previous section, we obtained fairly accurate modal-
type parameterizations for aerosol microphysical processes.
Additional checking of the reliability of these formulas is
necessary when performing time integration, as errors may
accumulate with time, which could cause numerical instabil-
ity in extreme cases.

4.1 Verification with the binned parcel model

Verification of the time evolution of the size spectrum is not
an easy task, especially for collision processes. A commonly
accepted verification method is to use a detailed bin model
that truly resolves the size distribution. The binned aerosol
model used in this study is modified from the detailed cloud
microphysical model of Chen and Lamb (1994), which ap-
plies a moment-conserving numerical scheme that ensures
accuracy and conservation of mass and number concentra-

tion. This model has been applied to various aerosol studies
(cf. Chen et al., 2011; Tsai et al., 2012).

Another verification method is to obtain analytical solu-
tions for the spectral time evolution. Such analytical solu-
tions exist for simple collision kernels, such as the con-
stant kernel (Bleck, 1970) and the simple mass-dependent
Golovin kernel (Berry, 1967), which have been used in ver-
ifying cloud microphysics schemes (e.g., Berry, 1967; Tziv-
ion et al., 1987; Chen and Lamb, 1994). However, there is
no need to develop modal parameterization for these simple
kernels because exact analytical solutions exist. Thus, time-
evolving analytical solutions are typically used to verify the
performance of bin models. The performance of the model
we are using has been verified against these time-evolving
analytical solutions for cloud microphysical processes (Chen
and Lamb, 1994). We reconducted the verification for aerosol
size scales and found that the bin model acquired similar high
accuracy and conservation of the moments. Note that the an-
alytical solutions mentioned above are for gamma-type size
distributions. For the lognormal size distribution that we ap-
plied here, Park and Lee (2000) provided an analytical so-
lution for constant kernel collision process. Hence, we con-
ducted an additional verification by comparing with their an-
alytical solution for a lognormal size distribution. The bin
model produced 0.1 and 0.3 % errors inM0 andM2, respec-
tively, after a 12 h time integration. These smaller errors in-
dicate the robustness of our bin model.

We selected Brownian coagulation (including intramodal
and intermodal) for testing the time integration for its com-
plexity. The simulations were run in parcel mode to avoid
complications from other processes, such as transport and
sedimentation. Results obtained using the GHQ and BS95
methods were also compared. Figure 10 shows the initial bi-
modal aerosol size distribution (nucleation mode and accu-
mulation mode) and the evolved size distributions. The size
distributions of the modal approaches (i.e., BS95, GHQ, and
SNAP-IT) are retrieved from the three moments by assuming
lognormal distribution for each mode. All modal calculations
give results similar to those of the binned calculation, show-
ing that the nucleation mode decreased significantly after
one hour and essentially disappeared after six hours, whereas
the accumulation mode evolved rather slowly. When looking
into the details, one can find visible differences between the
modal distributions and the binned calculation. For example,
the BS95 and GHQ distributions deviate more obviously at
the small end at one hour as well as at the large end at six
hours, whereas the SNAP-IT distribution deviates more at the
small end at six hours. All modal methods show fewer par-
ticles at the larger end of the accumulation mode, especially
for the BS95 and GHQ methods and for the higher moments.
However, such differences are not totally due to the inaccu-
racy of the parameterization formulas. The modal approaches
retrieve the size distribution by assuming a fixed lognormal
shape, which is symmetrical about the mode. However, the
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Figure 10: Simulation of the evolution of size distribution due to Brownian coagulation using 

SNAP-IT (red dashed curve), BS95 (blue dotted curve), GHQ (green dash-dotted curve) and binned 

model (thick black curve).  Thin solid curves indicate the initial size distribution.  The left and 

right pannels are 1 hr and 6 hr results, respectively.  Panels from top down are the number, surface 

area and volume density distributions.     
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Figure 11: Evolution of M0 (left panel; in logarithmic scale) and M2 (right panel; in linear scale) due 

to Brownian coagulation according to the SNAP-IT (red dashed curve), BS95 (blue dotted curve), 

GHQ (green dash-dotted curve) and binned (thick black curve) calculations.  
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Fig. 11.Evolution ofM0 (left panel; in logarithmic scale) andM2
(right panel; in linear scale) due to Brownian coagulation accord-
ing to the SNAP-IT (red dashed curve), BS95 (blue dotted curve),
GHQ (green dash-dotted curve) and binned (thick black curve) cal-
culations.

binned solution indicates that the true shape is not perfectly
symmetrical.

