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Abstract. We have developed an advanced chemical data
assimilation system to combine observations of chemical
compounds from multiple satellites. NO2, O3, CO, and
HNO3 measurements from the Ozone Monitoring Instru-
ment (OMI), Tropospheric Emission Spectrometer (TES),
Measurement of Pollution in the Troposphere (MOPITT),
and Microwave Limb Sounder (MLS) satellite instruments
are assimilated into the global chemical transport model
CHASER for the years 2006–2007. The CHASER data as-
similation system (CHASER-DAS), based on the local en-
semble transform Kalman filter technique, simultaneously
optimizes the chemical species, as well as the emissions of
O3 precursors, while taking their chemical feedbacks into ac-
count. With the available datasets, an improved description of
the chemical feedbacks can be obtained, especially related to
the NOx-CO-OH-O3 set of chemical reactions. Comparisons
against independent satellite, aircraft, and ozonesonde data
show that the data assimilation results in substantial improve-
ments for various chemical compounds. These improvements
include a reduced negative tropospheric NO2 column bias
(by 40–85 %), a reduced negative CO bias in the Northern
Hemisphere (by 40–90 %), and a reduced positive O3 bias in
the middle and upper troposphere (from 30–40 % to within
10 %). These changes are related to increased tropospheric
OH concentrations by 5–15 % in the tropics and the Southern
Hemisphere in July. Observing System Experiments (OSEs)
have been conducted to quantify the relative importance of
each data set on constraining the emissions and concentra-
tions. The OSEs confirm that the assimilation of individual
data sets results in a strong influence on both assimilated and

non-assimilated species through the inter-species error cor-
relation and the chemical coupling described by the model.
The simultaneous adjustment of the emissions and concen-
trations is a powerful approach to correcting the tropospheric
ozone budget and profile analyses.

1 Introduction

Tropospheric ozone (O3) is an important chemical species
for air quality and climate (IPCC, 2007). It is an atmospheric
pollutant in the lower troposphere and an effective green-
house gas in the upper troposphere. Surface emissions of car-
bon monoxide (CO) and nitrogen oxides (NOx) play an im-
portant role in determining tropospheric O3 abundances. CO
is an important precursor of tropospheric O3 under high NOx
conditions. The concentration of CO is strongly related to the
oxidising capacity of the atmosphere since it reacts primarily
with OH (e.g.Logan et al., 1981; Daniel and Solomon, 1998;
Thompson, 1992). In the middle and upper troposphere, O3
can be generated efficiently through lightning NOx sources
(e.g.Pickering et al., 1998; Jenkins and Ryu, 2004; Martin
et al., 2007). The abundance of tropospheric CO and NO2
influences the atmospheric lifetime of the important green-
house gases, methane (CH4), O3 (Shindell et al., 2009), and
also CO2 (Folberth et al., 2005).

NOx and CO have both anthropogenic and natural sources.
Anthropogenic sources include fossil fuel and biofuel com-
bustion. Natural sources include biomass burning, soil, and
also lightning emissions for NOx. CO is produced from
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the oxidation of hydrocarbons by the incomplete combus-
tion of fossil fuels and biofuels, and during biomass burn-
ing events (Holloway et al., 2000). Knowledge about varia-
tions in surface emissions is important, but currently avail-
able bottom-up emissions inventories have large uncertain-
ties (e.g.,Jaegĺe et al., 2005; Zhao et al., 2011). These inven-
tories use statistical data, which generally have coarse reso-
lution and large uncertainties. The extent of emission-related
activities and emission factors are sources of error. For in-
stance,Zhao et al.(2011) estimated the uncertainties of a
bottom-up inventory of Chinese anthropogenic NOx emis-
sions to be−13 %∼37 %. In addition, temporal (e.g. diur-
nal, weekly, seasonal, inter-annual) variations in emissions
are generally poorly represented in the inventories. For in-
stance, rapid economic growth in industrialized Asia has led
to a rapid increase in the concentrations of O3 precursors,
such as NO2, CO (Richter et al., 2005; Stavrakou and M̈uller,
2006; van der A et al., 2008), and Volatile Organic Com-
pounds (VOCs) (Fu et al., 2007), but these may not be cap-
tured well by most of the inventories (Lamsal et al., 2011).

In the past decade, top-down inverse modelling ap-
proaches have been proposed to estimate emission varia-
tions in CO (e.g.Kasibhatla et al., 2002; Arellano et al.,
2004; Stavrakou and M̈uller, 2006; Kopacz et al., 2009;
Hooghiemstra et al., 2011) and in NOx (e.g. Martin et al.,
2003; Boersma et al., 2008b; Zhao and Wang, 2009; Lamsal
et al., 2010; Miyazaki et al., 2012). The inversion adjusts the
emissions in order to minimize the discrepancy between the
model predictions and observations, while taking the obser-
vation errors into account. The estimated regional emissions
show large discrepancies among different estimates, reflect-
ing differences in inversion frameworks, atmospheric models
(e.g.Arellano and Hess, 2006), and datasets (e.g.Miyazaki
et al., 2012) employed in the analyses. Since the relation-
ship between surface emissions and atmospheric abundances
is assumed to be predicted well by the model in the inver-
sions, it is important to represent the chemical processes
in a realistic way when estimating the emissions. The CO-
OH-NOx-non-methane VOC (NMVOC) chemical interac-
tions may have large impacts on the inversion of NOx and
CO emissions (Müller and Stavrakou, 2005). For instance,
neglecting the chemical feedback of changes in surface emis-
sions on the abundance of OH could introduce biases in the
a posteriori estimates of the CO sources (Jones et al., 2009).

Data from satellite sensors can provide strong constraints
on tropospheric composition in inversions. Tropospheric
NO2 column concentrations have been retrieved by Ozone
Monitoring Instrument (OMI) (Levelt et al., 2006), Scan-
ning Imaging Absorption Spectrometer for Atmospheric Car-
tography (SCIAMACHY) (Bovensmann et al., 1999), and
Global Ozone Monitoring Experiment (GOME) and GOME-
2 Callies et al.(2000). Tropospheric CO has been retrieved
from Tropospheric Emission Spectrometer (TES) (Lopez
et al., 2008), Infrared Atmospheric Sounding Interferome-
ter (IASI) (Turquety et al., 2004), Measurement of Pollution

in the Troposphere (MOPITT) (Deeter et al., 2003; Edwards
et al., 2006), and SCIAMACHY (Gloudemans et al., 2009).
In recent years, tropospheric O3 retrievals in the thermal in-
frared (TIR) have been made from TES (Beer, 2006; Parring-
ton et al., 2008), the Atmospheric Infrared Sounder (AIRS),
and IASI (Coman et al., 2012). Limb-viewing satellite instru-
ments, like the Microwave Limb Sounder (MLS), are capable
of providing valuable information on the upper troposphere
and the lower stratosphere (UTLS) (Waters et al., 2006). Be-
cause of the differences between the instruments in terms of
sensitivity, retrieval techniques, and observing schedules, the
combined use of different satellite instruments is challenging
(e.g.Kopacz et al., 2010).

Data assimilation is a technique to combine different ob-
servational data sets with a model (e.g.,Kalnay, 2003). Data
assimilation systems for tropospheric chemistry have been
developed in the past decade for mapping the global distri-
bution of chemical species, including O3 and its precursors.
In the past decade, advanced techniques involving the vari-
ational approach (Elbern and Schmidt, 2001; Errera et al.,
2008; Flemming et al., 2009; Elguindi et al., 2010) and
Kalman filters (Khattatov et al., 2000; Eskes and Boersma,
2003; Grassi et al., 2004; Hanea et al., 2004; Segers et al.,
2005; Parrington et al., 2008) have been applied to at-
mospheric chemistry. Recently, the ensemble Kalman filter
(EnKF) technique has been applied for tropospheric chemi-
cal data assimilation (van Loon et al., 2000; Arellano et al.,
2007; Constantinescu et al., 2007; Coman et al., 2012). The
EnKF uses an ensemble forecast to estimate the background
error covariance matrix. The advantage of the EnKF is its
easy implementation for complicated systems; i.e. it does not
require the development of an adjoint code.

The use of data assimilation for atmospheric chemistry,
especially for short-lived chemical species, is still challeng-
ing, as discussed byLahoz et al.(2007) andSandu and Chai
(2011). Short-lived species concentrations vary on timescales
from less than a minute to one day, and detailed treatment of
various chemical processes is required to simulate the vari-
ability. A large part of the atmospheric chemical system is
not sensitive to the initial conditions because of the chemical
equilibrium, which is different from the chaotic system in-
volved in the numerical weather prediction (Constantinescu
et al., 2007; Lahoz et al., 2007), but is sensitive to the model
parameters (e.g. emission, chemical reaction rate, and depo-
sition velocity) and processes (e.g. chemical reaction equa-
tion, wet and dry deposition, and atmospheric transport). Al-
though the errors in simulated tropospheric composition are
caused by many factors, they are largely affected by highly
uncertain emissions (e.g.Mallet and Sportisse, 2005). Thus,
the simultaneous adjustment of emissions and concentrations
is a powerful framework in tropospheric chemical data as-
similation. However, most recent satellite data assimilation
systems optimize either the concentration of a very limited
number of chemical species (e.g.Mallet and Sportisse, 2005;
Parrington et al., 2008; Flemming et al., 2009; Elguindi et al.,
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Table 1.List of satellite observations used for the data assimilation.

Sensor Platform Species Resolution Version Reference

OMI AURA NO2 13× 25 km DOMINO ver. 2 Boersma et al.(2011)
TES AURA O3 5.3× 8.3 km Nadir ver. 4 Beer(2006)
MOPITT TERRA CO 22× 22 km TIR ver. 5 Deeter et al.(2010)
MLS AURA O3, HNO3 ver. 3.3 Livesey et al.(2011)

Table 2.List of observations used for the validation.

Sensor Platform Species Resolution Version Reference

GOME-2 MetOp NO2 80× 40 km TEMIS ver. 2 Boersma et al.(2004, 2011)
SCIAMACHY Envisat NO2 60× 30 km TEMIS ver. 2 Boersma et al.(2004, 2011)
TES AURA CO 5.3× 8.3 km Nadir ver. 4 Parrington et al.(2008)
MLS/OMI AURA O3 1◦

× 1.25◦ NASA/GSFC Ziemke et al.(2006)
Ozonesonde Sonde O3 WOUDC/SHADOZ
INTEX-B Aircraft (DC-8) Several Singh et al.(2009)

2010) or emissions (e.g.Müller and Stavrakou, 2005; Kopacz
et al., 2010; Hooghiemstra et al., 2011). Only a few advanced
studies (Hanea et al., 2004; Elbern et al., 2007) have demon-
strated that the simultaneous optimization of multiple chem-
ical states including emissions is an effective way to improve
air quality near the surface using surface in-situ observations.

In this study, an advanced EnKF data assimilation system
is presented to simultaneously optimize the chemical concen-
trations and emissions in the troposphere. Satellite observa-
tions of O3, CO, NO2, and HNO3 obtained from TES, MO-
PITT, OMI, and MLS are assimilated into the global chem-
ical transport model (CTM) “Chemical AGCM for study of
atmospheric environment and radiative forcing” (CHASER).
TES has the potential to efficiently constrain tropospheric O3
profiles (Foret et al., 2009). MOPPIT is suitable for global
CO emission estimates because of its good global cover-
age. MLS is expected to provide important constraints on
the background concentrations of O3, HNO3, and other O3
precursors in the UTLS together with lightning NOx sources.
The high temporal and spatial resolutions of the OMI are use-
ful to optimize NOx emissions on a daily basis. The assimila-
tion results are validated against independent data, obtained
from five satellite instruments, MLS/OMI (tropospheric O3
column, TOC), TES (CO), and GOME-2 and SCIAMACHY
(tropospheric NO2 column). Global ozonesonde data and air-
craft observations obtained during the INTEX-B campaign
(Singh et al., 2009) are also used for the validation of the ver-
tical profiles. To the authors best knowledge, this is the first
advanced data assimilation system that simultaneously op-
timizes the concentrations and emissions of multiple tropo-
spheric trace gases, based on multiple satellite sensor/species
data sets. The structure of this paper is as follows. Section 2
describes the data. Section 3 introduces the data assimilation
system. Section 4 presents Observing System Experiment
(OSE) results to identify the relative contribution of each as-

similated data set. Section 5 presents the data assimilation
results including the estimated emissions, the validation, and
the properties of the assimilated fields. Section 6 concludes
this study. Section 7 discusses future challenges.

