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Abstract. The Multi-Angle Implementation of Atmospheric ries (TMS) analysis and processing of groups of pixels which
Correction (MAIAC) algorithm makes aerosol retrievals allows to impose physical constraints on the time-space vari-
from MODIS data at 1 km resolution providing information ability of aerosols and surface reflectance captured with the
about the fine scale aerosol variability. This information is MODIS daily global coverage: namely, aerosols vary slowly
required in different applications such as urban air qualityin space but may change between consecutive MODIS obser-
analysis, aerosol source identification etc. The quality of highvations, whereas the land surface reflectance has a high spa-
resolution aerosol data is directly linked to the quality of tial variability but low rate of change at short time intervals
cloud mask, in particular detection of small (sub-pixel) and (see also Dubovik et al., 2011; Govaerts et al., 2010). MA-
low clouds. This work continues research in this direction, IAC features an independent cloud mask algorithm which
describing a technique to detect small clouds and introducuses TMS analysis to identify clear conditions based on sta-
ing the “smoke test” to discriminate the biomass burning ble spatial pattern from surface over time as opposed to gen-
smoke from the clouds. The smoke test relies on a relative inerally random pattern created by clouds (Lyapustin et al.,
crease of aerosol absorption at MODIS wavelength 0.412 un2008).
as compared to 0.47-0.67 um due to multiple scattering and A distinctive feature of MAIAC is the high 1km resolu-
enhanced absorption by organic carbon released during contion of the aerosol product. While high resolution is in great
bustion. This general principle has been successfully used idlemand for urban air quality analysis and other applications,
the OMI detection of absorbing aerosols based on UV meait also raises the standards for the accuracy of cloud detec-
surements. This paper provides the algorithm detail and iltion. The recent paper of Lyapustin et al. (2012b) explored
lustrates its performance on two examples of wildfires in USways to reduce cloud contamination in MAIAC aerosol re-
Pacific North-West and in Georgia/Florida of 2007. trievals. Specifically, we used analysis of spectral residuals
between the measured and computed (based on retrieved pa-
rameters) top of atmosphere (TOA) reflectances to identify
additional clouds. We have also adapted the histogram filter-
1 Introduction ing approach of the current MODIS operational "Dark Tar-
get” algorithm MODO04 (Levy et al., 2007) which screens
The Multi-Angle Implementation of Atmospheric Correction gata pelow the 20th and above the 50th percentiles in a 10 km
(MAIAC) is a new MODIS algorithm which retrieves aerosol \yindow as probably contaminated by shadows and clouds,
information over land simultaneously with parameters of therespectively. In MAIAC, similar filtering approach was ap-

bidirectional reflectance distribution function (BRDF) model plied to 1km AOT retrievals in the 25km window with the
(Lyapustin et al., 2011a,b; 2012a). MAIAC uses the time se-
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dynamic upper threshold being a function of the cloud frac- In general, it is easy to identify large, bright and cold
tion. A limited testing showed a dramatic improvement in the clouds and difficult to detect the low and small (sub-pixel)
aerosol product quality without big impact on retrievals with clouds as they do not display sufficient brightness tempera-
spatially variable aerosols. ture or reflectance contrast. At the same time, small cumu-

