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Abstract. We have developed an advanced chemical datanon-assimilated species through the inter-species error cor-
assimilation system to combine observations of chemicarelation and the chemical coupling described by the model.
compounds from multiple satellites. NOOz, CO, and The simultaneous adjustment of the emissions and concen-
HNO3; measurements from the Ozone Monitoring Instru- trations is a powerful approach to correcting the tropospheric
ment (OMI), Tropospheric Emission Spectrometer (TES),0zone budget and profile analyses.

Measurement of Pollution in the Troposphere (MOPITT),
and Microwave Limb Sounder (MLS) satellite instruments
are assimilated into the global chemical transport model

CHASER for the years 2006—2007. The CHASER data as-1 Introduction

similation system (CHASER-DAS), based on the local en-

semble transform Kalman filter technique, simultaneously TroPospheric ozone (§) is an important chemical species
optimizes the chemical species, as well as the emissions der air quality and climatelPCC, 2007). Itis an atmospheric

O3 precursors, while taking their chemical feedbacks into ac-Pollutant in the lower troposphere and an effective green-
count. With the available datasets, an improved description of'0use gas in the upper troposphere. Surface emissions of car-
the chemical feedbacks can be obtained, especially related ten monoxide (CO) and nitrogen oxides (N®lay an im-

the NQ,-CO-OH-0; set of chemical reactions. Comparisons Portant role in determining tropospherig @bundances. CO
against independent satellite, aircraft, and ozonesonde datf @n important precursor of tropospherig @hder high NQ

show that the data assimilation results in substantial improvesonditions. The concentration of CO is strongly related to the
ments for various chemical compounds. These improvement8Xidising capacity of the atmosphere since it reacts primarily
include a reduced negative tropospheric Né@lumn bias ~ With OH (e.g.Logan et al. 1981 Daniel and Solomori998

(by 40-85%), a reduced negative CO bias in the NorthernThompson1993. In the middle and upper troposphere; O
Hemisphere (by 40-90 %), and a reduced positiyd@s in ~ ¢an be generated efficiently through lightning Néburces

the middle and upper troposphere (from 30—-40 % to within (€-9. Pickering et al. 1998 Jenkins and Ryw2004 Martin

10 %). These changes are related to increased tropospherfd al- 2007). The abundance of tropospheric CO and NO
OH concentrations by 5-15 % in the tropics and the Southernnfluences the atmospheric lifetime of the important green-
Hemisphere in July. Observing System Experiments (OSEshiouse gases, methane (§HOz (Shindell et al. 2009, and

have been conducted to quantify the relative importance oflso CQ (Folberth et al.2003.

each data set on constraining the emissions and concentra- NOx and CO have both anthropogenic and natural sources.
tions. The OSEs confirm that the assimilation of individual Anthropogenic sources include fossil fuel and biofuel com-

data sets results in a strong influence on both assimilated anistion. Natural sources include biomass burning, soil, and
also lightning emissions for NQ CO is produced from
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the oxidation of hydrocarbons by the incomplete combus-in the Troposphere (MOPITTDeeter et a.2003 Edwards

tion of fossil fuels and biofuels, and during biomass burn- et al, 2006, and SCIAMACHY Gloudemans et gl2009.

ing events Holloway et al, 2000. Knowledge about varia- In recent years, tropospherigg@etrievals in the thermal in-
tions in surface emissions is important, but currently avail-frared (TIR) have been made from TEHSer, 2006 Parring-
able bottom-up emissions inventories have large uncertainton et al, 2008, the Atmospheric Infrared Sounder (AIRS),
ties (e.g.Jaegé et al, 2005 Zhao et al.201]). These inven-  and IASI (Coman et a].2012. Limb-viewing satellite instru-
tories use statistical data, which generally have coarse resanents, like the Microwave Limb Sounder (MLS), are capable
lution and large uncertainties. The extent of emission-relatef providing valuable information on the upper troposphere
activities and emission factors are sources of error. For in-and the lower stratosphere (UTLSVéters et a].2006. Be-
stance,Zhao et al.(201]) estimated the uncertainties of a cause of the differences between the instruments in terms of
bottom-up inventory of Chinese anthropogenic ,Némis-  sensitivity, retrieval techniques, and observing schedules, the
sions to be—13%~37 %. In addition, temporal (e.g. diur- combined use of different satellite instruments is challenging
nal, weekly, seasonal, inter-annual) variations in emissionge.g.Kopacz et al.2010.

are generally poorly represented in the inventories. For in- Data assimilation is a technique to combine different ob-
stance, rapid economic growth in industrialized Asia has ledservational data sets with a model (eg)nay, 2003. Data

to a rapid increase in the concentrations a@f @ecursors, assimilation systems for tropospheric chemistry have been
such as N@, CO (Richter et al.2005 Stavrakou and Nller, developed in the past decade for mapping the global distri-
2008 van der A et al. 2008, and \olatile Organic Com- bution of chemical species, includings@nd its precursors.
pounds (VOCs)Ku et al, 2007, but these may not be cap- In the past decade, advanced techniques involving the vari-
tured well by most of the inventoriesdmsal et al.2011). ational approachHlbern and Schmigdt2001 Errera et al.

In the past decade, top-down inverse modelling ap-2008 Flemming et al. 2009 Elguindi et al, 2010 and
proaches have been proposed to estimate emission vari&alman filters Khattatov et al.200Q Eskes and Boersma
tions in CO (e.g.Kasibhatla et a).2002 Arellano et al, 2003 Grassi et aJ.2004 Hanea et a).2004 Segers et al.
2004 Stavrakou and Mller, 2006 Kopacz et al. 2009 2005 Parrington et a). 2008 have been applied to at-
Hooghiemstra et gl2011) and in NG (e.g.Martin et al, mospheric chemistry. Recently, the ensemble Kalman filter
2003 Boersma et al2008h Zhao and Wang2009 Lamsal  (EnKF) technique has been applied for tropospheric chemi-
et al, 201Q Miyazaki et al, 2012. The inversion adjusts the cal data assimilatiorvan Loon et al.200Q Arellano et al,
emissions in order to minimize the discrepancy between the2007 Constantinescu et aR007 Coman et al.2012. The
model predictions and observations, while taking the obserEnKF uses an ensemble forecast to estimate the background
vation errors into account. The estimated regional emissiongrror covariance matrix. The advantage of the EnKF is its
show large discrepancies among different estimates, refleceasy implementation for complicated systems; i.e. it does not
ing differences in inversion frameworks, atmospheric modelsrequire the development of an adjoint code.

(e.g.Arellano and Hess2006, and datasets (e.yliyazaki The use of data assimilation for atmospheric chemistry,
et al, 2012 employed in the analyses. Since the relation- especially for short-lived chemical species, is still challeng-
ship between surface emissions and atmospheric abundancigy, as discussed ldyahoz et al(2007 andSandu and Chai

is assumed to be predicted well by the model in the inver-(2011). Short-lived species concentrations vary on timescales
sions, it is important to represent the chemical processefrom less than a minute to one day, and detailed treatment of
in a realistic way when estimating the emissions. The CO-various chemical processes is required to simulate the vari-
OH-NOy-non-methane VOC (NMVOC) chemical interac- ability. A large part of the atmospheric chemical system is
tions may have large impacts on the inversion of N&Dd not sensitive to the initial conditions because of the chemical
CO emissionsNluller and Stavrakou2005. For instance, equilibrium, which is different from the chaotic system in-
neglecting the chemical feedback of changes in surface emisrolved in the numerical weather predictio@dnstantinescu
sions on the abundance of OH could introduce biases in thet al, 2007 Lahoz et al.2007), but is sensitive to the model

a posteriori estimates of the CO sourcésres et al2009. parameters (e.g. emission, chemical reaction rate, and depo-

Data from satellite sensors can provide strong constraintsition velocity) and processes (e.g. chemical reaction equa-
on tropospheric composition in inversions. Tropospheriction, wet and dry deposition, and atmospheric transport). Al-
NO, column concentrations have been retrieved by Ozonghough the errors in simulated tropospheric composition are
Monitoring Instrument (OMI) Kevelt et al, 200§, Scan-  caused by many factors, they are largely affected by highly
ning Imaging Absorption Spectrometer for Atmospheric Car- uncertain emissions (e.ylallet and Sportisse005. Thus,
tography (SCIAMACHY) Bovensmann et al1999, and  the simultaneous adjustment of emissions and concentrations
Global Ozone Monitoring Experiment (GOME) and GOME- is a powerful framework in tropospheric chemical data as-
2 Callies et al(2000. Tropospheric CO has been retrieved similation. However, most recent satellite data assimilation
from Tropospheric Emission Spectrometer (TEEpgez  systems optimize either the concentration of a very limited
et al, 2008, Infrared Atmospheric Sounding Interferome- number of chemical species (eMallet and Sportisse2005
ter (IASI) (Turquety et al.2004, Measurement of Pollution  Parrington et a]2008 Flemming et al.2009 Elguindi et al,
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Table 1.List of satellite observations used for the data assimilation.

Sensor Platform  Species Resolution Version Reference

OMI AURA NO» 13x 25km DOMINO ver. 2 Boersma et al(201])
TES AURA O3 5.3x 8.3km  Nadir ver. 4 Beer(2006
MOPITT TERRA CO 22x 22km TIR ver. 5 Deeter et al(2010
MLS AURA O3, HNO3 ver. 3.3 Livesey et al(2011)

Table 2. List of observations used for the validation.

Sensor Platform Species  Resolution Version Reference

GOME-2 MetOp NG 80 x 40 km TEMIS ver. 2 Boersma et al(2004 2011)
SCIAMACHY  Envisat NGO 60 x 30km TEMIS ver. 2 Boersma et al(2004 2011)
TES AURA CcoO 5.3x 8.3km  Nadir ver. 4 Parrington et al(2008
MLS/OMI AURA O3 1° x 1.25 NASA/GSFC Ziemke et al(2006
Ozonesonde Sonde 30 WOUDC/SHADOZ

INTEX-B Aircraft (DC-8) Several Singh et al (2009

2010 or emissions (e.dMuller and Stavrakol?005 Kopacz  similated data set. Section 5 presents the data assimilation
et al, 201Q Hooghiemstra et 312011). Only a few advanced results including the estimated emissions, the validation, and
studies Hanea et a).2004 Elbern et al.2007) have demon-  the properties of the assimilated fields. Section 6 concludes
strated that the simultaneous optimization of multiple chem-this study. Section 7 discusses future challenges.

ical states including emissions is an effective way to improve

air quality near the surface using surface in-situ observations, )

In this study, an advanced EnKF data assimilation systen? Observations

IS p_resented o §|mgltangously optimize the chem|pa| CONCENL i section introduces the observations used for the data as-
trations and emissions in the troposphere. Satellite observa-

fonsof O CO, NO, and KNG abianed o TES, MO~ 277107 (S 2. 910 Tble ) e wadeton (ect 22
PITT, OMI, and MLS are assimilated into the global chem- ) q

ical transport model (CTM) “Chemical AGCM for study of servation operatot, for each satellite retrieval. The model

. . . - fields, x, are first interpolated to the horizontal location of
atmospheric environment and radiative forcing” (CHASER). . . :
. . . . each observation and the height of each of the vertical layers
TES has the potential to efficiently constrain troposphegc O = . o .
. . . using the spatial interpolation operatSr, Then the averag-
profiles {oret et al. 2009. MOPPIT is suitable for global . L .
S : : ing kernel,A, and the a priori profilex,, of each observa-
CO emission estimates because of its good global cover:. . . : . .
) S : tion are applied to obtain the model fields in the observation
age. MLS is expected to provide important constraints oN . ceyb
the background concentrations o§,GHNOgz, and other @ P Vo
precursors inthe UTLS togt_atherwith .Iightning Nources. P — H(x) = xa+A(S(x) — xa). (1)
The high temporal and spatial resolutions of the OMI are use-
ful to optimize NG emissions on a daily basis. The assimila- The averaging kernel matrix is used to define the sensitivity
tion results are validated against independent data, obtaineof the estimated state to changes to the true state, while the
from five satellite instruments, MLS/OMI (tropospherig O trace of the averaging kernel matrix gives a measure of the
column, TOC), TES (CO), and GOME-2 and SCIAMACHY number of independent pieces of information, i.e. the Degree
(tropospheric N@ column). Global ozonesonde data and air- of Freedom for Signals (DOFsRodgers2000. In this ap-
craft observations obtained during the INTEX-B campaign proach, the satellite-model differeno@ ¢ y°) is not, or only
(Singh et al.2009 are also used for the validation of the ver- weakly, biased by the a priori profik (Eskes and Boersma
tical profiles. To the authors best knowledge, this is the first2003 Rodgers and Connp2003),
advanced data assimilation system that simultaneously op-
imi | issi i °— P =A(xtrue— S(x) +e (2)
timizes the concentrations and emissions of multiple tropo-Y — Y true ’

spheric trace gases, based on multiple satellite sensor/speci%ere the observational erreris the sum of the measure-

gata ;gts. J‘he dsttruc;uret.of tg'.s Emp(;er IS 6}; foclilo;/vs. S.ect.||o?. ent error and the representativeness error (both random and
escribes the data. section s Introguces the data assimiiatio stematic), andi,e represents the true atmosphere profile.