2 Observations

This section introduces the observations used for the data as-
similation (Sect. 2.1 and Table 1) and validation (Sect. 2.2
and Table 2). The data assimilation requires a non-linear ob-
servation operator,H , for each satellite retrieval. The model
fields, x, are first interpolated to the horizontal location of
each observation and the height of each of the vertical layers
using the spatial interpolation operator,S. Then the averag-
ing kernel,A, and the a priori profile,xa, of each observa-
tion are applied to obtain the model fields in the observation
space,yb,

yb
= H(x) = xa+ A(S(x) − xa). (1)

The averaging kernel matrix is used to define the sensitivity
of the estimated state to changes to the true state, while the
trace of the averaging kernel matrix gives a measure of the
number of independent pieces of information, i.e. the Degree
of Freedom for Signals (DOFs) (Rodgers, 2000). In this ap-
proach, the satellite-model difference (yo

−yb) is not, or only
weakly, biased by the a priori profilexa (Eskes and Boersma,
2003; Rodgers and Connor, 2003),

yo
− yb

= A (xtrue− S(x)) + ε, (2)

where the observational errorε is the sum of the measure-
ment error and the representativeness error (both random and
systematic), andxtrue represents the true atmosphere profile.
The same observation operator has been also applied for vali-
dating the model profile against retrievals in order to remove
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the influence of the smoothing error and the retrieval error
arising from the a priori profile. For plotting the global dis-
tribution, both the retrieved and simulated concentrations are
mapped onto a same resolution of 2.5× 2.5◦ (1.25× 1◦ for
MLS/OMI TOC only).

2.1 Measurements used in the assimilation

2.1.1 OMI tropospheric NO2 column

The Dutch-Finnish OMI instrument, which was launched
aboard the Aura satellite in July 2004, is a nadir-viewing
imaging spectrograph (Levelt et al., 2006). Aura traces
a sun-synchronous, polar orbit with a period of 100 min.
OMI provides measurements of both direct and atmosphere-
backscattered sunlight in the ultraviolet visible range from
270 to 500 nm. OMI pixels are 13× 24 km at nadir, in-
creasing in size to 24× 135 km for the largest viewing an-
gles. OMI tropospheric NO2 column retrievals, with their
daily global coverage, are effective to constrain global NOx
emissions on a daily basis, unlike GOME-2 and SCIA-
MACHY retrievals which have poorer spatial and tempo-
ral resolutions and less global coverage (Richter and Bur-
rows, 2002; Boersma et al., 2008b). The overpass time of
OMI (about 13:40 LT) is more suitable for the estimation
of lightning NOx sources than that of GOME-2 and SCIA-
MACHY (both in the morning). The Dutch OMI tropo-
spheric NO2 data product DOMINO version 2 (Boersma
et al., 2011) is used in this study. The error in OMI
NO2 retrievals for individual pixels can be approximated as
1.0× 1015 moleccm−2

+ 25 % (Boersma et al., 2011). De-
tails of the retrieval and error estimates are described by
Boersma et al.(2004, 2007, 2011). Only observations with
a radiance reflectance from clouds of less than 50 % (i.e.
cloud fraction less than about 20 %) and surface albedo of
less than 0.3 with quality flag= 0 (meaningful tropospheric
retrievals) are used, as recommended by the product specifi-
cation document (Boersma et al., 2011).

The averaging kernel is used to create modeled tropo-
spheric NO2 columns from the observation operator, which
removes the contribution of the retrieval error due to the
a priori profile assumed (Eskes and Boersma, 2003), as de-
scribed by Miyazaki et al. (2012). The spatial resolution of
the OMI data is much finer than that of the model used in this
study ( 2.8◦, about 300 km in the equator). Thus, there are
large representativeness errors in the model because of un-
resolved small-scale variations. To fill the spatial scale gaps
and to obtain more representative data, a super-observation
approach has been developed and applied to the OMI data, as
described byMiyazaki et al.(2012). The super-observation
error covariance matrix includes contributions from the mea-
surement error and the representation error.

2.1.2 TES O3 profile

TES onboard the Aura satellite was designed to measure the
global, vertical distribution of tropospheric O3 and its precur-
sors (Beer, 2006; Bowman et al., 2009). TES is an infrared
Fourier transform spectrometer (FTS) with high spectral res-
olution (0.1 cm−1) and a wide spectral range from 650 ton
3250 cm−1. The version 4 level 2 nadir data obtained from
the global survey mode are used in this study. This product
consists of 16 daily orbits of nadir-viewing measurements
with a spatial resolution of 5× 8 km spaced 1.6◦ apart along
the orbit track every other day. The TES algorithm is de-
scribed byBowman et al.(2002), Worden et al.(2004), and
Bowman et al.(2006). The vertical resolution of TES O3
profile retrievals is typically 6 km in the tropics and in the
summer hemisphere for cloud free conditions (Worden et al.,
2004). The peaks of the TES O3 averaging kernel matrix are
generally in the middle troposphere, while its sensitivity is
reduced greatly in the lower troposphere. On average, there
are less than 2 DOFs for the tropospheric profile in the trop-
ics (Jourdain et al., 2007).

The observation operator is applied to account for the ver-
tical smoothing of the retrievals as reflected by the averaging
kernel and for the TES a priori profile. This removes the in-
fluence of the a priori profile in the data assimilation, as per-
formed byJones et al.(2003). The observation error includes
the smoothing error, the systematic error, and the measure-
ment error. Vertical correlations due to the smoothing influ-
ence of the TES retrievals are accounted for in the forecast
error covariance matrix through the influence of the averag-
ing kernel. The TES data used in the data assimilation are
filtered following the TES L2 Data Users Guide (Osterman
et al., 2009). The C-Curve flag and the emission layer quality
flag were used to exclude low-quality data. We excluded data
poleward of 70◦, where satellite sensitivities are low because
of the low brightness temperature. TES O3 profiles are posi-
tively biased by less than 15 % from the surface to the upper
troposphere (to 100 hPa) and negatively biased by less than
20 % from the upper troposphere to the lower stratosphere
(100 to 30 hPa) compared to ozonesonde data (Worden et al.,
2007; Nassar et al., 2008; Boxe et al., 2010). We will in-
vestigate the effect of the bias in TES O3 data on the data
assimilation in Sect. 5.1.3.

2.1.3 MOPITT CO profile

The MOPITT instrument was launched onboard EOS Terra
in December 1999. MOPITT measures thermal emission in
the 4.7 µm and 2.2–2.4 µm absorption band. The equator
crossing time is 10:30 LT/22:30 LT with global coverage ev-
ery 3 days. The data employed are the version 5 level 2 TIR
data (Deeter, 2011). The MOPITT instrument is mainly sen-
sitive to free tropospheric CO, especially in the middle tro-
posphere, but it also provides boundary layer information
(Deeter et al., 2003, 2007, 2010). DOF is typically much
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larger than 0.5, indicating that most of the information comes
from the measurement as opposed to the a priori (Kopacz
et al., 2010). Maximum zonal mean DOF values of approxi-
mately 1.5 occur in daytime overpasses over land in the trop-
ics.

The retrieved error represents the cumulative error from
the smoothing error, model parameter error, forward model
error, geophysical noise, and instrument error. These are ac-
counted for in the observation error covariance. We exclude
MOPITT data in polar regions (>65◦ latitude), where the
quality deteriorates because of potential problems related to
cloud detection and icy surfaces. Also, the retrievals in these
regions have low information content related to poor ther-
mal contrast conditions. Daytime conditions typically pro-
vide better thermal contrast conditions for TIR-based re-
trievals than nighttime conditions over land, whereas night-
time observations have not been validated and appear subject
to larger bias (Heald et al., 2004). We thus exclude the night-
time MOPITT data using a filter based on solar zenith angle.
The super-observation approach is applied to the MOPITT
data in the same manner as for the OMI data. The repre-
sentativeness error for the MOPITT super-observations de-
rived from the variability of the observed concentrations in
a super-observation grid-cell is typically much smaller (less
than 5 %) than that for OMI tropospheric NO2 columns. Val-
idation results based on in situ profiles exhibit a bias of less
than 1 % at the surface, 700 hPa, and 100 hPa, and nearly
−6 % at 400 hPa for version 4 data (Deeter et al., 2010).
No bias correction is applied to MOPITT data in this study,
which may lead to slight bias in the estimated CO emissions.
The MOPITT data on the 9 pressure levels (900, 800, 700,
600, 500, 400, 300, 200, and 100 hPa) and at the surface are
used in the data assimilation, while the data only at 700 hPa
is used for the CO emission optimization.

2.1.4 MLS O3 and HNO3 profile

The MLS instrument was launched in August 2004 onboard
the Aura satellite. Vertical profiles of several atmospheric pa-
rameters are retrieved from the millimeter and sub-millimeter
thermal emissions measured in the atmospheric limb (Waters
et al., 2006). The vertical resolution for the standard O3 prod-
uct is up to 2.5 km in the uppermost troposphere and strato-
sphere. We use the version 3.3 level 2 MLS O3 and HNO3
products. A detailed validation and comparison with other
data sets is available inLivesey et al.(2011).

We used data with good quality flags, with quality fields
greater than 0.6 (1.0), odd status fields, and convergence
fields less than 1.18 (1.6) for O3 (HNO3), following the rec-
ommendations inLivesey et al.(2011). In the UTLS, the
MLS version 3.3 retrieval provides data at 6 levels, 316, 261,
215, 150, 100, and 68 hPa. Since further evaluations are still
required for data for pressures higher than 261 hPa, we use
only data for pressures lower than 215 hPa. For HNO3, data
for pressures less than 150 hPa are used because of large

systematic uncertainties at 215 hPa (±30 %). Detailed in-
structions for screening tropical-cloud-induced outliers in the
HNO3 and O3 products given in the version 3.3 data qual-
ity document (Livesey et al., 2011) were applied before data
assimilation. Because the instrument’s vertical resolution is
reasonably comparable to the model grid, the averaging ker-
nel is neglected. The measurement error is used as the diago-
nal element of the observation error covariance matrix, while
the vertical correlation is neglected.

2.2 Measurements used for validation

2.2.1 SCIAMACHY tropospheric NO2 column

SCIAMACHY, which was launched in March 2002 on
board ENVISAT (Bovensmann et al., 1999), is a passive
remote sensing spectrometer observing backscattered, re-
flected, transmitted and emitted radiation from the atmo-
sphere and the Earths surface, in the wavelength range be-
tween 240 nm and 2380 nm and with a spectral resolution
of 0.25 nm in the UV and 0.4 nm in the visible. We use the
version 2 tropospheric NO2 data from the KNMI retrieval
algorithm (Boersma et al., 2004, 2011). The ground pixel
of the nadir mode is generally 60× 30 km, but depends on
the solar zenith angle, with global coverage approximately
once every six days. The local overpass time is 10:00 LT.
The approach adopted to calculate the AMF is the same as
that for DOMINO version 2 data. Errors in the slant column
fitting, the stratospheric corrections, and in the AMFs lead to
an overall error in the SCIAMACHY retrieval, as described
in Boersma et al.(2004). The error for individual pixels can
be approximated as 0.7× 1015 moleccm−2 + 25 % (Boersma
et al., 2011). Cloud radiance fraction of less than 50 % with
quality flag= 0 is used for the comparison.

2.2.2 GOME-2 tropospheric NO2 column

GOME-2, which is an improved version of the GOME in-
strument, is a nadir UV-visible spectrometer (Callies et al.,
2000). GOME-2 covers the spectral range between 240 nm
and 790 nm and has a spectral resolution between 0.25 nm
and 0.5 nm. The ground pixel size of GOME-2 tropospheric
NO2 retrievals is 80× 40 km, with a global coverage within
1.5 day. The equatorial overpass time is at 09:30 LT in the
descending node. This study employs the version 2 tro-
pospheric NO2 data from the KNMI retrieval algorithm
(Boersma et al., 2004, 2011). The error for individual pix-
els can be approximated as 0.7× 1015 moleccm−2 + 25 %
(Boersma et al., 2011). Only observations with a radiance re-
flectance of less than 50 % from clouds with quality flag= 0
were used.

2.2.3 TES CO

Version 4 CO profiles retrieved from TES measurements are
used for the validation. The TES CO retrievals are sensitive
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primarily to CO in the troposphere, with a DOF between 1
and 1.5 for the tropospheric profile. The maximum sensitivity
appears in the lower troposphere, below 500 hPa (Parrington
et al., 2008).

Global patterns of CO as measured by TES are in good
qualitative agreement with those seen by MOPITT. The mean
difference between column abundances of CO from TES and
MOPITT was less than 5 %. TES CO agrees within the esti-
mated uncertainty of the aircraft instruments, including both
errors and the variability of CO itself (Luo et al., 2007; Ho
et al., 2009). The TES and MOPITT retrievals both have a
maximum sensitivity mainly from 300 to 800 hPa.

2.2.4 OMI/MLS tropospheric O3 column (TOC)

Several approaches have been developed to derive global
TOC from satellite measurements that involve subtracting the
stratospheric O3 column measured in the limb from the to-
tal O3 column measured independently in the nadir (Ziemke
et al., 2006; Schoeberl et al., 2007). The monthly mean TOC
data derived using the OMI total columns and the MLS pro-
files from Ziemke et al.(2006) with a horizontal resolution
of 1× 1.25◦ are used for the validation.Ziemke et al.(2006)
produced TOCs at the MLS measurement locations in day-
light, where OMI retrievals are available, and where it is not
excessively cloudy. Note that the quality of the derived TOC
can be very sensitive to the choice of the tropopause defini-
tion in this approach (Stajner et al., 2008). Outside the trop-
ics, the large and rapid tropospheric O3 variability compli-
cates determining tropospheric O3, as it requires individual
observations to be of sufficient accuracy.

