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Abstract. A small subset of the atmospheric aerosol popu-
lation has the ability to induce ice formation at conditions
under which ice would not form without them (heteroge-
neous ice nucleation). While no closed theoretical descrip-
tion of this process and the requirements for good ice nu-
clei is available, numerous studies have attempted to quan-
tify the ice nucleation ability of different particles empiri-
cally in laboratory experiments. In this article, an overview
of these results is provided. Ice nucleation “onset” conditions
for various mineral dust, soot, biological, organic and ammo-
nium sulfate particles are summarized. Typical temperature-
supersaturation regions can be identified for the “onset” of
ice nucleation of these different particle types, but the vari-
ous particle sizes and activated fractions reported in different
studies have to be taken into account when comparing results
obtained with different methodologies. When intercompar-
ing only data obtained under the same conditions, it is found
that dust mineralogy is not a consistent predictor of higher
or lower ice nucleation ability. However, the broad major-
ity of studies agrees on a reduction of deposition nucleation
by various coatings on mineral dust. The ice nucleation ac-
tive surface site (INAS) density is discussed as a simple and
empirical normalized measure for ice nucleation activity. For
most immersion and condensation freezing measurements on
mineral dust, estimates of the temperature-dependent INAS
density agree within about two orders of magnitude. For de-
position nucleation on dust, the spread is significantly larger,
but a general trend of increasing INAS densities with increas-
ing supersaturation is found. For soot, the presently available
results are divergent. Estimated average INAS densities are
high for ice-nucleation active bacteria at high subzero tem-
peratures. At the same time, it is shown that INAS densities

of some other biological aerosols, like certain pollen grains,
fungal spores and diatoms, tend to be similar to those of dust.
These particles may owe their high ice nucleation onsets to
their large sizes. Surface-area-dependent parameterizations
of heterogeneous ice nucleation are discussed. For immer-
sion freezing on mineral dust, fitted INAS densities are avail-
able, but should not be used outside the temperature interval
of the data they were based on. Classical nucleation theory,
if employed with only one fitted contact angle, does not re-
produce the observed temperature dependence for immersion
nucleation, the temperature and supersaturation dependence
for deposition nucleation, and the time dependence of ice
nucleation. Formulations of classical nucleation theory with
distributions of contact angles offer possibilities to overcome
these weaknesses.

1 Introduction

Ice crystals in the atmosphere have important impacts on ra-
diative transfer, precipitation formation, and the microphys-
ical and optical properties of clouds. Therefore, their forma-
tion has been studied both in the field and under controlled
conditions in laboratory experiments since many years (e.g.,
Dufour, 1861; Schaefer, 1949; Georgii and Kleinjung, 1967;
DeMott et al., 2011). It is known that water droplets in
the atmosphere do not freeze instantaneously at 0◦C. Their
freezing can either be triggered by aerosol particles act-
ing as a so-called ice nuclei (IN), or occur homogeneously
(without IN) at about−38◦C (Pruppacher and Klett, 1997).
The goal of many laboratory studies was and is to assess
the ice nucleation ability of selected aerosol particles of a
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Fig. 1. Schematic representation of the different nucleation modes.

specific composition (e.g.,Pruppacher and Saenger, 1955;
Isono et al., 1959a). While earlier parameterizations of het-
erogeneous ice nucleation (Young, 1974; Meyers et al., 1992)
did not include any aerosol-specific dependencies, the results
of such experiments and their parametrical descriptions are
nowadays frequently used in atmospheric models on differ-
ent scales, from cloud resolving models to global climate
models (e.g.,Kärcher and Lohmann, 2003; Liu and Pen-
ner, 2005; Lohmann and Diehl, 2006; Grützun et al., 2008;
Phillips et al., 2009; Eidhammer et al., 2010; Hoose et al.,
2010a,b; Storelvmo et al., 2011), and enter the calculations
of aerosol indirect effects in mixed-phase and cirrus clouds.

In this article, we will provide a summary and overview
of historical and recent ice nucleation experiments. Results
for a wide range of different aerosol types, sizes, obtained
with different instruments and experimental boundary condi-
tions are intercompared. In individual studies, where the fo-
cus is often on instrument development and/or process stud-
ies, such comparisons to results with other instruments are
often selective or omitted, with the exception of a few coor-
dinated instrument intercomparison exercises (Langer, 1973;
DeMott et al., 2011). Here, we try to set the individual studies
and their results into a larger context. The parameters which
possibly influence results from different instruments will be
discussed one for one, and consistent tendencies will be iden-
tified. In addition, we will discuss to what degree parametri-
cal descriptions agree with these general features of the data.
However, within this study, we will not attempt to provide
quality classifications of methods or individual studies, or
new unified parameterizations.

It is also an aim of this article to make the results of labo-
ratory experiments more accessible to potential users within
the modelling community. Furthermore, we will scrutinize
some common assumptions in models, e.g. fixed thresh-
olds for nucleation onset (e.g.,Hendricks et al., 2011), the
higher ice nucleation efficiency of certain mineral phases

Fig. 2. Overview of ice nucleation onset temperatures and satura-
tion ratios. Data sources are listed in the following figures.

(e.g.,Lohmann and Diehl, 2006), the assignment of nucle-
ation modes to certain temperature intervals (e.g.,Ervens
et al., 2011) and the applicability of classical nucleation the-
ory (e.g.,Khvorostyanov and Curry, 2005; Liu and Penner,
2005; Hoose et al., 2010b).

Finally, we will identify open questions and give recom-
mendations for future studies.

2 Onset conditions for heterogeneous ice nucleation

Temperature (T ) and saturation ratio with respect to ice (Si)
are the main environmental factors which determine ice nu-
cleation. Laboratory ice nucleation experiments aim at the
determination of the aerosol-specific ice nucleation proper-
ties under controlled environmental conditions. Early results
have often been reported as “onset” temperatures and satu-
ration ratios, i.e. the highest temperatures and lowest satu-
ration ratios for which a certain amount of ice formation is
observed. This “onset” either corresponds to a detection limit
or to a chosen activated fraction.

In both experiments and in the atmosphere, aerosols can
experience a variety of different trajectories in theT -Si
space, as shown in Fig.1. Most air parcels rising from the
surface reach water saturation at temperatures above−40◦C
(Wiacek and Peter, 2009), but often undergo oscillations
and cycling through clouds before reaching the upper tropo-
sphere with temperatures below−40◦C. AboveSi = 1, the
dashed horizontal line in Fig.1, ice is the stable phase. Super-
cooled liquid water is in equilibrium with the vapour phase
along the solid diagonal line, which represents the ice satu-
ration ratio at liquid water saturation. Concentrated solution
droplets are in thermodynamic equilibrium at lower relative
humidities with respect to water according to the water ac-
tivity of the solutes. At temperatures below about−38◦C,
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water and solution droplets freeze homogeneously. The ho-
mogeneous nucleation rate of solutes can be formulated as a
function of the water activityaw (Koop et al., 2000). In Fig.1
and the following diagrams, the isoline for a homogeneous
nucleation rate coefficient of 5× 1014 m−3s−1 is indicated
for reference.

Figure2 summarizes ice nucleation onset data from a large
number of studies with atmospherically relevant aerosol par-
ticles. The data shown here correspond not only to different
particle species and nucleation modes, as indicated by the
colors and symbols, but also to different experimental meth-
ods, particle sizes, sample preparation, activated fraction and
more. This complicates the comparison of results from differ-
ent studies, in some cases making it even impossible. There-
fore we will focus in the following on relative and normal-
ized efficiencies, expressed by different metrics, and search
for recurring patterns and parametrical dependencies in dif-
ferent experiments.

In the following, the data shown in the overview plot
of Fig. 2 will be analysed in more detail. In particular,
the following factors are thought to be relevant for onset
supersaturation/temperature of ice nucleation: the chemical
composition (discussed in Sect.3.1), for mineral dust its
mineralogy (discussed in Sect.3.2), coatings (discussed in
Sect. 3.4), the activated fraction for which the “onset” is
reported in conjunction with the particle surface area (dis-
cussed in Sect.4.1), and time (discussed in Sect.4.2). Before
that, we will give a brief overview of atmospheric conditions
which are relevant to heterogeneous ice nucleation.

2.1 Typical ice nucleation onset in the atmosphere

The ice nucleation onset conditions measured for different
aerosol particles can be compared to typical ice onsets in
the atmosphere. For mixed-phase clouds, a number of in-situ
and remote sensing observations are available which quan-
tified typical water to ice transition temperatures (Korolev
et al., 2003; Field et al., 2004; Kanitz et al., 2011). These
indicate that, depending on the measurement location, more
than half of the clouds at temperatures lower than−15 to
−20◦C contain ice, while at higher temperatures, clouds are
more often purely liquid (within the detection limit of the
instrument). These transition temperatures coincide with im-
mersion freezing onset temperatures of some mineral dusts
and biological particles. If seeding from upper levels can be
excluded for the investigated cases, it can be inferred that
such particles have to be present in the atmosphere to ex-
plain the observed cloud phase distribution. This inference is
supported by a shift of the liquid-to-ice-transition to higher
temperatures for dusty conditions (Seifert et al., 2010).

For cirrus clouds, the frequency of occurrence of ice-
supersaturations (Haag et al., 2003; Krämer et al., 2009)
gives some indications on the availability of IN. Both in clear
air and in cirrus clouds, ice saturation ratios up to about
130 % are not uncommon, which lets us presume that par-

ticles nucleating ice at lower saturation ratios (e.g., large
mineral dusts or specific crystalline organic acids) are not
ubiquitous in the upper troposphere. However, as supersatu-
rations can persist in the presence of crystals due to sustained
cooling or suppressed growth (Peter et al., 2006), no further
conclusions can be drawn about the maximum or minimum
efficiency of IN required to explain the observed humidity
distribution (Spichtinger and Gierens, 2009).

3 Qualitative influence of composition on ice nucleation
properties

3.1 Main groups of atmospherically relevant IN

IN are generally solid, water-insoluble particles (Pruppacher
and Klett, 1997). The crystallographic structure of surfaces
seems to have some influence on their ice nucleation abil-
ities (Mason, 1971). In addition, so-called active sites, i.e.
localized topographic features like cracks or chemical im-
purities, can determine a particle’s ice nucleation behaviour
(Pruppacher and Klett, 1997). However, so far, predictions
of a material’s ice nucleation ability based on its chemical
or physical properties are impossible. The following sections
provide an overview of the ice nucleation abilities of min-
eral dust particles, soot, bioaerosols (bacteria, fungal spores,
pollen and diatoms), solid ammonium sulfate, organic acids
and humic-like substances. Nucleation onset conditions from
numerous experiments are shown separately for these par-
ticle types in Figs.3–5. Details about the data sources are
listed in Tables1–6. It should be noted that these “onset” data
cover a wide range of ice-active particles fractions, as indi-
cated in Tables1–5 wherever available. The experiments are
conducted with many different instruments and experimental
setups, which are listed in TableA2. For details about instru-
mentation and measurement principles, we refer the reader
to the original works and to the overviews given byDeMott
(2002) andDeMott et al.(2011).

3.1.1 Mineral dust

Because of the large number of experiments with mineral
dust, these are separated into four graphs (Fig.3), Fig. 3a, b
including only results with mainly submicron particles (ei-
ther monodisperse or size distributions with a mode diameter
smaller than 1µm) and Fig. 3c, d including experiments with
larger particles. More detailed size specifications for the min-
eral dust samples are given in Table1. Comparing Fig.3a, b
with c, d, it is obvious that larger particles tend to nucle-
ate ice at lower supersaturations and higher temperatures.
The data are color-coded with respect to the mineralogical
composition of the samples. Black symbols represent natu-
ral desert dust samples collected in different regions of the
world. Green symbols represent Arizona test dust (ATD), a
commercial product of milled soil dust available from Pow-
der Technology, Inc. Blue, red and yellow symbols represent
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Table 1.Laboratory experiments with mineral dust particles.

Reference material type of in-
strument

name of instru-
ment or
institution

nucleation mode size activated fraction residence time/
cooling rate

Archuleta et al.(2005) Asian dust CFDC-C CSU deposition and
condensation

50, 100 and 200 nm 1 % 10 to 13 s

Bailey and Hallett(2002) kaolinite TGDC/
CECC

DRI deposition and
condensation

5 to 10 µm and smaller <≈ 0.1 % 200 sK−1

Broadley et al.(2012) illite CS ULeeds immersion specific surface area
given

0 to 100 % (spectra) 6 to 75 sK−1

Bundke et al.(2008) ATD, kaolinite CFMC FINCH deposition and
condensation

n.a. relative to
maximum value

4.5 s

Bundke et al.(2008) kaolinite, illite ISDC FRIDGE deposition and
condensation

n.a. relative to
maximum value

≈ 90 s

Bunker et al.(2012) ATD, kaolinite CS Michigan Tech-
nological U

contact 62.5 to 1000 nm 10−8 to 10−3 n.a.

