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Abstract. Reflected solar radiance from the Earth–
atmosphere system is polarized. Radiance measurements
can be affected by light’s state of polarization if the ra-
diometric sensor has polarization dependence. To enable
the Climate Absolute Radiance and Refractivity Observa-
tory (CLARREO) mission for inter-calibration of the im-
agers with polarization dependence, such as the MODIS,
the polarization state of the light must be known with suf-
ficient accuracy. For this purpose, the polarized solar ra-
diation from the ocean–atmosphere system is studied with
an adding-doubling radiative transfer model (ADRTM). The
Cox–Munk ocean wave slope distribution model is used in
calculation of the reflection matrix of a wind-ruffled ocean
surface. An empirical foam spectral reflectance model and an
empirical spectral reflectance model for water volume below
the surface are integrated in the ocean-surface model. Solar
reflectance from the ADRTM is compared with that from the
discrete-ordinate radiative transfer (DISORT) model. Sensi-
tivity studies are conducted for various ocean-surface and
atmospheric conditions for the stratification of polarization
distribution models (PDMs), which are to be used in the
inter-calibration of the polarization-sensitive imager mea-
surements with the CLARREO data. This report presents the
first accurate approach for making the spectral PDMs over
broad solar spectra, which cannot be achieved by empirical
PDMs based on the data from polarimetric sensors.

1 Introduction

Reflected solar radiance from the Earth–atmosphere system
can be significantly polarized by the Earth’s surface and by
atmospheric components such as air molecules and aerosols.

Radiance measurements can be seriously affected by the state
of polarization of the observed light if the radiometric sen-
sor is sensitive to polarization. To use the highly accurate
data from the Climate Absolute Radiance and Refractivity
Observatory (CLARREO) mission (Wielicki et al., 2013;
currently available online athttp://journals.ametsoc.org/doi/
pdf/10.1175/BAMS-D-12-00149.1) to calibrate the solar im-
agers like MODIS (King et al., 1992) or its follow-on in-
strument VIIRS and geostationary imagers, the polarization
state of the reflected solar light must be known with sufficient
accuracy, e.g., better than 15 % in root mean square (rms).
Empirical polarization distribution models (PDMs) (Nadal
and Breon, 1999; Maignan et al., 2009) based on the PARA-
SOL data (Deschamps et al., 1994) can be used to correct
radiometric bias in an imager’s measurements (Lukashin et
al., 2013). However, the incidence and viewing geometries
of pertinent scene types of these empirical PDMs are lim-
ited by the specific sensors and their satellites’ orbits and
Equator-crossing times, etc., which may not always be ap-
plicable to other imagers on different satellites. For exam-
ple, currently PARASOL is the only polarimetric sensor in
orbit that is suitable for empirical PDM development. How-
ever, since PARASOL is in the A-train Sun-synchronous or-
bit and its CCD array has no cross-track scan function, its
solar zenith angle (SZA) and viewing angles are limited. Al-
though this may not be a problem for VIIRS since it is also in
the A-train Sun-synchronous orbit with an Equator-crossing
time of 13:30 LT, for imagers not in the A-train orbit, such
as the geostationary ones, the empirical PDMs based on the
PARASOL polarimetric data will be insufficient to cover all
viewing and solar geometries. Also, CLARREO is designed
to measure solar spectra, with spectral coverage from 320 to
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Fig. 1. Geometry of light’s reflection in the ocean–atmosphere sys-
tem.

2300 nm and spectral sampling of 4 nm, which has potential
to inter-calibrate spaceborne sensors at nearly all of the so-
lar wavelengths. Thus, the PDMs for the inter-calibration ap-
plications should be made over the broad solar spectra, and
this cannot be achieved by using the available polarimetric
measurements from PARASOL at only 3 wavelengths (i.e.,
490, 670, and 865 nm). Furthermore, polarization sensitivity
studies are necessary in stratification of the PDMs for differ-
ent surface scene types and atmospheric conditions, as well
as incidence and viewing geometries, etc. These polariza-
tion sensitivity studies require comprehensive modeling of
the polarized solar radiation’s sensitivity to the surface and
atmospheric optical properties in order to optimize stratifi-
cation of the PDMs. Therefore, numerical modeling of the
polarized solar radiation from the Earth–atmosphere system
is critical for making accurate and efficient PDMs.

Sensitivity to polarization of imaging radiometers such as
MODIS and VIIRS is obtained during instrument character-
ization before launch, and expressed in polarization factor.
These factors are corrections of the baseline (unpolarized)
gain, and depend on the instrument band, scan angle, and
angle of polarization (Sun and Xiong, 2007). Taking into
account this framework, the PDM should be developed in
a consistent manner, providing information on the degree
of polarization (DOP), and the angle of linear polarization
(AOLP) of the reflected solar radiation at the top of the at-
mosphere (TOA). As demonstrated in a previous study by
Lukashin et al. (2013), the DOP strongly depends on the
scene type (clear sky and clouds, etc.), and both DOP and
AOLP strongly depend on solar and viewing geometry. Mod-
eling the polarization of the reflected light from the Earth–
atmosphere system must comprehensively consider all these
issues, as well as detailed physics in radiative transfer. Before
describing our approach to numerical modeling of the PDMs,
we would like to briefly review the fundamentals relevant to
polarization of reflected light.

Following Mischenko and Travis (1997), we set a right-
handed Cartesian coordinate system as shown in Fig. 1, with
thez axis directed vertically to the upper boundary of the at-
mosphere andxoz being the principal plane. The Sun is in
the principal plane and over the negativex axis of the co-
ordinate system in this figure. The direction of the reflected
light from the ocean–atmosphere system is specified by the
unit vectorer, andθ andφ denote the viewing zenith angle
(VZA) and relative azimuth angle (RAZ), respectively. In the
local right-handed orthonormal coordinate system formed by
the unit vectorser, eθ , andeφ , we haveer = eθ × eφ , where
eθ lies in the meridian plane of the reflected light beam.
The AOLP of the reflected radiance in the direction ofer
is the angle between the local meridian line and the elec-
tric vector of the linearly polarized light, counted counter-
clockwise when viewing in the reverse direction of the re-
flected radiance. Also, in the local right-handed orthonor-
mal coordinate system formed by the unit vectorser, eθ , and
eφ , the common intensity and the polarization state of any
quasi-monochromatic light can be completely specified by
the Stokes parametersI , Q, U , andV . Following the defini-
tion in Hansen and Travis (1974), we have

I =< EθE
∗
θ + EφE∗

φ >, (1a)

Q =< EθE
∗
θ − EφE∗

φ >, (1b)

U =< EθE
∗
φ + EφE∗

θ >, (1c)

V = i < EφE∗
θ − EθE

∗
φ >, (1d)

where Eθ and Eφ are the θ and φ components of the
electric field in the local right-handed orthonormal coordi-
nate system, respectively. The asterisk denotes the complex-
conjugate value, and angular brackets denote averaging in
time. It is well known that any arbitrarily polarized incoher-
ent radiation denoted by Stokes parametersI , Q, U , andV

can be represented by a sum of an unpolarized part and a
100 % polarized part as

I

Q

U

V

 =


I −

√
Q2 + U2 + V 2

0
0
0

 +


√

Q2 + U2 + V 2

Q

U

V

 . (2)