2.2.5 Ozonesonde

Ozonesonde observations are taken from the World Ozone
and Ultraviolet radiation Data Center (WOUDC) and
the Southern Hemisphere Additional Ozonesondes project
(SHADOZ) database. The accuracy of the ozonesonde mea-
surement is about±5 % in the troposphere (Smit and Kley,
1998). The observation sites considered for the validation are
listed in Table 3. We use data from 39 locations for a total
number of 99 (89) observations in January (July) 2007.

To compare ozonesonde measurements with the simula-
tion and the data assimilation, all ozonesonde profiles have
been interpolated to a common vertical pressure grid, with
a bin of 25 hPa. Then, for each interpolated observed pro-
file, the co-located model profile is computed using the near-
est neighbor grid point data for the linear space/time inter-
polation. The averaged profile is computed globally and for
three latitudinal bands, the Northern Hemisphere (30–90◦ N),
the tropics (30◦ S–30◦ N), and the Southern Hemisphere (90–
30◦ S). The standard deviations of the normalized differences
are computed over these regions.

Table 3.List of ozonesonde stations used for the validation.

Station no. Name Latitude Longitude

STN021 Stonyplain 53.5 −114.1
STN221 Legionowo 52.4 21.0
STN174 Lindendeberg 52.2 14.1
STN316 De Bilt 52.1 5.2
STN053 Uccle 50.8 4.3
STN099 Hohenpeissenberg 47.8 11.0
STN156 Payerine 46.5 6.6
STN458 Yarmouth 43.9 −66.1
STN012 Sapporo 43.1 141.3
STN308 Barajas 40.5 −3.6
STN107 Wallops Island 37.9 −75.5
STN014 Tsukuba 36.1 140.1
STN418 Huntsville 34.7 −86.6
STN190 Naha 26.2 127.7
STN344 Hong Kong 22.3 114.2
STN109 Hilo 19.7 −155.1
STN187 Poona 18.6 73.9
STN494 Alajuela 10.0 −84.2
STN435 Paramaribo 5.8 −55.2
STN434 San cristobal −0.9 −89.6
STN175 Nairobi −1.3 36.8
STN466 Maxaranguape −5.5 −35.3
STN437 Watukosek −7.5 112.6
STN328 Ascension Island −8.0 −14.4
STN191 Samoa −14.2 −170.6
STN394 Broadmeadows −37.7 144.9
STN256 Lauder −45.0 169.7
STN029 Macquarie Island −54.5 158.9

2.2.6 INTEX-B aircraft measurements

Aircraft vertical trace gas (CO, SO2, O3, OH, NO2, NO,
CO, HNO3, PAN, HO2, CH2O, and H2O) profiles were ob-
tained using the UC Berkeley Laser-Induced Fluorescence
(TD-LIF) instrument on a DC-8 during the INTEX-B cam-
paign over the Gulf of Mexico (Singh et al., 2009). Thornton
et al. (2003), Bucsela et al.(2008), Hains et al.(2010) pro-
vide a detailed description and discuss the performance of the
measurements. In the comparison between model and assim-
ilation results, the data were binned on a pressure grid with an
interval of 30 hPa, while the model output was interpolated to
the time and space of each sample. Data collected over highly
polluted areas (over Mexico City and Houston) have been
removed from the comparison, since they can cause a seri-
ous representativeness error in the comparison (Hains et al.,
2010). The comparisons were made for March 2006.

3 Data assimilation system

The CHASER data assimilation system (CHASER-DAS) is
developed based on an ensemble Kalman filter approach.
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This section introduces the forecast model, the data assim-
ilation approach, and the experimental settings.

3.1 The global chemical transport model CHASER

The forecast model used in the data assimilation system is
the global CTM CHASER (Sudo et al., 2002). CHASER in-
cludes detailed chemical and transport processes in the tro-
posphere, including 88 chemical and 25 photolytic reactions
with 47 chemical species, and has a horizontal resolution of
T42 (2.8◦) and 32 vertical levels from the surface to 4 hPa.
CHASER is coupled to the atmospheric general circulation
model, Center for Climate System Research/National Insti-
tute for Environmental Studies (CCSR/NIES) atmospheric
general circulation model (AGCM) ver. 5.7b. The AGCM
fields are nudged toward National Centers for Environmen-
tal Prediction/Department of Energy Atmospheric Model In-
tercomparison Project II (NCEP-DOE/AMIP-II) reanalysis
(Kanamitsu et al., 2002) at each time step (i.e. every 20 min)
in order to reproduce past meteorological conditions.

As described byMiyazaki et al.(2012), the anthropogenic
emissions are based on a yearly mean inventory of national
emissions obtained from the Emission Database for Global
Atmospheric Research (EDGAR) version 3.2 (Olivier et al.,
2005). The Global Fire Emissions Data base (GFED) version
2.1 (Randerson et al., 2007), estimated on a monthly basis, is
employed for emissions from biomass burning. The monthly
biogenic emissions from vegetation, obtained via the GEIA
inventory (Guenther et al., 1995), are considered for iso-
prene, terpenes, and other non-methane VOCs. NOx emis-
sions from soils are based on monthly mean Global Emis-
sions Inventory Activity (GEIA) (Graedel et al., 1993). The
emissions over Asia were obtained from Regional Emission
inventory in Asia (REAS) version 1.1 (Ohara et al., 2007).
The emissions for the simulation years 2006–2007 are ob-
tained by extrapolating the emissions inventories from the
years 1995 and 2000. Emissions of lightning NOx are linked
to convective cloud top height following the parameteriza-
tion of Price and Rind(1992). The lightning NOx production
is calculated at each time step of CHASER using the con-
vection scheme in the AGCM. The total aircraft NOx emis-
sion is 0.55 TgNyr−1, which is obtained from the EDGAR
inventory. We apply a diurnal variability scheme to the sur-
face NOx emissions depending on the dominant category for
each area: anthropogenic, biogenic, and soil emissions, as in
Miyazaki et al.(2012).

3.2 Ensemble Kalman filter data assimilation

The data assimilation technique used in this study is a lo-
cal ensemble transform Kalman filter (LETKF) (Hunt et al.,
2007). The implementation is the same as inMiyazaki et al.
(2012). The LETKF has conceptual and computational ad-
vantages over the original EnKF (e.g.Ott et al., 2004; Hunt
et al., 2007). The LETKF performs the analysis locally in

space and time, reducing sampling errors caused by limited
ensemble size. It also reduces the computational cost by per-
forming most calculations in parallel (Miyoshi and Yamane,
2007). Because of the large state vector size and the large
number of grid cells in a global CTM, the computational ad-
vantages of the LETKF over the original EnKF is important
for global tropospheric chemistry data assimilation.

The LETKF transforms a background ensemble (xb
i ; i =

1, . . . ,k) into an analysis ensemble (xa
i ; i = 1, . . . ,k) and up-

dates the analysis mean, wherex represents the model vari-
able; b the background state; a the analysis state; andk the
ensemble size. In the forecast step, a background ensemble,
xb
i , is globally obtained from the evolution of each ensem-

ble model simulation. The background ensemble mean,xb,
and its perturbations (spread),Xb, are thus estimated from
the ensemble forecast,

xb =
1

k

k∑
i=1

xb
i ; Xb

i = xb
i − xb. (3)

These areN × k matrices, whereN indicates the system di-
mension andk indicates the ensemble size. The background
error covariance (Pb

= Xb(Xb)T ) tends to underestimate the
true background error covariance because of model errors
and sampling errors (Houtekamer and Mitchell, 1998). To
prevent the covariance underestimation, the covariance infla-
tion technique (with a covariance inflation parameter of 5 %)
is applied at each analysis step, as inMiyazaki et al.(2012).

In the analysis step, an ensemble of background obser-
vation vectors in the observation space,yb

i = H(xb
i ), is es-

timated using the non-linear observational operatorH . An
ensemble of background perturbationsYb

= yb
i − yb is also

computed. The ensemble mean is then updated by

xa = xb + XbP̃a(Yb)T R−1(yo
− yb), (4)

whereyo is the observation vector,R is thep×p observation
error covariance,̃Pa is theP̃a is the local analysis error co-
variance in the ensemble space. The new analysis ensemble
perturbation matrix in the model spaceXa is simultaneously
obtained by transforming the background ensembleXb. An
ensemble simulation with the new analysis ensemble is then
used to predict the new background error covarianceXb in
the next forecast step. Further details are described inHunt
et al.(2007) andMiyazaki et al.(2012).

EnKF approaches always have a spurious long dis-
tance correlation problem because of imperfect sampling
of the probability distribution due to limited ensembles
(Houtekamer and Mitchell, 2001). In complex chemical data
assimilation systems, a realistic estimation of the background
error distribution is very important (Singh et al., 2011; Mas-
sart et al., 2012). Boynard et al.(2011) demonstrated that
the spatial correlations estimated from ensemble simulations
are overestimated in the chemical model error covariance
fields, and suggested the need for special attention to avoid
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Fig. 1. Schematic diagram of the data assimilation system. The en-
semble model simulation with a priori emissions is used to provide
the background error covariance information (Xb). The data assim-
ilation is performed using the background error information and the
observation information (yo). Then the data assimilation provides
a posteriori estimates of surface NOx emissions, surface CO emis-
sions, lightning NOx emissions, and 3-D distributions of the chem-
ical species (Xa). Assimilation of MLS O3 and HNO3 data affects
the concentrations only above 260 and 220 hPa, respectively. Ox is
the sum of O3 and O(1D), and NOx is the sum of NO, NO2, and
NO3. See Sect. 3 for details.

too large correlation of fields distant from the location of the
observation. A covariance localization technique is used to
avoid possible degradation because of under sampling. We
assumed that observations located far from the analysis point
have larger errors and that those observations have less ef-
fect on the analysis (Miyoshi and Yamane, 2007). A correct
choice of ensemble size and correlation lengths is important
to improve the data assimilation performance, as will be dis-
cussed in Sect. 3.3.4

3.3 Experimental setting

Three series of one-month data assimilation experiments
have been conducted, starting from the 1 March 2006, 1 Jan-
uary 2007, and 1 July 2007. The March 2006 experiment was
used to validate against the INTEX-B airc raft data, while the
January and July 2007 experiments were used to compare
the seasonal difference in the data assimilation performance.
The data assimilation cycle is 100 min; e.g. each orbit cycle
of polar-orbit satellites. This setting is useful to reduce the
time discrepancy (sampling errors) between the observations
and the model in the data assimilation, given distinct diurnal
variation in tropospheric chemistry (Miyazaki et al., 2012).
Figure 1 shows a schematic diagram of the data assimilation
process.

In addition to the full assimilation run (with all the data),
we have also conducted a control run (without any assimi-
lation), five observing system experiments (see Sect. 4), an
emission inversion run, and a fixed-flux assimilation run. In
the emission inversion run, only surface emissions are opti-

mized (i.e., without concentrations in the state vector). In the
fixed-emission assimilation run, only concentrations are up-
dated from the data assimilation (i.e., without emissions in
the state vector). The emission inversion run and the fixed-
emission assimilation run have been compared with the full
assimilation run in which both the concentration and emis-
sion are updated. The comparison allows us to understand
the relative importance of the emission optimization and the
direct concentration adjustment in the simultaneous assimila-
tion (see Sect. 5.3). Further, we have conducted an idealized
data assimilation experiment in which synthetic observations
are derived from a perturbed model run. The results obtained
from the idealized experiment confirmed that the data assimi-
lation system is properly implemented, and the simultaneous
optimization for O3 concentration and its precursors emis-
sions is a powerful framework for the tropospheric chemistry
analysis (see Appendix A).

3.3.1 State vector

The state vector is chosen to include uncertain model aspects
that most effectively optimize the tropospheric chemical sys-
tem. First, emissions are a major source of uncertainty in
CTM simulations. The solution of a tropospheric chemical
model is only weakly influenced by the initial conditions,
because of the strong stiffness of tropospheric chemical pro-
cesses (Constantinescu et al., 2007; Lahoz et al., 2007). An
improvement could be achieved by an ensemble obtained by
perturbing various parameters of the model (emissions, reac-
tion rates, etc.). The EnKF can be extended to include such
parameters in the data assimilation process. A state vector
which includes both the concentrations and the emissions
makes it possible to find the optimal values for the emis-
sions, which are linked to the concentrations by the CTM.
In the EnKF system, the background error covariance, esti-
mated from the ensemble CTM simulations, varies with time
and space, reflecting dominant atmospheric processes. The
local analysis increment for emissions thus reflects the com-
plex indirect relationship between concentrations and emis-
sions of related species.