Chernoff and Bertram(2010) kaolinite, illite,
montmorillonite, quartz

CS-FDC UBC deposition and
condensation

mean diameters:
5.8 to 10.3 µm

0.1 % to 1 % 600 sK−1

Connolly et al.(2009) ATD, Asian
dust, Saharan
dust

CECC AIDA deposition and
immersion

mode diameters:
0.3 to 0.5 µm

INAS density 20 to 60 sK−1

Conen et al.(2011)
montmorillonite and 3
soil dusts from Europe
and Asia

DFA UBasel immersion < 15µm n.a. (IN per
dust mass given)

180 sK−1

Cziczo et al.(2009a) ATD and illite CECC AIDA deposition and
immersion

< 1µm 1 % corresponding to a
vertical velocity of
about 0.1 to 2 ms−1

Cziczo et al.(2009b) kaolinite,
undoped and
doped with lead

CFDC-P ZINC deposition 200 nm n.a. 10 to 30 s

Dymarska et al.(2006) kaolinite CS-FDC UBC deposition and
condensation

majority between
1 and 20 µm

≈ 0.1 % to 0.5 % 600 sK−1

Eastwood et al.(2008) kaolinite, montmoril-
lonite, quartz, calcite,
muscovite

CS-FDC UBC deposition and
condensation

mostly 1 to 20 µm, mean sizes
7.7 to 14.2 µm

0.1 % to 1 % 10 s (1 to 20 s)

Field et al.(2006) Asian and
Saharan dust

CECC AIDA deposition and
condensation

mode diameter: 0.4 µm 0.5 % and 8 % 20 to 60 sK−1

Friedman et al.(2011) kaolinite CFDC-P PNNL-CIC deposition and
condensation

100, 200 and 400 nm 1 % 12 s

Hoffer (1961) kaolinite, montmoril-
lonite, illite, halloysite

EDF UChicago immersion n.a. n.a. 60 sK−1

Hoyle et al.(2011) ATD CFDC-P IMCA/ZINC immersion 800 nm 0 to 100 % (spectra) 12 s

Hung et al.(2003) hematite and
corundum

AFT Harvard immersion 50 to 250 nm 10−6 60 s

Iraci et al.(2010) ATD and clay
sample
collected in
Sedona
(Arizona)

CS-SDC NASA Ames deposition ATD volume mean: 5 µm,
ATD number median:
1.2 µm, Sedona clay
number median: 1.4 µm

n.a. n.a.

Isono and Ibeke(1960)
Japanese sand, Chinese
loess, kaolinite, quartz
and fifteen other miner-
als

CC Bigg IN
counter,
UTokyo

n.a. < 30µm, most
particles< 5µm

10−6 to 10−3 n.a.

Isono et al.(1959a) quartz, loess CC Bigg IN
counter,
UTokyo

n.a. 1 to 10 µm 10−6 to 10−3 n.a.

Isono et al.(1959b) quartz CC Bigg IN
counter,
UTokyo

n.a. n.a. n.a. n.a.

Jones et al.(2011) ATD, Saharan
dust

CFDC-C CSU and
MINC

deposition/
condensation

mostly< 1µm spectra; 0.1 % ≈ 10 s

Kanji and Abbatt(2006) Saharan dust,
montmorillonite, silica,
alumina

CS-FDC UToronto deposition and
condensation

0.5 to 5 µm ≈ 10−4 6 s per 1 %
change in RHi

Kanji et al.(2008) ATD, Saharan
dust, kaolinite,
montmorillonite, silica

CS-FDC UToronto deposition and
condensation

ATD: 0–5 µm, silica:
1.5 µm, others n.a.,
surface area determined

≥ 10−5 6 s per 1 %
change in RHi
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Table 1.Continued.

Reference material type of in-
strument

name of instru-
ment or
institution

nucleation mode size activated fraction residence time/
cooling rate

Kanji and Abbatt(2010) ATD CFDC-P UToronto deposition and
condensation

40, 100, 240 nm 0.1 %, 1 %,
INAS densities

9 to 11 s

Kanji et al.(2011) ATD, Saharan,
Canary Island
and Israel dust

CFDC-P UToronto deposition and
condensation

size ranges between 0.02
and 3 µm, number modes be-
tween 0.15 and 0.3 µm

0.1 % 9 to 11 s

Knopf and Koop(2006) ATD CS-SDC ETHZ deposition and
condensation

0.7 to 10 µm 5 % 3–30 s per 1 %
change in RHi

Knopf et al.(2010) kaolinite CS-FDC Stony
Brook U

deposition mean size 4.1 to 5.0 µm 0.02 % to 0.8 % 600 sK−1

Koehler et al.(2007) Owens lake
dust

CFDC-C CSU deposition and
condensation

100, 200, 300 and 400 nm 1 % (aircraft unit), 5 %
(laboratory
unit)

4 s (aircraft unit)
and 11 s (laboratory
unit)

Koehler et al.(2010) ATD, Saharan
and Canary Island dust

CFDC-C CSU deposition and
condensation

200, 300 and 400 nm 1 % (ATD),
5 % (others)

4 s (aircraft unit)
and 11 s (laboratory
unit)

Koop and Zobrist(2009) ATD DSC UBielefeld/
ETHZ

immersion median diameter:
0.35 µm

n.a. 6 sK−1

Kulkarni et al.(2009) Saharan dust
(Nigeria)

TGDC ULeeds deposition < 38 µm ≈ 1/8 60 s

Kulkarni and Dobbie(2010) Spain, Dakar
and Nigeria
dust

TGDC ULeeds deposition and
condensation

< 38 µm ≈ 1/10 ≈ 40 to 550 s

Kulkarni et al.(2012) ATD and
kaolinite

CFDC-P PNNL-CIC deposition 100, 300, 400 and 500 nm 10−4 to 10−1 n. a.

Ladino et al.(2011) kaolinite FDNC CLINCH contact 400 and 800 nm spectra n.a.

Lüönd et al.(2010) kaolinite CFDC-P IMCA immersion 200, 400 and 800 nm 0 to 100 % (spectra) 14 s

Mangold et al.(2005) ATD CECC AIDA deposition 0.1 to 1.5 µm, count median di-
ameter≈ 0.5 µm

n.a. for onset,
maximum value:
97 %

20 to 45 sK−1

Marcolli et al.(2007) ATD DSC ETHZ immersion fine ATD: nominal
0–3 µm, coarse ATD:
nominal 0–7 µm, size
distributions measured

n.a. 60 sK−1

Mason and Maybank(1958) kaolinite, montmoril-
lonite, and 28 more

DMCC Imperial
College

deposition,
condensation and
contact?

ground material, submicron and
supermicron

≈ 0.01 % 120 s

Mason(1960) kaolinite, montmoril-
lonite, illite and seven
more

DMCC Imperial
College

deposition,
condensation and
contact?

ground material, large
submicron number
fraction

≈ 0.01 % 120 s

Möhler et al.(2006) ATD, Asian and Saha-
ran dust

CECC AIDA deposition and
condensation

median: 350–400 nm,
specific surface area
given

onset, 8 % ≥ 15 sK−1, dSi/dt

available

Murray et al.(2010) kaolinite, montmoril-
lonite

CS ULeeds immersion specific surface area
given

0 to 100 % 6 sK−1

Murray et al.(2011) kaolinite CS ULeeds immersion specific surface area
given

0 to 100 % 6 to 75 sK−1

Niedermeier et al.(2010) ATD LFT LACIS immersion 300 nm, INAS density
given

< 0.1 % to 100 %
(spectra)

1.6 s

Niedermeier et al.(2011a) ATD LFT LACIS immersion 300 nm < 0.1 % to 100 %
(spectra)

1.6 s

Niemand et al.(2012) ATD, Asian,
Saharan,
Canary Island
and Israel dust

CECC AIDA immersion number median
d = 0.2 to 1 µm

10−5 to 10−2 n.a.

Pinti et al.(2012) kaolinite, montmoril-
lonite, illite and
Saharan dust

DSC ETHZ immersion number mode
0.29 to 0.45 µm

n.a. n.a.

Pitter and Pruppacher(1973) kaolinite, montmoril-
lonite

VWT UCLA immersion and
contact

d = 0.1 to 30 µm, mode
between 1 and 2 µm

n.a. n.a.

Pruppacher and Saenger
(1955)

clay, olivine,
tremolite, quartz,
diatomite, and
others

CC ETHZ unknown 0.5 to 2 µm n.a. ≈ 5 to 30 s

Roberts and Hallett(1968) kaolinite, montmoril-
lonite, calcite, gypsum,
biotite mica

CS-SDC Imperial
College

condensation 0.5 to 3 µm 0.01 % to 100 %
(spectra)

n.a.

Salam et al.(2006) kaolinite, montmoril-
lonite

CFDC-C UDalhousie deposition and
condensation

< 0.5 to≈ 5 µm n.a. 20 to 30 s
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Table 1.Continued.

Reference material type of in-
strument

name of instru-
ment or
institution

nucleation mode size activated fraction residence time/
cooling rate

Schaefer(1949) various soil,
loam and clay
samples

CC General
Electrics

n.a. n.a. n.a. n.a.

Schaller and Fukuta(1979) kaolinite, local
soil

wedge-
shaped
TGDC

UDenver deposition and
condensation

n.a. 1.3 % 60 s

Sullivan et al.(2010a) ATD CFDC-C CSU deposition and
condensation

200 nm 10−5 to 1 (spectra) n.a.

Svensson et al.(2009) kaolinite EDBC UGothenburg contact 0.2 to 5 µm 0 to> 100 % n.a.

Vali (2008) surface soil from Al-
berta, Canada, contain-
ing vegetative material

CS UWyoming immersion n.a. n.a. 60 s K−1

Wang and Knopf(2011) kaolinite CS-FDC Stony
Brook U

deposition mean size 2.3 to 4.3 µm 0.01 % to 0.3 % 60 s per 2.3 % to
1.5 % change in
RHi , 12 s between
subsequent obser-
vations

Welti et al.(2009) ATD, kaolinite,
montmorillonite,
illite

CFDC-P ZINC deposition and
condensation

100, 200, 400 and 800 nm 1 % 12 s

Wheeler and Bertram(2012) kaolinite, illite CS-FDC UBC deposition average diameters:
kaolinite 8 µm, illite 11 µm

1 % 600 sK−1, 60 s
per 1 % change in
RHi

Zimmermann et al.(2008) kaolinite, montmoril-
lonite, illite and
6 more

ESEM UDarmstadt deposition (and
condensation)

1 to 100 µm ≈ 1 % and
2–3 %

n.a.

kaolinite, montmorillonite, and illite, respectively, which are
common clay minerals. For submicron particles, there seems
to be a tendency of natural desert dusts to require the highest
ice-supersaturations for activation, i.e. to be worse IN than
kaolinite, montmorillonite and ATD in the deposition nucle-
ation mode. This will be further investigated below. Other-
wise, it is remarkable that the observations of ice nucleation
on dust span the full range of water-subsaturated and water-
saturated conditions below−10◦C. Some data are also re-
ported at significantly water-supersaturated conditions (e.g.,
Koehler et al., 2010). This may be due to kinetic limitations
and humidity inhomogeneities within the continuous flow
diffusion chamber (CFDC) instrument (Petters et al., 2009;
DeMott et al., 2011).

3.1.2 Soot

For soot, fewer experiments are available, and those avail-
able show little overlap in the reported ice nucleation on-
set conditions (Fig.4a and Table2). In addition to these re-
sults, it should be noted that several studies report negative
results (no ice nucleation within the instrument’s detection
limit) under certain investigated conditions. These are pre-
sented in Fig.4b: at −40◦C, Kanji and Abbatt(2006) ob-
served onset relative humidities for deposition ice nucleation
in experiments with n-hexane soot deposited on a substrate,
which were not statistically different from those for the blank
substrate.Dymarska et al.(2006) observed droplet formation
before ice formation (occurring also on the bare substrate)
for almost all experiments at temperatures between−15 and
−30◦C; Friedman et al.(2011) did not observe ice formation

below water saturation for temperatures of−20 and−30◦C,
and only droplet formation above water saturation. Further-
more, at−40◦C, only homogeneous freezing was observed,
similar to Koehler et al.(2009) (also at−40◦C). The neg-
ative results are in disagreement with a number of exper-
iments (DeMott, 1990; Diehl and Mitra, 1998; Gorbunov
et al., 2001; Popovicheva et al., 2008; Kireeva et al., 2009;
Fornea et al., 2009) which observed ice nucleation on soot
particles already at temperatures above−30◦C. However,
the latter were conducted in other nucleation modes (see Ta-
ble 2) and partly with large particles or unknown particle
concentrations per droplet (see also the discussion inKärcher
et al., 2007).

Also soot particles vary in composition, e.g. with re-
spect to their organic carbon content, depending on the com-
bustible and the combustion technique.Möhler et al.(2005b)
andCrawford et al.(2011) found a significant decrease in ice
nucleation activity with increasing organic carbon content at
temperatures around−65◦C and−47◦C, respectively. How-
ever, no systematic trends related to the soot type are seen
from the experiments at higher temperatures. Despite the
large spread in the results, it can be confirmed from this qual-
itative overview that soot is a generally worse ice nucleus
than mineral dust, nucleating at higher ice-supersaturations
for deposition nucleation and at lower temperatures for im-
mersion freezing.

3.1.3 Primary biological aerosol particles

Figures5a and5b display selected ice nucleation results
for potentially airborne primary biological particles. Among
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Table 2.Laboratory experiments with soot particles.

Reference material type of in-
strument

name of instru-
ment or
institution

nucleation mode size activated fraction residence time

Chou et al.(2012) diesel and wood
burning soot

CFDC-P PINC deposition and
condensation

mean mobility diameters:
60 to 180 nm for diesel soot,
100 to 270 nm for wood burn-
ing particles

0.1 %, 1 % and 5 % n.a.

Crawford et al.(2011) CAST and mini-
CAST propane soot
with different OC
content

CECC AIDA deposition modal diameter 0.3 µm 0.1 % and 1 % 24 to 86 sK−1

Demirdjian et al.(2009) aviation kerosene
flame soot

CS CINaM deposition bulk sample n.a. n.a.

DeMott (1990) acetylene burner
soot

CECC CSU immersion 0.08 and 0.12 µm 0.1 to 3 % 30 sK−1, 60 sK−1

DeMott et al.(1999) Degussa lamp
black soot

CFDC-C CSU deposition number mean
d = 240 nm,
σ = 1.6

1, 10, 100 % 11–15 s

Diehl and Mitra(1998) kerosine burner ex-
haust

VWT UMainz immersion and
contact

initially 0.1 to 0.12 µm,
aggregates up to 1 µm

n.a. n.a.