A more appropriate comparison is done by examining the
evolution of the overall momentsM0 andM2 (while M3 is
conserved). As shown in Fig. 11,M0 of all modal calcula-
tions closely follows the binned results, with errors of 1.8,
2.1, and 2.1 % in SNAP-IT, BS95, and GHQ, respectively,
after 12 h of integration. The superiority of the SNAP-IT
method is more obvious in the evolution ofM2, with a final
error of 0.8 %, compared with the 2.0 % error in either BS95

or GHQ. Note that the total errors are relatively small be-
cause the accumulation mode varies rather slowly. Another
simulation with nucleation mode only (i.e., intramodal co-
agulation) shows that the errors in GHQ and BS95 become
three times larger than those in SNAP-IT (figures omitted).
For SNAP-IT, GHQ, and BS95, the errors inM0 are 0.028,
0.092 and 0.090 %, respectively, whereas forM2 the errors
are−0.03, 0.103 and 0.103 %.

4.2 Verification with regional models

More laborious verifications of the SNAP method are per-
formed here using regional models. We first incorporate the
SNAP scheme into a regional atmospheric dust model of
Chen et al. (2004), which originally applied 12 size bins for
mineral dust. The modified dust model applies two modes
of mineral dust particles. The physical processes relevant
to dust are emission, transport, gravitational sedimentation
and surface depositions, and for the latter two we applied
the SNAP scheme. We demonstrate the performance of the
SNAP scheme by simulating an East Asian dust storm event
that occurred on 19 May 2005, and comparing the simulation
with the binned approach. Figure 12 shows the near-surface
concentration of number, surface area, and mass of the dust
particles. The differences between the binned and SNAP cal-
culations are rather small, with domain average error of 0.65,
1.74, and 8.40 % inM0, M2, andM3, respectively. For this
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Figure 12: Simulated near-surface mineral dust concentrations using the 12-bin sectional scheme 

(left column), and the difference (in %) from it using the SNAP scheme (middle) and the 6-bin 

sectional scheme (right).  Domain mean errors are given in the parentheses on the lower right 

corner of each panel.  From top down are the number concentration (M0), surface area concentration 

(M2) and mass concentration (M3).  Only the areas with significant dust concentrations (mass > 20 

g/m3) are analyzed. 

 

Fig. 12.Simulated near-surface mineral dust concentrations using the 12-bin sectional scheme (left column), and the difference (in %) from
it using the SNAP scheme (middle) and the 6-bin sectional scheme (right). Domain mean errors are given in the parentheses on the lower
right corner of each panel. From top down are the number concentration (M0), surface area concentration (M2), and mass concentration
(M3). Only the areas with significant dust concentrations (mass >20 µg m−3) are analyzed.
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Figure 13: Dust particle size distribution calculated with SNAP (red curve), 12-bin scheme (filled 

triangles) and 6-bin scheme (empty triangles) at two selected locations (geographical coordinates 

given in the lower left corner) in Fig. 12. 

 

  

Fig. 13.Dust particle size distribution calculated with the SNAP (red curve) 12- (filled triangles) and 6-bin schemes (empty triangles) at two
selected locations (geographical coordinates given in the lower left corner) in Fig. 12.
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Figure 14:  Left: simulated aerosol mass loading over the Taiwan area using SNAP for Brownian 

coagulation in the CMAQ model.  Other panels from left to right: percentage difference between 

SNAP and GHQ in M0, M2 and M3, respectively.  

 

 

 

Figure 15: Changes in aerosol moments due to the inclusion of Kelvin effect.  Panels from left to 

right are percent change in number (M0), surface area of wet particles (M2 wet), volume of wet 

particles (M3 wet), and volume of dry particles (M3 dry). 
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Fig. 15.Changes in aerosol moments due to the inclusion of the Kelvin effect. Panels from left to right are percent change in number (1M0),
surface area of wet particles (1M2 wet), volume of wet particles (1M3 wet), and volume of dry particles (1M3 dry).