The surface emissions of NOx, e(NOx), the surface emis-
sions of CO,e(CO), the lightning sources of NOx, e(LNOx),
and the concentrations of all the predicted (i.e., transported,
total 35) chemical species,c, are optimized at all the models
grid cells for each data assimilation cycle. The concentra-
tions of radical and members of family species are not in-
cluded in the state vector. The data assimilation influences
their concentrations through the chemical coupling during
the forecast. The background ensemble can be represented
as follows,

xb
i =


cb
i

e(NOx)
b
i

e(CO)b
i

e(LNOx)
b
i

 . (5)
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Fig. 2. Schematic diagram of the correlation matrix between ob-
servations and the state variables. Satellite data used for the data
assimilation are listed in the left column. The model variables up-
dated during the data assimilation are listed in the top row. The blue
(gray) colour indicates that correlations between the observed vari-
ables and the model variables are considered (neglected using the
variable localization technique). See Sect. 3.3 for details.

Although the data assimilation system simultaneously up-
dates emissions of NOx and CO, we treat the data indepen-
dently and do not include NOx-CO emissions covariance in
the background error matrix. This is to avoid the effects of
spurious multi-variate correlations in the background error
covariance, possibly developed because of limited ensem-
bles, and errors in both model and observations. However, the
forecasted atmospheric concentrations of NO2 and CO are
coupled chemically through their effect on the tropospheric
chemistry.

Based on sensitivity experiment results (see Sect. 4), we
have also applied the variable localization to improve the
analysis. This means the covariance among non- or weakly-
related variables is set to zero. This technique allows us
to neglect the correlations among variables that may suf-
fer significantly from spurious correlations. The optimiza-
tion of the variable localization was based on a compar-
ison against satellite data. If the data assimilation signifi-
cantly deteriorated the agreement with at least one of the
data used for the data assimilation and the validation, vari-
able localization was applied to reduce the deterioration by
considering dominant chemical processes, as will be fur-
ther described in Sect. 4.2. The state vector structure used
is summarized in Fig. 2. With the technique, lightning NOx
sources are optimized using TES O3, OMI NO2, and MLS
O3 and HNO3 observations, whereas the covariance between
CO concentration and lightning NOx sources was set to be
zero, since their error correlation are not expected to con-
tain meaningful information. Similarly, OMI tropospheric
NO2 column data are used to update the concentrations
of NOy (= NOx + HNO3 + HNO4 + PAN + MPAN + N2O5)

species only, since the ensemble may not contain meaningful
information on the profile of other chemical species. For the
same reason, and related to their poor quality, MLS HNO3
data are only allowed to influence the NOy species in the
analysis. Similarly, MOPITT CO data affect the concentra-
tion of CO, hydrocarbons, and formaldehyde only. CO emis-
sions are optimized using MOPITT CO data only. The vari-
able localization is found to significantly improve the analy-
sis (see Sect. 4.2).

3.3.2 Parameter estimation

A diurnal variability is implemented for the NOx emissions
as in Miyazaki et al. (2012), depending on the dominant
source category for each area. The lightning NOx sources
vary in time and space, reflecting the variability in meteo-
rological fields. However, because a model error term is not
implemented during the forecast step, the background error
covariance can be continuously deflated and underestimated
during the data assimilation. To prevent covariance underes-
timation during the data assimilation, we have applied a co-
variance inflation to the analyzed emission as inMiyazaki
et al. (2012). The analyzed standard deviation (i.e., back-
ground error) is artificially inflated to a minimum predefined
value at each analysis step. This minimum value is chosen
as 30 % of the initial standard deviation, based on sensitivity
experiments. Because of the absence of any forecast model
(i.e., model bias) to the emissions, and of the use of the back-
ground covariance inflation, initial bias in the a priori emis-
sions can be reduced gradually through the data assimilation
cycle using the state-augmentation approach, as discussed by
Lin et al. (2008).

The initial error is set to 40 % of the a priori emis-
sions for surface emissions of NOx and CO. For lightning
NOx sources, the initial error is set to 60 %, considering
large discrepancies among different estimates (Schumann
and Huntrieser, 2007). For the concentrations, it is set to
10 %. Although the optimized emissions (i.e., the analysis
mean) and the uncertainty (i.e., the analysis spread) are not
strongly sensitive to the choice of the initial error after some
assimilation cycles (e.g. several weeks) because of the analy-
sis applied for both the mean and spread fields and the use of
the inflation, convergence is generally attained faster in the
case for larger initial uncertainties.

3.3.3 Observation error

The observation error covariance matrix contains the mea-
surement error provided by each retrieval. The representa-
tiveness error is also considered for the OMI NO2 and MO-
PITT CO super-observations as inMiyazaki et al.(2012).
The off-diagonal components are neglected for MLS data;
the observation error of one measurement is assumed to be
independent of the observation error of other measurements.
For TES O3 and MOPITT CO data, the full error covariance
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is used, including correlations between vertical layers. We
also account for the influence of the averaging kernels from
the instruments, which captures the vertical sensitivity pro-
files of the retrievals. The horizontal correlation in the ob-
servation error covariance matrix is neglected. We do not at-
tempt to remove possible biases from the observations be-
fore assimilation, mainly because of the difficulty in estimat-
ing the true bias structure; this will be further discussed in
Sect. 5.1.2.

3.3.4 Assimilation parameters

Since the DOF of the state vector employed in this study is
large (∼ O(106)), a large ensemble size is essential to cap-
ture the proper background error covariance structure, but at
the expense of an increased computational cost. We have op-
timized the data assimilation parameters based on sensitivity
experiments. The observation-minus-forecast (OmF) analy-
sis (see Sect. 5.1.1) was used to choose the best value of the
ensemble size and localization length, as summarized in Ta-
ble 4. The sensitivity experiment showed that the analysis is
improved significantly by increasing the ensemble size from
16 to 32 and is further somewhat improved by increasing it
from 32 to 48, as seen in the OmF reduction in the compar-
ison, for instance, with MOPITT CO, MLS O3, and MLS
HNO3 data. In contrast, the impact was much less significant
by increasing it from 48 to 64. The ensemble size is accord-
ingly set to 48. The sensitivity experiments also show that
the analysis results are sensitive to the horizontal localiza-
tion length. The inclusion of spatial correlations with appro-
priately chosen correlation lengths leads to improvements.
From the sensitivity experiments, the horizontal localization
length was set to 450 km for NOx emissions and 600 km for
CO emissions, lightning NOx, and the concentrations. Too
short localization length (i.e. half size) increases the OmF er-
ror, for instance, for MOPITT and MLS data, because of the
neglected influence of remote observation information. Al-
though the larger localization length (i.e. double size) some-
what reduces the OmF for some cases, we use the above-
mentioned setting to avoid possible serious spurious corre-
lations. The physical vertical localization length was set to
lnP [hPa] = 0.2 based on sensitivity experiments (results
not shown). The optimal length, however, may depend on the
location, season, species, and model resolution (Pajot et al.,
2011), reflecting the chemical lifetime of the species and at-
mospheric wind patterns.

4 Observing system experiments

Observation system experiments (OSEs) are used to study
how each individual observational data set improves the
overall performance. We have conducted five OSEs by sepa-
rately assimilating OMI NO2, TES O3, MOPITT CO, MLS
O3, and MLS HNO3 data, and the results are compared with

the control run (without any assimilation) and the full assim-
ilation run (with all the data).

4.1 Background error covariance

The background error covariance estimated from ensemble
simulations allow unobserved species to be constrained by
observed species. Inter-species adjustment can be expected
when observed and unobserved species chemically interact
on a time scale of the order of the assimilation cycle. The
background error covariance follows from the assumption
that the background ensemble perturbationsXb sample the
forecast errors,

Pb
= Xb(Xb)T . (6)

Figure 3 shows the simulated global mean background er-
ror covariance structure,Pb. The covariance analysis shows
tight correlations between variations in surface emissions and
low-level concentrations of chemically-related species. NOx
emissions show strong positive correlations with low-level
(950 hPa) concentrations of NOx (r = 0.66), Ox (r = 0.60),
N2O5 (r = 0.69), HNO3 (r = 0.62), and HNO4 (r = 0.59),
whereas its relation to upper-level (500 hPa) concentrations
is much less significant. CO emissions have a significant
correlation with the lower tropospheric CO concentration
(r = 0.74), but does not relate to other species obviously. Be-
cause of the time delays associated with vertical mixing, the
middle tropospheric CO is generally delayed in phase, with
less variability associated with the CO emission variabil-
ity. Positive correlations are found between lightning NOx
sources and concentrations of Ox (r = 0.18) and NOy species
(e.g. r = 0.30 for NOx) in the middle troposphere, demon-
strating the potential to constrain lightning NOx sources from
those observations. Note that correlations with lightning NOx
sources are more robust in the tropics (r = 0.30 for Ox and
r = 0.36 for NOx between 25◦ S and 25◦ N) than the global
mean. Negative correlations are also found between reac-
tive species. For instance,r =-0.63 between Ox and C2H4
(ethene) at the surface results from the removal of C2H4 as
a result of the fast reaction with OH and O3 (Sawada and
Totsuka, 1986).

The background error covariance shows significant corre-
lations among the concentrations of related chemical species,
reflecting the complex tropospheric chemical processes. For
instance, Ox shows large correlations with NOy species, CO,
CH2O, SO4, and PAN at low levels (withr > 0.30). NOx
shows a similar covariance structure, reflecting strong chem-
ical links between Ox and NOx (with r = 0.41) both in the
lower and middle troposphere. There are large correlations
among the hydrocarbons throughout the troposphere.

The background error structure strongly depends on the
model characteristics, and it may have a critical effect on
the data assimilation performance. In complex chemical
data assimilation systems, a realistic estimation of the back-
ground error distribution is very important, given the noisy
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Fig. 3. Correlations between species in the background error covariance matrix, estimated from the LETKF ensemble at 950 hPa (left) and
500 hPa (right) averaged over 15–20 July 2007. The global mean of the covariance estimated for each grid point is plotted. The matrix
includes concentrations of all the predicted species, surface NOx emission (NOx-emi.), surface CO emissions (CO-emi.), and lightning NOx
sources (LNOx). Ox is the sum of O3 and O(1D), and NOx is the sum of NO, NO2, and NO3. The red (blue) colour represents positive
(negative) correlations.

Table 4.The performance of the data assimilation for different parameters: the horizontal localization length (loc) and the ensemble number
(ens). Ten-day mean (averaged over 20–30 January 2007) global mean RMS innovation of the OmF for each assimilated data are shown.
The control (CTL) simulation was conducted with loc= 450 km for NOx emissions and with 600 km for CO emissions, lightning NOx, and
the concentrations, and ens= 48. The simulations with different loc values were conducted with ens= 48. The smallest RMS innovation for
each comparison is shown in bold.

OMI NO2 MOPPIT CO TES O3 MLS O3 MLS HNO3
(1015moleccm−2) (ppbv) (ppbv) (ppbv) (ppbv)

CTL 1.10 9.05 11.3 81.2 0.64
loc× 0.5 1.13 9.44 11.3 89.1 0.75
loc× 2.0 1.15 8.90 10.8 81.1 0.69
ens= 16 1.11 9.09 11.4 84.4 0.70
ens= 32 1.12 9.06 11.3 82.7 0.66
ens= 64 1.10 9.05 11.3 80.9 0.63

observations along with imperfect model predictions, as sug-
gested bySingh et al.(2011).

4.2 Results

The OSEs confirm that the assimilation of each species data
set has a strong influence on both assimilated and non-
assimilated species through the use of the inter-species error
correlation and through the chemical coupling provided by
the model forecast. The assimilation of OMI NO2 data pro-
vides some changes in O3 and CO concentrations, whereas
the assimilation of TES O3 data has some effects on NO2
fields, as will be shown in Sect. 5.1.2.. These changes are
tightly associated with the changes in OH because of the

chemical interactions in the CO-OH-NOx system, as de-
picted in Fig. 4. The assimilation of OMI NO2 data gen-
erally increases OH concentrations in the tropical tropo-
sphere by 5–15 % and decreases it in the extratropics by 10–
20 %. These changes correspond to the increased (decreased)
NO2 concentration in the tropics (in the extratropics) through
NOx-OH-O3 chemical reactions in the NOx-sensitive regime.
The assimilation of TES O3 data also significantly changes
OH concentrations. The obtained O3 increment results in a
10–20 % increase in OH concentration in the extratropics. As
a result of the combined assimilation of all satellite data sets,
zonal mean OH concentration is increased by 5–15 % in the
tropics and the Southern Hemisphere, and the north-to-south
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Fig. 5.The differences in the global spatial correlation, the global mean bias, and the global RMSE between the data assimilation runs and the
control run for the 16–30 (from the 7–30 only for the ozonesondes) of January (left) and July (right) in 2007. These scores are first estimated
from the comparison against observations listed at the bottom (assimilated data in black and independent data in blue), and then compared
with the control run. For the spatial correlation, the difference (the data assimilation runs minus the control run) is positive (negative) when
the spatial correlation is higher (lower) in the data assimilation runs than in the control run. For the bias and the RMSE, the error reduction
rate defined by Eq. (7) is plotted; the positive (negative) value represents that the error is smaller (larger) in the data assimilation runs than in
the control run. A reduction rate of 100 % indicates that the error in the model is completely removed by the data assimilation. The results are
shown for six different data assimilation runs (the full assimilation run and the five OSEs). The number shown in the bottom list represents
the approximate altitude level in hPa.

gradient in OH concentration in the free troposphere is re-
duced in July.