Dymarska et al.(2006) n-hexane soot,
lamp black,
furnace black,
channel black

CS-FDC UBC deposition/
condensation

1 to 20 µm n.a. 600 sK−1,
images every
10 s; one
experiment: 8 h
at constant
Si andT

Fornea et al.(2009) carbon lamp
black

CS Texas A&M U contact 250 to 300 µm 0 to 1 60 sK−1

Friedman et al.(2011) CAST propane
soot with low
OC content,
uncoated and
coated

CFDC-P PNNL-CIC deposition/
condensation

100, 200, 400 nm 1 %, spectra
(ice/droplet
discrimination not
possible)

12 s

Gorbunov et al.(2001) soot produced
from a thermal
decomposition
aerosol gen-
erator and a
benzene/toluene
combustion genera-
tor

DMCC Urban Pollu-
tion Research
Centre, London

deposition/
condensation/
contact?

mean diameter
0.02 to 2 µm

10−8 to 50 % 20 min

Kanji and Abbatt(2006) n-hexane soot CS-FDC UToronto deposition 0.5 to 5 µm 10−5 40 to 60 sK−1, 6 s
per 1 % change in
RHi

Kanji et al.(2011) graphite spark
generator soot

CFDC-C
and CECC

UToronto,
CSU, AIDA

deposition/
condensation

0.02 to 0.45 µm, number
mode = 0.15 µm

0.1 % 9 s (UT-CFDC),
4 to 5 s (CSU-
CFDC),
30 to 60 sK−1

(AIDA)

Kireeva et al.(2009) lamp black, furnace
black, and more
soot types from
different
combustion
sources, some
modified with
organic
substances

CS UMoscow immersion n.a. n.a. (numerous
particles per
droplet)

40 sK−1

Koehler et al.(2009) soot CFDC-C CSU deposition/
condensation

100, 200 and 250 nm spectra,
≈ 10−4 to 10−2

before homogeneous
freezing

11 s

Möhler et al.(2005b) CAST soot with
different OC
content

CECC AIDA deposition CS16 soot: mean
d = 220 nm, CS40 soot:
meand = 110 nm

n. a. for CS16,
< 1 % for CS40

15 to 600 sK−1

Möhler et al.(2005a) graphite spark
generator soot

CECC AIDA deposition count median diameters: 70 to
140 nm

≤ 0.3% 17 to 100 sK−1

Popovicheva et al.(2008) lamp black,
furnace black,
channel black,
and soot from
different combus-
tion sources

CS UMoscow immersion 0.01 to 0.25 µm, depending on
soot type

n.a. (numerous
particles per
droplet)

40 sK−1

Suzanne et al.(2003) kerosene soot CS CINaM deposition bulk sample n.a. n.a.

Tishkova et al.(2011) aircraft engine
combustor soot

CS CINaM deposition bulk sample n.a. n.a.
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Table 3.Laboratory experiments with bioaerosols.

Reference material type of in-
strument

name of instru-
ment or
institution

nucleation mode size activated fraction residence time/
cooling rate

Ahern et al.(2007) Pseudomonas
isolates from
cloud- and
rainwater

DSC UEastLondon immersion n. a. n. a. 60 s K−1

Alpert et al.(2011a) marine diatoms CS-FDC Stony
Brook U

immersion ≈5 µm 0 to 1 (spectra) 6 s K−1

Attard et al.(2012) Pseudomonas syringae
andPseudomonas fluo-
rescens

DFA UBP immersion length: 1µm, surface area:
5 µm2

10−5 to 1 480 s K−1

Chernoff and Bertram(2010) Snomax™ CS-FDC UBC deposition and
condensation

mean diameters:
5.8 and 15.9 µm
(two different
nebulizers)

0.1 % to 1 % 600 sK−1

Constantinidou et al.(1990) Pseudomonas syringae
isolated
from air and rainwater

DFA UWisconsin immersion n. a. n. a. n. a.

DeMott et al.(2011) Snomax™ CFDC-C
and CECC

CSU and AIDA deposition and
condensation

n. a. 10−5 to 10−2 n. a.

Diehl et al.(2001) Pine, birch, oak
and grass pollens

CS-FDC
and ISDC

UMainz deposition and
condensation

20–70 µm 0 to 1 (spectra) several minutes for
deposition
nucleation,< 1 min
for
condensation
nucleation

Diehl et al.(2002) Pine, birch, oak
and grass pollens

VWT UMainz immersion and
contact

25–70 µm n. a. n. a.

Gross et al.(1983) Pseudomonas
syringae, different
strains

DFA Washington
State U

immersion n. a. 10−7 to 0.0043 120 s

Hirano et al.(1985) ice nucleation active
bacteria on oat leaves

FA UWisconsin immersion n. a. 10−7 to 0.008 n. a.

Iannone et al.(2011) Cladosporiumspores CS-FDC UBC immersion average diameter:
3.2 µm

0.002 to 1 12 sK−1

Jones et al.(2011) Snomax™ CFDC-C CSU and
MINC

deposition/
condensation

mostly< 1µm 0.1 % ≈ 10 s

Jayaweera and Flanagan (1982) Pseudomonasspecies,
unidentified microbac-
teria, Penicillium dig-
itatum, Cladosporium
herbarum, Penicillium
notatum, Penicil-
lium frequentes and
Rhizopus
stolonifera spores iso-
lated from air

DFA UAlaska immersion bacterial cells:
average length
0.2–1.1 µm

1 % for spores,
5–10 % for bacteria

n. a.

Junge and Swanson(2008) Arctic and Antarc-
tic sea-ice bacterial
isolates

FDNC UWashington immersion n. a. n. a. n. a.

Kanji et al.(2011) Pseudomonas
syringae and
Snomax™

CFDC-P UToronto deposition and
condensation

size ranges
between 0.04 and
2 µm, number
modes at 0.1 and
0.7 µm

0.1 % 9–11 s

Knopf et al.(2011) marine diatoms CS-FDC Stony
Brook U

deposition and immer-
sion

≈5 µm n.a. n.a.

Koop and Zobrist(2009) Snomax™, insects
and larvae

DSC UBielefeld/
ETHZ

immersion n.a. n.a. 6 sK−1

Levin and Yankofsky(1983) M1 bacteria VWT UCalifornia,
L.A.

immersion and
contact

n.a. n.a. ≤ 240 s

Lindemann et al.(1982) Pseudomonas
syringae and Erwinia
herbicola isolated from
air

FA UWisconsin immersion n.a. n.a. n.a.

Lindow et al.(1989) Pseudomonas
syringaestrain 31R1

DFA UCalifornia,
Berkeley

immersion n.a. 10−8 n.a.

Maki et al.(1974) Pseudomonas
syringae

DFA freezing
nucleus
spectrometer

immersion n. a. 10−8 to 0.01 n.a.
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Table 3.Continued.

Reference material type of in-
strument

name of instru-
ment or
institution

nucleation mode size activated fraction residence time/
cooling rate

Maki and Willoughby(1978) Pseudomonas fluorescens
isolated from leaves,
lake/stream
water and/or snow

DFA and
DMCC

UWyoming and
CSU

immersion 1 µm× 3–5 µm 2 % to 94 % n.a.

Möhler et al.(2008b) Pseudomonas
syringae, Pseu-
domonas viridiflava,
Erwinia herbicola and
Snomax™

CECC AIDA immersion and
condensation

median diameter of
bacterial cells:
0.6 to 0.8 µm

0.07 % to 23 % immersion freez-
ing: a few seconds
to a few min-
utes; condensation
freezing:
≈ 80 s K−1

Morris et al.(2008) Pseudomonas
syringaeisolated from rain,
snow, alpine
streams, lakes and
wild plants

DFA INRA immersion n.a. 10−7 n.a.

Mortazavi et al.(2008) Microbacterium, Xan-
thomonas, Bacillus,
Acinetobacter,
Luteimonas,
Stenotrophomonas and
unspecified
bacteria isolated from snow

DFA McGill U immersion n.a. n.a. 60 sK−1

Obata et al.(1999) Pseudomonas antarctica FA Kansai U immersion n.a. 10−7 to 0.2 60 sK−1

Pouleur et al.(1992) Fusarium avanaceum,
Fusarium acuminatum

DFA ULaval Qúebec immersion n.a. n.a. 200 sK−1

Pummer et al.(2012) 15 different pollen
species, Snomax™

EDF TU Wien immersion 13 to 65 µm n.a. 30–60 sK−1

Sands et al.(1982) Pseudomonas
syringaeisolated from rain
and hail

n.a. Montana State
U

immersion n.a. n.a. n.a.

Vali et al. (1976) Pseudomonas
syringae, leaf litter

DFA UWyoming immersion length of bacterial cell:
2 µm

2× 10−6 to 5× 10−5 n.a.

von Blohn et al.(2005) tree and grass pollens VWT UMainz immersion 26–28 µm n.a. n.a.

Ward and DeMott(1989) Snomax™ IMCC and
CECC

CSU condensation and
immersion

n.a. n.a. ≈ 180–300 s in
IMCC, 60 s K−1 in
CECC

Wood et al.(2002) Snomax™ FDNC UWashington immersion < 0.2µm (filtrate) n.a. n.a.

Worland and Block(1999) Pseudomonas speciesiso-
lated from the guts of bee-
tles

DFA British Antarc-
tic Survey

immersion n.a. 10−6 n.a.

Yankofsky et al.(1981) M1 bacteria DFA Tel Aviv U immersion d ≥ 0.4µm 10−6 to 0.01 n.a.

bioaerosols, in particular bacteria, the ability to nucleate ice
is a selective property. Only a small number of bacterial
strains and fungal species have been identified as ice nucle-
ation active (INA) at high subzero temperatures. It has been
shown that these possess an ice nucleation active protein lo-
cated in the outer cell wall which has structural similarities
to the crystal lattice of ice (Govindarajan and Lindow, 1988;
Kajava and Lindow, 1993). Even among these INA bacte-
ria, only a small fraction of all cells actually nucleates ice at
temperatures roughly higher then−10◦C (Hirano and Up-
per, 1995). Most experiments with biological particles are
conducted as so-called droplet-freezing assays (Vali, 1971;
Vali et al., 1976), i.e. testing for immersion freezing. Most of
the data points in Fig.5a therefore lie on the water saturation
line. Only for Snomax™, an artificial snow inducer consisting
of freeze-driedPseudomonas syringaebacteria cells, cell de-
bris and dried culture medium (Lagriffoul et al., 2010), depo-
sition nucleation has been studied extensively (Chernoff and

Bertram, 2010; Jones et al., 2011; Kanji et al., 2011; DeMott
et al., 2011).

More results on freezing experiments with biological par-
ticles, also from other habitats, are discussed inDespŕes et al.
(2012).

3.1.4 Solid ammonium sulfate

At conditions relevant for cirrus clouds in the upper tropo-
sphere and lower stratosphere, crystalline ammonium sul-
fate particles have been observed to nucleate ice efficiently
at water-subsaturated conditions, both as deposition nuclei
(e.g.,Abbatt et al., 2006) and as immersion nuclei in solu-
tion droplets (e.g.,Hung et al., 2002) (Fig. 5c). In contrast,
Chen et al.(2000) observed ice formation on crystalline sul-
fate particles only at relative humidities higher than those re-
quired for homogeneous freezing.
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Fig. 3. Ice nucleation onset temperatures and saturation ratios for mineral dust particles.

Fig. 4. (a) Ice nucleation onset temperatures and saturation ratios for soot.(b) Conditions under which ice nucleation on soot particles was
not found or could not be distinguished from nucleation on the substrate. The dashed areas indicate the range of conditions which have been
probed during the experimental trajectories to the indicated points.
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Fig. 5. Ice nucleation onset temperatures and saturation ratios for(a) bacteria,(b) other bioaerosols,(c) ammonium sulfate and(d) organic
aerosols and biomass burning particles. Note the different temperature ranges. The data fromPummer et al.(2012) refer to median freezing
temperatures.

3.1.5 Organic acids and humic-like substances

Also some organic acids in crystalline form have been ob-
served to nucleate ice under cirrus conditions (Fig.5d), most
notably oxalic acid (Zobrist et al., 2006; Wagner et al.,
2010) and malonic acid (Shilling et al., 2006). At tem-
peratures below−65◦C, citric acid aerosol particles in a
glassy state have been observed to nucleate ice atSi > 1.2
(Murray et al., 2010). Other organic substances, such as di-
carboxylic acids (Prenni et al., 2001) or secondary organic
products of the ozonolysis of various precursors (Prenni
et al., 2009), were shown not to nucleate ice heteroge-
neously. Furthermore, Fig.5d includes results for humic
acids (produced by the degradation of dead organic matter)

and biomass burning aerosols (tested solely at−30◦C, Pet-
ters et al., 2009).

3.1.6 Others

In addition, a number of other components of the atmo-
spheric aerosol are occasionally found to act as IN. Among
these are volcanic ash particles (Durant et al., 2008; Hoyle
et al., 2011; Steinke et al., 2011) and sea salt (Wise et al.,
2012). No onset nucleation plots are shown for these parti-
cle types because of the limited number of measurements.
Furthermore, artificial particles which usually do not occur
in the atmosphere (e.g. silver iodide, metaldehyde, metal ox-
ides), some of them being very efficient IN (Vonnegut, 1947;
Fukuta, 1963), are excluded from this overview.
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Fig. 6. (a)Freezing temperatures (onset or median) for kaolinite and montmorillonite under comparable experimental conditions. Includes
immersion freezing experiments (Hoffer, 1961; Pitter and Pruppacher, 1973; Murray et al., 2010) and presumed condensation freezing
experiments at water-supersaturated conditions (Zimmermann et al., 2008; Welti et al., 2009). The data byWelti et al. (2009) for 100 and
800 nm-sized particles are interpolated to≈ 5 % supersaturation over water. For the mixing-cloud chamber experiments byMason and
Maybank(1958) and Mason(1960), the nucleation mode is uncertain.Zuberi et al.(2002) measured immersion nucleation in aqueous
ammonium sulfate droplets, data are shown for the same weight percentages of kaolinite and montmorillonite.Pinti et al. (2012) show
results for several different kaolinites and montmorillonites, as indicated by the dashed lines.(b) Saturation ratios at deposition nucleation
onset for kaolinite and montmorillonite under comparable experimental conditions and temperature (forWelti et al. (2009), the data have
been interpolated to the same temperatures). InZimmermann et al.(2008)’s study, ice nucleation on montmorillonite was observed only at or
slightly above water saturation, but no liquid water was seen. All other data in(b) are for deposition nucleation experiments, water saturation.