A subsequent large scale analyses of MODIS data, howlus clouds may have a large effect on the retrieval statistics
ever, revealed a more complex picture. First, it showed thabf regions defined as cloudy and clear sky, creating bias in
the introduced “spectral residual” test is redundant and caraerosol radiative forcing (Koren et al., 2008). In the MAIAC
be omitted in favor of a more universal and generic “his- CM algorithm, the problem of small clouds may be exac-
togram” test. Second, regardless of specific implementationerbated by the use of 1 km gridded data obtained from the
the histogram test was found to filter retrievals with high original MODIS 500m measurements (nadir resolution). The
AOT gradient which often present a particular interest for 1km gridding is required for the time series analysis used in
analysis. In the end, this is not a surprise given that the hisboth aerosol retrieval and atmospheric correction algorithms
togram test implies a certain level of spatial homogeneity ofof MAIAC as well as in CM. However, it obviously reduces
aerosol in the atmosphere, and its success in filtering cloudthe reflectance contrasts which otherwise could be found in
directly translates into its failure to preserve AOT data with the original 500m data. As an example, Fig. 1a illustrates
high spatial variability. In general, high AOT gradients at the difference between the 1km and 500m grid resolution in
a scale of several kilometers and less are generated by twihe RGB MODIS Aqua image for the 15150 kn? area in
main types of aerosol emission near its sources, namely fir&eorgia, USA, the latter showing significantly more contrast
smoke, usually associated with biomass burning, and dusand fine level detail. The arrow points at a small cloud which
storms. This further work highlighted the need for devel- is still observable at 500m resolution but becomes indistin-
oping “smoke” and “dust” tests to help protect aerosol dataguishable at 1km. This discussion highlights the idea of us-
with strong heterogeneity from being filtered out. The cur- ing the 500m resolution data to improve cloud masking (e.g.,
rent paper presents further development of algorithm MA-Martins et al., 2002).
IAC: it describes the new small cloud filter in Section 2 and  After trial and error, we implemented an approach based
the “smoke” test in Sect. 3. Section 4 provides an illustra-on the standard deviation of four 500 m gridded pixels nested
tion of achieved data processing quality with two examplesin each 1km grid cell. Similarly to the reference clear sky
of wildfires in US Pacific North-West and in Georgia/Florida image, the standard deviation imagg;] is created for the
of 2007. clear conditions and stored in the Queue memory )dor

each 1 km pixel. The g-image is dynamically updated with
. the latest data thus adapting to changing surface conditions

2 Detection of small clouds over time. Using a pixel-specific value has a strong advantage

The MAIAC cloud mask (CW)agorhm s descrbd ear- /%L1 122 0 8210 00 weenoie s auomaiealy
lier (Lyapustin et al., 2008). In brief, the CM algorithm tion 9 Y helping

is based on the notion that the spatial pattern of a given g - .

. X . . A specifico-test is implemented for each 1km pixel as
scene is stable and reproducible for short time periods un; .

. . follows:
der cloud-free conditions, whereas clouds randomly disturb
t_his pattern. The a_Igorithm uses coyariz_ince_analysis to idenyy 0ij/IL > q - 0ij + Thresh— Cloud (1)
tify cloud-free regions. On this basis, it builds a reference
clear-sky image of the surface, which is used for pixel-levelHere, the multiplier,/ix, wherey is a cosine of view zenith
cloud masking. The reference image is updated each timangle, approximately takes into account the pixel growth
clear conditions are detected, and thus it dynamically adaptsvith scan angle, higher overlap between scan lines, and the
to changing state of the land surface. The algorithm has an inresulting reduction of contrast. The term Thresh is a thresh-
ternal land-water-snow dynamic classification, which detectsold value in thes -test. It depends on surface variability, and
surface changes and guides MAIAC processing. is obtained as a function of the maximal contrast over a given
The reference clear-sky TOA reflectance, available for ev-pixel and its nearest neighboks#%):
ery 1km pixel, significantly increases confidence of detecting
both cloudy and clear pixels. This gives a particular advan-Thresh=0.005+0.66"(c™®~0.005. and Q005 < Thresh= 0.015 (2)
tagg in difficult gondltlon_s, €.g. |n_trop|cal regions of Ama- This approach mitigates the effect of the MODIS pixel
zonia characterized by high cloudiness especially during the . . .
growth with the scan angle which becomes important over

wet season (Hilker et al., 2012). Also as a consequence, MAhetero eneous reaions. and helps avoid the impact of high
IAC does not use “probably clear” and “probably cloud” cat- 9 9 ' P P 9

egories which are common to the operational cloud mask al_contrast borderlines such as seashore.
9 P Figure 1 gives examples of the MAIAC cloud mask perfor-