The OSEs quantify the improvement due to the assimila-
tion of each individual species data set in comparison with
the assimilation of all data sets and the control run with-

out assimilation. The global spatial correlation, root-mean-
square-error (RMSE), and mean bias for 15-days (from the
16th to the 30th of each month) mean fields were estimated
for the control run and the OSEs. The improvement rate due
to each data set was then estimated by comparing scores
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between the control run and the OSE, as shown in Fig. 5.
For the RMSE and bias, the error reduction rate is estimated
by comparing these statistics between the control run (Ecntl)
and the OSE (EOSE) as follows,

|Ecntl| − |EOSE|

|Ecntl|
× 100. (7)

When the global mean model bias of the control run is
nearly zero, the error reduction rate is not meaningful and
is set to zero. This is done for the comparisons with TES O3
data at 700 hPa in January, TES CO data at 700 hPa in July,
and ozonesonde data between 450 and 200 hPa in July. The
nearly zero bias compared to TES O3 and CO data at 700 hPa
can be largely attributed to the very small sensitivity of the
retrievals at these levels, and does not reflect the true model
bias which may be large.

The comparison demonstrates significant improvements
of the scores obtained by the assimilation. Improvements in
the non-assimilated chemical species show that the ensemble
simulation is capable of correctly representing inter-species
error correlations and propagating observation information
through assimilation cycle. For instance, the assimilation of
MLS O3 and HNO3 data leads to an improved agreement
with OMI NO2, as shown by the large reduction of the bias.
Furthermore, all the assimilated data sets improve the agree-
ment with O3 profiles obtained from ozonesondes in July, as
will be further discussed in Sect. 5.1.2.

Note that the effect of the data assimilation on non-
observed species is not always positive. Consideration of
inter-species error correlations sometime causes the error to
grow. Optimization of the state vector structure is thus con-
ducted to minimize the error based on the OSEs, by neglect-
ing the inter-species correlations that result in serious error
growth; the optimized state vector is depicted in Fig. 2. Se-
rious negative effects arose, for example, from the TES O3
data assimilation on CO fields, the MLS HNO3 data assim-
ilation on CO fields, the OMI NO2 data assimilation on O3
fields, and the MOPITT CO data assimilation on O3 fields
(figure not shown). This is primarily because limited ensem-
bles can cause spurious error correlation among chemical
species, especially for species having insignificant chemical
links. For instance, because of its relatively long chemical
lifetime (∼2 months), CO may not have significant correla-
tions with chemically active species such as O3 in the lower
troposphere with a time scale on the order of the data assim-
ilation cycle. Similarly, the OMI NO2 tropospheric columns
may not have enough information to directly constrain the
vertical profile of O3 because of its smooth averaging ker-
nel profile and large observation error. Since we applied the
variable localization to avoid these negative influences (see
Sect. 3.3.1), the full assimilation run provides the best perfor-
mance among the individual data assimilation in most cases,
see Fig. 5. Note that all the observation data can affect all the
chemical fields throughout the forecast.
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set (in horizontal axis) averaged over the 10–30 January (black) and
July (red) in 2007.

5 Data assimilation results

5.1 Validation

5.1.1 Self-consistency tests

An important test for the quality of data assimilation is
whether the differences between the model forecast and ob-
servations (the innovations) are consistent with the covari-
ance matrices for the model forecast and observations (e.g.
Segers et al., 2005; Lahoz et al., 2007). The background co-
variance matrix is important in reaching an appropriate bal-
ance between the background and the observations. A quan-
titative criterion for the choice of the background error is
a chi-square (χ2) test, theχ2 diagnostics (e.g.Ménard and
Chang, 2000). χ2 should approach 1 if the background er-
ror covariances are properly specified, while a value higher
(lower) than 1 indicates an underestimation (overestimation)
of the background error covariance matrices. Theχ2 deter-
mined for each assimilated data set is shown in Fig. 6. The
χ2 is greater than 1 for the MLS O3 and HNO3 data assimila-
tion, indicating too much confidence in the model. The model
overconfidence is associated with the limited lower strato-
spheric variations in the ensemble, which are strongly con-
strained by the fixed upper boundary conditions in CHASER.
For MOPITT CO and TES O3 data assimilation,χ2 lower
than 1, which indicates a possible overestimation of the back-
ground errors, may result in too much correction of the model
fields.

Figure 7 shows the latitude dependence of the bias and
root-mean-square (RMS) innovation of the OmF computed
in the observation space. The innovation between forecast
and assimilated data is a sum of three contributions; the
observation error, the forecast error, and the representative-
ness error caused by mismatches between the satellite ground
pixel and the model grid cell (Eskes et al., 2003; Lahoz et al.,
2007). A persistent model bias is found in the underestima-
tion of tropospheric NO2 columns compared to OMI NO2
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Table 5.Comparisons between the data assimilation run and the satellite retrievals. The results are obtained from 15-day averages (from the
16–30 of each month) for January and July in 2007. Shown are the global spatial correlation (Corr), the global mean difference (Bias), and
the global root-mean-square error (RMSE). The model simulation results (without data assimilation) are shown in brackets.

January July
Corr. Bias RMSE Corr. Bias RMSE

OMI NO2 (1015moleccm−2) 0.92 (0.77) −0.05 (−0.09) 0.80 (1.04) 0.93 (0.87) 0.01 (−0.10) 0.25 (0.35)
GOME-2 NO2 (1015moleccm−2) 0.87 (0.69) −0.02 (−0.06) 1.09 (1.32) 0.80 (0.79 ) 0.19 (0.04) 0.33 (0.33)
SCIAMACHY NO2 (1015moleccm−2) 0.90 (0.69) 0.11 (0.08) 1.25 (1.53) 0.79 (0.78) 0.23 (0.11) 0.66 (0.66)
MOPITT CO 500 hPa (ppbv) 0.97 (0.92) 0.1 (−7.1) 6.0 (12.6) 0.92 (0.86) 1.1 (−2.2) 7.0 (11.2)
TES CO 700 hPa (ppbv) 0.90 (0.86) 3.3 (−1.5) 15.7 (17.5) 0.83 (0.76) 0.97 (0.03) 13.0 (15.3)
TES CO 300 hPa (ppbv) 0.77 (0.53) 22.2 (13.3) 26.2 (22.1) 0.77 (0.67) 26.1 (17.1) 31.8 (21.7)
TES O3 700 hPa (ppbv) 0.92 (0.89) −2.7 (−0.4) 5.9 (6.0) 0.91 (0.88) −3.1 (−2.7) 7.0 (8.0)
TES O3 300 hPa (ppbv) 0.96 (0.93) 5.1 (14.7) 11.0 (20.7) 0.95 (0.90) 3.2 (7.5) 11.7 (18.8)
MLS O3 215 hPa (ppbv) 0.96 (0.93) 10.7 (19.4) 36.8 (47.9) 0.95 (0.90) 10.3 (14.0) 31.9 (63.3)
MLS HNO3 215 hPa (ppbv) 0.81 (0.77) −0.13 (−0.43) 0.37 (0.57) 0.84 (0.75) −0.04 (−0.37) 0.36 (0.62)
OMI/MLS TOC (DU) 0.77 (0.73) −1.1 (3.9) 4.2 (6.3) 0.89 (0.85) 1.3 (1.1) 3.4 (4.2)
Sonde 800–450 hPa (ppbv) 3.4 (4.8) 11.1 (11.6) −0.15 (−7.14) 19.9 (22.6)
Sonde 450–200 hPa (ppbv) −0.50 (11.9) 30.7 (34.8) 0.13 (0.98) 30.6 (40.3)
Sonde 200–90 hPa (ppbv) 13.5 (107.0) 122 (208) 4.3 (23.5) 20.6 (45.7)
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Fig. 7. Latitudinal distributions of the mean OmF (upper panels) and its standard deviation around the mean (lower panels) estimated in the
observation space for each assimilated data set, averaged over the period 16–30 January 2007. The results are shown for the data assimilation
run (red) and the control run (blue).
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data, the overestimation of the middle tropospheric CO in the
extratropics compared to MOPITT CO data, and the overes-
timation in the middle and upper tropospheric O3 compared
to TES and MLS O3 data. The data assimilation removes
most of the OmF bias. The large reduction of the O3 OmF
bias for TES O3 data in the middle and upper troposphere,
which reflected the reduction of the OmA bias, implies that
TES O3 has meaningful information for constraining the O3
fields at these altitudes, as similarly reported byParrington
et al.(2008). In contrast, the bias reduction is not obvious in
the lower troposphere (800–500 hPa), especially at high lat-
itudes. This is because the DOFs of the TES retrieval in the
troposphere are generally smaller than 1 poleward of 45◦ and
TES has little sensitivity to the lower tropospheric O3 (Wor-
den et al., 2004; Osterman et al., 2008). The near zero OmF
bias for MLS O3 in the data assimilation reflects a good cov-
erage and high quality of MLS O3 data. A long lifetime of O3
in the UTLS also helps to accumulate the observation infor-
mation. The observation-minus-analysis (OmA) histogram
shows a more pronounced peak than that for OmF (closer
to a Gaussian curve, figure not shown) in many cases, as the
analysis is closer to the assimilated observations than to the
forecast, as shown byMiyazaki et al.(2012).

The standard deviation about the mean of the OmF was
found to be mostly equal to the observation error, indicating
that the data assimilation captures the observed variability
well and satisfies the data assimilation assumptions. A sub-
stantial part of the RMS of the OmF has been removed by the
data assimilation for MOPITT CO, MLS O3, and TES O3 in
the middle and upper troposphere. A reduction of the RMS
is less pronounced for OMI NO2, TES O3 in the lower tropo-
sphere, and for MLS HNO3. These are, respectively, related
to rapid spatiotemporal variations and large errors in the ob-
served NO2, small sensitivities to the true profile (i.e. small
averaging kernel), and large observation errors.

5.1.2 Comparison with satellite data

The data assimilation results are validated against indepen-
dent data, as listed in Table 5 and shown in Fig. 5. The tropo-
spheric NO2 columns are compared with GOME-2, SCIA-
MACHY, and OMI data. Differences among the retrievals
mainly reflect diurnal variations of chemical processes and
emissions, because a very similar algorithm is used for the
retrieval of these data. The viewing pixel size difference will
not affect the comparison results too much, since these re-
trievals are gridded to the same resolution (2.5◦

× 2.5◦), us-
ing weighting factors for the surface overlap between the
satellite pixel and grid cell. The data assimilation largely
improves the agreement with these data. The improvement
is most pronounced in January. The data assimilation in-
creases the spatial correlation by about 0.15–0.21, decreases
the bias by about 85 % (except for SCIAMACHY), and de-
creases the RMSE by about 30 %. These improvements are
mainly attributed to the increased NO2 columns over East

China and Central Africa and the decreased columns over
Europe (Fig. 8). The OSEs confirm that these improvements
are mainly due to the OMI NO2 data assimilation (Fig. 5).
The assimilation of MLS O3 and HNO3 data also contributes
significantly to the reduction of the negative NO2 column
bias compared to OMI and GOME-2 (in January only) data,
by increasing the upper tropospheric NO2 concentration. In
contrast, the bias compared to independent GOME-2 (in July
only) and SCIAMACHY data is increased by the data assim-
ilation. The errors in the simulated diurnal NO2 variations
along with a bias between OMI and these retrievals may
cause the bias to increase. The diurnal variations are espe-
cially important in the warmer seasons (e.g. in July in the
Northern Hemisphere), when chemistry is sufficiently fast
to make a difference between morning and early noon NO2
columns (Boersma et al., 2009).

The global mean negative bias and large RMSE in the
model simulation against the MOPITT CO are mostly (by
40–90 %) removed by the data assimilation, while a very
high spatial correlation (0.92–0.97) is maintained. The re-
duced negative bias is primarily due to the enhanced con-
centrations over East Asia, North America, and northern
Eurasian continent (Fig. 10). Because of the long lifetime of
CO, the data assimilation system is able to capture the ob-
served CO variability. This improvement is mostly achieved
by the MOPITT CO data assimilation, while the assimilation
of other data sets slightly (typically less than 5 %) affected
the comparison through their influence on the OH fields.

The data assimilation also improves the spatial correlation
with the independent TES CO data both at 700 and 300 hPa,
reflecting enhanced concentrations over China, India, Central
Africa, and North America, and reduced concentrations over
South America (Fig. 10). However, the global mean bias and
RMSE mostly increases due to the data assimilation, primar-
ily reflecting too high concentrations at high latitudes. The
bias increase is possibly due to a systematic bias between
MOPITT and TES. Luo et al. (2007) showed that MOPITT
CO version 3 data have higher values than TES CO version
2 data, with a mean difference of−4.8 % at 150 hPa and
−0.2 % at 700 hPa. This result is consistent with our data
assimilation result, but with different data versions. The as-
similation of other species (i.e., NO2, O3, and HNO3) data
contributed slightly to improve the agreement.