3.2 Comparison of different minerals

Natural mineral dust particles are usually internal mixtures of
different clay minerals, quartz and other components. Labo-
ratory studies have therefore often reverted to the use of pure
minerals, in order to reduce the complexity encountered in
natural dusts. For pure minerals, the chemical composition
and the crystalline structure can be determined more accu-
rately at least in theory. For example,Mason(1960) tried to
relate the ice nucleation abilities of different minerals to their
lattice structure. It should be noted that impurities in the nat-
urally occurring minerals impede the interpretation of the re-
sults (see discussion below). Previous modelling studies have
used measurements of ice nucleation of pure minerals as a
basis for parametrizations, and have assumed for sensitiv-
ity experiments that montmorillonite is a better ice nucleus
than kaolinite (Diehl et al., 2006; Lohmann and Diehl, 2006;
Hoose et al., 2008; Storelvmo et al., 2008). Ideally, the ice
nucleation properties of a complex natural dust particle can
be inferred if the composition of the particle and the ice nu-
cleation properties of all components are known. The most
abundant minerals in the clay size fraction of mineral dust are
kaolinite, illite and montmorillonite (Mason, 1960; Zimmer-

mann et al., 2008). Their relative ice nucleation abilities are
compared in the following, including only studies which ex-
amined kaolinite, montmorillonite and/or illite with the same
methods and under comparable experimental conditions.

Figure6a compares temperatures for the freezing onset or
a specific active fraction of kaolinite and montmorillonite
particles at otherwise comparable conditions (i.e. the same
weight percent inMurray et al. (2010), the same particle
sizes inWelti et al. (2009)). In the experiments byMason
and Maybank(1958), Mason(1960), Hoffer (1961) andPit-
ter and Pruppacher(1973), the particle sizes and active frac-
tions are not well constrained, but are assumed to be similar
for the kaolinite and montmorillonite experiments.Zimmer-
mann et al.(2008) reported onset temperatures correspond-
ing to a larger active fraction for kaolinite than for montmo-
rillonite (2–3 % versus 1 %).

As visible in Fig.6a, no systematic difference between the
ice nucleation temperatures of montmorillonite and kaolin-
ite is found. The immersion freezing experiments with parti-
cle suspensions (Hoffer, 1961; Pitter and Pruppacher, 1973;
Murray et al., 2010) and the contact freezing experiments
(Pitter and Pruppacher, 1973) show higher freezing temper-
atures for montmorillonite, while the other experiments (for
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Fig. 7. (a)Freezing temperatures (onset or median) for kaolinite and illite under comparable experimental conditions. Includes immersion
freezing experiments (Hoffer, 1961) and presumed condensation freezing experiments at water-supersaturated conditions (Zimmermann
et al., 2008; Welti et al., 2009). The data byWelti et al.(2009) for 100 and 800 nm-sized particles are interpolated to≈ 5 % supersaturation
over water.Pinti et al.(2012) show results for several different kaolinites and illites, as indicated by the dashed lines.(b) Saturation ratios at
nucleation onset for kaolinite and illite under comparable experimental conditions and temperature.

which the nucleation modes are not unambiguously deter-
mined) found higher freezing temperatures for kaolinite (Ma-
son and Maybank, 1958; Mason, 1960; Roberts and Hallett,
1968; Zimmermann et al., 2008). Zuberi et al.(2002) found
no significant difference between kaolinite and montmoril-
lonite as immersion ice nucleus in aqueous ammonium sul-
fate droplets.

Also in deposition nucleation experiments, reported as su-
persaturation thresholds at fixed temperatures (Fig.6b), the
comparison of kaolinite versus montmorillonite remains in-
conclusive. Both a higher efficiency of kaolinite (Zimmer-
mann et al., 2008; Eastwood et al., 2008; Chernoff and
Bertram, 2010) and a higher efficiency of montmorillonite
(Salam et al., 2007; Welti et al., 2009) are found.

Fewer studies have compared the ice nucleation ability of
illite to that of kaolinite (Mason, 1960; Hoffer, 1961; Zim-
mermann et al., 2008; Bundke et al., 2008; Welti et al., 2009;
Chernoff and Bertram, 2010). The results are summarized in
Fig. 7. The data shown here are selected in the same way
as for the comparison in Fig.6. Similar to the kaolinite-
montmorillonite comparison, no definite conclusions can be
drawn about the nucleation ability of illite compared to kaoli-
nite, because different experiments come to opposite results
both expressed as onset temperatures or as onset saturation
ratios.

The reason for the heterogeneity of these results may lie in
the different origin and the purity of the samples which are

used.Isono and Ibeke(1960) and Pinti et al. (2012) show
that kaolinites, montmorillonites and illites from different
sources can have different physical and chemical properties.
Zimmermann et al.(2008) point out that the chemical com-
position of minerals, in particular of montmorillonite and il-
lite, can be highly variable. Powder samples have usually un-
dergone mechanical processing such as mechanical disaggre-
gation and milling (Moll , 2002). Murray et al.(2010) men-
tion that the commercially available minerals, which are used
in some of the above studies, were acid washed or chemi-
cally treated. This may have affected their nucleation abil-
ities. For deposition nucleation experiments, the dispersion
method (wet or dry) may have influenced the results, be-
cause it may have a substantial impact on the hygroscopic-
ity of the minerals (Herich et al., 2009). Furthermore,Mason
and Maybank(1958) andRoberts and Hallett(1968) found
that preactivation could reduce or even invert the differences
in freezing onset between kaolinite and montmorillonite.

Based on the data summarized here, the validity of the
common model assumption of the superior ice nucleation
ability of montmorillonite compared to kaolinite has to be
questioned.

3.3 Natural dusts compared to dust surrogates

Frequently, the commercially available Arizona Test Dust
(ATD) is used in laboratory experiments as a surrogate for
desert dusts (e.g.,Knopf and Koop, 2006; Marcolli et al.,
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Table 4.Laboratory experiments with solid ammonium sulfate particles.

Reference material type of in-
strument

name of instru-
ment or
institution

nucleation mode size activated fraction residence time

Abbatt et al.(2006) solid ammonium
sulfate

CECC, CS-
FDC

AIDA,
UToronto

deposition/
condensation

AIDA: diameters
≥ 40 to 400 nm,
CS-FDC: typically
8 µm

AIDA: 0.1 % to 1 % ,
CS-FDC: 10−5

AIDA: n.a.,
CS-FDC: 6 s
per 1 % change in
RHi

Baustian et al.(2010) solid ammonium
sulfate

CS-FDC CIRES deposition/
condensation

0.5 to 10 µm,
mean: 2.1 µm

≈ 0.1% n.a.

Chen et al.(2000) solid and liquid
ammonium sulfate
and letovicite

CFDC-C CSU homogeneous,
no heterogeneous
nucleation
observed

0.05 and 0.2 µm 0.1 %, 1 % and 10 % 12 s

Hung et al.(2002) mix of aqueous and crys-
talline ammonium sulfate

AFT Harvard immersion freezing of
concentrated
aqueous solution
droplets

0.3 µm ≈ 50 % 31 s

Mangold et al.(2005) ammonium sulfate
particles, majority in liquid
phase, but possibly some
effloresced particles present

CECC AIDA deposition/
condensation

number median
d: 0.2 to 0.3 µm

n.a. 20 to 25 sK−1

Shilling et al.(2006) solid ammonium
sulfate

CS-SDC CIRES deposition/
condensation/
immersion

1 to 10 µm ≥ 10−5
≈ 600 s

Wise et al.(2009) solid ammonium
sulfate

CS-FDC CIRES deposition/
condensation

n. a. n. a. n. a.

Wise et al.(2010) solid ammonium
sulfate with and
without coatings of
palmitic acid

CS-FDC CIRES deposition 1 to 10 µm with typical
values around 5 µm

n. a. n. a.

Zuberi et al.(2001) solid ammonium
sulfate and letovicite

CS and
DSC

MIT immersion freezing of
concentrated
aqueous solution
droplets

droplet sizes:
5 to 55 µm,
containing numerous
microcrystals

n.a. 60 s K−1

2007). ATD is milled, washed and heated in order to provide
enough material of the desired size (Möhler et al., 2006).
Alternatively, surface soil samples (e.g.,Field et al., 2006;
Kulkarni and Dobbie, 2010) or sedimented dust storm par-
ticles (e.g.,Isono et al., 1959a; Niemand et al., 2012) have
been studied. Ideally, these samples are only sieved to re-
trieve the small size fraction, but have not undergone any
milling or further processing. It has been speculated that
ATD could be more active than so-called natural (unpro-
cessed) soil samples, either due to enhanced roughness re-
sulting from the milling or due to a different mineralogical
composition (Möhler et al., 2006). In Fig.8, results from de-
position nucleation experiments which tested both ATD and
natural desert dusts under comparable conditions are summa-
rized. Only a limited number of studies fulfils this require-
ment and allows such a direct comparison. In most experi-
ments, natural desert dusts required higher supersaturations
over ice for a comparable activation, provided that the data
are compared with the same instrument, for the same active
fraction, at similar temperatures and for similar particle sizes
similar particle sizes. An exception to this observation are
Kanji et al. (2008) and Möhler et al.(2006)’s data at low
temperatures (< −60◦C).

Contrary to the above finding that natural desert dust sam-
ples might be relatively inefficient IN due to lower surface
roughness and atmospheric aging,Conen et al.(2011) pro-
vide evidence for enhanced ice nucleation activity of agri-

cultural soil samples compared to pure montmorillonite due
to biological residues in the soil.

3.4 Influence of coatings

A number of experiments have investigated the effect of arti-
ficial aging (such as surface reactions and coatings) of min-
eral dust, soot and biological particles on their ice nucleation
efficiency. These studies are of high relevance, because at-
mospheric aerosol particles frequently undergo processing
by trace gases or in clouds. Table6 lists pertinent experi-
ments. Most studies focussed on the treatment with sulfuric
acid, but also ammonium sulfate, nitric acid, secondary or-
ganic aerosol (SOA), ammonia, ozone and exposure to light
were used. Intercomparison between different experiments
is difficult because various coating methods have been ap-
plied. The resulting coating thicknesses are often poorly con-
strained and not necessarily evenly distributed over the parti-
cle size distribution. In Fig.9, results from deposition and
condensation freezing nucleation experiments with coated
and uncoated mineral dust particles are summarized. The sat-
uration ratios with respect to water for activation of a specific
fraction of particles at otherwise similar conditions (temper-
ature, particle size) are reported. Most measurements shown
here report higher saturation ratios for coated particles than
for uncoated ones, i.e. a deactivation of mineral dust by sur-
face treatments. Where the saturation ratio with respect to
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Table 5.Laboratory experiments with organic acids, humic-like substances and biomass burning particles.

Reference material type of in-
strument

name of instru-
ment or
institution

nucleation mode size activated fraction residence time

Baustian et al.(2010) solid glutaric acid CS-FDC CIRES deposition/
condensation

0.5 to 10 µm,
mean: 2.4 µm

≈ 0.1 % n.a.

Beaver et al.(2006) aldehydes and
ketones

LFT CIRES immersion freezing in
sulfuric acid
droplets

< 1µm n.a. n.a.

DeMott et al.(2009) biomass burning particles CFDC-C CSU deposition and
homogeneous

100 nm 10−5 to 10−1 15 s

Kanji et al.(2008) leonardite, oxalic acid
dihydrate, sodium humic
salt, octyl-silica

CS-FDC UToronto deposition and
condensation

size n.a., surface area
determined

≥ 10−5 6 s per 1 % change
in RHi

Murray et al.(2010) citric acid, glassy CECC AIDA unknown n.a. 10−4 to 3.5× 10−3
≈ 36 s K−1

Petters et al.(2009) biomass burning CFDC-C CSU condensation mode: 80 to 200 nm 10−4–10−2 4 to 5 s

Prenni et al.(2001) organic acids CFDC-C CSU deposition and
condensation

50 and 100 nm 1 % and 10 % n. a.

Prenni et al.(2009) secondary organic
aerosol generated
from ozonolysis of
alkenes

CFDC-C CSU condensation mode: 80 to 200 nm no ice nucleation
detected

n. a.

Shilling et al.(2006) maleic acid CS-SDC CIRES deposition 1 to 10 µm ≥ 10−5
≈ 600 s

Wagner et al.(2010) oxalic acid dihydrate
and sodium oxalate

CECC AIDA deposition and
condensation

0.03 to 0.8 µm 0.1 % to 22 % ≈ 30 to 100 sK−1

Wagner et al.(2011) oxalic acid CECC AIDA immersion ≥ 0.27 µm ≤ 0.18 ≈ 40 s K−1

Wagner et al.(2012) levoglucosan, raffinose, cit-
ric acid, HMMA and mix-
ture, glassy, pre-activated

CECC AIDA deposition number median≈ 0.12
to 0.14,µm

10 to 35 % of homoge-
neously freezing parti-
cles

n.a.

Wang and Knopf(2011) Suwannee river
standard fulvic acid
(SRFA)

CS-FDC Stony
Brook U

deposition mean: 2.0 to 2.4 µm 0.02 % to 0.13 % 60 s per 1.5 %
to 2.3 % change in
RHi

Wang and Knopf(2011) Leonardite standard
humic acid

CS-FDC Stony
Brook U

deposition mean: 1.7 to 3.3 µm 0.01 % to 0.1 % 60 s per 1.5 %
to 2.3 % change in
RHi

Wilson et al.(2012) levoglucosan, raffinose, cit-
ric acid, HMMA and mix-
ture, glassy

CECC AIDA deposition mean: 0.17 µm, INAS
densities given

< 0.3 % n.a.

Wise et al.(2010) palmitic acid CS-FDC CIRES deposition 1 to 10 µm with typical
values around 5 µm

n.a. n.a.