regional model simulation, the SNAP scheme requires signif-
icantly shorter computation time, about 1/3 less including all
other overheads, to produce a very similar result to the binned
calculation. Most of the time saving is due to the reduced
computation time required for particle advection because the
SNAP scheme uses 6 variables (3 moments for each mode)
to describe the size distributions, as compared with the 12
variables (bins) used for the binned scheme. Figure 12 also
shows an additional simulation using the sectional method
but with only six bins. The computation cost for this simu-
lation is similar to that for the modal approach because they
track the same number of variables. But the six-bin calcu-
lations produced significantly larger errors, with domain av-
erage error of 31.9, 22.9, and 9.01 % inM0, M2, andM3,
respectively. We further examine the size distributions at a
location near the dust source (110◦ E, 40◦ N) and a down-
stream location between Korea and Japan (130◦ E, 35◦ N).
As shown in Fig. 13, the SNAP size distributions are gen-
erally in good agreement with the 12-bin results. The 6-bin
distribution looks similar, but its deviation from the 12-bin

results is more significant, especially at the downstream lo-
cation.

A second test was conducted using the CMAQ model, in
which we incorporated the SNAP scheme only for the Brow-
nian coagulation process. Three levels of nesting with 81,
27, and 9 km resolutions are applied to simulate particulate
pollution over the Taiwan area during early December 2007.
The simulation was conducted for eight days including spin-
up time, and only the last five days’ results of the innermost
domain were analyzed. However, verification is difficult, as
there is no high-resolution binned scheme in CMAQ for ver-
ification. Nevertheless, from the analyses shown earlier in
Sects. 3 and 4, we know that the GHQ method is fairly ac-
curate, so it was used as a benchmark for this comparison.
Note that the modal aerosol module in CMAQ does not con-
sider the Kelvin effect, so we also ignored it in the following
simulations. Figure 14 shows the 5-day average aerosol dry
mass loading simulated with SNAP, and the percent differ-
ence comparison against the GHQ method. The two schemes
produced similar results. The differences are mostly less than
1 %, and reached 3 % in limited areas. This suggests that the
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SNAP scheme’s performance is close to that of the GHQ
scheme in CMAQ. The large relative error occurred mainly
over areas where it is raining and the aerosol concentration
is low. This also means that the absolute errors at these loca-
tions are actually rather small.

An additional test was conducted for the same case to
demonstrate the Kelvin effect on aerosol processes. As dis-
cussed in Sect. 3.4, the Kelvin effect reduces the water con-
tent and thus the wet size of hygroscopic aerosol particles,
and this effect influences essentially all aerosol processes.
Therefore, this simulation included the diagnostic formula
for the equilibrium wet size, with the Kelvin effect taken
into consideration (see Table A1). Figure 15 shows that when
the Kelvin effect is included, aerosol number concentration
varies by less than 2 %. However, changes in the higher mo-
ments are significant, with a reduction of over 30 % in the
cross-section area (M2) and total volume (M3). Most of the
changes inM2 andM3 were simply due to differences in wa-
ter content, but the dry aerosol mass loading also changed
significantly, with up to a 10 % increase or decrease at var-
ious locations. Mechanisms that may contribute to the de-
crease in dry aerosol volume include less solute uptake as a
result of less water content, and enhanced Brownian diffu-
sional deposition due to reduced particle size. A mechanism
that may increase dry aerosol volume is reduced gravitational
sedimentation, especially for large particles at high humid-
ity. There are certainly many details worthy of discussion
that are beyond the scope of this study. The purpose of the
simulations here is simply to demonstrate the importance of
including the Kelvin effect in the parameterization of aerosol
wet size.

5 Conclusion

An innovative three-moment modal parameterization scheme
was developed for accurate simulation of aerosol microphys-
ical processes. Numerical calculations for the growth of a
population of aerosol particles, represented by lognormal
size distributions, were first performed, and then the results
were analyzed by statistical fitting to generate parameteriza-
tion formulas. Three different approaches were devised for
this statistical–numerical aerosol parameterization, namely
the kernel transformation (SNAP-KT), integral transforma-
tion (SNAP-IT), and optimal-size approximation (SNAP-
OS). Another simpler method, the mean-size approximation
(MSA), was taken as a no-skill reference. Each SNAP ap-
proach might be optimal for a certain process; however, we
found that the integral transformation approach is suitable for
most of the processes, whereas the optimal-size approxima-
tion can occasionally be applied to provide somewhat bet-
ter parameterizations than SNAP-IT. Although SNAP-KT is
outperformed by the other two methods, it is still very use-
ful in obtaining parameterization for diagnostic formulas.
These approaches provide parameterization formulas with-

out simplifying the growth kernels, and only a minor inac-
curacy resulted from the statistical fitting. Rate processes be-
ing parameterized include aerosol condensation, Brownian
coagulation, sulfuric acid water binary nucleation, and dry
deposition. Special attention was given to processes related
to aerosol–cloud interactions, and we provided formulas for
heterogeneous ice nucleation and wet scavenging, as well as
a diagnostic formula for aerosol activation into cloud drops.
Other diagnostic formulas provided in this work include con-
siderations for aerosol equilibrium wet size and the Kelvin
effect, as well as considerations for the group extinction and
absorption coefficients.