Sé/)sstgm. Selct|on ;" pre serr:ts (l)b_servmg _SbysFem IfExpe;:me he same observation operator has been also applied for vali-
( ) results to identify the relative contribution of eac as'dating the model profile against retrievals in order to remove
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the influence of the smoothing error and the retrieval error2.1.2 TES QG profile

arising from the a priori profile. For plotting the global dis-

tribution, both the retrieved and simulated concentrations ar&fES onboard the Aura satellite was designed to measure the
mapped onto a same resolution of 2.2.5° (1.25x 1° for global, vertical distribution of tropospherig@nd its precur-

MLS/OMI TOC only). sors Beer, 2006 Bowman et al.2009. TES is an infrared
Fourier transform spectrometer (FTS) with high spectral res-
2.1 Measurements used in the assimilation olution (0.1cnT1) and a wide spectral range from 650 ton
] 3250cnm L. The version 4 level 2 nadir data obtained from
2.1.1  OMI tropospheric NO column the global survey mode are used in this study. This product

consists of 16 daily orbits of nadir-viewing measurements
with a spatial resolution of & 8 km spaced 1%apart along
the orbit track every other day. The TES algorithm is de-

The Dutch-Finnish OMI instrument, which was launched
aboard the Aura satellite in July 2004, is a nadir-viewing

imaging spectrographLévelt et al, 20069. Aura traces scribed byBowman et al(2002, Worden et al(2004), and

a sun-synchronous, polar orbit with a period of 100 min. . )
OMI provides measurements of both direct and atmospherel—sowman et al.(200. The vertical resolution of TES £

backscattered sunlight in the ultraviolet visible range from profile rert1r|ev_alsh|s tyflca:Iy 6I;m n the.t_rop|cs and in the
270 to 500 nm. OMI pixels are 1324 km at nadir, in- summer hemisphere for cloud free conditio(den et al.

creasing in size to 24 135 km for the largest viewing an- 2009. The peaks of the TES{averaging kernel matrix are

gles. OMI tropospheric N@column retrievals, with their generally in the middle troposphere, while its sensitivity is
daily global coverage, are effective to Constra’in globakNO reduced greatly in the lower troposphere. On average, there

emissions on a daily basis, unlike GOME-2 and SCIA- are less th:?m 2 DOFs for the tropospheric profile in the trop
. . . ics (Jourdain et a).2007).
MACHY retrievals which have poorer spatial and tempo- . . .
. i The observation operator is applied to account for the ver-
ral resolutions and less global coveragtchter and Bur- tical smoothing of the retrievals as reflected by the averagin
rows 2002 Boersma et al.2008h. The overpass time of g y aing

OMI (about 13:40LT) is more suitable for the estimation kernel and for the_TES a priort profile. Th|s_remoyes the in-

. . fluence of the a priori profile in the data assimilation, as per-
of lightning NGy sources than that of GOME-2 and SCIA- formed byJones et al2003. The observation error includes
MACHY (both in the morning). The Dutch OMI tropo- Y ‘ X

spheric NQ_data product DOMING version 2Bpersma 2 EEIVS BEE 8 SeR el e B S0 I S e
et al, 2011 is used in this study. The error in OMI ) 9

. N . . ence of the TES retrievals are accounted for in the forecast
NO; retrievals for individual pixels can be approximated as error covariance matrix through the influence of the averag-
1.0x 10" moleccnT? 425 % (Boersma et a).2011). De- g g

) . : : ing kernel. The TES data used in the data assimilation are
tails of the retrieval and error estimates are described b%iltered following the TES L2 Data Users Guid®gterman
Boer;ma et al(2004 2007 201). Only observations with . _etal, 2009. The C-Curve flag and the emission layer quality
a radiance reflectance from clouds of less than 50% (i.e

cloud fraction less than about 20 %) and surface albedo opa? werz u?ed o EXCIUde '?IV.V'q“a"tY_d?‘_‘a- we TXCILk')ded data
less than 0.3 with quality flag 0 (meaningful tropospheric poleward of 70, where satellite sensitivities are low because

retrievals) are used, as recommended by the product speciff.—f the |9W brightness temperature. TES @ofiles are posi-
. ively biased by less than 15 % from the surface to the upper
cation documentBoersma et al2011).

The averaging kernel is used to create modeled trOIOO_troposphere (to 100 hPa) and negatively biased by less than

: : . ~20% from the upper troposphere to the lower stratosphere
spheric NG columns from the observation operator, which (100 to 30 hPa) compared to ozonesonde datarden et al
removes the contribution of the retrieval error due to the2007 Nassar et al.2008 Boxe et al, 2010. We will in—.

a priort p“’f"? assu_meoE(skes and Boersm2_003, as o_Ie- vestigate the effect of the bias in TES @ata on the data
scribed by Miyazaki et al. (2012). The spatial resolution of assimilation in Sect. 5.1.3

the OMI data is much finer than that of the model used in this T

study (2.8, about 300 km in the equator). Thus, there are ,

large representativeness errors in the model because of ur%—'l'3 MOPITT CO profile
resolved small-scale variations. To fill the spatial scale 9aPSr o MOPITT instrument was launched onboard EOS Terra
and to obtain more representative data, a super-observatiolﬂ December 1999 MOPITT measures thermal emission in
approach has been developed and applied to the OMI data, )

. . . i . e 4.7um and 2.2-2.4um absorption band. The equator
described py\/l|yazak|_eF al.(2013). Th? super observation crossing time is 10:30 LT/22:30 LT with global coverage ev-
error covariance matrix includes contributions from the mea-

surement error and the representation error ery 3 days. The data employed are the version 5 level 2 TIR
' data Deeter2011). The MOPITT instrument is mainly sen-
sitive to free tropospheric CO, especially in the middle tro-
posphere, but it also provides boundary layer information
(Deeter et al. 2003 2007, 2010. DOF is typically much
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larger than 0.5, indicating that most of the information comessystematic uncertainties at 215 hPa30 %). Detailed in-

from the measurement as opposed to the a pribopbcz  structions for screening tropical-cloud-induced outliers in the

et al, 2010. Maximum zonal mean DOF values of approxi- HNOs and G products given in the version 3.3 data qual-

mately 1.5 occur in daytime overpasses over land in the tropity document Livesey et al.2011) were applied before data

ics. assimilation. Because the instrument’s vertical resolution is
The retrieved error represents the cumulative error fromreasonably comparable to the model grid, the averaging ker-

the smoothing error, model parameter error, forward modehel is neglected. The measurement error is used as the diago-

error, geophysical noise, and instrument error. These are agial element of the observation error covariance matrix, while

counted for in the observation error covariance. We excludehe vertical correlation is neglected.

MOPITT data in polar regions>(65° latitude), where the

quality deteriorates because of potential problems related t@.2 Measurements used for validation

cloud detection and icy surfaces. Also, the retrievals in these ]

regions have low information content related to poor ther-2-2-1  SCIAMACHY tropospheric NO2 column

mal contrast conditions. Daytime conditions typically pro-

vide better thermal contrast conditions for TIR-based re-

trievals than nighttime conditions over land, whereas night-

time observations have not been validated and appear subje

to larger biaskeald et al, 2009. We thus exclude the night- sphere and the Earths surface, in the wavelength range be-

time MOPITT data using a filter based on solar zenith angle. 240 d 2380 d with iral i
The super-observation approach is applied to the MOPIT1IV]Y%e;5 mnthanuv dnom4an 'Wlth a .Sptic r3V reso utrllon
data in the same manner as for the OMI data. The repre9 -~2Nm in the and v.4nm in the visible. Yve use the

sentativeness error for the MOPITT super-observations de\-“rrs'c.)t?l 2 tropospherlf[: Ilflzoclgta ;roolm ﬂ?ﬁ] KNMI rt(ajtrlgva:
rived from the variability of the observed concentrations in algorithm Boersma et al.2004 9. The ground pixe

a super-observation grid-cell is typically much smaller (Iess?r:c the lnadlr rr_lt?]de ISI geniLaII)I/ EO:IBO km, but depend_s 0? |
than 5 %) than that for OMI tropospheric N@olumns. Val- € solar zenith angie, with global coverage approximately

idation results based on in situ profiles exhibit a bias of Iessince every six days. The local overpass time is 10:00LT.
|

than 1% at the surface, 700 hPa, and 100 hPa, and near h? fp%cc))a'\;n\%jopteq tozcgtl(iulaée the 'Al\t/th |s| th? sellme as
—6% at 400 hPa for version 4 datBdeter et al.2010. atfor Version < data. Errors In the sfant column

No bias correction is applied to MOPITT data in this study, fitting, the stratospheric corrections, and in the AMFs lead to

which may lead to slight bias in the estimated CO emissions 2" overall error in the SCIAMACHY retrieval, as described

The MOPITT data on the 9 pressure levels (900, 800 700" Boersma et al(2004). The5error for inzdividual pixels can
’ ’ H 0,
600, 500, 400, 300, 200, and 100 hPa) and at the surface al 3PProximated as 037 10**moleccnt +25 % Boersma

used in the data assimilation, while the data only at 700 hPaet al.’ 2011 CIQUd radiance fraction qf less than 50% with
is used for the CO emission optimization. quality flag= 0 is used for the comparison.

SCIAMACHY, which was launched in March 2002 on
board ENVISAT Bovensmann et gl.1999, is a passive
remote sensing spectrometer observing backscattered, re-
ected, transmitted and emitted radiation from the atmo-

2.2.2 GOME-2 tropospheric NG column
2.1.4 MLS Oz and HNOg profile pospheric NG colu

) ) GOME-2, which is an improved version of the GOME in-
The MLS instrument was launched in August 2004 O”boardstrument, is a nadir UV-visible spectromet@aflies et al,

the Aura satellite. Vertical profiles of several atmospheric Pa-2000. GOME-2 covers the spectral range between 240 nm
rameters are retrieved from the millimeter and sub-millimeter 3,4 790 nm and has a spectral resolution between 0.25nm
thermal emissions measured in the atmospheric limb (Watergnq 0.5 nm. The ground pixel size of GOME-2 tropospheric
etal., 2006). The vertical resolution for the standaglp@d- N, retrievals is 80« 40 km, with a global coverage within
uctis up to 2.5km in the uppermost troposphere and stratoy 5 gay. The equatorial overpass time is at 09:30LT in the
sphere. We use the version 3.3 level 2 ML &hd HNQG  jescending node. This study employs the version 2 tro-
products. A detailed validation and comparison with Otherpospheric NG data from the KNMI retrieval algorithm
data sets is available Irvesey et al(201]). ~ (Boersma et a].2004 2011). The error for individual pix-

We used data with good quality flags, with quality fields g|5 can be approximated as &20°moleccnm?2+25 %
greater than 0.6 (1.0), odd status fields, and convergencfzpersma et a2011). Only observations with a radiance re-

fields less than 1.18 (1.6) fors@HNOs), following the rec-  figctance of less than 50 % from clouds with quality #ag
ommendations irLivesey et al.(201]). In the UTLS, the  \yere used.

MLS version 3.3 retrieval provides data at 6 levels, 316, 261,

215, 150, 100, and 68 hPa. Since further evaluations are stilh 2.3 TES CO

required for data for pressures higher than 261 hPa, we use

only data for pressures lower than 215 hPa. For HNfata  Version 4 CO profiles retrieved from TES measurements are
for pressures less than 150 hPa are used because of largeed for the validation. The TES CO retrievals are sensitive

www.atmos-chem-phys.net/12/9545/2012/ Atmos. Chem. Phys., 12, 998¥9 2012
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primarily to CO in the troposphere, with a DOF between 1 Table 3.List of ozonesonde stations used for the validation.
and 1.5 for the tropospheric profile. The maximum sensitivity

appears in the lower troposphere, below 500 HRar{ngton Station no.  Name Latitude  Longitude
etal, 2008. STNO21  Stonyplain 535 -114.1
Global patterns of CO as measured by TES are in good  sTN221 Legionowo 52.4 21.0
qualitative agreement with those seen by MOPITT. The mean  STN174 Lindendeberg 52.2 14.1
difference between column abundances of CO from TESand STN316 De Bilt 52.1 5.2
MOPITT was less than 5%. TES CO agrees within the esti-  STN053 Uccle 50.8 4.3
mated uncertainty of the aircraft instruments, including both ~ STN099 Hohenpeissenberg ~ 47.8 11.0
errors and the variability of CO itself.(i0 et al, 2007 Ho STN1S6  Payerine 46.5 6.6
et al, 2009. The TES and MOPITT retrievals both have a §$mgi’g \S(Zgﬁt‘éh i?é'gl _6&11 2
maximum sensitivity mainly from 300 to 800 hPa. STN308 Barajas 405 _36
2.2.4 OMI/MLS tropospheric O3 column (TOC) §$mé(1)471 ﬁifupsamand g;? _715"156 1
Several approaches have been developed to derive global SIN418  Huntsville 347 —866
TOC from satellite measurements that involve subtracting the gméig Haha 26.2 121.7
. . . ong Kong 22.3 114.2
stratospheric @ column measured in the_z limb from the to- STN109 Hilo 19.7  —155.1
tal Oz column measured independently in the nadie(nke STN187 Poona 18.6 73.9
et al, 2006 Schoeberl et 812007). The monthly mean TOC STN494 Alajuela 10.0 _84.2
data derived using the OMI total columns and the MLS pro- STN435 Paramaribo 58 —552
files from Ziemke et al.(2006 with a horizontal resolution STN434 San cristobal -0.9 —89.6
of 1 x 1.25 are used for the validatioZiemke et al(2006 STN175 Nairobi -13 36.8
produced TOCs at the MLS measurement locations in day-  STN466 Maxaranguape —-5.5 —35.3
light, where OMI retrievals are available, and where itis not ~ STN437  Watukosek —7.5 1126
excessively cloudy. Note that the quality of the derived TOC ~ STN328  Ascensionisland 8.0 —144
can be very sensitive to the choice of the tropopause defini- SIN191  Samoa —142 1706
tion in this approachJtajner et al.2008. Outside the trop- STN394 Broadmeadows  —37.7 144.9
STN256 Lauder —45.0 169.7

ics, the large and rapid tropospherig @ariability compli- STNO29 Macquarie Island —54.5 158.9
cates determining tropospherig,Gas it requires individual

observations to be of sufficient accuracy.