Zobrist et al.(2006) phthalic, adipic,
fumaric, succinic and
oxalic acid

DSC ETHZ immersion n.a. n.a. 6 sK−1

water is above or close to 1 for the coated particles, this
implies that at the given temperature the treated particles
could not or only to a minor fraction be activated in the de-
position mode, and that instead condensation of liquid wa-
ter was required before ice formation. The largest changes
in saturation ratio are found for coatings by SOA (Möhler
et al., 2008a; Koehler et al., 2010). Also sulfuric acid and
ammonium sulfate treatments generally increased the satura-
tion ratio by up to 0.3 (Knopf and Koop, 2006; Cziczo et al.,
2009a; Eastwood et al., 2009; Sullivan et al., 2010b; Chernoff
and Bertram, 2010), with three exceptions: Unlike in the ex-
periments with ATD,Cziczo et al.(2009a) observed nearly
identical nucleation onset saturation ratios for uncoated, sul-
furic acid coated and ammonium sulfate coated illite parti-
cles (but slightly lower temperatures for the coated particles,
not shown).Sullivan et al.(2010a) found suppression of de-
position nucleation by nitric acid coatings on the nucleation
ability of ATD particles, but no apparent effect above wa-
ter saturation. At one out of five investigated temperatures,

alsoKnopf and Koop(2006) observed an increase in the nu-
cleation ability of sulfuric acid coated ATD particles.Salam
et al. (2007) observed an increase of the ice nucleation effi-
ciency of montmorillonite particles after ammonia gas expo-
sure.

Regarding the transferabilty of these results to atmo-
spheric conditions, the coating mechanism (in some cases in-
volving heating of the sample), the trace gas concentrations
and the actual fraction of coated particles in the cited studies
have to be critically evaluated.

4 Determining factors of ice nucleation efficiency

4.1 Surface area dependence

It was shown in the previous section that supermicron dust
particles tend to nucleate ice at higher temperatures and
lower supersaturations over ice than smaller ones. This ef-
fect will be investigated and quantified in this section.
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Table 6.Laboratory experiments with mineral dust, soot and other particles with coatings/surface treatments or in aqueous solutions.

Reference material type of instru-
ment

name of instru-
ment or institu-
tion

nucleation mode coating/surface treatment

Attard et al.(2012) Pseudomonasbacteria DFA UBP immersion NO2, O3 and UV-A

Chernoff and Bertram(2010) illite, montmorillonite,
quartz, Snomax™

CS-FDC UBC deposition H2SO4 and NH4HSO4

Chou et al.(2012) soot CFDC-P PINC deposition/condensation photochemical aging

Cziczo et al.(2009a) ATD CECC AIDA deposition ammonium sulfate, sulfuric acid

DeMott et al.(1999) soot CFDC-C CSU deposition sulfuric acid

Dymarska et al.(2006) lamp black soot CS-FDC UBC deposition ozone

Eastwood et al.(2009) kaolinite CS-FDC UBC deposition H2SO4 and (NH4)2SO4

Hung et al.(2003) hematite and
corundum

AFT Harvard immersion aqueous ammonium sulfate

Knopf and Koop(2006) ATD CS-FDC ETHZ deposition sulfuric acid

Koop and Zobrist(2009) ATD and Snomax™ DSC UBielefeld/
ETHZ

immersion ammonium sulfate, sulfuric acid, glu-
cose, polyethylene glycol

Koehler et al.(2010) ATD CFDC-C CSU deposition and
condensation

SOA

Möhler et al.(2005a) soot CECC AIDA deposition sulfuric acid

Möhler et al.(2008a) ATD and illite CECC AIDA deposition SOA

Niedermeier et al.(2010) ATD LFT LACIS immersion ammonium sulfate, sulfuric acid and
succinic acid

Niedermeier et al.(2011a) ATD LFT LACIS immersion sulfuric acid and
sulfuric acid + ammonia

Reitz et al.(2011) ATD LFT LACIS immersion sulfuric acid and
sulfuric acid + ammonia

Salam et al.(2007) montmorillonite CFDC-C UDalhousie deposition ammonia gas exposure

Sullivan et al.(2010b) ATD CFDC-C CSU deposition and
condensation

sulfuric acid and
sulfuric acid + ammonia

Sullivan et al.(2010a) ATD CFDC-C CSU deposition and
condensation

nitric acid gas exposure

Wang and Knopf(2011) humic-like substances CS-FDC Stony
Brook U

deposition ozone

Zobrist et al.(2008) ATD DSC ETHZ immersion ammonium sulfate

Zuberi et al.(2002) kaolinite and montmoril-
lonite

CS MIT immersion aqueous ammonium sulfate

Heterogeneous ice nucleation is occuring at the surface
of solid aerosol particles. Although the exact mechanism is
still obscure, several surface-related requirements have been
suggested for efficient IN: the chemical bond requirement,
the crystallographic requirement, and the active-site require-
ment (Pruppacher and Klett, 1997). The larger the surface
area of an aerosol particle, the higher is the probability that
some part of its non-uniform surface fulfils the necessary
requirement for nucleation. Also in classical nucleation the-
ory, which in its simplest form assumes uniform surfaces, the
nucleation rate is proportional to the surface area, because
nucleation is assumed to occur stochastically with the same
probability everywhere on the uniform surface (Fletcher,
1958).

As a simplified quantification of the aerosol size effect
on the observed IN fractions and nucleation onsets, the
metric of “ice nucleation active surface site (INAS) densi-

ties” is employed in the following (DeMott, 1995; Connolly
et al., 2009). The INAS density describes the number of ice-
nucleation active sites at a certain temperature and supersatu-
ration, normalized by the aerosol surface area. The approach
is based on the assumption that the investigated aerosol sam-
ple is of uniform composition. Time dependence is not taken
into account. In the following, the INAS densityns (averaged
over the investigated sample) is calculated from the follow-
ing equation:

ns(T ,Si) = −1/Aaer· ln(1− fIN(T ,Si)) (1)

≈ fIN(T ,Si)/Aaer

In this expression,fIN is the ice nucleation active fraction un-
der the considered conditions, andAaer is the aerosol surface
per particle. The approximation is valid for small values of
fIN . Under the assumption of a constant INAS density inde-
pendent of size, Eq. (1) can also be applied to polydisperse
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Fig. 8. Saturation ratios at nucleation onset for Arizona test dust
and natural desert dusts (Saharan, Asian, Canary Island and Owens
Lake dust) under comparable experimental conditions and interpo-
lated to the same temperatures, respectively. The data byKoehler
et al. (2010) are for dry dispersed particles of 200 nm size. The
data byKanji et al. (2011) are for UT-CFDC measurements sam-
pled from the aerosol preparation and characterization chamber for
ATD and Canary Island dust, which have similar size distributions.
The data byKanji et al. (2008) are interpolated to the same total
particle surface areas. The data byJones et al.(2011) are from the
CSU-CFDC instrument and for water-subsaturated conditions.

particles, withAaer obtained from the total aerosol surface
area concentration divided by the total aerosol number con-
centration.

ns has previously been used to quantify the nucleation
ability of mineral dusts (Connolly et al., 2009; Niedermeier
et al., 2010; Broadley et al., 2012; Niemand et al., 2012), vol-
canic ash (Bingemer et al., 2011; Steinke et al., 2011), and
marine diatoms (Alpert et al., 2011a). Figure10 illustrates
the corresponding ice nucleation active fractions for a given
INAS density and particle size.

In the following, Eq. (1) is applied to the previously dis-
cussed ice nucleation data (where possible). The data shown
here are calculated based on the information available in the
cited publications, except for cases in whichns was provided
directly (Connolly et al., 2009; Niedermeier et al., 2010;
Murray et al., 2011; Broadley et al., 2012; Niemand et al.,
2012). Where the ice nucleation active fractionfIN was given
as a range of values (e.g. an onset corresponding to 0.1 to
1 %), this range is converted into a range ofns. In the case of
Pinti et al.(2012), frozen fractions of 0.1 % to 2.6 % (V. Pinti,
personal communication, 2012) were assumed for the freez-
ing onset in the emulsion experiments, and a frozen fraction
of 1 for the bulk experiments. For the aerosol surface area

Fig. 9. Effect of different coatings on supersaturation with respect
to water required to activate a specific fraction of IN in experiments
at the temperatures given in the legend.

Aaer, an estimate based on the information given in the orig-
inal publication is associated with large uncertainties, in par-
ticular for polydisperse particles. In most cases, we had to es-
timateAaer from the reported average sized by Aaer= πd2.
This approach neglects any deviations when the reported size
is the mobility diameter instead of the geometric diameter
(Welti et al., 2009; Koehler et al., 2010) or when the distri-
bution has a large spread (Wang and Knopf, 2011). Where a
range of sizes is given instead of an average size (Knopf and
Koop, 2006; Zimmermann et al., 2008), we proceed as with
the case of a range offIN values.

4.1.1 Immersion/condensation freezing

Figures 11 to 13 display ns for immersion/condensation
freezing. ATD, desert dusts, three clay minerals, soot and
bioaerosol data are examined separately. The data stem ei-
ther from immersion freezing experiments with suspensions
(e.g.,Murray et al., 2011), from experiments in which the
investigated aerosol particles are first activated as CCN

www.atmos-chem-phys.net/12/9817/2012/ Atmos. Chem. Phys., 12, 9817–9854, 2012
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Fig. 10. Activated fraction as a function of aerosol radius for values of different INAS densitites.(b) is identical to(a) except that the y-axis
is spaced logarithmically.

Fig. 11. INAS densities for ATD, natural desert dusts and different clay minerals for immersion freezing, including deposition/condensation
freezing experiments at or above water saturation. The INAS densities are derived either by assuming spherical particles or with BET surface
areas (Murray et al., 2011; Broadley et al., 2012; Pinti et al., 2012; Attard et al., 2012). The data byConnolly et al.(2009) have been corrected
by a factor of 10 as described inNiemand et al.(2012).
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Fig. 12. INAS densities for soot and bioaerosols for immersion freezing, including deposition/condensation freezing experiments at or above
water saturation.

and subsequently exposed to low temperatures (e.g.,Lüönd
et al., 2010; Niedermeier et al., 2010), or from experiments
in water-supersaturated conditions (e.g.,Kanji and Abbatt,
2006; Koehler et al., 2010). For the latter, we assume that
condensation occurred before ice formation, even though the
intermediate liquid phase could not be explicitly detected.
This assumption is corroborated by a comparison to flow tube
experiments (Niedermeier et al., 2011a). In CFDCs, the acti-
vated fraction at a given temperature increases further when
the relative humidity is increased to several percent above
water saturation, possibly because of the dilution of impuri-
ties on the particles surfaces in larger droplets (DeMott et al.,
2011). This can explain some of the spread in the data dis-
cussed below.

In a number of individual studies for different mineral
dusts (Connolly et al., 2009; Niedermeier et al., 2010; Mur-
ray et al., 2011b), a steep increase of INAS densities with de-
creasing temperatures was reported. This general feature is
also visible in the compilation of data from various sources
for ATD, desert dusts and clay minerals (Fig.11a–d). In par-
ticular, it is revealed that the high nucleation onset temper-
atures for relatively large particles measured byKnopf and
Koop (2006), Zimmermann et al.(2008) and Roberts and

Hallett (1968) are actually consistent with most of the results
at lower temperatures, which were obtained with smaller par-
ticles. For example, the kaolinite data fromZimmermann
et al.(2008) andRoberts and Hallett(1968) at about−10◦C
fall in line with an extrapolation of the data byLüönd et al.
(2010), which cover the temperature range between−25 and
−36◦C. Some of the assumed condensation freezing events
in CFDCs (Welti et al., 2009; Koehler et al., 2010; Kanji
et al., 2011) appear to exhibit a less clear temperature depen-
dence of the estimated INAS densities (Fig.11a, b), because
based on the available data, these could only be derived for
selected activated fractions.

Comparing the results for the three dust types, it is found
that the values of the INAS densities for ATD and natural
dusts largely overlap, with a slope of about a factor of 10 in-
crease inns per temperature decrease of 10 K and a spread
of about two orders of magnitude at a given temperature.
For kaolinite, two experiments indicate a steeper slope of
about a factor of 100–1000 increase inns per temperature
decrease of 10 K (Lüönd et al., 2010; Murray et al., 2011).
In addition, the data obtained byMurray et al.(2011) and
Pinti et al. (2012) are markedly lower than the other esti-
mates ofns. It should be noted thatMurray et al.(2011),
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Fig. 13. INAS densities for ATD, kaolinite, natural desert dusts,
soot and bioaerosols for immersion freezing, including deposi-
tion/condensation freezing experiments at or above water satura-
tion. The data sources are the same as in Figs.11 and12. The lines
are inserted to guide the eye. The blue line refers to both ATD,
desert dusts and clay minerals. The green line refers to highly INA
biological aerosols.

Broadley et al.(2012) and Pinti et al. (2012) used values
of the specific surface area determined by BET (Brunauer,
Emmett and Teller gas adsorption technique,Brunauer et al.,
1938). This method is expected to yield higher surface areas
than our simplified assumption of spherical dust particles,
because surface irregularities, cracks, etc. contribute to the
surface area measured by BET, which then results in a lower
value ofns. Furthermore, impurities in the dust samples and
physical or chemical processing can be a source of the ob-
served discrepancies, as discussed in Sect.3.2. Finally, it is
also possible that different size sections of the investigated
samples exhibit different ice nucleation properties.

For soot (Fig.12a), there is a vast disparity between
the INAS densities derived from different experiments. The
only true immersion freezing experiment with soot (DeMott,
1990) yields values ofns comparable to mineral dust, and
similar results are found byKanji et al. (2011) above water
saturation. By contrast, on the one hand, the INAS density
calculated from values given inDymarska et al.(2006) for
one experiment in which ice formation was observed above
water saturation, but without indication of liquid droplet for-
mation prior to ice nucleation, are significantly lower. On the
other hand,Gorbunov et al.(2001) measured relatively high
activated fractions for soot particles already at−20◦C which
translate into INAS densities higher than those for mineral
dust. It should also be noted that soot particles are often
fractal-like agglomerates for which the simple assumption of
spherical particles may lead to a large error in the calculated
INAS density.