The data assimilation greatly improves the agreement with
the TES O3 data in the upper troposphere (300 hPa), with a
bias reduction of up to 65 % and an RMSE reduction of about
40–50 %. The improvements are mainly due to increased
concentrations in the southern extratropics (Fig. 9), which are
achieved by the TES O3 and MLS O3 data assimilation. The
assimilation of OMI NO2 data acts to reduce the bias com-
pared to TES O3 data at 700 hPa in July, implying the impor-
tance of optimizing O3 precursors fields. However, the im-
provement is not significant in the simultaneous data assimi-
lation fields in the lower troposphere. The TES O3 sensitivity
is reduced greatly in the lower troposphere especially due to

www.atmos-chem-phys.net/12/9545/2012/ Atmos. Chem. Phys., 12, 9545–9579, 2012



9560 K. Miyazaki et al.: Simultaneous assimilation of tropospheric composition

Cntl

SCIAMACHY NO2OMI NO2 GOME-2 NO2

OBS

Assim

Fig. 8.Global distributions of the tropospheric NO2 columns (in 1015moleccm−2), averaged over the period 16–30 January 2007. The results
are shown for OMI (left columns), SCIAMACHY (middle columns), and GOME-2 (right columns). Upper rows show the tropospheric NO2
columns obtained from the satellite retrievals (OBS); centre rows from the control run (Cntl); and lower rows from the data assimilation
run (Assim). The averaging kernel of each retrieval is applied to the control run and data assimilation fields. The red (blue) colour indicates
relatively high (low) values.

the presence of clouds and makes it difficult to improve the
analysis. Validation or assimilation is virtually meaningless
when the retrieval sensitivity is very low. Since we applied
the averaging kernel and the a priori profile information in
the comparison (Eq. 1), substantial adjustments in the assim-
ilation or differences in the validation only occur when there
is a meaningful signal (i.e. the retrieved profile minus the re-
trieval a-priori).

The MLS O3 data assimilation is very effective in re-
moving the positive O3 model bias in the UTLS because of
its wide and dense coverage and good quality, as similarly
shown byJackson(2007) andFeng et al.(2008). The global
RMSE against MLS O3 data is also reduced by TES O3 data
assimilation. However, the OSEs confirmed that the assimi-
lated concentration becomes too high because of the TES O3
assimilation compared to MLS O3 data. The OSEs suggest
that TES O3 concentration is higher (lower) in the tropics
(extratropics) than MLS O3 concentration, with a mean dif-
ference of 20–40 ppb at altitudes between 200 and 80 hPa.

The bias and the RMSE compared with MLS HNO3 data
have also been largely removed by the data assimilation. The
improvement is primarily due to MLS HNO3 data assimila-
tion, but MLS O3 data assimilation also contributes to the im-
provement, as seen in reduced HNO3 bias. This indicates that
MLS O3 data have meaningful information about the abun-
dance of HNO3 in the UTLS, through atmospheric transports

and the chemical link. In contrast, the decreased (increased)
spatial correlation (RMSE) due to the MLS O3 data assim-
ilation may be related to errors in the background error co-
variance or poor data quality either in MLS HNO3 or MLS
O3 data, especially in the upper troposphere.

The improved agreement with TOC data obtained from
the independent MLS/OMI data is mainly attributed to the
assimilation of TES O3 data because of their strong sen-
sitivity to tropospheric O3 in the tropics. For instance, the
high columns over the Atlantic and in the southern subtrop-
ics (from South Africa to Australia) are better captured by
the data assimilation (Fig. 9). However, the data assimila-
tion still has difficulty in reproducing the observed features.
For instance, longitudinal variations with a persistent wave-1
pattern in the southern tropics are larger in both the model
and assimilation compared to the OMI/MLS product. This
may indicate a difficulty in correcting processes responsible
for the enhanced ozone in the Atlantic (e.g. via rapid con-
vective updraft). At the same time, there is large uncertainty
in the retrieved TOC. Measuring tropospheric O3 from space
is challenging because of large amount of stratospheric O3
in the total column, while the separation between the tropo-
sphere and stratosphere strongly depends on the tropopause
definition (e.g.,Bethan et al., 1996).
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TES O3 at 300 hPaOMI/MLS TOC MLS O3 at 215 hPa
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Fig. 9. Global distributions of the tropospheric O3 columns (in DU) and O3 mixing ratio (in ppb), averaged over 16–30 July 2007. The
results are shown for OML/MLS O3 columns (left columns), TES O3 mixing ratio at 300 hPa (middle columns), and MLS O3 mixing ratio
at 215 hPa (right columns). Upper rows show the satellite retrievals (OBS); centre rows from the control run (Cntl); and lower rows from the
data assimilation run (Assim). The red (blue) colour indicates relatively high (low) values.

5.1.3 Comparison with ozonesonde data

Figure 11 shows the comparison against the ozonesonde
data. Without assimilation the global mean bias with the
ozonesonde is large, up to 30 % in the free troposphere and
40 % in the lower stratosphere. The data assimilation re-
moves most of the bias from the middle troposphere to the
lower stratosphere, down to within 10 %. It also reduces the
RMSE by about 20 % in the middle troposphere and by 50 %
in the UTLS. Significant positive biases in simulated O3 in
the UTLS are also mostly removed by the data assimila-
tion, whereas the simulated O3 profiles suffer from errors in
stratosphere-to-troposphere exchange (STE). The great im-
provements in the UTLS reflects the long chemical lifetime
of O3 and the fact that satellite retrievals capture the large
scale variations of O3 well. The effect of the data assimilation
on the lower tropospheric O3 below about 850 hPa is not ob-
vious on a global scale, implying that further constraints are
needed on the near surface O3 and its precursors (e.g. VOCs).
Parrington et al.(2009) demonstrated that the changes in the
O3 flux from the free troposphere into the planetary boundary
layer (PBL) by the TES O3 assimilation reduces the positive
bias in the PBL indirectly over North America. Although this
effect is not confirmed by our global analysis, it is of interest
to survey the detailed spatial distributions resulting from the
data assimilation.

The OSEs demonstrate that these improvements are
mainly due to the assimilation of TES data in the free tro-
posphere (between 750 to 200 hPa) and both TES and MLS
O3 data in the UTLS (between 200 and 90 hPa). TES data
provide valuable constraints on the free tropospheric O3. Al-
though the MLS data do not extend down to altitudes below
260 hPa, the MLS assimilation influenced the ozone anal-
ysis even below this level through the vertical propagation
of the observation signal mainly via the extratropical down-
ward motion. It is emphasized that all the assimilated datasets
contribute to reduce the global mean bias between 750 and
450 hPa and and between 200 and 90 hPa in July. This indi-
cates that the simultaneous assimilation of multiple chemi-
cal observations is effective to improve tropospheric O3, by
their influence on the precursor emissions and chemical pro-
cesses that affect the O3 concentrations. In contrast, the im-
provement by the non-O3 data assimilation is not obvious
in January. This may reflect the seasonal difference in the
chemical links between O3 and other species. Since most
ozonesonde sites are located in the Northern Hemisphere, the
greater improvement in July may be related to summertime
active chemical processes in the Northern Hemisphere. Much
less ozone is produced from the precursors in winter than in
summer (e.g.Liu et al., 1987).

The assimilated O3 fields show a persistent positive bias
compared to the ozonesonde data, with a global mean bias
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TES CO at 700 hPaMOPITT CO at 500 hPa MLS HNO3 at 215 hPa
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Fig. 10.Global distribution of the CO mixing ratio (in ppb) and HNO3 mixing ratio (in ppb), averaged over 16–30 July 2007. The results are
shown for MOPITT CO mixing ratio at 500 hPa (left columns), TES CO mixing ratio at 700 hPa (middle columns), and MLS HNO3 mixing
ratio at 215 hPa (right columns). Upper row shows the satellite retrievals (OBS); centre row from the control run (Cntl); and lower row from
the data assimilation run (Assim). The red (blue) colour indicates relatively high (low) values.

of up to 15 %, below 300 (500) hPa in January (July). The
OSEs demonstrate that the positive bias can be attributed to
the assimilation of TES O3 data. The positive bias in TES O3
data compared to ozonesonde data is reported byNassar et al.
(2008) andWorden et al.(2009). A data assimilation exper-
iment with a bias correction (a uniform 3.3 ppbv bias above
500 hPa and a 6.5 ppbv below 500 hPa, according toWorden
et al., 2009) reduces the negative bias in the data assimilation
(Fig. 12), demonstrating the importance of bias correction
before data assimilation. However the effect of bias correc-
tion is not always positive, causing too low concentrations
in the middle troposphere in both January and July. A more
accurate estimation of the spatially-varying bias is thus re-
quired to improve the analysis.

5.1.4 Comparison with aircraft data

Comparisons with aircraft measurements from the INTEX-B
campaign allow us to look into the effect of data assimila-
tion on various chemical fields (Fig. 13). The observed NOx
concentrations show a decrease from the boundary layer to
the free troposphere. Oxidation of NOx to HNO3 and other
minor products dominates NOx loss in the boundary layer,
whereas conversions to HNO3 and PAN dominate it in the
free troposphere (e.g.Staudt et al., 2003). The increase in
HNO3 toward the surface is driven by chemical production

of HNO3 in polluted areas, while HNO3 is depleted in the
troposphere because of deposition processes. Compared to
the observed profiles, the simulated NO2 is slightly lower
in the boundary layer and too low in the free troposphere,
while HNO3 is too high by 500 pptv in the boundary layer.
Observed PAN shows a maximum above the boundary layer
and a minimum in the free troposphere, while the simulation
overestimates (underestimates) it by 80 pptv (by 200 pptv)
in the boundary layer (the upper troposphere). Observed O3
shows a maximum near 900 hPa and decreases toward the
lower free troposphere, while the simulation slightly under-
estimates it, except near the surface. Observed HO2 and
CH2O decrease with altitude, reflecting the decrease in wa-
ter vapor (Heikes, 1992) and the boundary layer source from
oxidation of isoprene (Millet et al., 2006), respectively. The
simulation captures the observed features of CH2O well, but
overestimates HO2 by 10 pptv throughout the troposphere.

The data assimilation improves the agreement with the
aircraft observations for NO2, O3, and PAN. Underestima-
tions of these species concentrations are generally reduced by
the data assimilation. Chemical production of O3 is strongly
related to the abundance of NOx and OH. The NOx emis-
sions tend to increase OH via the NO and HO2 reaction and
the O3 (and excited oxygen atoms) and H2O reaction, while
the CO emissions tend to decrease OH. Corresponding to
the increased NOx emissions and decreased CO emissions
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Fig. 11.Comparison of the vertical O3 profiles between ozonesondes (black), the control run (blue), and the data assimilation (red) during
7–30 January 2007 (upper 9 panels) and 7–30 July 2007 (lower 9 panels). Upper row of each panel shows the mean profile; center and lower
rows of each panel show the mean difference and the RMSE between the control run (the data assimilation run) and ozonesondes in blue
(red).
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Table 6. The 15-day means (from the 16–30 of each month) and the standard deviations (from the means) of the global and regional
surface NOx emissions (e(NOx), in TgNyr−1), lightning NOx emissions (e(LNOx), in TgNyr−1), and surface CO emissions (e(CO), in
TgCOyr−1) obtained from the a priori emissions and the a posteriori emissions. GL is global (90◦ S–90◦ N); NH is the Northern Hemisphere
(20◦ N–90◦ N); TR is the tropics (20◦ S–20◦ N); and SH is the Southern Hemisphere (90◦ S–20◦ S). The emissions optimized from the full
assimilation run and the emission inversion run (in bracket) are presented.