2.2.5 Ozonesonde 2.2.6 INTEX-B aircraft measurements

Ozonesonde observations are taken from the World Ozon@jrcraft vertical trace gas (CO, SO Oz, OH, NO,, NO,

and Ultraviolet radiation Data Center (WOUDC) and cQ, HNGQs, PAN, HO,, CH,0, and HO) profiles were ob-
the Southern Hemisphere Additional Ozonesondes projecfained using the UC Berkeley Laser-Induced Fluorescence
(SHADOZ) database. The accuracy of the ozonesonde MegTD-LIF) instrument on a DC-8 during the INTEX-B cam-
surement is about5 % in the troposphereSiit and Kley  paign over the Gulf of MexicoSingh et al, 2009. Thornton
1998. The observation sites considered for the validation aregt 7. (2003, Bucsela et al(2008, Hains et al.(2010 pro-
listed in Table 3. We use data from 39 locations for a totalide a detailed description and discuss the performance of the
number of 99 (89) observations in January (July) 2007.  measurements. In the comparison between model and assim-
To compare ozonesonde measurements with the simulgtation results, the data were binned on a pressure grid with an
tion and the data assimilation, all ozonesonde profiles havénteryal of 30 hPa, while the model output was interpolated to
been interpolated to a common vertical pressure grid, Withthe time and space of each sample. Data collected over highly
a bin of 25hPa. Then, for each interpolated observed propoliuted areas (over Mexico City and Houston) have been
file, the co-located model profile is computed using the nearremoved from the comparison, since they can cause a seri-
est neighbor grid point data for the linear space/time inter-g;5 representativeness error in the comparistairs et al.

polation. The averaged profile is computed globally and forpp10. The comparisons were made for March 2006.
three latitudinal bands, the Northern Hemisphere (30N)0

the tropics (30 S—30 N), and the Southern Hemisphere (90—
30° S). The standard deviations of the normalized differences

are computed over these regions. Data assimilation system

The CHASER data assimilation system (CHASER-DAS) is
developed based on an ensemble Kalman filter approach.
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This section introduces the forecast model, the data assimspace and time, reducing sampling errors caused by limited

ilation approach, and the experimental settings. ensemble size. It also reduces the computational cost by per-
forming most calculations in parallelAjyoshi and Yamang
3.1 The global chemical transport model CHASER 2007. Because of the large state vector size and the large

number of grid cells in a global CTM, the computational ad-
The forecast model used in the data assimilation system isantages of the LETKF over the original EnKF is important
the global CTM CHASER$udo et al.2002. CHASER in-  for global tropospheric chemistry data assimilation.
cludes detailed chemical and transport processes in the tro- The LETKF transforms a background ensembdlE(z
posphere, including 88 chemical and 25 photolytic reactionsl, ..., k) into an analysis ensemble i =1, ...,k) and up-
with 47 chemical species, and has a horizontal resolution oflates the analysis mean, whereepresents the model vari-
T42 (2.8) and 32 vertical levels from the surface to 4 hPa. able; b the background state; a the analysis statekahd
CHASER is coupled to the atmospheric general circulationensemble size. In the forecast step, a background ensemble,
model, Center for Climate System Research/National Insti-xf?, is globally obtained from the evolution of each ensem-

tute fOI’ EnViI’onmental Studies (CCSR/NIES) atmOSpheriCb|e model simulation. The background ensemble m;a’n’

general circulation model (AGCM) ver. 5.7b. The AGCM and its perturbations (spread§?, are thus estimated from
fields are nudged toward National Centers for Environmen-+he ensemble forecast,

tal Prediction/Department of Energy Atmospheric Model In-
tercomparison Project || (NCEP-DOE/AMIP-II) reanalysis — 1 & b b_ b Tp
(Kanamitsu et a).2002 at each time step (i.e. every 20 min) X" = ¢ in P Xi =X =X 3)
in order to reproduce past meteorological conditions. !
As described byiyazaki et al.(2012), the anthropogenic  These areV x k matrices, whereV indicates the system di-
emissions are based on a yearly mean inventory of nationahension and indicates the ensemble size. The background
emissions obtained from the Emission Database for Globakrror covarianceRP? = XP(X?)7) tends to underestimate the
Atmospheric Research (EDGAR) version 3@ivier etal,  true background error covariance because of model errors
2003 The Global Fire Emissions Data base (GFED) VerSionand Samp“ng errorsl—(outekamer and M|tche||]_998 To
2.1 Randerson et al2007), estimated on a monthly basis, is prevent the covariance underestimation, the covariance infla-
employed for emissions from biomass burning. The monthlytion technique (with a covariance inflation parameter of 5 %)
biogenic emissions from vegetation, obtained via the GEIAjs applied at each analysis step, adiyazaki et al.(2012).
inventory Guenther et a].1999, are considered for iso-  |n the analysis step, an ensemble of background obser-
prene, terpenes, and other non-methane VOCs, Bi@is-  vation vectors in the observation spagt= H (x°), is es-
sions from soils are based on monthly mean Global Emistimated using the non-linear observational operaforAn
sions Inventory Activity (GEIA) Graedel et a).1993. The  ghsemble of background perturbationd = yf? _W is also

emissions over Asia were obtained from Regional EmiSSiO”computed. The ensemble mean is then updated by
inventory in Asia (REAS) version 1.10hara et al.2007).

The emissions for the simulation years 2006-2007 are obya — xb 4 xPpa(yP)"R-1(y° — yb), (4)
tained by extrapolating the emissions inventories from the

years 1995 and 2000. Emissions of lightning,\gDe linked  wherey® is the observation vectdR is the p x p observation

to convective cloud top height following the parameteriza- error covarianceP? is the P2 is the local analysis error co-
tion of Price and Rinq1992. The lightning NQ production  variance in the ensemble space. The new analysis ensemble
is calculated at each time step of CHASER using the con-perturbation matrix in the model spa%é is simultaneously
vection scheme in the AGCM. The total aircraft N€mis-  obtained by transforming the background ensenleAn

sion is 0.55 TgNyr?, which is obtained from the EDGAR ensemble simulation with the new analysis ensemble is then
inventory. We apply a diurnal variability scheme to the sur- used to predict the new background error covariaxen

face NG emissions depending on the dominant category forthe next forecast step. Further details are describétlimt
each area: anthropogenic, biogenic, and soil emissions, as iet al. (2007 andMiyazaki et al.(2012.

Miyazaki et al.(2012. EnKF approaches always have a spurious long dis-
tance correlation problem because of imperfect sampling
3.2 Ensemble Kalman filter data assimilation of the probability distribution due to limited ensembles

(Houtekamer and MitchelR001J). In complex chemical data
The data assimilation technique used in this study is a lo-assimilation systems, a realistic estimation of the background
cal ensemble transform Kalman filter (LETKFnt et al, error distribution is very importanSingh et al. 2011, Mas-
2007. The implementation is the same adMiyazaki et al.  sart et al. 2012. Boynard et al.(2011) demonstrated that
(2012. The LETKF has conceptual and computational ad-the spatial correlations estimated from ensemble simulations
vantages over the original EnKF (e@tt et al, 2004 Hunt are overestimated in the chemical model error covariance
et al, 2007). The LETKF performs the analysis locally in fields, and suggested the need for special attention to avoid
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(" observations ) mized (i.e., without concentrations in the state vector). In the
OMI NO2 fixed-emission assimilation run, only concentrations are up-

TES : e | Atmospheric dated from the data assimilation (i.e., without emissions in

MOPITT CO Y| B concentrations s . ]

MLS 03, HNOs = | x the state vector). The emission inversion run and the fixed-
%) % A posteriori emission assimilation run have been compared with the full
Apriori emissions | £ i Surface assimilation run in which both the concentration and emis-

ZSS;‘F;? g' x g NOx & CO sion are updated. The comparison allows us to understand
REAS 1.1 z - =) m ==p- | _emissions the relative importance of the emission optimization and the

— S £ direct concentration adjustment in the simultaneous assimila-

- 3" tion (see Sect. 5.3). Further, we have conducted an idealized
4 I data assimilation experiment in which synthetic observations

Data assimilation cycle are derived from a perturbed model run. The results obtained

. o o from the idealized experiment confirmed that the data assimi-
Fig. 1. Schematic diagram of the data assimilation system. The eny,yiq, system is properly implemented, and the simultaneous
semble model simulation with a priori emissions is used to prowdeOptimization for @ concentration and its precursors emis-

the background error covariance informatioﬁ’l. The data assim- sions is a powerful framework for the tronospheric chemistr
ilation is performed using the background error information and the ) P . posp y
analysis (see Appendix A).

observation informationyP). Then the data assimilation provides
a posteriori estimates of surface N@missions, surface CO emis-
sions, lightning NQ emissions, and 3-D distributions of the chem- 3.3.1  State vector

ical speciesX?). Assimilation of MLS @ and HNG; data affects

the concentrations only above 260 and 220 hPa, respectivglig O The state vector is chosen to include uncertain model aspects

the sum of @ and Q1D), and NG is the sum of NO, N@, and that most effectively optimize the tropospheric chemical sys-
NOj3. See Sect. 3 for details. tem. First, emissions are a major source of uncertainty in
CTM simulations. The solution of a tropospheric chemical
model is only weakly influenced by the initial conditions,
too large correlation of fields distant from the location of the because of the strong stiffness of tropospheric chemical pro-
observation. A covariance localization technique is used tecesses@onstantinescu et aR007, Lahoz et al. 2007). An
avoid possible degradation because of under sampling. Wamprovement could be achieved by an ensemble obtained by
assumed that observations located far from the analysis poimerturbing various parameters of the model (emissions, reac-
have larger errors and that those observations have less efion rates, etc.). The EnKF can be extended to include such
fect on the analysisMiyoshi and Yamang2007). A correct ~ parameters in the data assimilation process. A state vector
choice of ensemble size and correlation lengths is importantvhich includes both the concentrations and the emissions
to improve the data assimilation performance, as will be dis-makes it possible to find the optimal values for the emis-

cussed in Sect. 3.3.4 sions, which are linked to the concentrations by the CTM.
In the EnKF system, the background error covariance, esti-
3.3 Experimental setting mated from the ensemble CTM simulations, varies with time

and space, reflecting dominant atmospheric processes. The
Three series of one-month data assimilation experimentdocal analysis increment for emissions thus reflects the com-
have been conducted, starting from the 1 March 2006, 1 Janplex indirect relationship between concentrations and emis-
uary 2007, and 1 July 2007. The March 2006 experiment wassions of related species.
used to validate against the INTEX-B airc raft data, while the The surface emissions of NQOe(NOy), the surface emis-
January and July 2007 experiments were used to compargions of COg(CO), the lightning sources of NQe(LNOy),
the seasonal difference in the data assimilation performanceand the concentrations of all the predicted (i.e., transported,
The data assimilation cycle is 100 min; e.g. each orbit cycletotal 35) chemical species, are optimized at all the models
of polar-orbit satellites. This setting is useful to reduce thegrid cells for each data assimilation cycle. The concentra-
time discrepancy (sampling errors) between the observationtions of radical and members of family species are not in-
and the model in the data assimilation, given distinct diurnalcluded in the state vector. The data assimilation influences
variation in tropospheric chemistrivifyazaki et al, 2012. their concentrations through the chemical coupling during
Figure 1 shows a schematic diagram of the data assimilatiothe forecast. The background ensemble can be represented

process. as follows,
In addition to the full assimilation run (with all the data),
we have also conducted a control run (without any assimi- P
lation), five observing system experiments (see Sect. 4), an, e(NOX)? ®)
emission inversion run, and a fixed-flux assimilation run. In " — e(CO)P
the emission inversion run, only surface emissions are opti- e(LNOx)f’
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c S (>3< S species only, since the ensemble may not contain meaningful
S % Z = information on the profile of other chemical species. For the
8 E > ‘E same reason, and related to their poor quality, MLS HNO
E © ¢ g data are only allowed to influence the N@pecies in the
8 6 % S analysis. Similarly, MOPITT CO data affect the concentra-
O Z O O tion of CO, hydrocarbons, and formaldehyde only. CO emis-
sions are optimized using MOPITT CO data only. The vari-
OMING2 ... (NOy) Troposphere able localization is found to significantly improve the analy-
TES O3 . sis (see Sect. 4.2).
MOPITT CO . . (CO, NMHCs) 3.3.2 Parameter estimation
MLS O3 .. 260 hpa-
A diurnal variability is implemented for the NQemissions
MLS HNO3 .. (NOy) 220 hpa- as in Miyazaki et al.(2012, depending on the dominant

source category for each area. The lightningN$durces
Fig. 2. Schematic diagram of the correlation matrix between ob- vary in time and space, reflecting the variability in meteo-
servations and the state variables. Satellite data used for the da‘@|ogica| fields. However, because a model error term is not
assimilatipn are listed in Fhe_ Ie_ft colum_n. Th_e model variables UP-implemented during the forecast step, the background error
dated during t.he.data assimilation are listed in the top row. The b'“_ecovariance can be continuously deflated and underestimated
(gray) colour indicates that correlations between the observed variy, i the data assimilation. To prevent covariance underes-
ablgs and th? mpdel vana_lbles are considered (neglec_:ted using tll?mation during the data assimilation, we have applied a co-
variable localization technique). See Sect. 3.3 for details. ) . ? R - .
variance inflation to the analyzed emission asviiyazaki
et al. (2012. The analyzed standard deviation (i.e., back-
ground error) is artificially inflated to a minimum predefined
Although the data assimilation system simultaneously up-value at each analysis step. This minimum value is chosen
dates emissions of NCand CO, we treat the data indepen- as 30 % of the initial standard deviation, based on sensitivity
dently and do not include N@CO emissions covariance in experiments. Because of the absence of any forecast model
the background error matrix. This is to avoid the effects of (i.e., model bias) to the emissions, and of the use of the back-
spurious multi-variate correlations in the background errorground covariance inflation, initial bias in the a priori emis-
covariance, possibly developed because of limited ensemsions can be reduced gradually through the data assimilation
bles, and errors in both model and observations. However, theycle using the state-augmentation approach, as discussed by
forecasted atmospheric concentrations of;Nfdd CO are  Lin et al.(2008.
coupled chemically through their effect on the tropospheric The initial error is set to 40% of the a priori emis-
chemistry. sions for surface emissions of N@nd CO. For lightning
Based on sensitivity experiment results (see Sect. 4), weNOy sources, the initial error is set to 60 %, considering
have also applied the variable localization to improve thelarge discrepancies among different estimatésh(gmann
analysis. This means the covariance among non- or weaklyand Huntrieser2007). For the concentrations, it is set to
related variables is set to zero. This technique allows usl0%. Although the optimized emissions (i.e., the analysis
to neglect the correlations among variables that may sufmean) and the uncertainty (i.e., the analysis spread) are not
fer significantly from spurious correlations. The optimiza- strongly sensitive to the choice of the initial error after some
tion of the variable localization was based on a compar-assimilation cycles (e.g. several weeks) because of the analy-
ison against satellite data. If the data assimilation signifi-sis applied for both the mean and spread fields and the use of
cantly deteriorated the agreement with at least one of thehe inflation, convergence is generally attained faster in the
data used for the data assimilation and the validation, vari-case for larger initial uncertainties.
able localization was applied to reduce the deterioration by
considering dominant chemical processes, as will be fur-3.3.3 Observation error
ther described in Sect. 4.2. The state vector structure used
is summarized in Fig. 2. With the technique, lightning NO The observation error covariance matrix contains the mea-
sources are optimized using TES,GMI NO,, and MLS  surement error provided by each retrieval. The representa-
O3 and HNQG observations, whereas the covariance betweeniveness error is also considered for the OMI N&hd MO-
CO concentration and lightning NGsources was set to be PITT CO super-observations as Miyazaki et al.(2012.
zero, since their error correlation are not expected to conThe off-diagonal components are neglected for MLS data;
tain meaningful information. Similarly, OMI tropospheric the observation error of one measurement is assumed to be
NO, column data are used to update the concentrationsndependent of the observation error of other measurements.
of NOy (=NOyx+HNO3+HNO4+PAN +MPAN + N>Os) For TES @Q and MOPITT CO data, the full error covariance
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is used, including correlations between vertical layers. Wethe control run (without any assimilation) and the full assim-
also account for the influence of the averaging kernels fromilation run (with all the data).