The results for bioaerosols (Fig.12b) are particularly in-
teresting, because the ice nucleation onset is often reported
for a very small activated fractionfIN , e.g. 10−6 (see also
overview inDespŕes et al., 2012). In addition, most primary
biological particles belong to the coarse mode aerosol. For
the calculation ofns, generic values for the particle diameters
were assumed in the absence of better information: 1 µm for
bacteria, 5 µm for fungal spores, and 20 µm for pollen grains.
Due to the small activated fractions and rather larger particle
diameters, for a number of experiments with ice nucleation
onsets above−5◦C, very small values ofns (104 to 106 m−2)
are estimated. For pollen, fungal spores and diatoms,ns re-
mains smaller than 1010 m−2 even at the lowest investigated
temperatures.

A second group of data points for bioaerosol immersion
freezing indicates significantly higher INAS densities than
the other investigated particle types. This group consists of
INA bacteria such as somePseudomonas syringaestrains,
for which INAS densities> 1010 m−2 are reached already at
temperatures above−10◦C. For mineral dust, these values
are typically reached only below−20◦C.

Taking all immersion/condensation freezing INAS densi-
ties together (Fig.13), a typical range of values for average
mineral dust particles can be identified (indicated by the blue
line in the plot). These range from 106–108 m−2 at −10◦C
to 1010–1012 m−2 close to−35◦C, i.e. roughly increasing by
one order of magnitude per cooling of 5 K. Also some of the
non-bacterial biological particles exhibit INAS densities in
this range. The much steeper increase of INAS densities at
higher temperatures for the most active INA bacteria is indi-
cated with the green dashed line.

The INAS density for dust and biological particles does
not necessarily retain this steady increase at decreasing
temperatures (although a number of experiments with one
aerosol type found similar exponential temperature depen-
dencies ofns, Niedermeier et al., 2010; Murray et al., 2011).
In particular, it has been observed thatns(T ) for INA bacteria
levels off at temperatures lower than−10◦C (Govindarajan
and Lindow, 1988; Ward and DeMott, 1989). Furthermore, it
should be noted that several measurements show large devia-
tions from the average values ofns(T ), and that a difference
by one or two orders of magnitudes has a large impact if ap-
plied for the calculation of atmospheric IN concentrations.

4.1.2 Deposition nucleation

Similar to the above analysis for immersion/condensation
freezing, we apply the calculation ofns to deposition nu-
cleation experiments in the following. For deposition nu-
cleation,ns depends on bothSi and (though weaker) onT .
Here, the data are binned into intervals of 10 K and shown
as a function ofSi (Figs.14 and15). Due to a limited num-
ber of experiments which provide the necessary information,
this could only be done for ATD, kaolinite and desert dusts.
Again, the normalization of the ice nucleation onsets by the
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Fig. 14. INAS densities for ATD, kaolinite and desert dusts for deposition nucleation.

Fig. 15. INAS densities for ATD, kaolinite and desert dusts for de-
position nucleation, binned into temperature intervals. The symbols
and data sources are the same as in Fig.14.

activated fraction and surface area tends to reveal a better
agreement between different experiments than the nucleation
onset data, but the spread remains large. Within each temper-
ature bin,ns increases steeply with increasingSi . In Fig. 14,
where all estimates ofns for the different minerals are shown
together, no clear differences between the three mineral dusts
are visible. The absolute values ofns range mostly between
106–1012 m−2, i.e. similar to those for immersion freezing. In
Fig.15, the four selected temperature intervals are plotted to-
gether. The expected signal of increasingns with decreasing
T at a given supersaturation is not visible in this represen-
tation. Instead, this figure clearly illustrates the vast spread
of INAS densities at low supersaturations, which is larger

than the experimental uncertainties and probably related to
systematic differences between different methods, and/or to
individual particle or material characteristics.

4.1.3 Contact nucleation

Early contact ice nucleation experiments (Pitter and Prup-
pacher, 1973; Levin and Yankofsky, 1983; Diehl et al.,
2002), in which supercooled droplets were held suspended
in a flow of aerosols particles, report higher ice nucleation
onsets and median freezing temperatures in the contact nu-
cleation mode than in the immersion freezing mode.Durant
and Shaw(2005) observed an increase in ice nucleation tem-
peratures even when a particles immersed in a droplet con-
tacted the droplet surface (termed “contact nucleation inside-
out”). These phenomena are not yet satisfactorily explained.
Recent studies of contact nucleation (Svensson et al., 2009;
Rzesanke et al., 2011; Ladino et al., 2011; Bunker et al.,
2012) try to quantify the number of collision events by aux-
iliary measurements or theoretical calculations and to report
freezing efficiencies per collision event. In some cases, the
calculated freezing efficiencies are larger than 1, pointing at
deficiencies in the calculation of the collision rates and/or to
measurement uncertainties. The role of particle size for con-
tact nucleation is not clear yet: WhileRzesanke et al.(2011)
find a clear increase of the contact freezing efficiency with
particle size, this effect is not observed or much weaker in
the studies byLadino et al.(2011) andBunker et al.(2012).
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Fig. 16. Ratio of INAS densities or ice fractions in experiments with different cooling rates or residence times, but the same aerosol. The
data fromMurray et al.(2011), their Fig. 6a, andBroadley et al.(2012), their Fig. 6b, are binned into intervals of 0.5 K and compared for
overlapping temperature ranges. ForBroadley et al.(2012), the experiments with cooling rates of 7.5 K min−1, 5 K min−1 and 1 K min−1

are not included here because of the large spread in the data. The data shown fromNiedermeier et al.(2011b) represent the three data points
for which experiments with a nucleation time of 10 s were conducted (their Fig. 1). For soot, two experiments with 0.08 µm particles are
compared (DeMott, 1990, his Fig. 5).
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Phillips et al, 2008 (dust/metallic)
Phillips et al, 2008 (black carbon)
Phillips et al, 2008 (organic aerosols)
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(c)

DeMott et al, 2010 (100 cm−3, 0.5 µm)

DeMott et al, 2010 (100 cm−3, 1 µm)

DeMott et al, 2010 (10 cm−3, 0.5 µm)

DeMott et al, 2010 (10 cm−3, 1 µm)

DeMott et al, 2010 (1 cm−3, 0.5 µm)

DeMott et al, 2010 (1 cm−3, 1 µm)

Fig. 17. (a)Parameterizations ofns for immersion freezing.(b) Equivalentñs from Phillips et al.(2008) evaluated at water saturation.(c)
Equivalentñs derived fromDeMott et al.(2010) for different concentrations and monodisperse particles.

4.2 Observed time dependence

With the description of ice nucleation as a stochastic pro-
cess, an increase of the activated particle fraction with longer

measurement times is expected. This time dependence can
only be resolved if a large number of particles within the
sample exhibits the same ice nucleation probability at a
given T and Si . For the CFDC-type and mixing cloud
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(d)

Marcolli et al (2007), ATD, single θ
Lüönd et al (2010), kaolinite, single θ
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(e)

Marcolli et al (2007), ATD, 100 nm
Marcolli et al (2007), ATD, 500 nm
Marcolli et al (2007), ATD, 1000 nm
Lüönd et al (2010), kaolinite, 100 nm
Lüönd et al (2010), kaolinite, 500 nm
Lüönd et al (2010), kaolinite, 1000 nm

Fig. 18. (d)Apparentñs from CNT (as formulated byZobrist et al.(2007)) with single contact angles, fitted byMarcolli et al.(2007) and
Lüönd et al.(2010). (e) Apparentñs from CNT with a distribution of contact angles, with parameters fitted byMarcolli et al. (2007) and
Lüönd et al.(2010), for different particle sizes.

chamber experiments listed in Tables1 to 6, which all oper-
ate at fixed temperature and relative humidity, the residence
time varies between 1.6 s and 120 s. Similarly, in the exper-
iments with decreasing temperatures and/or increasing rela-
tive humidities during the measurement, the inverse cooling
rates vary from 6 s to 600 s per K and/or per % increase in
relative humidity.

The time dependence in the analysis of literature data
(comparable to Sect.4.1), can be investigated for experi-
ments at constant conditions via an estimation of the nucle-
ation rate coefficient:

jhet(T ,Si) ≈
fIN(T ,Si)

Aaer1t
(2)

1t is the time for which the aerosol is exposed to the temper-
atureT and the supersaturationSi . For experiments at water
saturation with a constant cooling, the nucleation rate coeffi-
cient can be determined incrementally from

fIN(T ) ≈ Aaer

∫
jhet(T (t)) dt

= Aaer

∫
jhet(T (t))

(
dT

dt

)−1

dT (3)

This leads to

jhet(T ) ≈
1

Aaer

dfIN

dT

dT

dt
(4)

For the immersion freezing data in Fig.13, such an analysis
did not yield a better agreement between different experi-
ments (not shown). For example, for ATD,1t is similar for
Kanji et al.(2011) andHoyle et al.(2011), but bothjhet and
ns differ by more than a factor of 10.

In extensive early studies (Vali and Stansbury, 1966; Vali,
1994, 2008), it was shown that immersion freezing exhibits
time-dependence, but that the observed time dependence is
weaker than expected from classical nucleation theory (see

AppendixA1). Recently, further in-depth analyses of the in-
fluence of time on the activated fraction were conducted by
Murray et al.(2011), Broadley et al.(2012) andWelti et al.
(2012). In their experiments, the cooling rate or residence
times could be varied by more than a factor of 10. Their re-
sults are summarized in Fig.16, along with two experiments
by Niedermeier et al.(2011b) and DeMott (1990). While
Murray et al.(2011)’s and Welti et al. (2012)’s results in-
dicate significantly more ice nucleation in experiments with
slower cooling rates, the other studies do not confirm this be-
haviour and instead show sometimes more, sometimes less
ice nucleation when more time is available for freezing. It
should also be noted that the spread in the data entering these
calculations is large. For none of the experiments, the ratio
of ice fraction or INAS densities in the slow versus fast ex-
periments converges towards the ratio of the cooling rates
or residence times, as would be expected if nucleation was
described well by a temperature-dependent nucleation rate
with one value for all particles. Nevertheless,Murray et al.
(2011) found that such a single component stochastic model
fits their data best, in particular if constant-temperature ex-
periments are considered.Welti et al. (2012) could best fit
their results with a distribution of contact angles.

5 Parametrical descriptions

In this section, we attempt to present various ice nucleation
parameterizations using similar metrics as the measurements,
in order to allow a direct comparison.

5.1 Immersion freezing parameterizations:
temperature and surface area dependence

As discussed in Sect.4.1, it is a well-established idea that
ice nucleation propability is related to the surface area of the
nucleus. Most parameterizations which link heterogeneous
ice nucleation to aerosol properties assume proportionality
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to aerosol surface area. Three classes of these surface-related
parameterizations for immersion freezing will be discussed
in more detail below: empirical fits of INAS densities, param-
eterizations derived from ambient IN measurements, and pa-
rameterizations based on classical nucleation theory. A few
other parameterizations assume proportionality to drop vol-
ume instead to aerosol surface area (Bigg, 1953; Diehl and
Wurzler, 2004). It can be assumed that this apparent volume
dependence reflects the fact that in the experiments which
they are based on, the investigated droplets contained more
than one aerosol particle, and thus the larger the droplets
the larger the aerosol surface area included in them (Murray
et al., 2011).

5.1.1 Parameterizations of INAS densities

Recently, empirical parameterizations for the INAS density
ns(T ) for immersion freezing have been derived from labo-
ratory experiments (Connolly et al., 2009; Niedermeier et al.,
2010; Lüönd et al., 2010; Steinke et al., 2011; Broadley et al.,
2012; Niemand et al., 2012). These formulations are fits to
measured data for a specific aerosol type, and are a function
of the temperature only (Fig.17a). Different functional forms
with two to four fit parameters have been applied, yield-
ing varying slopes of the temperature dependence. The pa-
rameterizations byConnolly et al.(2009), Niedermeier et al.
(2010) andLüönd et al.(2010) fall off steeply at high subzero
temperatures, which contradicts the overall picture in the
measurements compiled in Fig.13. Niemand et al.(2012)’s
parameterization includes measurements in a wider temper-
ature range and extends up to−12◦C.

5.1.2 Parameterizations based on atmospheric
IN measurements

Phillips et al.(2008) presented an empirical ice nucleation
parameterization based on CFDC measurements and coin-
cident aerosol data. A reference IN profile is constructed
for the complete range of subzero temperatures and satu-
ration ratios larger than 1. This reference IN concentration
is distributed to three types of IN (dust/metallic, black car-
bon and organic particles) and associated with a reference
aerosol concentration. The parameterization is applied to a
given aerosol composition and concentration by scaling the
reference IN profile with the surface area of dust/metallic,
black carbon and organic aerosols.

By comparing Eqs. (9) and (10) inPhillips et al.(2008)
to the definition ofns in Sect.4.1, it can be seen that the
following terms can be identified with an equivalent INAS
densityñs :

ñs,Phillips,X = HX(Si,T )ξ(T )
αXnIN,1,∗

�X,1,∗

(5)

Here, the indexX refers to dust/metallic, black carbon and
organic aerosols. The variables are listed in TableA1 and

in Phillips et al.(2008). In Fig. 17b, ñs is displayed at wa-
ter saturation for the three IN types.ñs,Phillips,dust/metallichas
a weaker temperature dependency thanns calculated from
experiments (Fig.13), resulting in lower values than ob-
served atT < −25◦C. The values calculated forñs,Phillips,soot
are very similar tõns,Phillips,dust/metallic. The equivalent INAS
density for organic aerosols (ñs,Phillips,organic aerosols) is about
one order of magnitude lower and disagrees with most
observed values for highly ice nucleation active bacteria
(Fig. 13) at T < −5◦C. The agreement is better with fungal
spores, pollen and a few estimates of bacteria INAS densities
atT > −5◦C.