For a sensor with polarization dependence, the measure-
ment of the polarized portion of light [

√
Q2 + U2 + V 2, Q,

U , V ] is a function of the polarization angle. As an extreme
example, a linearly polarized lens can transmit a linearly po-
larized light [

√
Q2 + U2, Q, U , 0] from 0 to 100 %, depend-

ing on the AOLP relative to the polarization direction of the
lens.
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Since the circularly polarized radiance from the ocean–
atmosphere system is negligible (V ≈ 0) (Coulson, 1988),
only the total radianceI and linearly polarized radianceQ
andU need to be calculated in this study. Without consid-
ering the circularly polarized radiance (V ≈ 0) at TOA, the
DOP and AOLP are defined in terms of Stokes parameters,
respectively, as

DOP=

√
Q2 + U2

I
(3)

and

AOLP =
1

2
tan−1(

U

Q
) + α0, (4)

whereα0 = 0◦ if Q > 0 andU ≥ 0; α0 = 180◦ if Q > 0 and
U < 0; α0 = 90◦ if Q ≤ 0. The physical meaning of AOLP
is illustrated in Fig. 1. When both DOP and AOLP of the
radiance are known, the sensor-measured intensity counts of
light can be expressed as

Cm = G0 · (1− DOP) · I + Gp(AOLP) · DOP· I, (5)

whereI denotes the actual intensity of the light to be mea-
sured,G0 andGp (AOLP) are sensor’s gain factors for un-
polarized radiation and linearly polarized radiation, respec-
tively. Gp (AOLP) is the ratio of the sensor-measured inten-
sity count to the intensity of the linearly polarized incidence
light source used for calibrating the instrument, andG0 can
be derived as a mean value ofGp (AOLP) over all AOLPs.
From Eq. (5), the actual radiance can be derived from the
measured value as

I =
Cm/G0

1+

[
Gp(AOLP)−G0

G0

]
· DOP

, (6)

whereCm/G0 is simply the measured intensity without po-

larization correction, and
[

Gp(AOLP)−G0
G0

]
, as a function of

AOLP, is the imager’s sensitivity-to-polarization factor, ob-
tained during the prelaunch calibration of the instrument.
Note here that for a well-depolarized imager,m(AOLP) =[

Gp(AOLP)−G0
G0

]
should be a quantity with|m(AOLP)| << 1.

Therefore, using 1
1+x

≈ 1− x for smallx, Eq. (6) can be ex-
pressed as

I ≈ (Cm/G0) · [1− m(AOLP) · DOP]. (7)

The relative error (RE) of the measured intensity due to po-
larization can then be calculated as

RE=
(Cm/G0) − I

I
≈

m(AOLP) · DOP

1− m(AOLP) · DOP
≈ m(AOLP) · DOP. (8)

In deriving Eq. (8), we neglected the second-order small
value [m(AOLP) × DOP]

2. Thus, e.g., for a sensor with a
sensitivity-to-polarization factor of only 1 %, its measure-
ment for light with a DOP of 30 % will have relative error
of 0.3 % solely due to the polarization.

Equation (6) gives the way of using the DOP and AOLP in
correction of measured radiance errors caused by the polar-
ization of the reflected light and the polarization dependence
of the radiation sensor. The polarization correction could be
more complicated for an imager with scan mirror optical sys-
tem (Sun and Xiong, 2007; Lukashin et al., 2013), when the
sensor’s gain factorsG0 andGp (AOLP) are also the func-
tions of scanning angle. In summary, Eq. (6) shows that if
the DOP and AOLP of the reflected solar light at TOA are
known, the correction of errors caused by the polarization of
light in the ocean–atmosphere-reflected radiance measured
by polarization-dependent remote sensors can be accurately
done. In this study, we will couple an atmospheric radia-
tive transfer model with a rough-ocean-surface light reflec-
tion matrix, to model the solar radiation through the ocean–
atmosphere system, focusing on the DOP and AOLP of the
reflected solar light at TOA while addressing the total radi-
ance of the reflected light.

2 Atmospheric radiative transfer model

A variety of techniques have been developed for comput-
ing the radiative transfer including multiple-scattering light
through the atmosphere. The most frequently used algo-
rithms that can calculate not only total radiance but also the
polarization state of light include the invariant imbedding
method (Ambartsumian, 1958; Adams and Kattawar, 1970;
Hansen and Travis, 1974; Mishchenko and Travis, 1997),
the method of successive-order scattering (van de Hulst,
1948; Dave, 1964; Irvine, 1965; Hovenier, 1971; Hansen and
Travis, 1974; Min and Duan, 2004; Lenoble et al., 2007; Zhai
et al., 2010; Duan et al., 2010), the Monte Carlo method
(Hammersley and Handscomb, 1964; Plass and Kattawar,
1968; Kattawar et al., 1973; Hansen and Travis, 1974; Mayer,
2009; Cornet et al., 2010), the discrete ordinate method
(Chandrasekhar, 1950; Hansen and Travis, 1974; Stamnes et
al., 1988; Schulz et al., 1999; Rozanov and Kokhanovsky,
2006; Ota et al., 2010), and the adding-doubling method
(Stokes, 1862; Peebles and Plesset, 1951; van de Hulst, 1963;
Twomey et al., 1966; Hansen and Hovenier, 1971; Hansen
and Travis, 1974; de Haan et al., 1987; Evans and Stephens,
1991). Some of these methods were already applied to the
study of ocean–atmosphere system: e.g., the Monte Carlo
method was applied to study the effect of ocean refractive in-
dex on the polarization of light over a calm ocean (Kattawar
and Adams, 1989); the method of successive-order scattering
was applied to study the water color of a planar ocean (Chami
et al., 2001, 2007); and the adding-doubling method was used
in the study of the polarized reflection from a wind-ruffled
ocean (Takashima and Masuda, 1985), the study of the polar-
ized light at the O2 A band from a Lambertian ocean (Stam
et al., 1999), and in the study of ocean polarized reflectance
including water-leaving radiation for precise aerosol retrieval
(Chowdhary et al., 2005, 2006). In this study, we employ the
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adding-doubling method, and couple it with a rough-ocean-
surface light reflection matrix, to model the reflected solar
radiation from the ocean–atmosphere system, focusing on
deriving the DOP and AOLP of the reflected light at TOA,
for using these parameters in correcting measurements from
polarization-sensitive instruments in orbit.

In the adding-doubling algorithm, the medium in which
the light propagates is separated into many optically thin sub-
layers. The optical thickness of each sublayer is set to be so
small that the optical properties of the sublayer can be rep-
resented simply by single-scattering ones. If reflection and
transmission are known for each of the two adjacent sublay-
ers, the reflection and transmission from the combined layer
can be obtained by computing the successive reflections back
and forth between the two sublayers. If the optical properties
of the two sublayers are identical, the results for the com-
bined layer can be built up rapidly in a doubling manner.
In the practice of adding-doubling programming, Fourier de-
composition is made for the Stokes vector and also for the
scattering phase matrix. The numerical solution is obtained
for each Fourier component, and the Stokes vector of the
transferred light is calculated with these Fourier components
(de Haan et al., 1987; Evans and Stephens, 1991). Due to
its simple essence, the adding-doubling method is a standard
radiative transfer algorithm that has a long history of appli-
cations and documentations and does not need to be further
introduced here. In this study, the adding-doubling model fol-
lows the latest program development in this method (Hansen
and Travis, 1974; Evans and Stephens, 1991), which can be
applied to calculate all Stokes parameters of the radiation
through a plane-parallel atmosphere composed of absorbing
gas, scattering molecules, scattering particulates including
various aerosols, water cloud droplets, and ice cloud parti-
cles.