the instruments, which captures the vertical sensitivity pro-

files of the retrievals. The horizontal correlation in the ob- 4.1 Background error covariance

servation error covariance matrix is neglected. We do not at-

tempt to remove possible biases from the observations pel Ne background error covariance estimated from ensemble

fore assimilation, mainly because of the difficulty in estimat- Simulations allow unobserved species to be constrained by

ing the true bias structure; this will be further discussed inOPServed species. Inter-species adjustment can be expected
Sect. 5.1.2. when observed and unobserved species chemically interact

on a time scale of the order of the assimilation cycle. The
background error covariance follows from the assumption
that the background ensemble perturbati¥fssample the

Since the DOF of the state vector employed in this study isforecast errors,

large ¢ 0(10%)), a large ensemble size is essential to Cap-ph _ yb(xb)7 (6)

ture the proper background error covariance structure, but at '

the expense of an increased computational cost. We have ofFigure 3 shows the simulated global mean background er-
timized the data assimilation parameters based on sensitivityor covariance structuré®®. The covariance analysis shows
experiments. The observation-minus-forecast (OmF) analytight correlations between variations in surface emissions and
sis (see Sect. 5.1.1) was used to choose the best value of thew-level concentrations of chemically-related speciesy NO
ensemble size and localization length, as summarized in Taemissions show strong positive correlations with low-level
ble 4. The sensitivity experiment showed that the analysis ig950 hPa) concentrations of N@r = 0.66), Q (r =0.60),
improved significantly by increasing the ensemble size fromN,Os (r =0.69), HNGQ (r =0.62), and HNQ@ (r =0.59),

16 to 32 and is further somewhat improved by increasing itwhereas its relation to upper-level (500 hPa) concentrations
from 32 to 48, as seen in the OmF reduction in the comparis much less significant. CO emissions have a significant
ison, for instance, with MOPITT CO, MLS £ and MLS  correlation with the lower tropospheric CO concentration
HNOj3 data. In contrast, the impact was much less significani- = 0.74), but does not relate to other species obviously. Be-
by increasing it from 48 to 64. The ensemble size is accordcause of the time delays associated with vertical mixing, the
ingly set to 48. The sensitivity experiments also show thatmiddle tropospheric CO is generally delayed in phase, with
the analysis results are sensitive to the horizontal localizatess variability associated with the CO emission variabil-
tion length. The inclusion of spatial correlations with appro- ity. Positive correlations are found between lightning ,NO
priately chosen correlation lengths leads to improvementssources and concentrations of @ = 0.18) and NQ species
From the sensitivity experiments, the horizontal localization (e.g.r = 0.30 for NQ,) in the middle troposphere, demon-
length was set to 450 km for NGmissions and 600 km for  strating the potential to constrain lightning lN€ources from

CO emissions, lightning N©Q and the concentrations. Too those observations. Note that correlations with lightninggNO
short localization length (i.e. half size) increases the OmF ersources are more robust in the tropies<0.30 for Q; and

ror, for instance, for MOPITT and MLS data, because of the; =0.36 for NG between 25S and 25 N) than the global
neglected influence of remote observation information. Al-mean. Negative correlations are also found between reac-
though the larger localization length (i.e. double size) some-ive species. For instance,=-0.63 between Qand GHy
what reduces the OmF for some cases, we use the abovgethene) at the surface results from the removal g#i£as
mentioned setting to avoid possible serious spurious correa result of the fast reaction with OH and; @Sawada and
lations. The physical vertical localization length was set to Totsuka 1986).

InP [hPa] = 0.2 based on sensitivity experiments (results The background error covariance shows significant corre-
not shown). The optimal length, however, may depend on théations among the concentrations of related chemical species,

3.3.4 Assimilation parameters

location, season, species, and model resolufajof et al.  reflecting the complex tropospheric chemical processes. For
2011), reflecting the chemical lifetime of the species and at-instance, @ shows large correlations with NGpecies, CO,
mospheric wind patterns. CH,0, SQ,, and PAN at low levels (with- > 0.30). NGO

shows a similar covariance structure, reflecting strong chem-

ical links between @ and NG, (with »r =0.41) both in the
4 Observing system experiments lower and middle troposphere. There are large correlations

among the hydrocarbons throughout the troposphere.
Observation system experiments (OSEs) are used to study The background error structure strongly depends on the
how each individual observational data set improves themodel characteristics, and it may have a critical effect on
overall performance. We have conducted five OSEs by sepahe data assimilation performance. In complex chemical
rately assimilating OMI N@, TES G, MOPITT CO, MLS  data assimilation systems, a realistic estimation of the back-
O3, and MLS HNQ data, and the results are compared with ground error distribution is very important, given the noisy
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Fig. 3. Correlations between species in the background error covariance matrix, estimated from the LETKF ensemble at 950 hPa (left) and
500 hPa (right) averaged over 15-20 July 2007. The global mean of the covariance estimated for each grid point is plotted. The matrix
includes concentrations of all the predicted species, surfageditission (NQ-emi.), surface CO emissions (CO-emi.), and lightningiNO
sources (LNQ). Oy is the sum of @ and CIlD), and NG is the sum of NO, N@, and NG. The red (blue) colour represents positive
(negative) correlations.

Table 4. The performance of the data assimilation for different parameters: the horizontal localization length (loc) and the ensemble number
(ens). Ten-day mean (averaged over 20-30 January 2007) global mean RMS innovation of the OmF for each assimilated data are shown
The control (CTL) simulation was conducted with le@50 km for NG, emissions and with 600 km for CO emissions, lightningd\énd

the concentrations, and eas18. The simulations with different loc values were conducted with-e48. The smallest RMS innovation for

each comparison is shown in bold.

OMI NO, MOPPITCO TESQ@ MLSOs MLSHNO;
(105 moleccnt?)  (ppbv) (ppbv)  (ppbv)  (ppbv)

cTL 1.10 9.05 11.3 81.2 0.64

locx 05 1.13 9.44 11.3 89.1 0.75
locx 2.0 1.15 8.90 10.8 811  0.69
ens=16 1.11 9.09 11.4 84.4 0.70
ens=32  1.12 9.06 11.3 82.7 0.66
ens=64 1.10 9.05 11.3 80.9  0.63

observations along with imperfect model predictions, as sugchemical interactions in the CO-OH-NGsystem, as de-

gested bySingh et al(2017). picted in Fig. 4. The assimilation of OMI NfOdata gen-
erally increases OH concentrations in the tropical tropo-
4.2 Results sphere by 5-15 % and decreases it in the extratropics by 10—

20 %. These changes correspond to the increased (decreased)
The OSEs confirm that the assimilation of each species dat&lO2 concentration in the tropics (in the extratropics) through
set has a strong influence on both assimilated and nonNOx-OH-Og chemical reactions in the N&sensitive regime.
assimilated species through the use of the inter-species errdihe assimilation of TES ©data also significantly changes
correlation and through the chemical coupling provided by OH concentrations. The obtained @crement results in a
the model forecast. The assimilation of OMI N@ata pro- 10-20 % increase in OH concentration in the extratropics. As
vides some changes ins@nd CO concentrations, whereas a result of the combined assimilation of all satellite data sets,
the assimilation of TES @data has some effects on NO zonal mean OH concentration is increased by 5-15% in the
fields, as will be shown in Sect. 5.1.2.. These changes ar&opics and the Southern Hemisphere, and the north-to-south
tightly associated with the changes in OH because of the
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Fig. 4. Latitudinal distributions of the effect of data assimilation on the mean concentration of OH, averaged between 800 and 550 hPa for
16-30 January 2007 (left) and 16—30 July 2007 (right). The percentage difference of the zonal mean concentration, averaged between 80!
and 550 hPa, between the assimilation runs and the control run is shown for six different assimilation runs; the full assimilation run (with all
the data, black) and the five OSEs with TE§ data (marble), OMI N@ data (light blue), MOPITT CO data (green), MLS @ata (red),

and MLS HNGQ; data (yellow). A positive (negative) value indicates that the assimilation run has a higher (lower) concentration than the
control run.
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Fig. 5. The differences in the global spatial correlation, the global mean bias, and the global RMSE between the data assimilation runs and the
control run for the 16-30 (from the 7—30 only for the ozonesondes) of January (left) and July (right) in 2007. These scores are first estimated
from the comparison against observations listed at the bottom (assimilated data in black and independent data in blue), and then comparet
with the control run. For the spatial correlation, the difference (the data assimilation runs minus the control run) is positive (negative) when
the spatial correlation is higher (lower) in the data assimilation runs than in the control run. For the bias and the RMSE, the error reduction
rate defined by Eq. (7) is plotted; the positive (negative) value represents that the error is smaller (larger) in the data assimilation runs than in
the control run. A reduction rate of 100 % indicates that the error in the model is completely removed by the data assimilation. The results are
shown for six different data assimilation runs (the full assimilation run and the five OSEs). The number shown in the bottom list represents
the approximate altitude level in hPa.

gradient in OH concentration in the free troposphere is re-out assimilation. The global spatial correlation, root-mean-
duced in July. square-error (RMSE), and mean bias for 15-days (from the
The OSEs quantify the improvement due to the assimila-16th to the 30th of each month) mean fields were estimated
tion of each individual species data set in comparison withfor the control run and the OSEs. The improvement rate due
the assimilation of all data sets and the control run with-to each data set was then estimated by comparing scores
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between the control run and the OSE, as shown in Fig. 5.

For the RMSE and bias, the error reduction rate is estimated 5 : jﬁl';l“ary i
by comparing these statistics between the control Ay % :
and the OSEKosg) as follows, > % %
E E s 1900 o I
|Ecntil — |Eosel | 44 ) O ¢ % ¢
| Ecntl

When the global mean model bias of the control run is
nearly zero, the error reduction rate is not meaningful and
is set to zero. This is done for the comparisons with TEES O
data at 700 hPa in January, TES CO data at 700 hPa in July,
and ozonesonde data between 450 and 200 hPa in July. Thgg. 6. x2 value (in vertical axis) estimated for each assimilated data
nearly zero bias compared to TEG &nd CO data at 700 hPa  set (in horizontal axis) averaged over the 10-30 January (black) and
can be largely attributed to the very small sensitivity of the July (red) in 2007.
retrievals at these levels, and does not reflect the true model
bias which may be large.

The comparison demonstrates significant improvement$ Data assimilation results
of the scores obtained by the assimilation. Improvements in
the non-assimilated chemical species show that the ensembi1 Validation
simulation is capable of correctly representing inter-species
error correlations and propagating observation information5.1.1 Self-consistency tests
through assimilation cycle. For instance, the assimilation of
MLS O3 and HNQG; data leads to an improved agreement An important test for the quality of data assimilation is
with OMI NO3, as shown by the large reduction of the bias. whether the differences between the model forecast and ob-
Furthermore, all the assimilated data sets improve the agreeservations (the innovations) are consistent with the covari-
ment with G profiles obtained from ozonesondes in July, asance matrices for the model forecast and observations (e.g.
will be further discussed in Sect. 5.1.2. Segers et al2005 Lahoz et al, 2007). The background co-

Note that the effect of the data assimilation on non-variance matrix is important in reaching an appropriate bal-
observed species is not always positive. Consideration ofince between the background and the observations. A quan-
inter-species error correlations sometime causes the error titative criterion for the choice of the background error is
grow. Optimization of the state vector structure is thus con-a chi-square X?) test, thex? diagnostics (e.gMénard and
ducted to minimize the error based on the OSEs, by neglectChang 2000. x2 should approach 1 if the background er-
ing the inter-species correlations that result in serious erroror covariances are properly specified, while a value higher
growth; the optimized state vector is depicted in Fig. 2. Se-(lower) than 1 indicates an underestimation (overestimation)
rious negative effects arose, for example, from the TES O of the background error covariance matrices. kedeter-
data assimilation on CO fields, the MLS HN@ata assim- mined for each assimilated data set is shown in Fig. 6. The
ilation on CO fields, the OMI N@data assimilation on ©  x?2is greater than 1 for the MLS{and HNG; data assimila-
fields, and the MOPITT CO data assimilation og fields tion, indicating too much confidence in the model. The model
(figure not shown). This is primarily because limited ensem-overconfidence is associated with the limited lower strato-
bles can cause spurious error correlation among chemicapheric variations in the ensemble, which are strongly con-
species, especially for species having insignificant chemicastrained by the fixed upper boundary conditions in CHASER.
links. For instance, because of its relatively long chemicalFor MOPITT CO and TES @data assimilationy? lower
lifetime (~2 months), CO may not have significant correla- than 1, which indicates a possible overestimation of the back-
tions with chemically active species such asi®the lower  ground errors, may result in too much correction of the model
troposphere with a time scale on the order of the data assinfields.
ilation cycle. Similarly, the OMI NQ@ tropospheric columns Figure 7 shows the latitude dependence of the bias and
may not have enough information to directly constrain theroot-mean-square (RMS) innovation of the OmF computed
vertical profile of Q because of its smooth averaging ker- in the observation space. The innovation between forecast
nel profile and large observation error. Since we applied theand assimilated data is a sum of three contributions; the
variable localization to avoid these negative influences (se®bservation error, the forecast error, and the representative-
Sect. 3.3.1), the full assimilation run provides the best perfor-ness error caused by mismatches between the satellite ground
mance among the individual data assimilation in most casespixel and the model grid celHskes et a).2003 Lahoz et al,
see Fig. 5. Note that all the observation data can affect all th&007). A persistent model bias is found in the underestima-
chemical fields throughout the forecast. tion of tropospheric N@ columns compared to OMI NO

OMI NO2
TES 03
MOPITT CO
MLS O3
MLS HNO3
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Table 5. Comparisons between the data assimilation run and the satellite retrievals. The results are obtained from 15-day averages (from the
16-30 of each month) for January and July in 2007. Shown are the global spatial correlation (Corr), the global mean difference (Bias), and
the global root-mean-square error (RMSE). The model simulation results (without data assimilation) are shown in brackets.