A different approach of parameterizing IN concentrations
based on CFDC measurements was taken byDeMott et al.
(2010), who related IN concentrations to temperature and
the number concentration of aerosol particles with diameters
larger than 0.5µm (naer,05), and found that this relationship
could explain a large part of the variability in observed IN
concentrations. While the relationship is not strictly propor-
tional to aerosol surface area (nor to aerosol number concen-
tration), we can derive equivalent INAS densities for chosen
values ofnaer,05under the assumption of a monodisperse size
distribution with diameterd:

ñs,DeMott =
nIN(T ,naer,05)

πd2naer,05
(6)

Here, nIN(T ,naer,05) is parameterized afterDeMott et al.
(2010, their Eq. 1).̃ns,DeMott is shown in Fig.17c fornaer,05=

1 to 100 cm−3 and d = 0.5 and 1µm. For small aerosol
number concentrations,ñs,DeMott is similar to ñs,Phillips, but
the temperature dependency is steeper for higher aerosol
concentrations.̃ns,DeMott is generally lower than observed
INAS densities for dust (Fig.13), which is expected because
ñs,DeMott refers to an average active site density of an aerosol
population including inactive particles.

5.1.3 Parameterizations employing classical nucleation
theory for immersion freezing

In classical nucleation theory (CNT), the nucleation rate co-
efficient j is proportional to the aerosol surface area. Some
of the different formulations of classical nucleation theory
which have been used to fit laboratory measurements are
summarized in AppendixA1. For Fig. 17d, equivalent (or
apparent) INAS densities̃ns,Zobrist are obtained by multi-
plying jimm as parameterized byZobrist et al.(2007) with
1t = 10 s, which corresponds to the approximate residence
in e.g. a CFDC instrument. The contact angle is set to the fit-
ted values provided byMarcolli et al.(2007) for ATD and by
Lüönd et al.(2010) for kaolinite. As also noted in these stud-
ies, the temperature dependency ofñs,Zobrist is much stronger
than observed in experiments.

Better fits can be obtained by allowing a distribution
of contact angles instead of single values (Marcolli et al.,
2007; Lüönd et al., 2010). In this approach, every particle
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is assigned one value of the contact angle, such that the par-
ticles with the smallest contact angles are depleted when the
temperature is lowered. To derive an apparentñs,θ -pdf, this
depletion has to be taken into account. We proceed by cal-
culating the IN fraction as given byLüönd et al.(2010) and
insert this value into Eq. (1) (for fIN < 0.9):

ñs,θ -pdf = −
1

Aaer
ln

(∫
p(θ)exp(−Aaerjimm(θ)dt)dθ

)
(7)

p(θ) describes the probability distribution function of the
contact angleθ . The resulting INAS densities are displayed
in Fig. 17e for ATD (Marcolli et al., 2007) and kaolinite
(Lüönd et al., 2010). Compared to the CNT-curves with sin-
gle contact angles for the same materials (Fig.17d), these
apparent INAS densities have a weaker dependency on tem-
perature, and are similar to some of thens-fits displayed in
(Fig. 17a). However, the values of low̃ns,θ -pdf at −15 to
−20◦C are not supported by observations.

5.2 Deposition nucleation parameterizations

For deposition nucleation, the only aerosol-specific param-
eterizations which cover the full range of possible supersat-
urations and temperatures, are the empirical formulation by
Phillips et al.(2008), or are based on classical nucleation the-
ory. (Fitted INAS densitites for deposition nucleation are so
far available only for narrow temperature ranges (Wheeler
and Bertram, 2012; Kulkarni et al., 2012).) We will discuss
these approaches in the light of the predicted temperature-
and supersaturation dependency, expressed by the shape of
onset curves in theT -Si diagram.

5.2.1 Comparison to observed shape of onset curves in
T -Si diagrams

In Fig. 19, a subset of the data shown in Fig.2 is connected
by lines. Each line represents one experimental setup with
constant particle size and/or the same material. Only those
data are included for which the nucleation onset supersatura-
tion for a specific temperature is given unambiguously in the
original publication (in some cases obtained through averag-
ing over several repetitions of the experiment). These lines
can be interpreted as isolines of a constant INAS densityns
or a constant nucleation rate coefficientj . In the following,
they are discussed as such isolines and compared to theoret-
ical expectations.

Below water saturation, three different regimes can be
distinguished. These are labelled A–C in Fig.19b. At the
lowest investigated temperatures (≤ −50◦C), an increase of
the j -isolines orns-isolines with decreasing temperature is
frequently observed (regime A), i.e. higher supersaturations
are required for the same number of particles to activate.
This behaviour is contrary to the common assumption that
lower temperatures always facilitate ice nucleation. In an in-
termediate temperature range, at relative humidities signifi-
cantly below water saturation, the isolines are approximately

horizontal (regime B). This corresponds to a temperature-
independent behaviour of deposition nucleation: only ice
supersaturation determines the rate of nucleating particles.
However, when approaching water saturation, the isolines are
frequently bend towards higher supersaturations, i.e. deposi-
tion nucleation seems to be suppressed (regime C). Above
water saturation,j or ns is a strong function of temperature
(steep lines, regime D), and sets in at higher temperatures
than below water saturation. The temperature-dependence of
immersion freezing cannot be properly represented as iso-
lines in theT -Si diagram because the corresponding data
are measured at water saturation.Schaller and Fukuta(1979)
measured nearly vertical isolines for condensation freezing
above water saturation. The CFDC measurements included
in Fig. 19a have a large uncertainty in the maximum super-
saturation seen by the aerosol particles, such that this regime
is poorly resolved.

5.2.2 Deposition nucleation parameterization based on
atmospheric CFDC measurements

The isolines ofñs,Phillips,X(Si,T ) (Eq. 5) are displayed in
Fig. 20 for dust/metallic, black carbon and organic parti-
cles. While the reference IN concentrationnIN,1,∗ in Eq. (5)
mostly depends onSi , a strong temperature dependence is
introduced by the factorHX(Si,T ). This factor has been
introduced to suppress ice nucleation at high temperatures
and low supersaturations. The suppression is stronger for
black carbon and organic aerosols than for dust/metallic par-
ticles. The resultingñs-isolines for dust/metallic aerosols
agree qualitatively well with the observations, while theñs-
isolines for black carbon and organic aerosols deviate mod-
erately from the typical shape identified in Fig.19.

5.2.3 Deposition nucleation described by classical
nucleation theory

As for immersion freezing, different formulations of classical
nucleation theory have been used in studies of deposition ice
nucleation. These are summarized in AppendixA2. Fig. A1
shows isolines of the nucleation rate coefficientjdep for two
different contact angles/form factors. The isolines calculated
from classical nucleation theory are always quasi-horizontal
close to water saturation (Fig.A1). At lower temperatures,
Fletcher(1958)’s formulation ofAdepdoes not reproduce the
observed nucleation onset curves in regime A, whileChen
et al.(2008) andBarahona(2011) tend to agree qualitatively
better with the experiments at low temperatures.

For the suppression of deposition nucleation close to wa-
ter saturation (regime C), classical nucleation theory does not
provide any explanation.Fukuta and Schaller(1982) andDe-
Mott (1995) have attempted to cover this range with empir-
ical fits. Other authors derived contact angles for individual
data points along the nucleation onset curves, resulting in a
strong variation of the contact angle close to water saturation
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A B 
C D 

Fig. 19. Isolines of constant nucleation rate coefficients or INAS densities.(a) Selected data from Fig.2. Each line connects data from one
instrument, for one particle type and a constant activated fraction.(b) idealized curve with regimes A to D as discussed in the text.
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Fig. 20. Equivalent INAS densities for deposition and condensation nucleation as parameterized byPhillips et al.(2008): (a) dust/metallic
aerosols,(b) black carbon, and(c) organic aerosols. The isolines correspond to (from bottom to top)ñs(Si ,T ) = 1, 1×108, 2×108, 3×108,
5× 108, 1× 109, 2× 109, 3× 108, 5× 109, and 1× 1010m−2. In (b), the highest visible isoline is 5× 109 m−2, and in(c), 1× 109 m−2.

(Welti et al., 2009; Kulkarni and Dobbie, 2010). Physically,
the observed behaviour of deposition nucleation might be re-
lated to water uptake in subsaturated conditions, which can
occur both at the particle surface and within the bulk phase
(swelling), depending on the particle composition (Schuttle-
field et al., 2007). Mineral dust, which is usually consid-
ered to be insoluble, can contain various soluble components
(Kelly et al., 2007; Herich et al., 2009).

5.3 Time dependence in different parameterizations

In any realization of an INAS density parameterization
(Sect.5.1.1), the resulting IN number at constantT andSi
has zero time dependence, i.e. the IN are assumed to activate
instantaneously, without measurable time delay. Conversely,

all formulations of classical nucleation theory in Sects.5.1.3
and5.2.3have in common that if they are applied to a popu-
lation of aerosol particles with one value of the contact angle
(and activation energy), they predict an increase in IN with
observation time at constantT andSi . For small activated
fractions, the predicted IN number is proportional to time.

This time dependence is weaker, if not only one value of
the contact angle is chosen, but a certain distribution of con-
tact angles (as already discussed in Sect.5.1.3). In differ-
ent realizations, this idea was termed “singular hypothesis:
contact angle distribution” (Marcolli et al., 2007), “α-PDF
model” (Lüönd et al., 2010), “multi-component stochastic
model (Murray et al., 2011), “soccer ball modell” (Nieder-
meier et al., 2011b) or “nucleation probability dispersion
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function” (Barahona, 2011). A detailed discussion and com-
parison of these formulations goes beyond the scope of this
paper, but they should be compared to experiments with the
same aerosol particles at different cooling rates or residence
times, such as those shown in Fig.16.

6 Conclusions

In this compilation of results from six decades of laboratory
experiments of heterogeneous ice nucleation, it has become
obvious that many fundamental questions in this field are yet
unsolved. Observed onset conditions for heterogeneous ice
nucleation spread over large ranges of temperature and ice
supersaturation, due to differences in methodology and non-
standardized reported variables. Normalization by activated
fraction and particle surface area (i.e. estimates of the INAS
density) leads to some convergence between different meth-
ods, but even for materials which are assumed to have a con-
stant composition (e.g. ATD, kaolinite), the agreement is not
satisfactory yet. Possible reasons could be impurities in the
samples, different methods for the surface area determina-
tion, or instrumental biases.

Among the parameterizations intended for the description
of ice nucleation in numerical models, those which are pro-
portional to particle surface area have been discussed in more
detail. Some fitted immersion freezing INAS densities, which
do not include any a priori assumptions on temperature-
dependence, have been shown to be unreliable outside the
temperature range they were fitted to (Fig.17a). This hinders
their application in mesoscale or global models, in which the
whole temperature range needs to be covered. Classical nu-
cleation theory, in the different formulations with one contact
angle employed for fits to measurements and implementation
in models, fails to reproduce various aspects of observed het-
erogeneous ice nucleation: the temperature dependence for
immersion nucleation, temperature and supersaturation de-
pendence for deposition nucleation, and time dependence.

For future laboratory experiments of heterogeneous ice nu-
cleation, we make the following recommendations:

– All experiments should as far as possible determine and
document the size distribution of the investigated par-
ticles, the activated fraction, if known the nucleation
mode, and the residence time or cooling rate.

– Experiments with polydisperse particles should report
the total surface area to relate the ice nucleation activ-
ity to this parameter as shown in this manuscript. In
particular for particles with complex composition like
mineral dust, additional size-selected measurements are
required to investigate whether the INAS density is con-
stant over the whole size distribution.

– Results should be reported not only for one value of the
activated fraction, but as spectra of the activated fraction
versus temperature/supersaturation.

– Experiments with pure and homogeneous materials are
needed to advance the understanding of the basic physi-
cal principles of heterogeneous ice nucleation (e.g. time
dependence).

– Studies with natural aerosols under a broad range of
conditions are needed in order to transfer laboratory
results into parameterizations for models of the atmo-
sphere.

– Further coordinated experiments with different instru-
ments and identical samples (as inDeMott et al., 2011)
are recommended to resolve instrument-dependent dif-
ferences. In particular, such intercomparisons should
strive for closure between single-mode methods (e.g.
droplet freezing assays) and instruments covering mul-
tiple nucleation modes (CFDCs, cloud chambers).

– Spectroscopic, microscopic and chemical characteriza-
tion methods should be used to determine the nature and
location of the ice nucleation active sites on various ma-
terials.

– The concept of INAS densities should be extended to
the analysis of experiments below water saturation (de-
position nucleation/immersion freezing of concentrated
solution droplets).

– It is desirable to work towards the derivation of ice nu-
cleation parameterizations which cover the whole atmo-
spherically relevantT -Si space, while avoiding extrap-
olation to conditions which could not be probed. This
will require a combination of different methods.