In this study, the atmosphere is assumed to be plane-
parallel and separated into 32 layers with the ocean sur-
face as the reflecting boundary layer. The atmospheric pro-
files, which give the pressure, temperature, water vapor, and
ozone as functions of altitude, are from the tables of trop-
ical (TPC), midlatitude summer (MLS), midlatitude win-
ter (MLW), sub-Arctic summer (SAS), and sub-Arctic win-
ter (SAW) atmospheric profiles (McClatchey et al., 1972).
The US standard (STD) atmosphere (1976) is also applied
in sensitivity studies in this report. We use gas absorption
coefficients from thek-distribution treatment (Kato et al.,
1999) of the spectral data from the line-by-line radiative
transfer model (LBLRTM) (Clough et al., 1992; 1995) us-
ing the MODTRAN 3 dataset (Kneizys et al., 1988). Ozone
absorption coefficients are also taken from the ozone cross-
section table provided by the World Meteorological Organi-
zation (1985) for wavelengths smaller than 700 nm. Molec-
ular scattering optical thickness above any pressure level,P ,
is from (Hansen and Travis, 1974)

τ = 0.008569λ−4(1+ 0.0113λ−2
+ 0.00013λ−4)(

P

P0
), (9)

whereλ is the wavelength of light in µm,P is the pres-
sure in mb, andP0 = 1013.25 mb is the standard surface
pressure. The scattering phase matrix elements of molecular
atmosphere are based on Rayleigh scattering solution with
a depolarization factor of 0.03 (Hansen and Travis, 1974).
Single-scattering properties of aerosol and cloud particles are
calculated differently: for spherical droplets including liq-
uid aerosols and water cloud particles, Mie solution (Mie,
1908; Fu and Sun, 2001) is applied; for solid- or mixed-phase
aerosols or small ice crystals, which are usually nonspheri-
cal particles, the finite-difference time domain (FDTD) light
scattering model (Sun et al., 1999, 2002, 2013), the scattered-
field pseudo-spectral time domain (PSTD) light scattering
model (Sun et al., 2013), and the discrete dipole approxi-
mation (DDA) light scattering model (Zubko et al., 2006,
2009) will be used; for large ice crystals, we will use the
data from geometric optics approximation (GOA) (Macke,
1993; Yang and Liou, 1996). The C1 size distribution (Deir-
mendjian, 1969) is used for water cloud droplets. The 28
measured ice-crystal size distributions used in Fu (1996)
and the two other size distributions in Mitchell et al. (1996)
will be used to calculate the volume single-scattering prop-
erties of ice clouds. Two-mode lognormal size distributions
(Davies, 1974; Whitby, 1978; Reist, 1984; Ott, 1990; Porter
and Clarke, 1997) are applied for aerosols.

Traditional radiative transfer models generally assume in-
dependent radiation process for molecules and aerosol or
cloud particles, which means that molecular radiation pro-
cess and particulate process are assumed at different layers
of atmosphere to avoid the convolution of the light scatter-
ing phase functions of molecules and particulates in the ra-
diative transfer calculations. This may involve errors due to
unphysical single-scattering properties in each layer. In this
study, for layers with more than one type of scattering atmo-
spheric components, such as layers with both air molecules
and aerosols, and layers composed of air molecules, aerosols,
and cloud particles, the mixed single-scattering properties,
including absorption and scattering coefficients and phase
matrix elements, are calculated, as the mixed optical prop-
erty of the layer. In calculation of the mixed values, single-
scattering properties of individual agents are weighted by
their optical thickness.

In the radiative transfer calculations, the phase matrix ele-
ments of particulate atmospheric components are input to the
radiative transfer model as Legendre polynomial series (e.g.,
Evans and Stephens, 1991). If the phase matrix elements of
the scattering particles have strong forward-scattering peaks
(what happens on large cloud particles), it needs many Leg-
endre high-order terms to approach the original phase matrix
elements, which will heavily increase the computation time
and memory of the radiative transfer calculation due to the
large increment in the Legendre terms and stream number
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Fig. 2. Illustration of delta adjustment on phase function.

in the modeling. To avoid this problem, we conduct a delta
adjustment (e.g., Hansen, 1968) to the layer’s mixed single-
scattering properties prior to the Legendre series expansion
of the scattering phase matrix elements. This means a trun-
cation of the forward-scattering peak in the phase matrix ele-
ments for particulate atmospheric components. In this study,
this is done in a way as shown in Fig. 2, exemplified by
the conventional phase function (P11) of a water cloud. The
scattering peak between the scattering angle ofθ0 and the
forward-scattering direction is truncated and replaced by val-
ues from a linear extrapolation algorithm

log10P11(θ) − log10P11(θ1)

(θ − θ1)
=

log10P11(θ0) − log10P11(θ1)

(θ0 − θ1)
, (10)

whereθ0 andθ1 are two neighboring scattering angles and
θ1 > θ0, andθ is any scattering angle between 0 andθ0. The
truncated phase function is integrated over the scattering an-
gle to obtain the energy loss fractionf due to the trunca-
tion of the forward-scattering peak, which is the difference
between the integral of original phase function and the inte-
gral of truncated phase function over scattering angles. Af-
ter the energy loss fractionf is obtained, the scattering op-
tical thickness (τ ′

s), total optical thickness (τ ′), and single-
scattering albedo (α′) of the adjusted cloud are

τ
′

s = (1− f )τs, (11)

τ
′

= τa+ τ
′

s, (12)

and

α
′

= τ
′

s/τ
′

, (13)

where τs and τa are the scattering and absorption optical
thickness of the original clouds, respectively. Other elements
of phase matrix are also adjusted by conserving their ra-
tio values to the conventional phase function (P11) (e.g.,
P12/P11 does not change after the adjustment). The adjusted
phase matrix elements are renormalized by (1− f ).

The delta-adjustment treatment may cause some numer-
ical errors in calculation of the total reflectance from the
clouds due to the strong forward-scattering peak in their
phase-matrix elements. However, since radiation from clouds
has a very low degree of polarization, which we show later,
the delta-adjustment approximation should not cause any sig-
nificant errors in the correction of radiance measurement
caused by polarization state of light in remote-sensing inter-
calibration applications.