gorithms. mance for selected days in June and August of 2003, char-
acterized by complex cloudy conditions with large number
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namely in the Blue — UV spectral region (e.g., Kirchstetter et
al., 2004; Bergstrom et al., 2007; Russell et al., 2010; Jethva
and Torres, 2011). The UV wavelengths have been success-
fully used in the OMI Aerosol Index (Al) algorithm to detect
absorbing aerosols (smoke, mineral dust, volcanic ash) and
discriminate them from clouds and from weakly absorbing
aerosols such as sea salt, sulphates etc. (e.g., Torres et al.,
1998; 2007). This detection relies on the fact that adding ab-
sorbing aerosols in atmosphere changes spectral contrast of
TOA radiance as compared to that from the purely Rayleigh
atmosphere. At short wavelengths, the number of scattering
events is considerable due to high Rayleigh and aerosol opti-
cal thickness, with energy absorbed in each interaction with
aerosol particle, which ultimately reduces the reflected radi-
ance. In the case of smoke, an additional absorption may be
caused by an enhanced UV light absorption by OC.

In this work, we are using a similar principle based on
the MODIS Red, Blue and Deep Blue (DB) bands Bl
(0.646 um), B3 (0.466 um) and B8 (0.412 um). The devel-
oped test (1) isolates aerosol reflectance, and (2) compares
the measured reflectance at shortest wavelength (0.412 pm)
with that predicted from the Red-Blue region. Specifically,

00 02 0.8 0.8 0.8 20 an aerosol reflectance is first computed in the Red, Blue and
Fig. 1. Top: Effect of spatial resolution on detection of small clouds. PB channels by subtracting the Rayleigh (path) reflectance
The left and right images show the MODIS Aqua RGB image of and the full surface-reflected signal at TOA from the mea-
the 150<150 kn? area in Georgia, USA, for June 29, 2003 at grid- surement:
ded resolutipn of 1km and 500m, re_spectively. T_he MAIAC cloud RAST — gMeas_ pMolec _ pSurf a) 3)
mask (CM) is shown in the middle with the following legend: Blue “™» — “4 A A :
— Clear, Red/Yellow — Cloud. Bottom: Illustration of MAIAC per-

formance for the same area in 5-7 August 2003. The five columns . : .
show the MODIS Agua TOA data and MAIAC products including Yrieved with the background aerosol model and spectral sur

cloud mask, RGB NBRF (bidirectional reflectance computed fromface BRDF_known from the previous MAIAC retrievals.
the BRDF model for a fixed view geometry of nadir view an¢ 45 The S_O defined aerosol rgflectance represents the atmo-
solar zenith angle), BRF (or surface reflectance) and aerosol opticatPheric aerosol backscattering (path reflectance) and aerosol-
thickness (AO.47) with scale shown below. molecular interactions. Next, we assume that the aerosol re-
flectance has a power law spectral dependence typical of the
optical thickness,
of small clouds. The bottom panel shows additional MAIAC ,aer b 4)
products including the RGB bidirectional reflectance factors™ * ’
(BRF), commonly called surface reflectance, and AOT im-While Eqg. (2) is only an approximation because of the mul-
ages which allow a more complex evaluation of the total al-tiple scattering, aerosol-molecular interactions, and spectral
gorithm performance including cloud mask. The lack of ob- dependence of both single scattering albedo and aerosol
vious cloud-related artifacts in the BRF and AOT data indi- phase function, it is quite adequate for our purpose. With
cates a good quality of cloud detection. this assumption, the equivalent Angstrom expordaatcom-
puted next using the Red and Blue channels. Finally, us-
ing parameteb, we compute predicted aerosol reflectance
3 Smoke test at 0.412 ym, and compare it with the measured aerosol re-
flectance via the absorption parameter (AP):