January July
A priori A posteriori A priori A posteriori

NH 24.5 24.6±0.4 (23.1±0.8) 31.5 32.3±1.3 (33.9±2.2)
TR 15.4 14.4±0.6 (15.5±0.6) 12.9 16.7±0.6 (19.7±1.0)

e(NOx) SH 3.0 3.9±0.2 (3.7±0.1) 2.4 3.0±0.1 (3.6±0.2)
GL 42.8 42.9±0.6 (42.3±1.3) 46.7 52.0±1.4 (57.3±2.9)

NH 544.8 660.7±10.5 (906.2±25.6) 720.8 630.2±30.5 (901.0±87.4)
TR 495.2 358.8±49.0 (440.4±50.1) 443.6 307.6±8.7 (374.8±22.2)

e(CO) SH 56.3 40.8±4.0 (69.7±3.5) 53.0 95.5±9.2 (93.5±12.9)
GL 1096.3 1060.3±58.5 (1416.3±37.7) 1217.4 1033.3±26.9 (1369.3±62.4)

NH 0.6±0.2 0.8±0.3 2.9±0.8 3.4±0.9
TR 2.8±0.5 3.3±0.7 2.5±0.5 3.6±0.7

e(LNOx) SH 1.0±0.3 1.1±0.3 0.3±0.0 0.3±0.1
GL 4.4±0.7 5.2±0.9 5.7±0.9 7.3±1.1
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Fig. 12.The mean relative difference of the vertical O3 profiles be-
tween ozonesondes and the data assimilation with (red dashed) and
without (red solid) the bias correction for TES O3 data during 7–
30 January 2007 (left) and 7–30 July 2007 (right).

at low latitudes, the data assimilation increases OH and O3.
Because of the low sensitivity of TES in the lower tropo-
sphere, the changes in near surface O3 are largely attributed
to the change in NOx emissions, as will be further discussed
in Sect. 5.3. The assimilated fields still underestimate the
concentrations of NO and PAN in the free troposphere, and
overestimate HO2 throughout the troposphere.Martin et al.
(2007) concluded that oxidation of lightning NOx explains
nearly 80 % of the HNO3 concentration in the tropical up-
per troposphere. Increasing the lightning NOx source also
decreases HO2 in the upper troposphere, while increasing
OH (Hudman et al., 2007). The increased NOx results in a
reduction of the HO2/OH ratio through the NO + HO2 and

NO2 + HO2 reactions, and also results in an increased loss of
OH via production of HNO3 (DeCaria et al., 2005). Thus, it
is likely that more NOx sources in the free troposphere are
required to reduce the negative bias of NO2, NO, PAN, and
HNO3 and the positive bias of HO2 in the free troposphere.
The overestimated H2O may also contribute to the overesti-
mation in the concentrations of OH and other HOx species
through its reaction with excited oxygen atoms. The data
assimilation tends to increase the overestimation in HNO3
concentration in the boundary layer, corresponding to the in-
creased NO2 concentration. Simultaneous adjustments for its
removal processes (e.g. wet and dry depositions) might be
important to further improve the analysis. Removal of HNO3
by wet deposition processes occurs within a few days in the
lower troposphere and results in the loss of HOx species,
which may also explain a part of the overestimation in HOx
species concentrations. Meanwhile, a large uncertainty in
both observed and simulated OH concentrations in the free
troposphere remains an important issue (e.g.Hudman et al.,
2007). There are many other factors in the chemical trans-
port processes affecting the overall model performance. They
may obstruct further improvements by the data assimilation.

5.2 Estimated emission sources

The simultaneous optimization of multiple species leads to
complex chemical interactions which together determine the
estimated emissions. Especially, the imperfect representa-
tion of OH fields may cause large uncertainties in the NOx
and CO emissions inversion (Müller and Stavrakou, 2005;
Jones et al., 2009; Pison et al., 2009; Hooghiemstra et al.,
2011). Müller and Stavrakou(2005) demonstrated that the
optimization of CO emissions constrained by both CO and
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Fig. 13.Mean vertical profiles of(a) CO, (b) SO2, (c) O3, (d) OH, (e) NO2, (f) NO, (g) HNO3, (h) PAN, (i) HO2, (j) CH2O, and(k) H2O,
obtained from aircraft measurements (black), the control run (blue), and the data assimilation (red), during the INTEX-B campaign, March
2007. The error bars represent the standard deviation of all the data within one bin (with an interval of 30 hPa).

Table 7. The 15-day means (from the 16–30 of each month) and the standard deviations (from the means) of the regional surface NOx
emissions (e(NOx), in TgNyr−1) for Eastern China (110–123◦ E, 30–40◦ N), Europe (10◦ W–30◦ E, 35–60◦ N), the Eastern United States
(95–71◦ W, 32–43◦ N), South America (70–50◦ W, 20◦ S–Equator), Northern Africa (20◦ W–40◦ E, Equator–20◦ N), Central Africa (10–
40◦ E, 20◦ S–Equator), Southern Africa (26–31◦ E, 28–23◦ S), and Southeast Asia (96–105◦ E, 10–20◦ N) for January and July in 2007. The
regional emissions obtained from the a priori emissions, the newer inventories (EDGAR version 4.2, GFED version 3.1, and GEIA), and
those optimized from the full assimilation run and the emission inversion run (in bracket) are presented.

January July

A priori A posteriori newer inventories A priori A posteriori newer inventories

Europe 5.2 3.3± 0.2 (3.7± 0.3) 4.5 6.7 5.6± 0.6 (5.9± 1.1) 4.6
E-USA 2.4 2.8± 0.2 (2.5± 0.3) 2.5 3.0 2.2± 0.3 (3.1± 0.3) 2.5
C-Africa 0.7 1.0± 0.0 (1.3± 0.0) 0.6 4.9 4.9± 0.4 (5.9± 0.5) 3.5
E-China 2.9 4.8± 0.3 (4.3± 0.2) 3.6 3.5 4.8± 0.7 (4.5± 0.7) 3.6
S-Africa 0.2 0.6± 0.1 (0.6± 0.0) 0.3 0.3 0.3± 0.1 (0.3± 0.1) 0.3
S-America 0.4 0.6± 0.1 (0.6± 0.0) 0.5 0.9 0.6± 0.1 (0.9± 0.1) 0.8
N-Africa 7.4 5.4± 0.1 (6.1± 0.5) 4.8 1.6 2.8± 0.2 (3.2± 1.2) 1.4
SE-Asia 0.5 0.9± 0.1 (0.7± 0.1) 0.9 0.3 0.4± 0.0 (0.5± 0.1) 0.3

NO2 observations leads to a better agreement between mod-
eled and observed values, through the chemical response of
the CO-OH-NOx-NMHC system to emission changes.Jones
et al. (2009) also suggests that neglecting the influence of
NOx emissions on the CO chemistry could contribute to a
significant bias in the CO source estimates.

In our system, as shown in Figs. 4 and 5 and discussed in
Sect. 4.2, all the assimilated data significantly influence con-
centrations of OH, NO2, and CO. The assimilation of OMI
NO2 data generally increases (decreases) the OH concentra-
tion in the tropics (extratropics) by 15 %, which affects the at-
mospheric CO lifetime and influence the CO emission inver-
sion. Meanwhile, the higher CO emissions lead to a decrease
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Fig. 14. Global distributions of the surface CO emissions (in 10−10kgm−2s−1) (left panels), the surface NOx emissions (in
10−11kgm−2s−1) (centre panels), and the lightning NOx emissions (in 10−11kgm−2s−1) (right panels), averaged over the 16–30 Jan-
uary (upper 6 panels) and July (lower 6 panels) in 2007. The a priori emissions (upper rows) and the analysis increment (lower rows), i.e. the
difference between the a posteriori and the a priori, are shown for each panel. The red (blue) colour indicates an emission increase (decrease)
for the analysis increment, respectively.

Table 8.Same as in Table 7, but for the regional surface CO emissions (e(CO), in TgCOyr−1).

January July

A priori A posteriori newer inventories A priori A posteriori newer inventories

Europe 100.9 101.6± 4.0 (156.0± 5.3) 31.1 108.7 78.5± 4.4 (137.5± 21.1) 37.5
E-USA 55.4 23.4± 1.7 (47.5± 8.6) 28.5 60.3 22.8± 1.6 (39.4± 8.5) 28.6
C-Africa 21.9 16.5± 0.5 (17.1± 0.8) 15.4 206.5 201.3± 7.9 (252.4± 18.4) 212.8
E-China 66.8 175.3± 5.9 (198.0± 10.7) 62.4 66.8 115.7± 7.4 (131.0± 8.9) 62.5
S-Africa 2.6 1.7± 0.1 (3.7± 0.4) 2.0 3.6 11.3± 1 (11.3± 1.4) 5.7
S-America 13.0 6.2± 0.5 (5.8± 0.5) 4.1 16.6 5.5± 0.3 (5.8± 0.7) 39.0
N-Africa 306.1 174.4± 36.6 (177.9± 50.2) 292.7 59.1 28.6± 1.0 (39.2± 1.2) 33.8
SE-Asia 15.0 44.2± 5.3 (54.4± 0.6) 62.2 8.4 3.0± 0.3 (2.7± 0.3) 12.0

in OH abundances and slightly increases NO2 concentration
in the extratropics. The simultaneous data assimilation thus
provides comprehensive constraints on the emission inver-
sion. It is expected that the simultaneous data assimilation
provides a better estimate of the emissions than the inversion
run because the concentration assimilation may reduce some

of the model errors. However, this will not be the case for
all model errors. For instance, errors in boundary layer vent-
ing or deposition may be compensated in our assimilation
system by (incorrectly) changing the emissions. The a priori
and a posteriori emissions estimated from data assimilation
are shown in Fig. 14 and listed in Table 6, 7, and 8. Note

Atmos. Chem. Phys., 12, 9545–9579, 2012 www.atmos-chem-phys.net/12/9545/2012/



K. Miyazaki et al.: Simultaneous assimilation of tropospheric composition 9567

that the a priori surface emissions for the simulation years
2006–2007 were obtained by linearly temporal extrapolating
the 1995 and 2000 inventories.

5.2.1 NOx emissions

The data assimilation changes the global total NOx emis-
sions from 42.8 to 42.9 TgNyr−1 in January and from 46.7
to 52.0 TgNyr−1 in July. The a posteriori and the a priori
emissions differ more significantly at the regional scale. The
analysis increment is generally positive over Eastern China,
North America (only in January), Australia, Northern India
(only in January), Southeast Asia, and Southern Africa. An
obvious increment is observed over Eastern China, with a
factor of up to about 1.6 in January. Over the Eastern United
States, the a posteriori emissions are higher than the a priori
emissions in January, but are lower in July. The a posteriori
emissions are lower than the a priori emissions over Europe,
unlike over other industrial areas. Over Central Africa, the
data assimilation increases the emissions in January. Over
Northern Africa, the data assimilation decreases the emis-
sions in January, but increases the emissions in July. Most of
these features are also reported inMiyazaki et al.(2012). As
a result of the data assimilation and the covariance inflation,
the mean a posteriori error for the surface NOx emissions
typically ranges from 12 to 60 %, with smaller relative er-
rors over polluted areas than over clean areas. The mean dif-
ferences between the a priori and the a posteriori emissions
are generally larger than both the a posteriori error and the
variability (i.e., standard deviation) of the a posteriori emis-
sions estimated during the analysis period.

The analysis increment structures obtained from the data
assimilation strongly depend on the assumption made on the
a priori emission. In CHASER, the 1995 and 2000 emission
inventories are extrapolated to the simulation years 2006–
2007. This procedure may give spurious results for certain
regions, as described inMiyazaki et al. (2012). However,
the bottom-up emissions obtained from the newer invento-
ries (EDGAR version 4.2 (European Commission, 2011),
GFED version 3.1, and GEIA) for the year 2007 show a sim-
ilar difference with the a posteriori emissions. This indicates
common problems in the emission inventories (e.g. too little
emissions over Eastern China, the Eastern United States in
January, Central Africa in January, Northern Africa in July,
and Southern Africa in January, and too much emissions over
Europe in January, the Eastern United States in July, South
America in July). Note that the a posteriori emissions are
closer to the newer inventories than the a priori emissions
in some cases (e.g. over the Eastern United States, Eastern
China, Europe, and Southeast Asia). In particular, the a pri-
ori emissions in Spain are unrealistically high, which are very
different from both the a posteriori emissions and the newer
inventories.

The simultaneous data assimilation system results in
NOx emissions somewhat different from the emission inver-

sion system in which only surface emissions are optimized
(brackets in Tables 6 and 7). This indicates that the direct
adjustment to the concentration fields by the data assimila-
tion provides important effects upon the emission inversion,
with a regional difference of up to 40 % over industrial areas
and up to 30 % over biomass burning areas. For instance, the
emissions over Central Africa in the simultaneous data as-
similation are smaller than in the emission inversion, which
is attributed to the increased NO2 concentration in the mid-
dle and upper troposphere mainly due to the assimilation of
TES O3 data. The smaller emissions over the Eastern United
States for July in the simultaneous data assimilation results
from the larger NO2 concentrations in the middle and upper
troposphere, primarily by the adjustment made directly to the
concentrations due to the assimilation of OMI NO2 data.

The January and July mean global surface NOx emis-
sions of 47.4 TgNyr−1 estimated from the data assimila-
tion is slightly larger than the annual mean emissions es-
timated from previous studies (e.g. 42.1 TgNyr−1, Müller
and Stavrakou, 2005, 40.3 TgNyr−1, Jaegĺe et al., 2005,
45.4 TgNyr−1, Miyazaki et al., 2012). Differences in anal-
ysis years and the focus on only two months may primar-
ily contribute to the difference in NOx emission estimates.
The NOx emissions are generally larger over industrial ar-
eas in winter and over soil/desert areas in summer than in
other seasons; this may also contribute to the larger NOx
emissions estimated from this study compared to the an-
nual mean emissions. Meanwhile, the comparison against the
January and July mean a priori emissions (44.7 TgNyr−1)
and the newer inventories (40.4 TgNyr−1) implies general
underestimations in the emission inventories. On the re-
gional scale, the 11.0 TgNyr−1 estimated over East Asia
(80–150◦ E, 10–50◦ N) for July 2007 from OMI observations
(Zhao and Wang, 2009) is comparable to our estimates of
10.2 TgNyr−1. The 0.465 TgN estimated over the Eastern
United States (102–64◦ W, 22–50◦ N) from the OMI obser-
vations for March 2006 (Boersma et al., 2008a) is also com-
parable to our estimate of 0.485 TgN.