3 Surface reflection model

The major expansion to the adding-doubling method in this
study is the coupling of the rough-ocean-surface light reflec-
tion matrix with the atmospheric layers. The ocean-surface
light reflection matrix is obtained based on an empirical
foam spectral reflectance model (Koepke, 1984), an empir-
ical spectral reflectance model for water volume below the
surface (Morel, 1988), and the standard Kirchhoff approach
under the stationary phase approximation (Mishchenko and
Travis, 1997) for foam-free waves with slope distribution as
given in Cox and Munk (1954, 1956). To examine the depen-
dence of the reflected light’s polarization on the direction of
wind over ocean, the wave slope distribution models with the
Gram–Charlier series expansion (Cox and Munk, 1954), and
without the Gram–Charlier series expansion (Cox and Munk,
1956), are both integrated in the adding-doubling radiative
transfer model. The surface reflection matrix with 4× 4 ele-
ments is calculated as

R0(θs,θv,φ) = f RWC + (1− f )RWL + (1− f )
πM(θs,θv,φ)

4cos4β cosθscosθv
P(Zx,Zy), (14)

whereθs, θv, andφ denote solar zenith angle, viewing zenith
angle, and relative azimuth angle of the reflected light, re-
spectively. The fraction of whitecap (WC) is denoted asf .
The fraction of whitecaps has a large uncertainty, which not
only depends on the wind speed but also on the fetch and on
the factors altering the mean lifetime of the whitecaps, such
as water temperature and thermal stability of the lower atmo-
sphere (Koepke, 1984). In this study, we use the expression
by Monahan and O’Muircheartaigh (1980)

f = 2.95× 10−6W3.52, (15)

where the wind speedW is in the units of m s−1. In Eq. (14),
RWC is the whitecap reflection matrix. Since foam is gener-
ally assumed to be a Lambertian reflector, the only nonzero
element ofRWC is the reflectance, which is from an empir-
ical foam spectral reflectance model (Koepke, 1984) in this
study. The water-leaving (WL) reflection is also assumed to
be Lambertian. Similar toRWC, RWL has only one nonzero
element, the reflectance of water volume below the sur-
face, which is obtained from an empirical spectral reflectance
model (Morel, 1988) with an ocean water pigment concentra-
tion of 0.01 mg m−3. The 4× 4 elements ofM(θs,θv,φ) for
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each wave facet orientation are calculated in the same way as
in Mishchenko and Travis (1997) based on the Fresnel Laws.
As given in Cox and Munk (1954, 1956),P(Zx,Zy) is the
wave slope probability distribution as a function of the two
components of the surface slope

Zx =
∂Z

∂x
=

sinθv cosφ − sinθs

cosθv + cosθs
(16)

and

Zy =
∂Z

∂y
=

sinθv sinφ

cosθv + cosθs
, (17)

whereZ denotes the height of the surface. In Eq. (14),β is
the tilting angle of wave facet; thus

tanβ =

√
Z2

x + Z2
y . (18)

If wind direction is not accounted for, Cox and Munk (1956)
givesP(Zx,Zy) as a function of wind speed in a form

P(Zx,Zy) =
1

πσ 2
exp(−

Z2
x + Z2

y

σ 2
), (19)

whereσ 2 is linearly related to wind speedW (ms−1) in an
empirical form

σ 2
= 0.003+ 5.12× 10−3W. (20)

Furthermore, to study the sensitivity of reflected light’s po-
larization state to wind direction over the ocean, we also in-
tegrate in the model a form of the wave slope probability
distribution with a Gram–Charlier series expansion (Cox and
Munk, 1954)

P(Zc,Zu) =
1

2πσcσu
exp(− ξ2

+η2

2 )[1−
c21
2 (ξ2

− 1)η −
c03
6 (η3

− 3η)+
c40
24 (ξ4

− 6ξ2
+ 3) +

c04
24 (η4

− 6η2
+ 3) +

c22
4 (ξ2

− 1)(η2
− 1) + · · ·]

, (21)

whereξ =
Zc
σc

andη =
Zu
σu

, with Zc andZu denoting the two
components of the surface slope crosswind and upwind, and
σc andσu denoting the rms values ofZc andZu, respectively.
σ 2

c , σ 2
u , and the coefficientsc21, c03, c40, c04, and c22 are

all empirical linear functions of wind speed as given in Cox
and Munk (1954). The geometry for the definition of wind
direction is illustrated in Fig. 3.

The ocean surface is treated as the bottom (1st) layer in
the adding-doubling calculation in this study. The cosine az-
imuth modes (coefficients) and sine azimuth modes from the
Fourier transformation of the ocean reflection matrix ele-
ments are integrated into the adding-doubling process as the
bottom layer optical properties functioning as boundary con-
ditions. In this study, the 4× 4 ocean reflection matrix el-
ements calculated in Eq. (14) are transformed into cosine
azimuth modes or sine azimuth modes by discrete Fourier
transform (DFT) over azimuth angles with a numerical Gauss
integration.

Fig. 3.Geometry of wind direction in the coordinate system.

4 Numerical results

The objective of this study is to enable and demonstrate
numerical methods for building efficient PDMs to cor-
rect satellite-measured solar radiance, which has bias errors
caused by the polarization of reflected light. The numerical
results reported here will optimize the input parameters of
the radiative transfer model for this purpose. The empha-
sis of our numerical calculation is to study the sensitivity
of the polarization state of the reflected light to the param-
eters of solar wavelength, incidence and viewing geometries,
surface conditions, and components of the atmosphere. This
includes SZA, VZA, RAZ, reflection surface conditions, gas
absorption, and molecular and particulate scattering to the
light in the atmosphere. With these sensitivity studies, we
aim to identify the incidence, surface, or atmospheric param-
eters to which the DOP and AOLP are not sensitive. These
parameters are given certain values in the modeling and ex-
cluded from the input parameters for accessing PDM lookup
tables. With this approach, we can make PDMs as functions
of only necessary input parameters for quick accesses during
polarization correction in practice.

In the ADRTM, the adding-doubling scheme is actually
conducted on the modes (coefficients) of the Fourier se-
ries expansion of the Stokes parameters over azimuth an-
gle (de Haan et al.,1987; Evans and Stephens, 1991). Af-
ter the adding-doubling calculations, the cosine modes and
sine modes (Evans and Stephens, 1991) of the Stokes pa-
rameters are transformed back into the Stokes parameters.
Therefore, the number of the cosine modes and sine modes
in the Fourier series expansion of the Stokes parameters af-
fects the accuracy of the radiative transfer calculation. A big-
ger number is required for accurate calculation of radiation
with stronger anisotropy. Sensitivity of modeled Stokes pa-
rameters to mode number shows that a mode number of 18 is
adequate for modeling all atmospheric and ocean conditions.