The SNAP schemes were verified in various ways, includ-
ing comparison against numerical solutions, analytical solu-
tions, and results from a binned aerosol parcel model. All
comparisons show that SNAP scheme is more accurate than
the modal scheme used in CMAQ and WRF-Chem models,
including the option that solves the growth integrals with a
fifth-order Gauss–Hermite numerical quadrature technique.
The computational efficiency of the SNAP scheme is slightly
lower (10 to 20 %) than that of the fast scheme in CMAQ,
which utilizes lookup tables to speed up calculation; how-
ever, it is about 15 times faster than CMAQ’s numerical
quadrature option.

The SNAP scheme has been implemented in an atmo-
spheric dust regional model, and the results (including the
total moments and the dust size distribution) are very close to
those simulated using a binned scheme. With such modal pa-
rameterization, much computation time is saved, mainly be-
cause of the reduced number of variables that need to be con-
sidered in advection calculation. We also utilized the CMAQ
model to test the integrity of the SNAP scheme, with focus on
the Brownian coagulation process. The results indicate that
our scheme is as reliable as the fifth-order Gauss–Hermite
numerical quadrature scheme. In this model, we further ap-
plied a SNAP diagnostic formula for the commonly ignored
or simplified Kelvin effect, and showed that this effect cannot
be ignored in aerosol modeling.

The parameterization scheme we developed is based on
lognormal size distribution. However, detailed bin model
simulations indicate that the size distribution may deviate
from the lognormal form. It might be worthwhile to revise
the scheme based on the gamma-type function, which is suit-
able for describing skewed size distributions. Because it has
no restriction to the number of moments used, the SNAP
method can even be applied to the modified gamma distri-
bution, which requires four moments to solve. The SNAP
method also has the potential to be used for the modal param-
eterization of cloud microphysical processes and even other
types of physical or chemical processes.
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Table A1. Formulas for SNAP.

Item # Process/Parameter Adjustment factor for the prognostic formulas R2

1 Ice nucleation –
deposition nucleation

g2 = exp
(
a1·σ2

+a2/q2
)

0.9444
0.9868
0.9803

2 Ice nucleation –
immersion freezing

g2 = exp
(
a1·σ2

+a2/q2
)

0.9870
0.9955
0.9910

3 Condensation
g1,2= exp

{
σ · [a1+a2 · exp

(
− lnKN

)
+ a3·σ ]

}
0.9989

g1,3= exp
{
σ · [a1+a2 · exp

(
−lnKN

)
+ a3·σ ]

}
0.9961

4 Intramodel coagulation1
g1,0= exp

(
a1+a2·σ+a3· lnKN

1+a4·σ+a5·σ
2+a6· lnKN+a7· lnK

2
N

)
0.9947

g1,2 = g1,0·exp
(
a1 + a2 · lnµ + a3 · σ3

)
0.9991

5 Intermodal coagulation

g1,0= exp
(
a1·σ2

A
+a2·σ2

B

)
0.9997

g1,2A= exp
(
a1·σ2

A
+a2·σ2

B

)
0.9999

g1,2B= exp
(
a1·σ2

A
+a2·σ2

B

)
0.9999

g1,3= exp
(
a1·σ2

A
+a2·σ2

B

)
0.9998

6 Scavenging – Brownian diffusion
and phoretic forces

g1.0= exp
(
a1·σ2

A
+a2·σ2

B

)
0.9706

g1,2 = g1,0·exp
(
a1 + a2 · ln2µ + a3 · σ2

)
0.9989

g1,3 = g1,0·exp
(
a1 + a2 · ln2µ + a3 · σ2

)
0.9979

7 Scavenging – Impaction
g1,0 =

(
ln2µA + ln2µB

)
·exp

(
a1·σ2

A
+a2·σ2

B

)
0.9914

g1,2 = g1,0·exp
(
a1 + a2/ln2µ + a3 · σ2

)
0.9923

g1,3 = g1,0·exp
(
a1 + a2/ln2µ + a3 · σ2

)
0.9947

Diagnostic formulas

8 Binary nucleation –
critical embryo composition2

X = A + B · lnSW + C · lnSA + D · ln2SW + E ·

ln2SA + F · lnSW · lnSA
A = a1+a2 ·T +a3 ·T 2

+a4 ·T 3
+

a5
T

+
a6
T 2 ,B =

a1+a2·T 3,C = a1+a2·T 3,D = a1+a2·T 3,E =

a1 + a2 · T 3,

F= exp
(
a1 + a2 · T 2

)