January July

Corr. Bias RMSE Corr. Bias RMSE
OMI NO,, (10'° moleccnt?) 0.92(0.77) —0.05(0.09) 0.80(1.04) 0.93(0.87) 0.0£0.10)  0.25(0.35)
GOME-2 NO, (10> moleccnt?) 0.87(0.69) —0.02(-0.06) 1.09(1.32) 0.80(0.79) 0.19 (0.04) 0.33(0.33)
SCIAMACHY NO5 (10 moleccnt?)  0.90 (0.69) 0.11 (0.08) 1.25(1.53) 0.79 (0.78) 0.23(0.11) 0.66 (0.66)
MOPITT CO 500 hPa (ppbv) 0.97 (0.92) 047.1) 6.0 (12.6)  0.92(0.86) 1.10.2) 7.0 (11.2)
TES CO 700 hPa (ppbv) 0.90 (0.86) 3:31(5) 15.7 (17.5) 0.83(0.76) 0.97 (0.03)  13.0(15.3)
TES CO 300 hPa (ppbv) 0.77(0.53)  22.2(13.3) 26.2(22.1) 0.77 (0.67) 26.1(17.1) 31.8(21.7)
TES O3 700 hPa (ppbv) 0.92 (0.89) —2.7 (-0.4) 5.9 (6.0) 0.91(0.88) —3.1(-2.7) 7.0 (8.0)
TES O3 300 hPa (ppbv) 0.96 (0.93) 5.1 (14.7) 11.0 (20.7)  0.95 (0.90) 3.2(7.5) 11.7 (18.8)
MLS Oz 215 hPa (ppbv) 0.96 (0.93)  10.7 (19.4) 36.8(47.9)  0.95 (0.90) 10.3 (14.0) 31.9 (63.3)
MLS HNO3 215 hPa (ppbv) 0.81(0.77) —0.13(-0.43) 0.37(0.57) 0.84(0.75) —0.04(-0.37) 0.36 (0.62)
OMI/MLS TOC (DU) 0.77(0.73) —1.1(3.9) 4.2(6.3) 0.89 (0.85) 1.3(1.1) 3.4(4.2)
Sonde 800-450 hPa (ppbv) 3.4 (4.8) 11.1 (11.6) —0.15(-7.14) 19.9 (22.6)
Sonde 450—200 hPa (ppbv) —0.50 (11.9) 30.7 (34.8) 0.13(0.98)  30.6 (40.3)
Sonde 200-90 hPa (ppbv) 13.5(107.0) 122 (208) 4.3 (23.5) 20.6 (45.7)
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Fig. 7. Latitudinal distributions of the mean OmF (upper panels) and its standard deviation around the mean (lower panels) estimated in the
observation space for each assimilated data set, averaged over the period 16—-30 January 2007. The results are shown for the data assimilati
run (red) and the control run (blue).
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data, the overestimation of the middle tropospheric CO in theChina and Central Africa and the decreased columns over
extratropics compared to MOPITT CO data, and the overesEurope (Fig. 8). The OSEs confirm that these improvements
timation in the middle and upper tropospherig @mpared are mainly due to the OMI N@data assimilation (Fig. 5).
to TES and MLS @ data. The data assimilation removes The assimilation of MLS @and HNQG; data also contributes
most of the OmF bias. The large reduction of thg @mF significantly to the reduction of the negative N©olumn
bias for TES @ data in the middle and upper troposphere, bias compared to OMI and GOME-2 (in January only) data,
which reflected the reduction of the OmA bias, implies thatby increasing the upper tropospheric NEncentration. In
TES O3 has meaningful information for constraining thg O contrast, the bias compared to independent GOME-2 (in July
fields at these altitudes, as similarly reported”arrington  only) and SCIAMACHY data is increased by the data assim-
et al.(2008. In contrast, the bias reduction is not obvious in ilation. The errors in the simulated diurnal M®ariations
the lower troposphere (800-500 hPa), especially at high latalong with a bias between OMI and these retrievals may
itudes. This is because the DOFs of the TES retrieval in thecause the bias to increase. The diurnal variations are espe-
troposphere are generally smaller than 1 poleward d&#6l  cially important in the warmer seasons (e.g. in July in the
TES has little sensitivity to the lower tropospherig @Vor- Northern Hemisphere), when chemistry is sufficiently fast
den et al.2004 Osterman et al2008. The near zero OmF to make a difference between morning and early noor NO
bias for MLS & in the data assimilation reflects a good cov- columns Boersma et al2009.
erage and high quality of MLS £xlata. A long lifetime of @ The global mean negative bias and large RMSE in the
in the UTLS also helps to accumulate the observation infor-model simulation against the MOPITT CO are mostly (by
mation. The observation-minus-analysis (OmA) histogram40-90 %) removed by the data assimilation, while a very
shows a more pronounced peak than that for OmF (closehigh spatial correlation (0.92-0.97) is maintained. The re-
to a Gaussian curve, figure not shown) in many cases, as th@uced negative bias is primarily due to the enhanced con-
analysis is closer to the assimilated observations than to theentrations over East Asia, North America, and northern
forecast, as shown byliyazaki et al.(2012). Eurasian continent (Fig. 10). Because of the long lifetime of
The standard deviation about the mean of the OmF wasCO, the data assimilation system is able to capture the ob-
found to be mostly equal to the observation error, indicatingserved CO variability. This improvement is mostly achieved
that the data assimilation captures the observed variabilitppy the MOPITT CO data assimilation, while the assimilation
well and satisfies the data assimilation assumptions. A subef other data sets slightly (typically less than 5 %) affected
stantial part of the RMS of the OmF has been removed by thehe comparison through their influence on the OH fields.
data assimilation for MOPITT CO, MLS £ and TES Qin The data assimilation also improves the spatial correlation
the middle and upper troposphere. A reduction of the RMSwith the independent TES CO data both at 700 and 300 hPa,
is less pronounced for OMI N TES G in the lower tropo-  reflecting enhanced concentrations over China, India, Central
sphere, and for MLS HN@ These are, respectively, related Africa, and North America, and reduced concentrations over
to rapid spatiotemporal variations and large errors in the ob-South America (Fig. 10). However, the global mean bias and
served NQ@, small sensitivities to the true profile (i.e. small RMSE mostly increases due to the data assimilation, primar-

averaging kernel), and large observation errors. ily reflecting too high concentrations at high latitudes. The
bias increase is possibly due to a systematic bias between
5.1.2 Comparison with satellite data MOPITT and TES. Luo et al. (2007) showed that MOPITT

CO version 3 data have higher values than TES CO version
The data assimilation results are validated against indeper2 data, with a mean difference ef4.8% at 150 hPa and
dent data, as listed in Table 5 and shown in Fig. 5. The tropo—0.2 % at 700 hPa. This result is consistent with our data
spheric N@ columns are compared with GOME-2, SCIA- assimilation result, but with different data versions. The as-
MACHY, and OMI data. Differences among the retrievals similation of other species (i.e., NOOz, and HNQ) data
mainly reflect diurnal variations of chemical processes andcontributed slightly to improve the agreement.
emissions, because a very similar algorithm is used for the The data assimilation greatly improves the agreement with
retrieval of these data. The viewing pixel size difference will the TES Q data in the upper troposphere (300 hPa), with a
not affect the comparison results too much, since these rebias reduction of up to 65 % and an RMSE reduction of about
trievals are gridded to the same resolution {X%.5°), us-  40-50%. The improvements are mainly due to increased
ing weighting factors for the surface overlap between theconcentrations in the southern extratropics (Fig. 9), which are
satellite pixel and grid cell. The data assimilation largely achieved by the TES £and MLS G data assimilation. The
improves the agreement with these data. The improvemerassimilation of OMI NQ data acts to reduce the bias com-
is most pronounced in January. The data assimilation inpared to TES @data at 700 hPa in July, implying the impor-
creases the spatial correlation by about 0.15-0.21, decreas&nce of optimizing @ precursors fields. However, the im-
the bias by about 85 % (except for SCIAMACHY), and de- provement is not significant in the simultaneous data assimi-
creases the RMSE by about 30 %. These improvements adation fields in the lower troposphere. The TES$@nsitivity
mainly attributed to the increased M@olumns over East is reduced greatly in the lower troposphere especially due to
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Fig. 8. Global distributions of the tropospheric N@olumns (in 18° molec cnT2), averaged over the period 16—30 January 2007. The results

are shown for OMI (left columns), SCIAMACHY (middle columns), and GOME-2 (right columns). Upper rows show the troposphgric NO
columns obtained from the satellite retrievals (OBS); centre rows from the control run (Cntl); and lower rows from the data assimilation
run (Assim). The averaging kernel of each retrieval is applied to the control run and data assimilation fields. The red (blue) colour indicates
relatively high (low) values.

the presence of clouds and makes it difficult to improve theand the chemical link. In contrast, the decreased (increased)
analysis. Validation or assimilation is virtually meaningless spatial correlation (RMSE) due to the MLS;@ata assim-
when the retrieval sensitivity is very low. Since we applied ilation may be related to errors in the background error co-
the averaging kernel and the a priori profile information in variance or poor data quality either in MLS HN®r MLS
the comparison (Eq. 1), substantial adjustments in the assim@3 data, especially in the upper troposphere.
ilation or differences in the validation only occur when there  The improved agreement with TOC data obtained from
is a meaningful signal (i.e. the retrieved profile minus the re-the independent MLS/OMI data is mainly attributed to the
trieval a-priori). assimilation of TES @ data because of their strong sen-
The MLS O; data assimilation is very effective in re- sitivity to tropospheric @ in the tropics. For instance, the
moving the positive @ model bias in the UTLS because of high columns over the Atlantic and in the southern subtrop-
its wide and dense coverage and good quality, as similarlyics (from South Africa to Australia) are better captured by
shown byJacksorn(2007) andFeng et al(2008. The global  the data assimilation (Fig. 9). However, the data assimila-
RMSE against MLS @data is also reduced by TES@ata  tion still has difficulty in reproducing the observed features.
assimilation. However, the OSEs confirmed that the assimifor instance, longitudinal variations with a persistent wave-1
lated concentration becomes too high because of the TES Opattern in the southern tropics are larger in both the model
assimilation compared to MLS {0data. The OSEs suggest and assimilation compared to the OMI/MLS product. This
that TES Q@ concentration is higher (lower) in the tropics may indicate a difficulty in correcting processes responsible
(extratropics) than MLS @concentration, with a mean dif- for the enhanced ozone in the Atlantic (e.g. via rapid con-
ference of 20—-40 ppb at altitudes between 200 and 80 hPa. vective updraft). At the same time, there is large uncertainty
The bias and the RMSE compared with MLS HM@ata  in the retrieved TOC. Measuring tropospherig f@m space
have also been largely removed by the data assimilation. Thes challenging because of large amount of stratosphegic O
improvement is primarily due to MLS HNg£data assimila- in the total column, while the separation between the tropo-
tion, but MLS Q; data assimilation also contributes to the im- sphere and stratosphere strongly depends on the tropopause
provement, as seen in reduced HNtas. This indicates that definition (e.g.Bethan et a].1996.
MLS Os data have meaningful information about the abun-
dance of HNQ@ in the UTLS, through atmospheric transports
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Fig. 9. Global distributions of the troposphericg@olumns (in DU) and @ mixing ratio (in ppb), averaged over 16-30 July 2007. The
results are shown for OML/MLS §columns (left columns), TES $mixing ratio at 300 hPa (middle columns), and MLg @ixing ratio

at 215 hPa (right columns). Upper rows show the satellite retrievals (OBS); centre rows from the control run (Cntl); and lower rows from the
data assimilation run (Assim). The red (blue) colour indicates relatively high (low) values.