Also, in adding-doubling schemes, the calculation for
transferred light’s sine and cosine modes of the Stokes
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Fig. 4. Comparison of the total reflectance of the ocean–atmosphere system at a wavelength of 670 nm on the principal plane. Black dots
and solid curves denote the results from the ADRTM and the DISORT, respectively. The atmosphere is of the midlatitude summer (MLS)
atmosphere with only Rayleigh scattering and gas absorption. The wind speed is 7.5 m s−1 and wind direction is 0◦. The solar zenith angle
(SZA) for (a) and(b) is 23.44◦ and for(c) and(d) is 43.16◦. Thirty-six (36) streams are used in the DISORT and 18 streams and 18 Fourier
expansion modes in the ADRTM.

parameters is conducted only on streams over discrete view-
ing zenith angles. Using more streams means higher resolu-
tion in the zenith angles and better accuracy in the results,
but also means requiring more computational resources. To
keep the computing time reasonable, we limited the num-
ber of streams to 18. In this study, the streams follow a set
of discrete Gaussian quadrature angles. Integration of radi-
ance over limited discrete viewing zenith angles at Gaussian
quadrature points can result in more accurate flux than over
uniformly distributed discrete angles. However, this treat-
ment will output Stokes parameters at Gaussian quadrature
points, which is not the easiest way for storing and accessing
the parameters during applications. To obtain the calculated
Stokes parameters and the DOP and AOLP derived from
these parameters over high-resolution uniform discrete view-
ing zenith angles, the Stokes parameters at only the Gaus-
sian quadrature points are extrapolated and interpolated to
the uniform grid points of viewing zenith angle. With this ap-
proach, using only 18 streams can produce accurate Stokes
parameters of reflected light at all viewing angles and over
nearly all atmospheric and ocean conditions.

Figure 4 shows the comparison of the total reflectance at
the wavelength of 670 nm on the principal plane from the
ADRTM and from the widely validated DISORT. The at-
mosphere is in the MLS pristine profile with only molecular
scattering (Rayleigh scattering) and gas absorption. The em-
pirical ocean foam and water-leaving reflectance models and
the wave slope probability distribution model with a Gram–

Charlier series expansion (Cox and Munk, 1954), which is
described in Sect. 3, are used. The wind speed is 7.5 ms−1

and wind direction is assumed in the reverse direction ofx

axis as illustrated in Fig. 1 (i.e., wind direction is 0◦). The so-
lar zenith angle (SZA) is 23.44◦ for Fig. 4a and b, and 43.16◦

for Fig. 4c and d. In the numerical simulations, we use 36
streams in the DISORT and 18 streams in the ADRTM. In
the ADRTM calculation, the number of Fourier expansion
modes is set to 18. We can see that the total reflectance from
the ADRTM is very close to that from the DISORT, with
significant differences only at VZA> ∼ 80◦, when the atmo-
spheric path optical thickness is large. For VZA <∼ 80◦, the
relative difference in reflectance from the ADRTM and the
DISORT is smaller than∼ 5 %. Since most in-orbit sensors
do not report observations for VZA larger than∼ 70◦, the
focus for the modeling quality is in the VZA range of 0–
70◦. As a scalar approximation to a vector radiative transfer
problem, DISORT has errors due to the negligence of polar-
ization (Adams and Kattawar, 1970; Lacis et al., 1998). At
small VZA, since the path optical thickness is small at the
near-IR wavelength, the errors in the DISORT caused by the
polarization of scattered light are also small, so the DISORT
result is very close to the ADRTM data. At a larger SZA
of 43.16◦, the agreement of the DISORT and ADRTM re-
sults are even better. For VZA< ∼ 80◦, the relative differ-
ence in reflectance from the ADRTM and the DISORT is
smaller than∼ 3 %. We also can see in the two cases that the
total reflectance from DISORT is generally larger than that
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Fig. 5. Same as in Fig. 4, but for the DOP on the principal plane from the ADRTM. The solar zenith angle (SZA) for(a) and(b) is 23.44◦

and for(c) and(d) is 43.16◦.

of ADRTM in the forward-reflecting directions and smaller
than that of ADRTM in the backward-reflecting directions.
This is consistent with the results in Lacis et al. (1998). From
these case studies, we can conclude that the ADRTM with
18 streams and 18 Fourier expansion modes can produce re-
flectance consistent with other radiative transfer models.

Figure 5 shows the DOP on the principal plane from the
ADRTM for the cases in Fig. 4. We can see that for both of
the solar incidence geometries, the DOPs reach their maxima
at the VZA of∼ 60◦ in the forward-scattering direction and
reach their minima at about the backscattering angles (i.e.,
23.44◦ and 43.16◦, respectively). The DOPs also strongly de-
pend on solar zenith angles. Larger solar zenith angles result
in larger DOPs at nadir direction. Based on the definition of
AOLP and the geometry illustrated in Fig. 1, the AOLPs for
the cases in Fig. 5 as a function of VZA and RAZ over the
RAZ range of 0–180◦ are displayed in Fig. 6. We can see
that on the principal plane, the AOLPs are∼ 90◦ at nearly all
of the VZAs. Solar zenith angle significantly affects AOLP’s
distribution pattern in VZA and RAZ. Therefore, SZA, VZA,
and RAZ are three critical parameters to determine DOP and
AOLP in the PDMs.

To build a comprehensive set of PDMs, we also need to
check the dependence of DOP and AOLP on the profiles of
pristine atmosphere. Actually, the only significant effect of
different pristine atmospheric profiles on reflected solar ra-
diance spectra is the gas absorption to the light. Therefore,
the sensitivity of solar light’s polarization to pristine atmo-
spheric profiles can be examined by studying the dependence
of the DOP and AOLP on the gas absorption. Figure 7 shows

the total reflectance, DOP, and AOLP at a water vapor ab-
sorption wavelength of 1200 nm at TOA, which is calculated
with the ADRTM at a solar zenith angle of 43.16◦ over a
pristine clear-sky ocean with a wind speed of 7.5 m s−1. The
total reflectance and DOP with the sub-Arctic winter atmo-
sphere (solid curves) and those with the tropical atmosphere
(black dots) are shown. Also shown are the AOLP with the
sub-Arctic winter atmosphere (Fig. 7e) and those with the
tropical atmosphere (Fig. 7f). Since the tropical atmosphere
has much larger water vapor than the sub-Arctic winter at-
mosphere, the total reflectance at the water-vapor-absorption
wavelength of 1200 nm from the tropical atmosphere is much
smaller than that from the sub-Arctic atmosphere. However,
we can see that DOP and AOLP are much less affected by
the gas absorption in the atmosphere. This is consistent with
the results for single scattering by particles (Sun et al., 2002).
Therefore, gas absorption in different atmospheric profiles is
important for total reflectance modeling, but has relatively
insignificant effect on DOP and AOLP. A stratification of the
atmospheric profiles into the TPC, MLS, MLW, SAS, and
SAW atmosphere should be sufficient for accurate modeling
of the DOP and AOLP of the reflected solar light over the
globe.

It is well known that wind-caused ocean-surface roughness
can significantly affect the total reflectance of solar light.
However, it is not yet known how much wind speed and di-
rection can affect the polarization state of reflected solar light
at TOA. Figure 8 shows the total reflectance and DOP of the
ocean–atmosphere system on the principal plane, which is
calculated with the ADRTM at wavelength 670 nm. Pristine
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Fig. 6. Same as in Fig. 4, but for the AOLP from the ADRTM. The
solar zenith angle (SZA) for(a) is 23.44◦ and for(b) is 43.16◦.

clear atmosphere with the US STD atmospheric profile is as-
sumed. The SZA is 33.30◦. Wind direction is assumed to be
at 0◦. Wind speeds are given as 5.0, 7.5, 10.0, and 15.0 m s−1,
respectively. We can see that wind speed significantly affects
the total reflectance at RAZ= 0◦, but has only a small effect
on the total reflectance at RAZ= 180◦. Wind speed effect
on the DOP is also insignificant. The AOLPs of these cases
are shown in Fig. 9. We should note that the AOLP values of
∼ 0◦ and∼ 180◦ mean the same polarization plane of the lin-
ear polarization and have no difference to the measurement
instrument. Thus the deep blue and deep red angular regions
in Fig. 9 actually represent similar AOLPs and the same po-
larization direction. From Fig. 9, we can see that the wind
speed effect on the AOLP is insignificant. In the PDM devel-
opment and applications we will be able to use wind speed
assimilated from GMAO weather data products. Our model-
ing results show that the uncertainty of wind speed data will
only have a small impact on the DOP and AOLP.