The last term is evaluated using AOT? initially re-

3.1 Absorption and size parameters
AP — RAer,Meas/RAer,Pred Aer,Pred Aer 0.466 b

The biomass burning aerosols contain carbonaceous com- o2 1042 vhereRoatz Folesgar?” )
pounds such as black carbon (BC) and organic carbon (OCThis test is implemented after the aerosol retrieval with the
which are efficient absorbers of light in the atmosphere.background aerosol model and before the cloud filter. De-
While the BC absorption, e.g. imaginary part of refractive spite the different implementation, the idea behind this spec-
index, is known to be spectrally neutral, different studies in-tral test is similar to the one behind the OMI aerosol in-
dicate that the OC absorption increases at short wavelengthgex: to the first order approximation, the clouds, which have
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spectrally neutral behavior, or non-absorbing aerosols, wouldhe aerosol SP is distinguishably lower than the cloud value
give the AP values close to unity, whereas the absorbindgor the analyzed OT range 0-2. The top panel (AP) shows a
aerosols would result in the lower AP values. The reduc-separation of non-absorbing clouds (e.g., horizontal lines for
tion of AP for absorbing aerosols is expected because of theptically thick clouds) and absorbing smoke (circles and tri-

additional multiple scattering and, in case of smoke, addi-angles), which increases with aerosol optical thickness and
tional OC absorption at 0.412n as compared to the Red- airmass. A robust separation is achieved for all view geome-

Blue spectral region. tries at AOTo.47 >0.5. At smaller AOT, especially with low
SZA and VZA, this test becomes less reliable due to addi-

3.2 Theoretical simulations tional uncertainties from the knowledge of spectral surface
BRDF.

To understand the capability and sensitivity of the proposed As specific aerosol absorption is a function of many pa-
test, we conducted a theoretical analysis of smoke-cloud sepgameters including type of the burning material and smolder-
arability based on the introduced absorption parameter. Théng to flaming fraction ratio, we implemented a smoke test
liquid water cloud was modeled using a lognormal size distri-based on separation from the “cloud AP” as follows:

bution with radius 5 um and standard deviation 0.5 um using

refractive index of Hale and Querry (1973). It is worth not- IfAPjj < APcioud—0.03 — Aerosol (6)

ing that since clouds practically do not absorb solar radiation

in the blue-red spectrum, the exact properties of clouds doWhere ARioud = 0.97-0.06(2— 11 — po) is approximately

not matter, and the selected cloud model will provide gen_pargmeterlzed n terms of cosines c.’f the VIew and SW@).(
. zenith angles. The size parameter is additionally used in the

. %ineral dust detection, which will be described separately.
aerosol, we selected the value of Absorption Angstrom Ex- : . . .
It should be mentioned that presented simulations are lim-

ponent AAE =2 and the imaginary reflective index=0.01 ited to the pure smoke vs cloud analysis. For more com-

at 0.466 um. While the value AAE =2 is slightly higher than :
those (-1.4-1.5) based on several field campaign studies an glex cases with the smoke layer above clouds see Jethva et
N al. (2012) and Torres et al. (2012).