0.9999

9 Cunningham slip flow correction CC= 1+a1·
(
λ
/
r
)a2 0.9999

10 Equilibrium wet size3

(with Kelvin effect)
req= rd ·

[
1+ κ/(a1 + a2

/
SW + a3/rd )

]1/3 0.9960

11 Modal equilibrium wet volume
(with Kelvin effect)3

M3,eq= M3,dry·
(
1+ κ/(a1 + a2

/
SW + a3/µd )

)
·

exp
(
a4 · σ + a5 · σ2

) 0.9998

12 Activation cutoff size4 rcut = exp(a1+a2 · ln1s+a3 · lnκ+a4 ·1T +a5 ·

1s/κ)

0.9976

13 Modal extinction coefficient Qe,bulk= Qe,r=µ ·

exp
(
a1 + a2 · lnµ + a3/lnµ + a4/ln2µ + a5/σ2

) 0.9736

14 Modal absorption coefficient Qa,bulk= Qa,r=µ ·

exp
(
a1 + a2 · lnµ + a3/lnµ + a4/ln2µ + a5/σ2

) 0.9882

Note:g1,j andg2,j are SNAP-IT and SNAP-OS adjustment factors for thej th moment (see Sect. 2.2); allµ andr are in m. When combined with MSA to get the full prognostic

equations (i.e.,̃I ), theirR2 values are usually higher than those shown in the last column.
1: Ĩ should be calculated withrA = µ · σ2 andrB = µ/σ2 (see Sect. 3.3).
2: X is sulfuric acid mass fraction of the critical embryo,SW is relative humidity, andSA is relative acidity.

3: Applicable atSW <100 %:rd is dry radius;µd is dry modal value;κ =

∑
j

κj Vj∑
j

Vj
, whereκj ≡

ij ρj Mw

ρwMj
; j is species index;V is volume fraction;i is van’t Hoff factor;ρ is bulk

density;M is molecular weight; andκj = 0 for insoluble species.
4. 1s ≡ SW − 1, and1T ≡T −273.15K.
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Table A2. Coefficients for SNAP formulas.

Item # Identifier a1 a2 a3 a4 a5 a6 a7

1
I0 1.07057 10.6552
I2 1.98178 7.56989
I3 2.41915 6.97061

2
I0 1.00997 4.84991
I2 1.97099 3.50257
I3 2.43270 3.23430

3
I2 −0.70413 −0.12431 0.96979
I3 0.66771 −0.0415 0.97147

4
I0 0.06784 −1.36133 −0.02511 −1.50752 0.99634 −0.02649 0.004882
I2 −0.78168 2.00439 −0.36568

5

I0 0.67867 1.73118
I2,A 0.64602 −0.00638
I2,B −0.05216 0.62269
I3 0.63212 0.60635

6
I0 0.58113 1.98301
I2 −18.86178 −0.05279 −1.98356
I3 −25.28709 −0.079187 −1.51129

7
I0 0.02450 −0.00041
I2 −34.97740 1579.1761 2.62242
I3 −52.55848 2381.8451 5.36787

8

A −6.81904 0.02574 −4.184× 10−5 3.004× 10−8 1070.618 −61228.947
B −0.02095 −1.59219
C 0.0041 2.68278× 10−10

D 0.00174 −3.3858× 10−10

E 8.43580× 10−5
−1.3835× 10−11

F −8.11399 2.46303× 10−5

9 1.43089 1.0295
10 −1.02733 1.02654 6.07891× 10−10

11 −1.02733 1.02654 6.07891× 10−10
−8.98388 4.50074

12 −21.16681 −0.66654 −0.33351 −0.00560 −0.08657
13 919.62123 16.09653 17486.858 110668.73 0.50533
14 −109.55798 −1.88697 −2219.1591 14696.404 0.21686
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