Wind direction and ocean wave slope probability distri-
bution models, like the one with wind-direction dependence
(Cox and Munk, 1954) and the one without wind-direction
dependence (Cox and Munk, 1956), could also affect the cal-
culated reflectance and polarization state of the reflected light
at TOA. Figure 10 shows the total reflectance and DOP on
the principal plane, which is calculated with the ADRTM at

wavelength 670 nm. Pristine clear atmosphere with the US
STD atmospheric profile is used. The SZA is 33.30◦. Wind
speed is 7.5 m s−1. Both the ocean wave slope probability
distribution model with wind-direction dependence (Cox and
Munk, 1954) and the one without wind-direction dependence
(Cox and Munk, 1956) are used in the calculation. In the
ocean wave slope probability distribution model with wind-
direction dependence, wind direction is set at 0, 90, and 180◦,
respectively. We can see that varying wind direction or using
different ocean wave slope probability distribution models
can significantly change the total reflectance at RAZ= 0◦,
but has little impact on the total reflectance at RAZ= 180◦.
Varying wind direction, or using different ocean wave slope
probability distribution models, has nearly no effect on the
DOP at RAZ= 180◦, and only causes small changes in the
DOP at RAZ= 0◦ when VZA> 60◦. The AOLPs for the
cases in Fig. 10 are shown in Fig. 11. The AOLPs from the
ocean-surface models with different wind directions and dif-
ferent wave slope probability distributions show very similar
patterns. Since wind direction may not be reliably obtained
over ocean, and wind direction and wave slope distribution
models have little effect on the polarization state of reflected
light at TOA, we will use the Cox–Munk ocean wave slope
probability distribution model without wind-direction depen-
dence (Cox and Munk, 1956) in all of the following studies
and in the future modeling for operational PDMs. Using the
Cox–Munk ocean wave slope probability distribution model
without wind-direction dependence can make the reflection
field symmetric to the principal plane. Therefore, we only
need to calculate and store the reflectance, DOP, and AOLP
over the RAZ of 0–180◦ in practice. These quantities will
easily be obtained by symmetry for the RAZ of 180–360◦.
However, it is worth noting that among the Stokes parame-
tersI andQ are symmetric to the principal plane, butU and
V are oddly symmetric to the principal plane; i.e.,

I (VZA ,360◦
− RAZ) = I (VZA ,RAZ), (22a)

Q(VZA ,360◦
− RAZ) = Q(VZA ,RAZ), (22b)

U(VZA ,360◦
− RAZ) = −U(VZA ,RAZ), (22c)

V (VZA ,360◦
− RAZ) = −V (VZA ,RAZ). (22d)

From Eqs. (3), (4), and (22a–c), we can further derive out

DOP(VZA ,360◦
− RAZ) = DOP(VZA ,RAZ), (23a)

AOLP(VZA ,360◦
− RAZ) = 180◦

− AOLP(VZA ,RAZ). (23b)
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Fig. 7. The total reflectance, DOP, and AOLP at a wavelength of 1200 nm at TOA, which is calculated with the ADRTM at a solar zenith
angle of 43.16◦ over a pristine clear-sky ocean with a wind speed of 7.5 m s−1 and a wind direction of 0◦. Solid curves denote the total
reflectance and DOP with the sub-Arctic winter (SAW) atmosphere. Black dots denote the total reflectance and DOP with the tropical (TPC)
atmosphere. Panel(e)shows the AOLP with SAW atmosphere and(f) shows the AOLP with TPC atmosphere.

In study of the polarization state of the reflected solar light
from the ocean–atmosphere system, there is also a concern
that the shadows of ocean waves may affect the DOP and
AOLP of the reflected light. In this work, the effect of shad-
owing by surface waves on reflected light is examined by
multiplying the ocean reflection matrix of nonwhitecap part
of the ocean by a bidirectional shadowing function (Tsang et
al., 1985; Mishchenko and Travis, 1997)

S(θs,θv) =
1

1+ 3(θs) + 3(θv)
, (24)

where

3(θ) =
1
2

{
σ

cosθ

[
(1−cos2 θ)

π

]1/2
exp

[
−

cos2 θ

σ2(1−cos2 θ)

]
− erfc

[
cosθ

σ
√

1−cos2 θ

]}
,

(25)

σ is calculated with Eq. (20) and erfc(x) is the complemen-
tary error function. Figure 12 shows the total reflectance and

DOP on the principal plane at the wavelength of 670 nm from
the pristine US STD atmosphere over the ocean with and
without wave shadows. The wind speed is 7.5 m s−1. The
SZA is 33.30◦. We can see that ocean wave shadowing can
significantly reduce the total reflectance at VZA> ∼ 60◦, but
its effect on reflectance at smaller VZA and on DOP is not
big. Shown in Fig. 13 are the AOLPs of the cases in Fig. 12.
It can be seen that the ocean wave shadows also do not sig-
nificantly affect the AOLPs of the reflected solar light. How-
ever, ocean wave shadowing effect is considered in all of the
following studies and in the future operational PDMs.

To derive PDMs that are adequate for application over
broad solar spectral range, we need to investigate the sen-
sitivity of the polarization state of reflected light to the wave-
length. Figure 14 shows the total reflectance and DOP of the
ocean–atmosphere system on the principal plane, which is
calculated with the ADRTM at the wavelengths of 470 and
865 nm, respectively. Pristine US STD atmosphere is used.
The SZA is 33.30◦. Wind speed is 7.5 m s−1. We can see that
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Fig. 8. The total reflectance and DOP of the ocean–atmosphere system on the principal plane, which is calculated with the ADRTM at a
wavelength of 670 nm. Pristine US standard (STD) atmosphere is used. The solar zenith angle is 33.30◦. Wind direction is at 0◦. Wind speeds
are 5.0 m s−1, 7.5 m s−1, 10.0 m s−1, and 15.0 m s−1, respectively.

Fig. 9. Same as in Fig. 8, but for AOLP over RAZ of 0–180◦ at a wind speed of(a) 5.0 m s−1 , (b) 7.5 m s−1, (c) 10.0 m s−1, and (d)
15.0 m s−1, respectively.
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Fig. 10.The total reflectance and DOP of the ocean–atmosphere system on the principal plane, which is calculated with the ADRTM at a
wavelength of 670 nm. Pristine US standard (STD) atmosphere is used. The solar zenith angle is 33.30◦. Wind speed is 7.5 m s−1. Both the
ocean wave slope probability distribution model with wind-direction dependence and the one without wind-direction dependence are used
in the calculation. In the ocean wave slope probability distribution model with wind-direction dependence, wind direction is set at 0, 90, and
180◦, respectively.