5.1.3 Comparison with ozonesonde data The OSEs demonstrate that these improvements are
mainly due to the assimilation of TES data in the free tro-

Figure 11 shows the comparison against the ozonesond ospherg (between 750 to 200hPa) and both TES and MLS
data. Without assimilation the global mean bias with the 3 data in the UTLS (between 200 and 90hPa). TES data

. : rovide valuable constraints on the free troposphegicAD
ozonesonde is large, up to 30 % in the free troposphere an .
. o ough the MLS data do not extend down to altitudes below
40% in the lower stratosphere. The data assimilation re-,

moves most of the bias from the middle troposphere to the260 hPa, the MLS assimilation influenced the ozone anal-

lower stratosphere, down to within 10 %. It also reduces the’>'s €ven be'OYV th'? level th_rough the vertical pfopagatlon
of the observation signal mainly via the extratropical down-

05 | I 0,
iF;'\:IhSeES%/be o;? znoiﬁfalg tthiénitlisgIEiggzssir?hs?rfu?antg;%so mward motion. Itis emphasized that all the assimilated datasets
the UTLS a're glso most[?y removed by the data as‘Sim”a_contribute to reduce the global mean bias between 750 and
tion, whereas the simulatecs@rofiles suffer from errors in 450hPa and and between 200 and 90 hPa in July. This indi-

._cates that the simultaneous assimilation of multiple chemi-
stratosphere-to-troposphere exchange (STE). The great 'mcfal observations is effective to improve tropospherig by
provements in the UTLS reflects the long chemical lifetime P Posphers

of Oz and the fact that satellite retrievals capture the Iargethe'r influence on the precursor emissions and chemical pro-

o L cesses that affect thes@oncentrations. In contrast, the im-
scale variations of @well. The effect of the data assimilation L -
on the lower tropospheric£below about 850 hPa is not ob- provement by Fhe non-$data assimilation IS not obvpus
vious on a global scale, implying that further constraints are” Jar.1uary_. This may reflect the seasonal_ dn‘fer_ence in the

: chemical links between ©and other species. Since most

needed on the near surfacg &nd its precursors (e.g. VOCs). . : :
Parrington et al(2009 demonstrated that the changes in the ozonesc_mde sites are !ocated in the Northern Hemlsphere_, the
Os flux from the free troposphere into the planetary boundarygre.ater Improvement in Ju!y may be related to summertime
layer (PBL) by the TES @assimilation reduces the positive active chemical processes in the Northern Hemisphere. Much
bias in the PBL indirectly over North America. Although this less ozone is produced from the precursors in winter than in
effect is not confirmed by our global analysis, it is of interest summer (e.gLiu et al, 1987).

to survey the detailed spatial distributions resulting from the The assimilated ©fields show a pers Istent positive blas_
data assimilation. compared to the ozonesonde data, with a global mean bias
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MOPITT CO at 500 hPa "TES CO at 700 hPa MLS HNOg3 at 215 hPa
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Fig. 10.Global distribution of the CO mixing ratio (in ppb) and HN@ixing ratio (in ppb), averaged over 16—30 July 2007. The results are
shown for MOPITT CO mixing ratio at 500 hPa (left columns), TES CO mixing ratio at 700 hPa (middle columns), and MLSniikiay

ratio at 215 hPa (right columns). Upper row shows the satellite retrievals (OBS); centre row from the control run (Cntl); and lower row from
the data assimilation run (Assim). The red (blue) colour indicates relatively high (low) values.

of up to 15%, below 300 (500) hPa in January (July). Theof HNOj3 in polluted areas, while HN®is depleted in the
OSEs demonstrate that the positive bias can be attributed ttvoposphere because of deposition processes. Compared to
the assimilation of TES @data. The positive bias in TES;O  the observed profiles, the simulated N@ slightly lower
data compared to ozonesonde data is reportédilsgar etal.  in the boundary layer and too low in the free troposphere,
(2008 andWorden et al(2009. A data assimilation exper- while HNGg is too high by 500 pptv in the boundary layer.
iment with a bias correction (a uniform 3.3 ppbv bias aboveObserved PAN shows a maximum above the boundary layer
500 hPa and a 6.5 ppbv below 500 hPa, accordingdoden  and a minimum in the free troposphere, while the simulation
et al, 2009 reduces the negative bias in the data assimilationoverestimates (underestimates) it by 80 pptv (by 200 pptv)
(Fig. 12), demonstrating the importance of bias correctionin the boundary layer (the upper troposphere). Observed O
before data assimilation. However the effect of bias correcsshows a maximum near 900 hPa and decreases toward the
tion is not always positive, causing too low concentrationslower free troposphere, while the simulation slightly under-
in the middle troposphere in both January and July. A moreestimates it, except near the surface. Observed
accurate estimation of the spatially-varying bias is thus re-CH,O decrease with altitude, reflecting the decrease in wa-
quired to improve the analysis. ter vapor Heikes 1992 and the boundary layer source from
oxidation of isopreneNillet et al., 2006, respectively. The
simulation captures the observed features opOhwvell, but
overestimates H&by 10 pptv throughout the troposphere.

The data assimilation improves the agreement with the
aircraft observations for N& Oz, and PAN. Underestima-

5.1.4 Comparison with aircraft data

Comparisons with aircraft measurements from the INTEX-B

campaign allow us to look into the effect of data assimila- tions of these species concentrations are generally reduced by
tion on various chemical fields (Fig. 13). The observedNO the data assimilation. Chemical production of i© strongly

concentrations show a decrease from the boundary layer to

the free troposphere. Oxidation of N@ HNOs and other r(_elated to the_ abundance Of N@nd OH. The NQ. emis-
. . . sions tend to increase OH via the NO and H®action and
minor products dominates Ndoss in the boundary layer,

whereas conversions to HN@nd PAN dominate it in the :EZ %o(agriii);%t:g ?e):]y(??g 3:?:;;”%?: regg:'rzrs]’ \(')V:('jlﬁ to
free troposphere (e.Gtaudt et al. 2003. The increase in the increased NQemissions and decreas;ed CO gmissic?ns
HNO3 toward the surface is driven by chemical production
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Fig. 11. Comparison of the vertical §profiles between ozonesondes (black), the control run (blue), and the data assimilation (red) during
7-30 January 2007 (upper 9 panels) and 7-30 July 2007 (lower 9 panels). Upper row of each panel shows the mean profile; center and lowe
rows of each panel show the mean difference and the RMSE between the control run (the data assimilation run) and ozonesondes in blue

(red).

www.atmos-chem-phys.net/12/9545/2012/

Atmos. Chem. Phys., 12, 998¥9 2012



9564 K. Miyazaki et al.: Simultaneous assimilation of tropospheric composition

Table 6. The 15-day means (from the 16—-30 of each month) and the standard deviations (from the means) of the global and regional
surface NQ emissions ¢(NOy), in TgNyr—1), lightning NO, emissions {(LNOx), in TgNyr—1), and surface CO emissions(CO), in

Tg COyr‘l) obtained from the a priori emissions and the a posteriori emissions. GL is gloB&8490° N); NH is the Northern Hemisphere

(20° N-9C° N); TR is the tropics (20S-20 N); and SH is the Southern Hemisphere(93-20° S). The emissions optimized from the full
assimilation run and the emission inversion run (in bracket) are presented.

January July
A priori A posteriori A priori A posteriori
NH 24.5 24.6:0.4 (23.10.8) 315 32.31.3 (33.9£2.2)
(NOy) TR 154 14.4:0.6 (15.5:0.6) 12.9 16.%0.6 (19.2:1.0)
X SH 3.0 3.9:0.2 (3.7:0.1) 2.4 3.6:0.1 (3.6£0.2)
GL 428 42.9-0.6 (42.3t1.3) 46.7 52.8:1.4 (57.3:2.9)
NH 544.8 660.210.5 (906.2:25.6) 720.8 630230.5 (901.6:87.4)
¢(CO) TR 4952 358.8:49.0 (440.4:50.1) 443.6 30768.7 (374.8:22.2)
SH 56.3 40.84.0 (69.A3.5) 53.0 95.59.2 (93.5:£12.9)
GL 1096.3 1060.258.5 (1416.3:37.7) 1217.4 1033:826.9 (1369.3-62.4)
NH 0.6+0.2 0.8+0.3 2.940.8 3.409
(LNOy) TR 2.8£0.5 3.3:0.7 2.5+0.5 3.6£0.7
¢ X} SH 1.G:0.3 1.1£0.3 0.3+0.0 0.3:0.1
GL 4.4+0.7 5.2£0.9 5.40.9 7.3:1.1
January July NO; +HO;, reac_tions, and also reSL_llts in an increased It_)ss of
OH via production of HN@ (DeCaria et al.2005. Thus, it

. Globe — — Globe . is likely that more NQ sources in the free troposphere are

100¢ ] 100¢ ] required to reduce the negative bias of N®O, PAN, and
= = HNO;3 and the positive bias of HOin the free troposphere.
% 2007 < % 200¢ L The overestimated $#0 may also contribute to the overesti-
2 B 2 B'e mation in the concentrations of OH and other Hépecies
S 50l ¢ 18 s00l }( ] through its reaction with excited oxygen atoms. The data
- ' - assimilation tends to increase the overestimation in BNO
1000l -5 1000l . [-*= concentration in the boundary layer, corresponding to the in-
-40 20 0 20 40 -40 20 0 20 40 creased N@concentration. Simultaneous adjustments for its

083 Diff.[%] 08 Diff.[%)]
Assimilation
————— Assimilation (TES bias corr.)

removal processes (e.g. wet and dry depositions) might be
important to further improve the analysis. Removal of HNO
by wet deposition processes occurs within a few days in the
Fig. 12. The mean relative difference of the verticaj Profiles be-  lower troposphere and results in the loss of H&pecies,
tween ozonesondes and the data assimilation with (red dashed) anghich may also explain a part of the overestimation inHO
without (red solid) the bias correction for TES @ata during 7— species concentrations. Meanwhile, a large uncertainty in
30 January 2007 (left) and 7-30 July 2007 (right). both observed and simulated OH concentrations in the free
troposphere remains an important issue (Bligdman et al.
2007. There are many other factors in the chemical trans-
at low latitudes, the data assimilation increases OH agd O port processes affecting the overall model performance. They
Because of the low sensitivity of TES in the lower tropo- may obstruct further improvements by the data assimilation.
sphere, the changes in near surfagea@ largely attributed
to the change in NQemissions, as will be further discussed 5.2 Estimated emission sources
in Sect. 5.3. The assimilated fields still underestimate the
concentrations of NO and PAN in the free troposphere, andThe simultaneous optimization of multiple species leads to
overestimate H@throughout the tropospherklartin et al. complex chemical interactions which together determine the
(2007 concluded that oxidation of lightning NQexplains  estimated emissions. Especially, the imperfect representa-
nearly 80% of the HN@ concentration in the tropical up- tion of OH fields may cause large uncertainties in the,NO
per troposphere. Increasing the lightning N€burce also and CO emissions inversioM{ller and Stavrakou2005
decreases H®in the upper troposphere, while increasing Jones et al.2009 Pison et al. 2009 Hooghiemstra et al.
OH (Hudman et al.2007). The increased NQresults ina  2011). Muller and Stavrako2005 demonstrated that the
reduction of the H@/OH ratio through the NO + H®and optimization of CO emissions constrained by both CO and
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Fig. 13.Mean vertical profiles ofa) CO, (b) SOy, (c) O3, (d) OH, (e) NOo, (f) NO, (g) HNOg3, (h) PAN, (i) HO2, (j) CH20O, and(k) H»0,
obtained from aircraft measurements (black), the control run (blue), and the data assimilation (red), during the INTEX-B campaign, March
2007. The error bars represent the standard deviation of all the data within one bin (with an interval of 30 hPa).

Table 7. The 15-day means (from the 16-30 of each month) and the standard deviations (from the means) of the regional surface NO
emissions£(NOy), in Tg Nyr‘l) for Eastern China (110-12E, 30-40 N), Europe (10 W=3(° E, 35-60 N), the Eastern United States
(95-7P W, 32-43 N), South America (70-50W, 20° S—Equator), Northern Africa (20N-4(Q° E, Equator-20N), Central Africa (10—

4(° E, 20° S—Equator), Southern Africa (26-3E, 28—-23 S), and Southeast Asia (96—205, 10-20 N) for January and July in 2007. The
regional emissions obtained from the a priori emissions, the newer inventories (EDGAR version 4.2, GFED version 3.1, and GEIA), and
those optimized from the full assimilation run and the emission inversion run (in bracket) are presented.

| January \ July

\ A priori A posteriori newer inventorieér A priori A posteriori newer inventories
Europe 5.2 3.3£ 0.2 (3.7£0.3) 45 6.7 5.6+0.6 (5.9+1.1) 4.6
E-USA 2.4 2.8+0.2 (2.5+0.3) 2.5 3.0 2.2+0.3(3.1+0.3) 25
C-Africa 0.7 1.0+£0.0(1.3+0.0) 0.6 4.9 4.9+-0.4 (5.9+0.5) 3.5
E-China 2.9 4.8+0.3 (4.3:0.2) 3.6 35 4.8+0.7 (4.5+£0.7) 3.6
S-Africa 0.2 0.6+ 0.1 (0.6+0.0) 0.3 0.3 0.3+0.1(0.3+0.1) 0.3
S-America 0.4 0.6+ 0.1 (0.6 0.0) 0.5 0.9 0.6+0.1 (0.9+0.1) 0.8
N-Africa 7.4 5.4+ 0.1 (6.1+0.5) 4.8 1.6 2.86+0.2(3.2+1.2) 1.4
SE-Asia 0.5 0.9+0.1(0.7+0.1) 0.9 0.3 0.4+0.0 (0.5+0.1) 0.3

NO, observations leads to a better agreement between mod- In our system, as shown in Figs. 4 and 5 and discussed in

eled and observed values, through the chemical response &ect. 4.2, all the assimilated data significantly influence con-

the CO-OH-NQ-NMHC system to emission changdenes  centrations of OH, N@ and CO. The assimilation of OMI

et al. (2009 also suggests that neglecting the influence ofNO, data generally increases (decreases) the OH concentra-

NOy emissions on the CO chemistry could contribute to ation in the tropics (extratropics) by 15 %, which affects the at-

significant bias in the CO source estimates. mospheric CO lifetime and influence the CO emission inver-
sion. Meanwhile, the higher CO emissions lead to a decrease
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Fig. 14. Global distributions of the surface CO emissions (infi@)kg mfzs*l) (left panels), the surface NOemissions (in

10~ kgm—2s~1) (centre panels), and the lightning W@missions (in 1011kgm=2s~1) (right panels), averaged over the 16—-30 Jan-

uary (upper 6 panels) and July (lower 6 panels) in 2007. The a priori emissions (upper rows) and the analysis increment (lower rows), i.e. the
difference between the a posteriori and the a priori, are shown for each panel. The red (blue) colour indicates an emission increase (decrease
for the analysis increment, respectively.

Table 8.Same as in Table 7, but for the regional surface CO emissig@€), in TgCOyr1).