AERONET data compiled in Russell et al. (2010), it is well
within the range of the reported AAE values (up to 3-5) ob-
served in the controlled burning experiments (see Russell &4 Examples of MODIS processing
al., 2010 and references therein). For the selected MODIS
channels (0.412, 0.466, and 0.646), this gives 0.0113, A detailed example illustrating current MAIAC retrieval ca-
0.01 and 0.0070, and the aerosol single scattering albedpability is shown in Fig. 3 for the case of forest wildfires
SSA=0.9219, 0.9246 and 0.9245, respectively. In additionjn the US Pacific North-West in 2007. Shown is the area
we have also tested the case with spectrally-neutral imagiof 150km in the Rocky Mountains centered at 49\5
nary index of 0.01 (more representative of BC) which gives115.2 W. Fires started about DOY 193 and lasted for over
SSA=0.9294, 0.9246, and 0.8981, respectively. two months. Figure 3 displays 10 different columns for each
The results of simulations performed with the radiative of the 10 days shown, including MODIS Aqua RGB top of
transfer code SHARM (Lyapustin and Wang, 2005) areatmosphere (TOA) data, MAIAC cloud mask, RGB NBRF
shown in Fig. 2. The top panel (a) shows simulated absorp{theoretically computed Normalized BRDF for a fixed ge-
tion parameter (AP) and the bottom one (b) shows the sizemetry of nadir view and SZA =45which can be consid-
parameter (SP) given by the ratio SPRQ%QF)/RQ%G which  ered as a background surface image) and BRF (bidirectional
is equivalent to parametér The results are presented as a reflectance factor often called surface reflectance), A@T
function of the optical thickness. In each panel, the rowsabsorption parameter (AP), brightness temperature (BT), re-
show different solar zenith angles (SZA=0, 45°%60nd  flectance in MODIS cirrus channel (1.38 um), and measured
columns show different relative azimuths% 35, 90, 148). and predicted, based on BRDF model, reflectance in band 7
The range of selected azimuthal angles is typical of MODIS(2.1 um).
observation geometries. The red and black colors represents The top three images (DOY 194, 199, 212) show initial
different view zenith angleg =1 and 0.5, respectively. fires of relatively low intensity in different conditions. Ar-
Each plot shows results for an optically thick cloud (hori- eas of enhanced smoke absorption are clearly identifiable by
zontal thick lines), thin clouds corresponding to a given opti- low values of the absorption parameter (AP), in contrast to
cal thickness (thin lines) and two aerosol types with AAE =2 high AP values from clouds or the background aerosol. The
(Aerosol(.), circles) and with constant; =0.01 (Aerosol, lastfour columns are shown to help discriminate clouds from
triangles). As expected, the “size parameter” for clouds issmoke. For example, usually higher and colder clouds have
close to unity indicating a near-neutral spectral dependencdpwer brightness temperature and higher reflectance in the
whereas the typical aerosol values are in the range of 0.6—0.8irrus channel 1.38 um as compared to a clear land or a near-
indicating much smaller particle size. The aerosol SP val-ground smoke. The MODIS narrow cirrus channel (band 26)
ues grow with AOT and atmospheric airmass, neverthelesss located in the water vapor band with strong absorption
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Fig. 2. Simulated Absorption Parameter (top) and Size Parameter (bottom) for different view geometries and optical thickness (OT) for
absorbing aerosols (symbols) and clouds (lines). The rows show different solar zenith angles (SZA =9, 4bdatblumns show different
relative azimuths¢ = 35, 90, 148). The red and black color represents different view zenith anglesl(and 0.5, respectively). The thick

and thin lines show results for thick and thin (with given OT) clouds, respectively. The circles and triangles indicate aerosols with AAE
(Aerosol ¢)) and spectrally independent imaginary refractive index (Aerosol), respectively. The parameters of simulations are provided in
the text.
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TOA CM NBRF  BRF  AOTps; AP Risg R RTLS;,;
. Ty »

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. lllustration of MAIAC algorithm performance for case of

forest wildfires in Pacific Northwest, Rocky Mountains, USA, 2007.
The images show MODIS Aqua RGB TOA data, MAIAC cloud
mask (CM), RGB NBRF and BRF, AQ,7, absorption parame- k; “

ter (AP), brightness temperature (BT), reflectance in MODIS cir-
rus channel (1.38 um), and measured and predicted, using retrieve
BRDF model, reflectance in B7 (2.1 um). The results are shown for
150 km tiles for days of year from 194 to 256, as indicated in the Fig. 4. Examples of MAIAC large-scale aerosol retrievals for the
4th column. The blue color of the cloud mask corresponds to cleasouth-eastern US using MODIS Aqua 2007 data. The numbers
pixels, and red-yellow show detected clouds. The following scalesshow the day of the year. The scale of Ag is 0-3. The top two
were used for columns 5-10 (based on displayed rainbow paletteyoWs of images show triplets of consecutive days for the Georgia-