Fig. 11.Same as in Fig. 10, but for the AOLPs from the ocean wave slope probability distribution model with wind direction(a) 0◦, (b) 90◦,
and(c) 180◦, and for(d) the ocean wave slope probability distribution model without wind-direction dependence.
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Fig. 12.The total reflectance and DOP of the ocean–atmosphere system on the principal plane, which is calculated with the ADRTM at the
wavelength of 670 nm from the pristine US standard (STD) atmosphere over the ocean without wave shadow (solid curve) and with wave
shadow (dashed curve). The wind speed is 7.5 m s−1. The SZA is 33.30◦.

Fig. 13. Same as in Fig. 12, but for AOLPs from the pristine
US standard (STD) atmosphere over the ocean(a) without wave
shadow and(b) with wave shadow.

changing the wavelength can affect the total reflectance very
much. Although changing solar wavelength also significantly
affects the DOP especially when VZA> ∼ 45◦, the DOP’s
sensitivity to wavelength is not as significant as the total re-
flectance’s. Though not shown here, we also find that increas-
ing the solar zenith angle can largely increase the difference
between the DOPs of different wavelengths at all viewing
zenith angles. The AOLPs for the cases in Fig. 14 are dis-
played in Fig. 15. The AOLP’s dependence on wavelength
is also noticeable. Therefore, the PDMs must be made as a
function of solar wavelengths, but may not require very high
spectral resolution.

One of the most uncertain components in the atmosphere
is aerosols. Effect of aerosols on solar reflectance has been
widely studied. Aerosols’ effect on polarization of light also
attracts many efforts (Chowdhary et al., 2002; Mishchenko
et al., 2007, 2013; Sun et al., 2013). In this study, to calcu-
late the effect of aerosols on the polarization state of reflected
light at TOA, we chose an example of a US STD atmosphere
with sea salt aerosols. The calculation is conducted at the
visible wavelength of 550 nm, where the refractive index of
sea salt is given as 1.5+ i10−8 (Chamaillard et al., 2003).
The sea salt aerosol particle shapes are assumed to be the
agglomerated debris as shown in Fig. 16, and their single-
scattering properties are from the DDA calculations (Zubko
et al., 2006, 2009, 2013). A two-mode lognormal size distri-
bution (Porter and Clarke, 1997) is applied for the sea salt
aerosols in a form
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Fig. 14.The total reflectance and DOP of the ocean–atmosphere system on the principal plane, which is calculated with the ADRTM at the
wavelengths of 470 nm (dashed curve) and 865 nm (solid curve), respectively. Pristine US standard (STD) atmosphere is used. The solar
zenith angle is 33.30◦. Wind speed is 7.5 m s−1.

Fig. 15. Same as in Fig. 14, but for AOLPs at the wavelengths of
(a) 470 nm and(b) 865 nm.

dN/dlogD = mode1 + mode2, (26a)

modei =
M

D logσg

√
2π

exp[
−(logD − logDg)

2

2log2σg

]wherei = 1,2. (26b)

In Eqs. (26a) and (26b),D is the aerosol diameter in µm,
M is a multiplier,σg is the geometric standard deviation, and
Dg is the geometric mean diameter in µm. In this study, we
chose a sea salt aerosol case for wind speed between 5.5
and 7.9 m s−1 from Porter and Clarke (1997) with all the
parameters for fine and coarse mode and size distribution
curves shown in Fig. 17. The optical thickness of the aerosol
layer is given as 0.1. Figure 18 shows a comparison of the
total reflectance and DOP on the principal plane from the
ocean–atmosphere system without aerosols and with sea salt
aerosols, respectively. The ocean wind speed is 7.5 m s−1.
The SZA is 33.30◦. We can see that aerosols can increase
the total reflectance and decrease the DOP significantly. Al-
though Fig. 19 shows aerosols’ insignificant effect on the
AOLP, aerosols play an important role in the DOP of the re-
flected solar light. Thus, in building the PDMs, aerosol effect
should be accounted for.

The multiple scattering processes in water clouds can
largely depolarize the reflection and thus result in signif-
icantly smaller DOP of reflected solar light at TOA than
clear-sky ocean. However, the spherical droplets in water
clouds have some distinct light scattering features, such as
the maxima (rainbow) at scattering angles of∼ 130–160◦

(Deirmendjian, 1964), where the polarization state of scat-
tered light could be very different. A modified gamma (MG)
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Fig. 16. The agglomerated debris particle shapes of sea salt
aerosols.

particle size distribution (PSD) is assumed in this study for
water cloud droplets

dN/dR = N0R
ν exp(−ν

R

R0
), (27)

whereR denotes the droplet radius,R0 is the modal radius,
ν defines the shape of the distribution, and

N0 =
νν+1

0(ν + 1)Rν+1
0

Ntot (28)

is a constant with0(ν + 1) being the gamma function and
Ntot being the total number of particles per unit volume
(Petty and Huang, 2011). The commonly used C1 size dis-
tribution (Deirmendjian, 1969), which is defined by Eq. (27)
with R0 = 4 µm andν = 6, is applied in this study. Fig-
ure 20 shows the total reflectance and DOP on the princi-
pal plane, calculated with the ADRTM at the wavelengths
of 550 nm, from the ocean–atmosphere system with water
clouds of optical thickness 5.0 and 10.0, respectively. The
water cloud layer is assumed at 2–3 km over the ocean. The
wind speed is 7.5 m s−1. The SZA is 33.30◦. The US STD
atmosphere is used. It can be seen that the reflectance of the
water cloud with optical thickness of 10.0 is nearly two times
that of the water cloud with optical thickness of 5.0. How-
ever, the reflectance maxima at VZA= ∼ 2◦ and RAZ= 0◦,
VZA = ∼ 35◦ and RAZ= 180◦ (rainbow), and VZA= ∼ 73◦

and RAZ= 180◦ exist for both optical thicknesses. Also, at
these reflectance maxima angles, the DOP is sensitive to the
optical thickness. Larger optical thickness of the water cloud
significantly decreases the DOP at these reflectance maxima
angles and at other VZAs at RAZ= 0◦. However, the DOPs
of water clouds are generally relatively small, not larger than
∼ 20 %, for most of the viewing angles in this case. More-
over, the AOLPs of these water clouds in Fig. 21 show a very
specific angular distribution pattern in the neighborhood of
backscattering angles (glory), which is very different from
the AOLPs of other scene types. Also, varying optical thick-
ness of water clouds has nearly no effect on the polarization
angles.

Fig. 17. A two-mode sea salt aerosol size distribution from Porter
and Clarke (1997) for ocean wind speed between 5.5 and 7.9 m s−1.
The dotted curve denotes fine-mode size distribution; the dashed
curve denotes coarse-mode size distribution. The combined size dis-
tribution is denoted by the solid curve.