Appendix A

Different formulations of classical nucleation theory

A1 Classical nucleation theory for immersion freezing

The basic form of the nucleation rate coefficientjimm
for immersion freezing is given by the following equation
(Fletcher, 1962; Zobrist et al., 2007):

jimm = Aimmexp

(
−1Fdiff (T ) − fhet1Gimm

kT

)
(A1)

1Gimm is the energy for homogeneous germ formation in the
immersion mode, given by

1Gimm =
16πv2

ice(T )σ 3
i/w(T )

3
(
kT ln

(
es,w(T )/es,i(T )

))2
(A2)

The temperature-dependent values ofvice, σi/w , es,i andes,w
are given in TableA1. In the following, we employ the
formulations byZobrist et al.(2007). The energy of germ
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Table A1. List of symbols.

symbol description

a0,a1,a2,a3 [various] constants in Eq. (A5)
Aaer [m2] aerosol surface area
Adep [m−2 s−1] kinetic prefactor for deposition nucleation
Aimm [m−2 s−1] kinetic prefactor for immersion freezing
e [Pa] water vapor pressure
E [K] constant (892 K) (Zobrist et al., 2007)
es,i [Pa] saturation vapor pressure over ice (Murphy and Koop, 2005)
es,w [Pa] saturation vapor pressure over water (Murphy and Koop, 2005)
fhet [#] form factor
fIN [#] active fraction
1Fdiff [J] energy for diffusion across the liquid-ice boundary
1gd [J] desorption energy
1Gdep [J] energy for homogeneous germ formation in the deposition mode
1Gimm [J] energy for homogeneous germ formation in the immersion mode
h [J s] Planck constant (6.63× 10−34J s)
HX [#] prefactor ranging from 0–1 (Phillips et al., 2008)
jhet [m

−2 s−1] heterogeneous nucleation rate coefficient
jdep [m−2 s−1] deposition nucleation rate coefficient
jimm [m−2 s−1] immersion freezing rate coefficient
k [J K−1] Boltzmann constant (1.38× 10−23J K−1)
mw [kg] mass of a water molecule (2.99× 10−26kg)
n1,w [m−2] number of single molecules in contact with unit area of the substrate (in liquid water) (1019m−2, Chen et al., 2008)
nIN,1,∗ [m−3] reference IN spectrum (Phillips et al., 2008)
ns [m−2] INAS density
p(θ) [1/◦] contact angle distribution
Si [#] saturation ratio with respect to ice
1t [s] time interval
T [K] temperature
T0 [K] melting point of water (273.15 K)
T0Z [K] constant (118 K) (Zobrist et al., 2007)
Tc [◦C] temperature in◦C
vice [m3] volume of a water molecule in ice (= mw/ρi )
X index:X = dust/metallic, black carbon and organic aerosols (Phillips et al., 2008)
αc [#] mass accomodation coefficient (Barahona, 2011)
αX [#] fractional contribution of aerosolX to the background IN spectrumnIN,1,∗ (Phillips et al., 2008)
θ [◦] contact angle
νs [1 s−1] frequency of vibration of water vapor molecule adsorbed on solid substrate, 1013s−1 (Pruppacher and Klett, 1997,

p. 299)
ξ [#] temperature-dependent function ranging from 0–1 (Phillips et al., 2008)
ρi [kg m−3] density of ice (ρi = 916.7/(1−0.05294×(T −T0)/T0−0.05637×((T −T0)/T0)2−0.002913×((T −T0)/T0)3) (Zobrist

et al., 2007) or ρi = 916.7− 0.175Tc − 5 · 10−4T 2
c (Pruppacher and Klett, 1997, Eq. (3–2)))

σi/v [J m−2] surface tension between ice and vapor (= σi/w +σw/v = (76.1−0.155∗Tc +28.5+0.25∗Tc)×10−3 (Pruppacher and
Klett, 1997, Eqs. (5–46), (5–47a) and (5–12))

σi/w [J m−2] surface tension between ice and water (σi/w = 3.298× 10−2
+ 1.2048× 10−2(T − T0)/T0 − 0.46705(T − T0)2/T 2

0
(Zobrist et al., 2007) or σi/w = (28+ 0.25Tc) × 10−3 (Pruppacher and Klett, 1997, Eqs. (5–47a)))

�X,1,∗ [m2 kg−1] aerosol surface area mixing ratio of speciesX in the reference scenario (Phillips et al., 2008)

formation is lowered by the foreign substrate to the value
fhet1Gimm(T ), where the form factorfhet can assume val-
ues between 0 and 1.fhet is related to the contact angleθ
via fhet = (2+ cosθ)(1− cosθ)2/4 if the curvature effect is
neglected (Pruppacher and Klett, 1997).

For the activation energy/energy for diffusion across the
liquid-ice boundary1Fdiff , and the prefactorAimm, different
assumptions have been used.Zobrist et al.(2007) provide a
parameterization for1Fdiff which is based on measurements
of the diffusivity. For the prefactor a simplified form is used,

in which the Zeldovich factor multiplied by the number of
water molecules contacting the ice germ is approximated by
1 (Pruppacher and Klett, 1997, their Eqs. 9–37).

1Fdiff, Zobrist =
kT 2E

(T − T0Z)2
(A3)

Aimm, Zobrist = n1,w
kT

h
(A4)
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Table A2. List of abbreviations.

Instrument types

AFT aerosol flow tube
CC cold chamber
CECC controlled expansion cloud chamber
CFDC continuous flow diffusion chamber
CFDC-C CFDC with cylindrical plates
CFDC-P CFDC with parallel plates
CFMC continuous flow mixing chamber
CS cold stage
CS-FDC cold stage in flow diffusion cell
CS-SDC cold stage in static diffusion cell
DFA droplet freezing assay
DMCC dynamic mixing cloud chamber
DSC differential scanning calorimeter
EDBC electrodynamic balance cell
EDF emulsified droplet freezing
ESEM environmental scanning electron microscope
FA freezing assay
FDNC falling droplet nucleation chamber
ISDC isothermal static diffusion chamber
LFT laminar flow tube
VWT vertical wind tunnel

Instrument names and institutions

AIDA Aerosol Interaction and Dynamics in the Atmosphere
CINaM Centre Interdisciplinaire de Nanoscience de Marseille
CIRES Cooperative Institute for Research in Environmental

Sciences, University of Colorado
CLINCH Collision Ice Nucleation Chamber
CSU Colorado State University
DRI Desert Research Institute
ETHZ ETH (Eidgen̈ossische Technische Hochschule) Zurich
FINCH Fast Ice Nucleus Chamber
FRIDGE FRankfurt Ice Nuclei Deposition FreezinG Experiment
IMCA Immersion mode cooling chamber
INRA Institut National de la Recherche Agronomique
LACIS Leipzig Aerosol Cloud Interaction Simulator
MINC Manchester Ice Nucleus Counter
PINC Portable Ice Nucleation Chamber
PNNL Pacific Northwest National Laboratory
PNNL-CIC PNNL Compact Ice Chamber
U University (of)
UBC University of British Columbia, Vancouver
UBP Universit́e Blaise Pascal, Clermont-Ferrand
ZINC Zurich Ice Nucleation Chamber

other abbreviations

AD Asian dust
ATD Arizona test dust
CAST Combustion Aerosol STandard
CCN Cloud condensation nuclei
CID Canary Island dust
CNT Classical nucleation theory
HULIS humic-like substances
IN ice nuclei
INA ice nucleation active
INAS ice nucleation active (surface) site
n.a. not available
OC organic carbon
pdf probability distribution function
SD Saharan dust
SOA secondary organic aerosol

The constantsn1,w, k, h are explained in TableA1. The fit-
ted parameters for1Fdiff, Zobrist are E = 892 K andT0Z =

118 K.
Fornea et al.(2009) use the activation energy for the self-

diffusion of water (Pruppacher and Klett, 1997, their Eqs. 3–
22), and the same prefactor asZobrist et al.(2007):

1Fdiff, Fornea= a0exp
(
a1Tc + a2T

2
c + a3T

3
c

)
(A5)

Aimm, Fornea= Aimm, Zobrist= n1,w
kT

h
(A6)

with a0 = 4184/(6.022×1023)×5.55 J,a1 = −8.423×10−3,
a2 = 6.384× 10−4 anda3 = 7.891× 10−6.

Chen et al.(2008) employed 1Fdiff as an additional
temperature-independent fit parameter, with values ranging
from 9.9 to 16× 10−20 J. In addition, the surface area of the
ice germ and the Zeldovich factor, which describes the de-
pletion of the embryo population due to germ production,
are taken into account in the prefactor:

Aimm, Chen= n1,w
kT

h

×

(
kT ln

(
es,w/es,i

))2

4viceσ
2
i/w

√
4σi/w

kT

√
fhet (A7)

Murray et al. (2011) do not make explicit assump-
tions about 1Fdiff and Aimm, but implicitly assume
that Aimmexp(−1Fdiff/(kT )) varies only weakly with
temperature. Similarly,Niedermeier et al.(2010) used
Aimmexp(−1Fdiff/(kT )) as a (temperature-independent) fit
parameter.Khvorostyanov and Curry(2004) provide a uni-
fied treatment of deliquescence and condensation freezing, in
which the energy for homogeneous germ formation has a dif-
ferent form than Eq.A2 and requires knowledge about addi-
tional parameters (see alsoCurry and Khvorostyanov, 2012).
Their prefactorAimm is identical toZobrist et al.(2007), but
the activation energy has a different temperature-dependent
form (Khvorostyanov and Sassen, 1998):

1Fdiff, Khvorostyanov= 0.694× 10−19J× (A8)

(1+ 0.0027× (Tc + 30))

Aimm, Khvorostyanov= Aimm, Zobrist= n1,w
kT

h
(A9)

The implications of these different formulations for1Fdiff
(displayed in Fig.A2) andAimm will be discussed in the fol-
lowing.

In Fig.A3, equivalent INAS densities̃ns based on Eq. (A1)
are shown. The equivalent INAS densities are obtained by
multiplying jimm with 1t = 10s, which corresponds to the
approximate residence in e.g. a CFDC instrument. The form
factorfhet is varied from 0.01 to 0.9. The parameterization of
1Fdiff has a strong impact on the temperature dependence of
jimm. With Zobrist et al.(2007)’s andFornea et al.(2009)’s
parameterizations,jimm · 1t increases much more sharply
with decreasing temperatures than measurements (Fig.13)
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Fig. A1. Deposition nucleation rates calculated from classical nucleation theory, with different formulations of the kinetic factorAdep: (a)
Fletcher(1958), (b) Chen et al.(2008), and(c) Barahona(2011). The red lines are valid forfhet= 0.0005, and the blue lines forfhet= 0.01.
From bottom to top, the isolines correspond tojdep= 1, 1× 106, 1× 1012, and (beyond the plotting range for the blue lines inb andc)

1× 1018m−2 s−1. In (b) and(c), a desorption energy1gd of 6.5× 10−20J was used.
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Fig. A2. Energy for diffusion across the liquid-ice boundary1Fdiff
as used in different immersion freezing formulations of classical
nucleation theory.

or fitted parameterizations ofns (Fig. 17) indicate. With fit-
ted temperature-independent values of1Fdiff (Chen et al.,
2008), the temperature characteristic ofjimm·1t is more sim-
ilar to observations (see e.g. the fitted functions inHoose
et al. (2010b)). However, this approach has two disadvan-
tages: First, at low temperatures,jimm decreases after reach-
ing a certain maximum, which is not supported by observa-
tions. Second, by using1Fdiff as a fit parameter, its physical
meaning is ignored.

A2 Classical nucleation theory for deposition
nucleation

Fletcher(1958) gives the nucleation rate per particle by de-
position nucleation as

jdep= Adepexp

(
−

fhet1Gdep

kT

)
, (A10)

whereAdep is a kinetic prefactor and the exponential term
describes the thermodynamics, including the effect of the ice
nucleus on the formation of the ice germ. The energy of ho-
mogeneous germ formation from the gas phase,1Gdep, in-
cluded in the exponential term (the thermodynamic factor),
can be spelled out in the following way:

1Gdep=
16πv2

ice(T )σ 3
i/v(T )

3(kT lnSi)2
(A11)

The surface tension between ice and vapor,σi/v , and the vol-
ume of a water molecule in ice,vice, are temperature depen-
dent (see TableA1). However, the overall variation with tem-
perature of the thermodynamic factor is much slower than the
variation with supersaturation. Between 200 and 270 K, the
term in Eq. (A11) varies only by about a factor 3 if the super-
saturation is held constant. However, if temperature is held
constant and supersaturation is varied between 1.2 and 1.8, it
changes by a factor of more than 1010.

According toFletcher(1958), the kinetic prefactor is ap-
proximately constant with the following value:

Adep, Fletcher= 1029m−2s−1 (A12)

This constant value has been adopted in recent analyses of
ice nucleation experiments (Eastwood et al., 2008; Kulka-
rni and Dobbie, 2010). With Fletcher(1958)’s formulation,
the isolines ofjdep are near-horizontal in theT -Si diagram
(Fig. A1a).

In two other recent implementations of classical nucle-
ation theory, the kinetic factorAdep is a function of both su-
persaturation and temperature.Chen et al.(2008) give the
following expression :

Adep, Chen=
S2

i e2
s,ivice

mwkT νs

√
σi/v

kT

√
fhetexp

(
1gd

kT

)
(A13)

Chen et al.(2008) use the desorption energy1gd as a fit pa-
rameter, similar to1Fdiff for immersion freezing. The values
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Fig. A3. Equivalent INAS densities calculated obtained from various formulations of classical nucleation theory by multiplying immersion
freezing rate coefficients with an exemplary time step of 10 s, shown for different form factorsf .

derived byChen et al.(2008) for Asian dust, Saharan dust
and ATD range from 3.3× 10−20 J to 4.9× 10−20 J.

Conversely, the expression used byBarahona(2011) dif-
fers with respect to the exponent of the form factorfhet and
includes a mass accomodation coefficientαc:

Adep, Barahona=
S2

i e2
s,ivice

mwkT νs

√
σi/v

kT

αc
√

fhet
exp

(
1gd

kT

)
(A14)

Barahona(2011) prescribes a desorption energy of1gd =

6.5× 10−20 J for mineral dust and1gd = 4.4× 10−20 J for
soot (Seisel et al., 2005).

In Eqs. (A13) and (A14), the saturation vapour pres-
sure over ice (es,i) is strongly temperature dependent
and dominates the functional behaviour ofAdep, Chenand
Adep, Barahona. Physically, this can be explained with a slow-
down of the deposition of water molecules from the vapour
phase at lower temperatures. The resultingjdep (Fig. A1b, c)
exhibits a (small) decrease with decreasing temperatures.

With different assumptions about the prefactor, the contact
angles derived from experimental data are also substantially
different and not intercomparable (Chen et al., 2008; Hoose
et al., 2010b; Eastwood et al., 2008; Fornea et al., 2009; Mar-
colli et al., 2007; Welti et al., 2009; Kulkarni and Dobbie,
2010).
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