\ January \ July

\ A priori A posteriori newer inventorieér A priori A posteriori newer inventories
Europe 100.9 101.6: 4.0 (156.0£5.3) 311 108.7 78.5+4.4 (137.5-21.1) 375
E-USA 55.4 23.4+1.7 (47.5+ 8.6) 28.5 60.3 22.8+1.6 (39.4+8.5) 28.6
C-Africa 21.9 16.5£ 0.5 (17.1+0.8) 15.4 206.5 201.3:7.9 (252.4+18.4) 212.8
E-China 66.8 175.3£ 5.9 (198.0+ 10.7) 62.4 66.8 1154 7.4 (131.0+ 8.9) 62.5
S-Africa 2.6 1.7£0.1 (3.7+0.4) 2.0 3.6 11.3+1 (11.3£1.4) 5.7
S-America| 13.0 6.2+ 0.5 (5.8+0.5) 4.1 16.6 5.5+ 0.3 (5.8+0.7) 39.0
N-Africa 306.1  174.4-36.6 (177.9:50.2) 292.7 59.1 28.6£1.0(39.2£1.2) 33.8
SE-Asia 15.0 44.2+ 5.3 (54.4+:0.6) 62.2 8.4 3.0+£0.3(2.7£0.3) 12.0

in OH abundances and slightly increasesNOncentration  of the model errors. However, this will not be the case for
in the extratropics. The simultaneous data assimilation thusll model errors. For instance, errors in boundary layer vent-
provides comprehensive constraints on the emission invering or deposition may be compensated in our assimilation
sion. It is expected that the simultaneous data assimilatiorsystem by (incorrectly) changing the emissions. The a priori
provides a better estimate of the emissions than the inversioand a posteriori emissions estimated from data assimilation
run because the concentration assimilation may reduce somare shown in Fig. 14 and listed in Table 6, 7, and 8. Note
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that the a priori surface emissions for the simulation yearssion system in which only surface emissions are optimized
2006-2007 were obtained by linearly temporal extrapolating(brackets in Tables 6 and 7). This indicates that the direct

the 1995 and 2000 inventories. adjustment to the concentration fields by the data assimila-
tion provides important effects upon the emission inversion,
5.2.1 NG emissions with a regional difference of up to 40 % over industrial areas

and up to 30 % over biomass burning areas. For instance, the

The data assimilation changes the global totalyNginis-  emissions over Central Africa in the simultaneous data as-
sions from 42.8 to 42.9 TgNy# in January and from 46.7 similation are smaller than in the emission inversion, which
to 52.0 TgNyr? in July. The a posteriori and the a priori is attributed to the increased N@oncentration in the mid-
emissions differ more significantly at the regional scale. Thedle and upper troposphere mainly due to the assimilation of
analysis increment is generally positive over Eastern ChinaTES O; data. The smaller emissions over the Eastern United
North America (only in January), Australia, Northern India States for July in the simultaneous data assimilation results
(only in January), Southeast Asia, and Southern Africa. Anfrom the larger N@ concentrations in the middle and upper
obvious increment is observed over Eastern China, with aroposphere, primarily by the adjustment made directly to the
factor of up to about 1.6 in January. Over the Eastern Unitecconcentrations due to the assimilation of OMI N@ata.
States, the a posteriori emissions are higher than the a priori The January and July mean global surfacexNgnis-
emissions in January, but are lower in July. The a posteriorsions of 47.4 TgNyr! estimated from the data assimila-
emissions are lower than the a priori emissions over Europetion is slightly larger than the annual mean emissions es-
unlike over other industrial areas. Over Central Africa, thetimated from previous studies (e.g. 42.1 TgN¥rMiiller
data assimilation increases the emissions in January. Ovaand Stavrakou2005 40.3 TgNyr!, Jaegé et al, 2005
Northern Africa, the data assimilation decreases the emis45.4 TgNyr1, Miyazaki et al, 2012. Differences in anal-
sions in January, but increases the emissions in July. Most ofsis years and the focus on only two months may primar-
these features are also reportedvityazaki et al.(2012. As ily contribute to the difference in NOemission estimates.
a result of the data assimilation and the covariance inflation;The NQ, emissions are generally larger over industrial ar-
the mean a posteriori error for the surface ;N€missions eas in winter and over soil/desert areas in summer than in
typically ranges from 12 to 60 %, with smaller relative er- other seasons; this may also contribute to the largegx NO
rors over polluted areas than over clean areas. The mean diemissions estimated from this study compared to the an-
ferences between the a priori and the a posteriori emissionaual mean emissions. Meanwhile, the comparison against the
are generally larger than both the a posteriori error and thelanuary and July mean a priori emissions (44.7 TgNyr
variability (i.e., standard deviation) of the a posteriori emis- and the newer inventories (40.4 TgN) implies general
sions estimated during the analysis period. underestimations in the emission inventories. On the re-

The analysis increment structures obtained from the datajional scale, the 11.0 TgNyt estimated over East Asia
assimilation strongly depend on the assumption made on thé80-150 E, 10-50 N) for July 2007 from OMI observations
a priori emission. In CHASER, the 1995 and 2000 emission(Zhao and Wang2009 is comparable to our estimates of
inventories are extrapolated to the simulation years 2006-10.2 TgNyr. The 0.465 TgN estimated over the Eastern
2007. This procedure may give spurious results for certainUnited States (102—-64V, 22-50 N) from the OMI obser-
regions, as described iWliyazaki et al.(2012. However,  vations for March 2006Boersma et al 20083 is also com-
the bottom-up emissions obtained from the newer invento-parable to our estimate of 0.485 TgN.
ries (EDGAR version 4.2HKuropean Commissior2017),
GFED version 3.1, and GEIA) for the year 2007 show a sim-5.2.2 CO emissions
ilar difference with the a posteriori emissions. This indicates
common problems in the emission inventories (e.g. too litleBecause of the long chemical lifetime of CO in the tro-
emissions over Eastern China, the Eastern United States iposphere, the CO emission inversion requires an assimila-
January, Central Africa in January, Northern Africa in July, tion cycle with a long assimilation window (i.e. by using
and Southern Africa in January, and too much emissions ovethe 4D-Var assimilation technique (eldooghiemstra et al.
Europe in January, the Eastern United States in July, Sout2011) in order to obtain enough constraints from observa-
America in July). Note that the a posteriori emissions aretions. The CO emissions estimated from this study, based on
closer to the newer inventories than the a priori emissionsone-month calculation, may not have been sufficiently con-
in some cases (e.g. over the Eastern United States, Eastestrained by the observations. Further, the simultaneous data
China, Europe, and Southeast Asia). In particular, the a priassimilation corrects the CO concentrations from the MO-
ori emissions in Spain are unrealistically high, which are veryPITT data obtained at the 9 pressure levels and at the surface,
different from both the a posteriori emissions and the newemwhereas the emissions are optimized using the data only ob-
inventories. tained at 700 hPa (see Sect. 2.1.3). Consequently, the simul-

The simultaneous data assimilation system results irtaneous data assimilation system can start by adjusting con-
NOy emissions somewhat different from the emission inver-centrations, and then the emissions will adjust more slowly,
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depending on the averaging kernel profile and the DOFs. Thé&.2.3 Lightning NOy sources
estimated CO emissions are thus more strongly constrained
by the observations in the emission inversion run than in thel he data assimilation provides strong constraint on the mag-
full assimilation run. Therefore only the CO emissions esti- Nitude and the distribution of LNO The global LNQ
mated by the emission inversion system are presented, as damount is increased from 4.4 to 5.2 TgNyiin January and
picted in Fig. 14 and listed in the brackets in Tables 6 and 8.from 5.7 to 7.3 TgNyr? in July. The estimated emissions
CHASER shows a large underestimation in the simulatedare within the range of the annual global LNOx source of
CO fields in the northern extratropics, as commonly revealedd =3 TgNyr~ by Schumann and Huntries¢2007. The
by many CTMs Shindell et al, 2006. The underestimated large increase in July corresponds to the significant in-
CO fields might be mostly attributed to an underestimationcrease over the Eurasian continent, North America, South-
of the surface CO emissions along with an overestimatioreast Asia, the tropical South America, and Central Africa.
of OH. Correspondingly, the assimilation of MOPITT data The data assimilation also changed the vertical profile of
largely increases the surface CO emissions in the northerfne LNG, sources both in the tropical and extratropics. The
extratropics both in January-66 %) and July{25%). The  large changes in the three-dimensional distribution of LNO
large increase in the CO emissions are mainly attributed t@Pbtained from the data assimilation indicate that Erece
the increase over industrial areas, especially over Easterfnd Rind(1992 lightning parameterization used in the sim-
China in the both seasons with a factor of 2-3. The largeulation does not fully capture the observed distribution of
positive increment is consistent with the resultsApéllano  lightning activity, as also suggested #ylen and Picker-
et al.(2004, who showed that anthropogenic emissions overing (2002. In particular, the data assimilation generally in-
Asia are too low in EDGAR v3.2. The decreased emissionscreases LNQin the upper troposphere both in the tropics
over North Africa and the increased emission over Australia@nd the extratropics. This suggests that the C-shape verti-
and South Asia (especially in January) are also consisteral profile of lightning NQ assumed in the parameterization
with recent estimatesJénes et a].2009 Fortems-Cheiney ~Mmay place too much mass near the surface and too little in the
et al, 2011). The large increments obtained for Central and Mmiddle troposphere, as also suggestediyet al.(2010.
North Africa indicate a large uncertainty in biomass burning Especially, TES @ and OMI NG, data provided particu-
in the GFED2 inventory, as similarly suggestedtiypacz  larly strong constraints on LNOsources. However, a light-
et al.(2010. The larger emissions in winter than in summer ning signal in satellite observations of M@olumns is of-
in the US, Europe, and East Asia are also commonly revealetEn obscured by the high contributions from (anthropogenic)
from recent inversions, which could be due to a combinationboundary layer pollution and biomass burnitgg(tin et al,
of emissions from residential heating and vehicle cold starts2002 2007 Boersma et a).2009. Also the increase of the
(e.g.Kopacz et al.2010. The newer inventories show lower NO/NO; ratio with height in the troposphere reduces the rel-
emission values than the a priori emissions over Europegtive sensitivity to lightning produced NOThe lightning
whereas the data assimilation further increases the emissiorggnal is also almost comparable to the measurement uncer-
from the a priori emissions. In contrast, the a posteriori emis-tainty for tropospheric N@ Thus, further careful consider-
sions are significantly larger than both the a priori emissionations are required for LNOestimates, which will be dis-
and the newer inventories over Eastern China. Over Easterfussed in a separate study.
United States, the data assimilation decreases the emissions; o o
however, the newer inventories show even lower emissions?-3 Relative importance of the emissionand
These results imply different error characteristics in the dif- concentration optimization on the tropospheric G
ferent bottom-emission inventories. analysis
Our a posteriori January and July mean estimate for th
surface CO emission is 1393 Tgys; which is about 20 %
higher than the a priori emissions, mainly due to increase
emissions by up to 60% in the Northern Hemisphere in
January. This is within 10% of the results from previous
estimates of 1342-1502 TgCOVr (Arellano et al, 2004
Arellano and Hess2006, 1390 TgCOyr! (Hooghiem-
stra et al, 2011, 1391 TgCOyr! (Pison et al. 2009,
1393 TgCOyr! (Kopacz et al. 2010, 1440 TgCOyr?

As a result of the simultaneous optimization of the emis-
Gsions and the concentrations, the global tropospheyiou®
den, which is calculated for the region below the tropopause
height determined from the vertical temperature gradient
(—2 Kkm~1) in the model, is decreased by 2.5 % in January
and is increased by 5.6 % in July in the full assimilation run
(Table 9). The obvious increase in July, from 346.8 to 366.1
Tg O3, is almost equally attributed to the enhanced emissions
1 . of the precursors and the direct adjustment to the concentra-
(Jones et . 2009, 1504TgCOyr= (Fortems-Cheiney tion fields. The simultaneous optimization provides impor-

et al, 2011). The a posteriori emissions are also much larger o : .

i . . tant contributions to the tropospheric ozone budget analysis,
than the newer inventories (with the January and July mean . imizing its precursor emissions and reducing model
global emission of 892 TgCOYH). y op g 'sp g

errors while taking the chemical feedback into account.
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Fig. 15. The latitude-pressure distribution of the relative difference of zonal meami®ing ratio (in %) between the emission inversion
run and the control run (left) and the emission-fixed assimilation and the control run (right) averaged over 16—30 July 2007. The red (blue)
colour indicates relatively high (low) values in the inversion/assimilation run.