To study the polarized reflection from ice clouds, we tested
the in-situ-measured 28 ice cloud particle size distributions
used in Fu (1996) and various ice cloud particle shapes in-
cluding solid and hollow columns, plates, smooth and rough
surface bullet rosettes of four and six branches, and smooth
and rough surface column aggregates. The single-scattering
properties of these nonspherical ice crystals are from the ge-
ometric ray-tracing approximation (Yang and Liou, 1996).
Our tests show that applying different size distributions has
a negligible effect on the DOP and AOLP of thin ice clouds.
Varying particle shapes can cause as big as∼ 10 % change in
the DOP of thin ice clouds. However, the AOLPs are mini-
mally affected by the particle shapes of ice clouds. Figure 22
gives an example of the size distribution for ice clouds. Also
shown in this figure is the assumed ice crystal aggregate par-
ticle shape. Figure 23 shows the total reflectance and DOP
on the principal plane, which is calculated with the ADRTM
at wavelengths 865 nm from the ocean–atmosphere system
composed of an ice cloud layer. The ice cloud layer has an
optical thickness 3.0 at wavelength 865 nm. The particle size
distribution and the particle shape of the ice cloud are shown
in Fig. 22. The ice cloud layer is set between 7 and 8 km
over the ocean with a wind speed of 7.5 m s−1. The SZA is
33.30◦. The US STD atmosphere is used. We can see that
the total reflectance from the thick ice cloud does not have
the maxima as shown in Fig. 20 for water clouds. Also, since
we assumed randomly oriented ice crystal aggregates in the
calculation, there is no specular reflection peak from hori-
zontally oriented ice columns or plates either. The DOPs of
the thick ice clouds in Fig. 23 at most of the viewing angles
are smaller than∼ 4 %, so the polarization of solar reflec-
tion from thick ice clouds may not be an issue for measure-
ments. Due to the insignificant DOP of thick ice clouds, the
AOLPs of these clouds are not shown here. However, when
ice clouds are so thin that they are transparent to the solar
radiation, it becomes a big problem for the polarization state
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Fig. 18.The total reflectance and DOP on the principal plane, which is calculated with the ADRTM at the wavelengths of 550 nm from the
ocean–atmosphere system without aerosols (solid curve) and with sea salt aerosols (dashed curve) of optical thickness 0.1. The ocean wind
speed is 7.5 m s−1. The SZA is 33.30◦. The US STD atmosphere is used.

Fig. 19. Same as in Fig. 18, but for the AOLPs of the ocean–
atmosphere system(a) without aerosols and(b) with sea salt
aerosols, respectively.

of the reflected light at TOA. Figure 24 shows the same as
in Fig. 23, but for an ice cloud optical thickness of 0.3 at
865 nm. Also shown in Fig. 24 is the total reflectance and
DOP from the pristine atmosphere for comparison. We can
see that the thin cirrus could significantly increase the total
reflectance and decrease the DOP of the reflected light from
the surface. When VZA is large, as shown in Fig. 25, the
AOLPs are also noticeably changed by the thin cirrus. Since
thin cirrus clouds are widely distributed around the globe,
their effects on the polarization state of reflected solar light
from the Earth–atmosphere system must be carefully studied
(Sun et al., 2011).

5 Summary and conclusion

In this study, the polarized solar radiation reflected from
the ocean–atmosphere system is studied with an adding-
doubling radiative transfer model (ADRTM). The Cox–
Munk ocean wave slope distribution model is used in cal-
culation of the reflection matrix of a wind-ruffled ocean sur-
face. An empirical foam spectral reflectance model and an
empirical spectral reflectance model for water volume be-
low the surface are integrated in the ocean-surface reflec-
tion model. Solar reflectance from the ADRTM is in ex-
cellent agreement with that from the discrete-ordinate ra-
diative transfer (DISORT) model at the near-IR wavelength
for VZA < ∼ 80◦. The sensitivity studies for the polarized
solar radiation are conducted for various ocean-surface and
atmospheric conditions for understanding the dependencies
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Fig. 20.The total reflectance and DOP on the principal plane, which is calculated with the ADRTM at the wavelength of 550 nm from the
ocean–atmosphere system with water clouds of optical thickness 5.0 (dashed curve) and 10.0 (solid curve), respectively. The ocean wind
speed is 7.5 m s−1. The SZA is 33.30◦. The US STD atmosphere is used.

Fig. 21. Same as in Fig. 20, but for the AOLPs of the ocean–
atmosphere system with water clouds of optical thickness(a) 5.0
and(b) 10.0, respectively.

Fig. 22. The ice cloud particle size distribution of HP (1984):
T = −20◦ to −25◦ (Fu, 1996). Also shown is the assumed ice crys-
tal aggregate particle shape.

and optimizing the stratification of polarization distribu-
tion models (PDMs), which are to be used in the inter-
calibration of the polarization-sensitive imager measure-
ments with CLARREO data. We found that the total solar re-
flectance from the ocean–atmosphere system is very sensitive
to wavelength, solar and viewing angles, cloud and aerosols,
ocean-surface wind speed and direction, and atmospheric gas
absorption. However, the degree of polarization (DOP) and
angle of linear polarization (AOLP) of the reflected light
are less sensitive to ocean wind speed and direction and not
very sensitive to atmospheric gas absorption. Water clouds
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Fig. 23.The total reflectance and DOP on the principal plane, which is calculated with the ADRTM at the wavelength of 865 nm from the
ocean–atmosphere system with an ice cloud layer of optical thickness 3.0 at 865 nm. The ice cloud layer is between 7 km and 8 km over the
ocean with a wind speed of 7.5 m s−1. The SZA is 33.30◦. The US STD atmosphere is used.

Fig. 24.Same as in Fig. 23, but for an ice cloud layer of optical thickness 0.3 at 865 nm (dashed curve). Also shown are the total reflectance
and DOP from the pristine atmosphere (solid curve) for comparison.
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Fig. 25. Same as in Fig. 24, but for the AOLPs of the ocean–
atmosphere system(a) without ice cloud and(b) with an ice cloud
of optical thickness 0.3 at 865 nm, respectively.

generally have small DOPs, but at some specific viewing
angles, such as the rainbow angle, their DOPs are still sig-
nificant. Thick ice clouds have the minimum DOPs, which
will not cause significant errors due to polarization in the
measurement even by a satellite imager with strong polar-
ization dependence. The major issues related to solar radi-
ation polarization are aerosols and thin ice clouds. The two
atmospheric components must be carefully accounted for in
making the CLARREO PDMs. The major problem with thin
cirrus clouds and aerosols related to the polarization of re-
flected solar light from the ocean–atmosphere system is their
optical thickness. However, although thin cirrus clouds and
aerosols could significantly affect DOP, their effect on AOLP
is not significant. Also, applying different size distributions
has negligible effects on the DOP and AOLP of light from
thin ice clouds, and the effect of different particle shapes of
thin cirrus on the polarization state of the reflected light is
also moderate.

This work demonstrates a radiative transfer methodology
for building and optimizing the PDMs as functions of ocean-
surface conditions, aerosols and clouds, and background at-
mospheric profiles. Our results provide a reliable approach
for calculating the spectral CLARREO PDMs over the broad
solar spectra, which cannot be achieved by empirical PDMs

based on the analysis of available data from current polari-
metric sensors in orbit, although further studies are needed
for comparing the modeling results with PARASOL data and
for modeling different scene types over land surfaces.
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