0-3 (AOTg.47), 0.7-0.91 (AP), 273-305 (BT), 0-0.035(K), 0— Florida fires of 2007. An additional large fire on day 121 in Alabama
0.3 (Ro1 and RTLS 7). is magnified in the inset. Days 141-143 illustrate conditions of in-

creasing cloudiness with reliable identification of the fire source and
north-western transport of smoke. The last three days (230-232)
show a gradual removal of polluted air by the weather system in the
such that a small amount of column water vapor (0.3-0.5 cm)northern direction.
is usually sufficient to absorb most of radiation reflected by
the surface and aerosols into space. Usually, this channel is
very dark measuring a low signal, however it becomes brightlittle effect on the 2.1 um reflectance (Kaufman et al., 2005;
when the scattering layer (aerosol or cloud) raises above th&ck et al., 1999, 2009).
bulk of column water vapor. These effects are clearly visible The fire reaches its maximal strength on days 224-225.
in the top three rows of images. The first day (194) shows aOn day 224, the BT and s fields show that smoke rises
sub-visible thin cirrus with low optical depth detected basedwell above the boundary layer. Based on the brightness tem-
on lower BT and higher Rsg as compared to the cloud-free perature contrast of 25-3&, the height of the plume can be
background. roughly evaluated as 4-5km above the ground. The AP in-
The last two columns show the measured MODIS re-dex shows the lowest values among all days indicating high
flectance at 2.1 um and predicted reflectance based on suabsorption by carbonaceous (BC and OC) aerosols.
face BRDF model retrieved by MAIAC. One can see thatin  The bottom images show the last four days of the fire,
the absence of optically thick clouds the two fields {Rind  which were followed by the cloudy period and the onset
RTLS;, 1) are spatially well correlated (e.g., DOY 194). The of the cold season. These very interesting images (TOA,
correlation at 2.1 ym usually remains robust even in condi-AOTp47, and AP) show that a significant fraction of the
tions of thick smoke plumes. The biomass burning smoke issmoke is concentrated along the mountain valleys mak-
mostly represented by the fine mode particles and thus hamg them visibly very bright. At the same time, the nearby
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elevated areas often have a much better air quality with loweBlue channels. This test detects absorbing smoke aerosols
AOT. based on higher absorption at shorter wavelengths, which is
These examples show that with the introduction of smokea result of multiple scattering and increased absorption by
discrimination, MAIAC no longer filters out fire plumes, in- organic carbon released during combustion. Using two ex-
cluding those with the high reflectance and AOT contrast.amples of forest fires in the US Pacific Northwest and Geor-
The cloud mask images show that some excessive filtergia/Floridain 2007, we show for the first time that robust dis-
ing (yellow color) may still occur on the plume boundaries, crimination of the biomass burning aerosol can be achieved
in transitional zones to clear areas with A§J¥ ~0.3-0.6,  using visible set of wavelengths rather than the UV range,
where smoke detection becomes less reliable. the latter being the mainstream approach with long history
Figure 4 shows several large-scale examples of MAIAC of successful operational use.
aerosol retrievals for the South-Eastern USA using MODIS The developed smoke test fully leverages MAIAC syner-
Aqua for 2007. The top two rows of images show triplets of gistic processing by using available spectral BRDF informa-
consecutive days for the Georgia-Florida fires of 2007, thetion. This facilitates reliable smoke detection in relatively
largest fires in the history of both states. These fires, causedlear conditions. It should be mentioned, however, that at
by an extreme drought of 2007, started in the second halhigh optical depth, sensitivity of TOA radiance to the sur-
of April and raged through the end of June (e.g. Christopheiface is low, therefore the same approach can be successfully
et al., 2009). Images for days 119-121 show several strongised to detect dense plumes without a priory knowledge of
fire sources in the two states, and another large fire in Al-the surface reflectance.
abama magnified in the inset. Days 141-143 illustrate con- It should be noted that examples of AOT retrievals, pre-
ditions of increasing cloudiness, and reliable identificationsented above, give a low estimate of the optical thickness
of the source and of progressively north-western transport ofor smoke regions and should be considered qualitative as
smoke under high cloudiness (DOY 142-143). Finally, the current MAIAC results were produced using a single low
last three days (230-232) show gradual removal of pollutedabsorption aerosol model typical of the East Coast USA
air by the weather system in the northern direction. (Lyapustin et al., 2011b). With the developed smoke dis-
crimination capability, however, the realistic biomass burn-
ing aerosol models will be included in MODIS MAIAC re-
5 Conclusions trievals in the near future.

High resolution aerosol data from space observations offer a
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