Figure 15 shows the relative importance of the emissionTable 9. The 1-day average (on the 19th of each month in 2007)
inversion and the direct concentration assimilation on theglobal tropospheric @burden (Tg@) obtained from the control
vertical Qs profiles. The emission inversion largely changes run, the emission inversion run, and the full data assimilation run.
the G; profiles in the PBL, especially below 900 hPa. This

demonstrates the importance of optimizing @recursors January  July

fields in correcting the near surface;.OThe obvious im- Control 3171 346.8
pact in the PBL, with a mean difference of up to 15 %, is Emission inversion 312.5 356.6
found in the tropics and at northern mid-latitudes in July, as- Full assimilation 309.4 366.1

sociated with changes in biomass burning and anthropogenic
emissions, respectively. The regional differences are more
pronounced over the northern mid-latitudes polluted regions,
central Africa, and south America in July, with a maximum 5.4 Uncertainties
difference of 30 % (figure not shown). Even in the free tropo-
sphere, the @analysis is significantly affected by the emis- The EnKF data assimilation provides information about the
sion changes through vertical transport of @nd its pre- uncertainty of the analysis. The ensemble spread, estimated
cursors. However, the direct concentration adjustment domas the standard deviation of the simulated concentrations
inates the changes in thes@rofiles in the free troposphere across the ensemble, is a measure of the analysis uncertainty
in the combined data assimilation. The simultaneous adjustfe.g.Arellano et al, 2007). The uncertainty in the a posteri-
ment of the emissions and the concentrations is thus a poweeri fields represented by the analysis spread is reduced if the
ful approach to optimize the whole tropospherig @ofiles. analysis converges to a true state. This spread is caused by er-
The sum of these two individual effects mostly explains rors in the model input data, chemical or physical parameters,
the difference between the full assimilation run and the con-parameterizations, the numerical scheme as well as errors in
trol run (figure not shown). The £changes in the trop- the measurements assimilat&bynard et al.2011).
ical troposphere are an exception to this rule in that the Figure 16 shows the distributions of the analysis spread
changes estimated from the sum of these two individual effor Oz, CO, and NQ. The analysis spread typically shows a
fects are slightly £15 %) larger than the changes estimated reduction of the analysis errors due to effective (high qual-
from the full assimilation run. This may indicate too large ity, high sensitivity, good coverage) observations and an in-
emission adjustments and resultan§ @roductions in the crease due to error growth as represented by the ensemble
emission inversion run. The spatial pattern of the changesnodel forecast and the covariance inflation. Near the sur-
in the Qs profiles obtained from emission inversion run and face, the analysis spread og@nd CO is generally smaller
the fixed-emission assimilation run is very different (figure in the tropics than in the extratropics, corresponding to the
not shown), confirming the independent adjustments realizedatitudinal dependence of TES;@nd MOPITT CO retrieval
from the emission and concentration optimizations. sensitivities, respectively. The vertical profile shows that the
analysis spread is effectively reduced in the middle tropo-
sphere, reflecting the maximum sensitivity of the retrievals at
these altitudes. Within the free troposphere, thea@alysis
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Fig. 16. Analysis ensemble spread og@eft), CO (centre), and N&®(right) averaged over 16—30 July 2007. Upper panels show the global
distribution at 700 hPa. Lower panels show the latitude-pressure distribution of the percentage ratio of the zonal mean analysis ensemble
spread to the zonal mean analysis ensemble mean concentration. The red (blue) colour indicates relatively high (low) values.

spread is relatively high in the tropical upper troposphere.the observations, and the spatial distribution of the averaged
The OSEs showed that the assimilation of MLS HNd&ta  increments shows where the model fields are frequently ad-
acts to increase the {analysis spread in the tropical up- justed by the data assimilation. The positive increments ob-
per troposphere during the forecast, through its influence ortained for G and CO in the extratropical lower troposphere
the NG, species fields during the analysis and because ofmply that CHASER tends to underestimate those concen-
its large observation errors. In the extratropical upper tropo-rations in these regions compared to the assimilated data.
sphere and around the subtropical jet streams, the downwarBositive increments of Pare frequently observed over the
propagation of the well constraineds@ue to the assimila- northern Eurasian continent, around North America, and over
tion of MLS Oz data helps to reduce the analysis spread. Theahe Southern Ocean. The OSEs confirms that the positive O
CO analysis spread is maximum at the northern mid-latitudesnalysis increments in the lower and middle troposphere are
near the surface, related to large uncertainties in the anadue to the TES @data, while the upper tropospheric nega-
lyzed CO emissions. The analysis spread of,N€©closely  tive increments are due to both the TES and ML$data.
related to the emissions near the surface, while it also ha3his implies that the model bias strongly varies with height,
strong latitude-vertical dependence. The analysis spread ibecause of different contributions of transport and chemical
generally maximum in the upper troposphere, which is a reprocesses. The data assimilation also tends to increase CO
sult of the low concentrations which are not well constrainedover East China and North America near the surface, as sim-
by the OMI data. The large analysis spread in the southerilarly shown byElguindi et al.(2010, whereas it decreases
extratropics is related to large relative observation errors ofCO in the tropics. The negative N@hcrements in the tropi-
OMI NO; data related to the low concentrations. These largecal and high-latitudes troposphere are associated with the as-
analysis spreads indicate requirements for further constraintsimilation of very small or negative OMI N{Xoncentrations
from additional observations or higher quality data. mainly over the oceans. The large positive Nifcrements
The assimilation system can also be used to diagnosebtained for the extratropical UTLS reflects the fact that the
model and/or observation errors. We use the difference beassimilation of MLS Q@ and HNQ; data tends to compensate
tween analysis and forecast, the so-called analysis increfor the model underestimation through the inter-species cor-
ment, to represent short-term systematic errors in the modeielation. The knowledge of the model error structure is use-
(Fig. 17). By assuming that the assimilated fields approxi-ful to identify sources of the model errdgeer et al(2006
mate the assimilated data after several assimilation cyclesshowed that the enhanced skill of the best performing analy-
the averaged analysis increment primarily relates to the persis can usually be attributed to better modeling.
sistent model bias. The increment thus represents the adjust-
ment made in the analysis step to bring the model closer to
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6 Conclusions observation error, indicating that the data assimilation is suc-
cessfully performed. Significant reductions of both bias (by

An advanced data assimilation system for troposphericS® 70) @nd RMSE (by 50 %) against independent data sets for

chemical compositions, the CHASER-DAS, is developedvarious chemical fields show that multi-species data assimi-
based on the CHASER’modeI and the LETK’F scheme. Théation is a very effective way of combining observation infor-

data assimilation system is applied to integrate observafmation and compensating for systematic model errors. The

tion information obtained from multiple satellite measure- |mprqvements include e_nhanced troposphericzl‘éﬁlumr_ls
ments, namely, N@ data from OMI, Q data from TES, over industrial areas (with a .global mean b|a§_ reduct'lon of
CO data from MOPITT, and ©and HNG; data from MLS. 40-85 %), especially over China, reduced positigeh@as in

The data assimilation provides multiple constraints on tro-the middie and upper troposphere (by 60 %), reduced nega-

pospheric composition and allows us to simultaneously opti-iVé CO bias in the Northemn Hemisphere in the lower tro-

mize the atmospheric distributions of various chemical com-PoSPhere (by 40-90 %), especially over East Asia and North
positions together with the emissions of frecursors (NQ ~ AMerica, and areduced negative Hjlas in the extratrop-

and CO) while taking their chemical feedbacks in the cO-ic@l UTLS (by 70-85%). Comparisons against ozonesonde
OH-NO,-O3 system into account. In the simultaneous data@nd aircraft data confirmed improvements in the vertical pro-

assimilation system, improved atmospheric concentrations of €S Of Gz and its precursors in the free troposphere and the

chemically-related species have the potential to improve thé TLS through thehdegtg aSS|m|IE1t|on._d1c'jr|19 data aShS|m|Iat|ohn
emission inversion, while the improved emissions estimated€MOVves most of the bias from the middle troposphere to the

will benefit the atmospheric concentration analysis through!OW/er stratosphere against ozonesonde data, from 30-40 % to
a reduction in the model forecast error. A covariance local-Within 10%. The results confirm that the assimilated satellite

ization technique is applied to neglect the covariance among!ata have highly valuable information about the tropospheric
non-related or weakly-related variables which may Suﬁerchemmal processes, although further improvements are re-

significantly from errors in the ensemble sampling and theduired for the lower tropospheric processes. .
forecast model. OSEs have been conducted to quantify the relative impor-

The improvement obtained by the assimilation demon-tance of each data set on constraining the emissions and con-

strates that multi-species data assimilation provides Valu_centrations. The assimilation of each individual dataset has

able information on various chemical fields. The OmF anal-2 Strong influence on both assimilated and non-assimilated
ysis confirmed significant error reductions for both bias andspecies through the use of inter-species error correlations and

RMSE from the data assimilation. The standard deviationthrough the chemical model. For instance, the assimilation of
around the mean of the OmF is generally comparable to th&PPEr tropospheric £and HNG obtained from MLS was
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useful to reduce the bias in the troposphericoN®@lumns. multaneous adjustment of the emissions and concentrations
Comparisons against independent ozonesonde data showéat the tropospheric ozone budget and profile analyses.

that both MLS and TES @data largely improve the £pro-

files in the free troposphere and the UTLS. Note that all the

assimilated data contribute to the global meanlkias re- 7 Discussions: future challenges

duction compared to ozonesonde data in the middle tropo-

sphere (between 750 and 450 hPa) in July, through their inThe CHASER-DAS provides valuable information for the
fluences on various chemical states that affecv@iations.  future development of both models and observations. The en-
Especially this last result demonstrates the strength of thesemble spread can be a measure of the analysis uncertainty.
simultaneous assimilation of multiple datasets for differentThe observed large analysis spreads fgradd NG in the
species. These inter-species influences can be tightly assodiopical upper troposphere and near the surface indicate a
ated with the changes in OH. The simultaneous assimilatiomequirement for further constraints from additional observa-
increased tropospheric OH concentrations in July by 5-15 %ions or high quality data to improve the analysis. The analy-
in the tropics and the Southern Hemisphere mainly due to thesis increment obtained during the data assimilation cycle pri-
assimilation of OMI NG and TES @ data, respectively. The marily relates to persistent model biases. The positive analy-
large improvement in July may be related to summertime acsis increments obtained fors@nd CO imply that CHASER

tive chemical processes in the Northern Hemisphere. tends to underestimate (overestimate) (@O) concentra-

In comparison to the a priori emissions based on bottom-ions in lower/middle troposphere and tends to overestimate
up inventories (EDGAR3.2+GFED2.1+REAS1.1), the opti- (underestimate) them in the upper troposphere. This informa-
mized emissions of both NOand CO are generally higher tion is useful to identify sources of the model error and im-
over most industrial areas, especially in the northern mid-prove the performance of both model and data assimilation.
latitudes, implying that the emission inventories underesti-The large analysis spreads and increments near the surface
mate sources. The N@missions estimated from the simul- also indicate a requirement for better emission data sets.
taneous data assimilation are different from those from the The simultaneous assimilation of multiple satellite
emission inversion system in which only the emissions aredatasets is an important development for improving chemi-
optimized from observations. The results indicate a large uncal weather forecasting (el§aminski et al, 2008 and better
certainty in the a posteriori NCemissions due to model er- understanding the processes controlling the atmospheric en-
rors when estimating from NfOdata only, with an uncer- vironment. However, further developments are still required.
tainty of up to 40 % over industrial areas and up to 30 % overFirst, more observation data are required to constraiar@
biomass burning areas, as measured by the impact of the coits precursors, especially near the surface. Retrieval sensitiv-
centration assimilation on the a posteriori emissions. The siity to the lowermost troposphere is critical for the emission
multaneous assimilation of multiple chemical observationsinversion and the near surface air quality analysis. For in-
is very useful to represent the chemical processes in a realistance, adding the near infrared (NIR) channel to the MO-
tic way by removing model errors, and it provides important PITT retrieval increases the near surface sensitiitggter
effects upon the emission inversion. The CO emissions estiet al, 2010, which may help to improve the analysis, while
mated in this study may not have enough constraint from obthe IASI retrievals may contain information on the spatial
servations, because the calculation period is too short and thextent of plumes@oheur et a].2009. Also, the emissions
observational information is insufficient. Nevertheless, com-of Oz precursors other than NCand CO, such as VOCs,
parison of our results to previous inverse modeling studieshave a pronounced influence on tropospheric chemistry. Fur-
(e.g.Kopacz et al. 2010 is very encouraging. The uncer- ther constraints are required for these fields; in particular,
tainties in the a priori emissions, based on an extrapolatiorsatellite CHO data may provide a significant constraints on
of year 1995 and 2000 inventories, caused large increment¥OCs emissions. Apart from the lower tropospheric obser-
especially over anthropogenic source areas. The data assimations, high quality satellite observations in the UTLS are
ilation also increases the lightning N@ources over land, needed for @ and HNG;, potentially augmented with CO
especially in boreal summer, indicating that the lightning pa-and PAN as well as short-lived gases such as NEBA,
rameterization used in the simulation has a large uncertainty2012. Second, the model resolution is too coarse to describe

As a result of the simultaneous optimization, the tropo- accurately small scale processes. A chemical data assimila-
spheric Q burden is increased by 5.6 % in July, with almost tion requires observations with sufficient spatial and tempo-
equal contributions from the emission optimization and theral resolution to capture the heterogeneous distribution of tro-
direct adjustment to the concentration fields. The emissiorpospheric composition. In order to better take into account
optimization dominated the changes in the@ofiles in the  the small scale information available in the dataset, it is im-
PBL in the tropics and at northern mid-latitudes, whereas theportant to increase the model resolution close to the data set’s
direct concentration adjustment was much more important irresolution, as suggested Rajot et al.(2011) and demon-
the free troposphere. This reveals the importance of the sistrated using regional data assimilation systems téagea

et al, 20049). In addition, the combined use of satellite and
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surface in-situ data may provide strong constraints on thawvere obtained from the reference simulation during 28 Octo-
near surface analysis at high resolution. Third, introductionber to 4 November 2007.
of a reasonable bias correction scheme is important to im- Because of the biased emissions (constructed based on the
prove the analysis, especially when multiple data sets are siannual mean a priori emissions), the model simulation with-
multaneously assimilated (e Dee 2009. out data assimilation has large errors in the simulatgd O
fields in the lower troposphere. The meanRMSE normal-
ized by the background concentration averaged oveSt0
5C° N latitudinal bands at 950 hPa is 23.7 % for the model

Appendix A simulation, which is almost the same as the initial error of
25.0%. The assimilation of §Xata reduces itto 16.5%. The
System ability check based on synthetic observations assimilation of NQ data helped to improve thes@nalysis

by reducing the errors included in the; Gimulation due to
It is of great interest to test the ability of the data assimila- biased NQ emissions; the normalizedsGRMSE is 14.2%
tion system to improve the £analysis in the presence of an with a regional mean NQemission bias (RMSE) reduction
emission error. We conducted an idealized data assimilatiof 41 (30) %. The assimilation of boths@nd NG data pro-
experiment, the so-called twin experiment (€3hil et al, vided the best performance analysis, with a normalizegd O
1991), by perturbing both the initial condition and the NO RMSE of 11.7 %, which is almost equivalent to the assumed
emission. The purpose of this experiment is to demonstrat®bservation error (i.e. 10%). In contrast, in the free tropo-
that the data assimilation is properly implemented and quansphere (e.g. at 500 hPa), assimilation af data provided a
tify how the emission optimization influences thg @nal-  much more significant improvement of the @nalysis than
ysis, as similarly performed bgonstantinescu et 2007 that provided by the N@data. These results confirm that
andMessina et al(2017). Under the assumption of the per- the simultaneous optimization fors&oncentration and its
fect model scenario (i.e. a forecast model provides a perfecprecursors emissions is a powerful framework for the tropo-
representation of the atmosphere), the actual background espheric chemistry analysis.
ror (P° without model error®Q) and observation erroR)
statistics can be determined precisely, so that the perfect
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