5.2.2 CO emissions

Because of the long chemical lifetime of CO in the tro-
posphere, the CO emission inversion requires an assimila-
tion cycle with a long assimilation window (i.e. by using
the 4D-Var assimilation technique (e.g.Hooghiemstra et al.,
2011)) in order to obtain enough constraints from observa-
tions. The CO emissions estimated from this study, based on
one-month calculation, may not have been sufficiently con-
strained by the observations. Further, the simultaneous data
assimilation corrects the CO concentrations from the MO-
PITT data obtained at the 9 pressure levels and at the surface,
whereas the emissions are optimized using the data only ob-
tained at 700 hPa (see Sect. 2.1.3). Consequently, the simul-
taneous data assimilation system can start by adjusting con-
centrations, and then the emissions will adjust more slowly,
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depending on the averaging kernel profile and the DOFs. The
estimated CO emissions are thus more strongly constrained
by the observations in the emission inversion run than in the
full assimilation run. Therefore only the CO emissions esti-
mated by the emission inversion system are presented, as de-
picted in Fig. 14 and listed in the brackets in Tables 6 and 8.

CHASER shows a large underestimation in the simulated
CO fields in the northern extratropics, as commonly revealed
by many CTMs (Shindell et al., 2006). The underestimated
CO fields might be mostly attributed to an underestimation
of the surface CO emissions along with an overestimation
of OH. Correspondingly, the assimilation of MOPITT data
largely increases the surface CO emissions in the northern
extratropics both in January (+66 %) and July (+25 %). The
large increase in the CO emissions are mainly attributed to
the increase over industrial areas, especially over Eastern
China in the both seasons with a factor of 2–3. The large
positive increment is consistent with the results ofArellano
et al.(2004), who showed that anthropogenic emissions over
Asia are too low in EDGAR v3.2. The decreased emissions
over North Africa and the increased emission over Australia
and South Asia (especially in January) are also consistent
with recent estimates (Jones et al., 2009; Fortems-Cheiney
et al., 2011). The large increments obtained for Central and
North Africa indicate a large uncertainty in biomass burning
in the GFED2 inventory, as similarly suggested byKopacz
et al.(2010). The larger emissions in winter than in summer
in the US, Europe, and East Asia are also commonly revealed
from recent inversions, which could be due to a combination
of emissions from residential heating and vehicle cold starts
(e.g.Kopacz et al., 2010). The newer inventories show lower
emission values than the a priori emissions over Europe,
whereas the data assimilation further increases the emissions
from the a priori emissions. In contrast, the a posteriori emis-
sions are significantly larger than both the a priori emission
and the newer inventories over Eastern China. Over Eastern
United States, the data assimilation decreases the emissions;
however, the newer inventories show even lower emissions.
These results imply different error characteristics in the dif-
ferent bottom-emission inventories.

Our a posteriori January and July mean estimate for the
surface CO emission is 1393 Tgyr−1, which is about 20 %
higher than the a priori emissions, mainly due to increased
emissions by up to 60 % in the Northern Hemisphere in
January. This is within 10 % of the results from previous
estimates of 1342–1502 TgCOyr−1 (Arellano et al., 2004;
Arellano and Hess, 2006), 1390 TgCOyr−1 (Hooghiem-
stra et al., 2011), 1391 TgCOyr−1 (Pison et al., 2009),
1393 TgCOyr−1 (Kopacz et al., 2010), 1440 TgCOyr−1

(Jones et al., 2009), 1504 TgCOyr−1 (Fortems-Cheiney
et al., 2011). The a posteriori emissions are also much larger
than the newer inventories (with the January and July mean
global emission of 892 TgCOyr−1).

5.2.3 Lightning NOx sources

The data assimilation provides strong constraint on the mag-
nitude and the distribution of LNOx. The global LNOx
amount is increased from 4.4 to 5.2 TgNyr−1 in January and
from 5.7 to 7.3 TgNyr−1 in July. The estimated emissions
are within the range of the annual global LNOx source of
5± 3 TgNyr−1 by Schumann and Huntrieser(2007). The
large increase in July corresponds to the significant in-
crease over the Eurasian continent, North America, South-
east Asia, the tropical South America, and Central Africa.
The data assimilation also changed the vertical profile of
the LNOx sources both in the tropical and extratropics. The
large changes in the three-dimensional distribution of LNOx
obtained from the data assimilation indicate that thePrice
and Rind(1992) lightning parameterization used in the sim-
ulation does not fully capture the observed distribution of
lightning activity, as also suggested byAllen and Picker-
ing (2002). In particular, the data assimilation generally in-
creases LNOx in the upper troposphere both in the tropics
and the extratropics. This suggests that the C-shape verti-
cal profile of lightning NOx assumed in the parameterization
may place too much mass near the surface and too little in the
middle troposphere, as also suggested byOtt et al. (2010).
Especially, TES O3 and OMI NO2 data provided particu-
larly strong constraints on LNOx sources. However, a light-
ning signal in satellite observations of NO2 columns is of-
ten obscured by the high contributions from (anthropogenic)
boundary layer pollution and biomass burning (Martin et al.,
2002, 2007; Boersma et al., 2005). Also the increase of the
NO/NO2 ratio with height in the troposphere reduces the rel-
ative sensitivity to lightning produced NO2. The lightning
signal is also almost comparable to the measurement uncer-
tainty for tropospheric NO2. Thus, further careful consider-
ations are required for LNOx estimates, which will be dis-
cussed in a separate study.

5.3 Relative importance of the emission and
concentration optimization on the tropospheric O3
analysis

As a result of the simultaneous optimization of the emis-
sions and the concentrations, the global tropospheric O3 bur-
den, which is calculated for the region below the tropopause
height determined from the vertical temperature gradient
(−2 Kkm−1) in the model, is decreased by 2.5 % in January
and is increased by 5.6 % in July in the full assimilation run
(Table 9). The obvious increase in July, from 346.8 to 366.1
TgO3, is almost equally attributed to the enhanced emissions
of the precursors and the direct adjustment to the concentra-
tion fields. The simultaneous optimization provides impor-
tant contributions to the tropospheric ozone budget analysis,
by optimizing its precursor emissions and reducing model
errors while taking the chemical feedback into account.
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Emission inversion - Control Emission-fixed assim - Control

Fig. 15. The latitude-pressure distribution of the relative difference of zonal mean O3 mixing ratio (in %) between the emission inversion
run and the control run (left) and the emission-fixed assimilation and the control run (right) averaged over 16–30 July 2007. The red (blue)
colour indicates relatively high (low) values in the inversion/assimilation run.

Figure 15 shows the relative importance of the emission
inversion and the direct concentration assimilation on the
vertical O3 profiles. The emission inversion largely changes
the O3 profiles in the PBL, especially below 900 hPa. This
demonstrates the importance of optimizing O3 precursors
fields in correcting the near surface O3. The obvious im-
pact in the PBL, with a mean difference of up to 15 %, is
found in the tropics and at northern mid-latitudes in July, as-
sociated with changes in biomass burning and anthropogenic
emissions, respectively. The regional differences are more
pronounced over the northern mid-latitudes polluted regions,
central Africa, and south America in July, with a maximum
difference of 30 % (figure not shown). Even in the free tropo-
sphere, the O3 analysis is significantly affected by the emis-
sion changes through vertical transport of O3 and its pre-
cursors. However, the direct concentration adjustment dom-
inates the changes in the O3 profiles in the free troposphere
in the combined data assimilation. The simultaneous adjust-
ment of the emissions and the concentrations is thus a power-
ful approach to optimize the whole tropospheric O3 profiles.

The sum of these two individual effects mostly explains
the difference between the full assimilation run and the con-
trol run (figure not shown). The O3 changes in the trop-
ical troposphere are an exception to this rule in that the
changes estimated from the sum of these two individual ef-
fects are slightly (∼15 %) larger than the changes estimated
from the full assimilation run. This may indicate too large
emission adjustments and resultant O3 productions in the
emission inversion run. The spatial pattern of the changes
in the O3 profiles obtained from emission inversion run and
the fixed-emission assimilation run is very different (figure
not shown), confirming the independent adjustments realized
from the emission and concentration optimizations.

Table 9. The 1-day average (on the 19th of each month in 2007)
global tropospheric O3 burden (TgO3) obtained from the control
run, the emission inversion run, and the full data assimilation run.

January July

Control 317.1 346.8
Emission inversion 312.5 356.6
Full assimilation 309.4 366.1

5.4 Uncertainties

The EnKF data assimilation provides information about the
uncertainty of the analysis. The ensemble spread, estimated
as the standard deviation of the simulated concentrations
across the ensemble, is a measure of the analysis uncertainty
(e.g.Arellano et al., 2007). The uncertainty in the a posteri-
ori fields represented by the analysis spread is reduced if the
analysis converges to a true state. This spread is caused by er-
rors in the model input data, chemical or physical parameters,
parameterizations, the numerical scheme as well as errors in
the measurements assimilated (Boynard et al., 2011).

Figure 16 shows the distributions of the analysis spread
for O3, CO, and NO2. The analysis spread typically shows a
reduction of the analysis errors due to effective (high qual-
ity, high sensitivity, good coverage) observations and an in-
crease due to error growth as represented by the ensemble
model forecast and the covariance inflation. Near the sur-
face, the analysis spread of O3 and CO is generally smaller
in the tropics than in the extratropics, corresponding to the
latitudinal dependence of TES O3 and MOPITT CO retrieval
sensitivities, respectively. The vertical profile shows that the
analysis spread is effectively reduced in the middle tropo-
sphere, reflecting the maximum sensitivity of the retrievals at
these altitudes. Within the free troposphere, the O3 analysis

www.atmos-chem-phys.net/12/9545/2012/ Atmos. Chem. Phys., 12, 9545–9579, 2012



9570 K. Miyazaki et al.: Simultaneous assimilation of tropospheric composition

O3, 700 hPa [ppb] NO2, Sfc [ppt]CO, 700 hPa [ppb]

O3, lat-p [%] NO2, lat-p [%]CO, lat-p [%]

Analysis ensemble spread

Fig. 16.Analysis ensemble spread of O3 (left), CO (centre), and NO2 (right) averaged over 16–30 July 2007. Upper panels show the global
distribution at 700 hPa. Lower panels show the latitude-pressure distribution of the percentage ratio of the zonal mean analysis ensemble
spread to the zonal mean analysis ensemble mean concentration. The red (blue) colour indicates relatively high (low) values.

spread is relatively high in the tropical upper troposphere.
The OSEs showed that the assimilation of MLS HNO3 data
acts to increase the O3 analysis spread in the tropical up-
per troposphere during the forecast, through its influence on
the NOy species fields during the analysis and because of
its large observation errors. In the extratropical upper tropo-
sphere and around the subtropical jet streams, the downward
propagation of the well constrained O3 due to the assimila-
tion of MLS O3 data helps to reduce the analysis spread. The
CO analysis spread is maximum at the northern mid-latitudes
near the surface, related to large uncertainties in the ana-
lyzed CO emissions. The analysis spread of NO2 is closely
related to the emissions near the surface, while it also has
strong latitude-vertical dependence. The analysis spread is
generally maximum in the upper troposphere, which is a re-
sult of the low concentrations which are not well constrained
by the OMI data. The large analysis spread in the southern
extratropics is related to large relative observation errors of
OMI NO2 data related to the low concentrations. These large
analysis spreads indicate requirements for further constraints
from additional observations or higher quality data.

The assimilation system can also be used to diagnose
model and/or observation errors. We use the difference be-
tween analysis and forecast, the so-called analysis incre-
ment, to represent short-term systematic errors in the model
(Fig. 17). By assuming that the assimilated fields approxi-
mate the assimilated data after several assimilation cycles,
the averaged analysis increment primarily relates to the per-
sistent model bias. The increment thus represents the adjust-
ment made in the analysis step to bring the model closer to

the observations, and the spatial distribution of the averaged
increments shows where the model fields are frequently ad-
justed by the data assimilation. The positive increments ob-
tained for O3 and CO in the extratropical lower troposphere
imply that CHASER tends to underestimate those concen-
trations in these regions compared to the assimilated data.
Positive increments of O3 are frequently observed over the
northern Eurasian continent, around North America, and over
the Southern Ocean. The OSEs confirms that the positive O3
analysis increments in the lower and middle troposphere are
due to the TES O3 data, while the upper tropospheric nega-
tive increments are due to both the TES and MLS O3 data.
This implies that the model bias strongly varies with height,
because of different contributions of transport and chemical
processes. The data assimilation also tends to increase CO
over East China and North America near the surface, as sim-
ilarly shown byElguindi et al.(2010), whereas it decreases
CO in the tropics. The negative NO2 increments in the tropi-
cal and high-latitudes troposphere are associated with the as-
similation of very small or negative OMI NO2 concentrations
mainly over the oceans. The large positive NO2 increments
obtained for the extratropical UTLS reflects the fact that the
assimilation of MLS O3 and HNO3 data tends to compensate
for the model underestimation through the inter-species cor-
relation. The knowledge of the model error structure is use-
ful to identify sources of the model error.Geer et al.(2006)
showed that the enhanced skill of the best performing analy-
sis can usually be attributed to better modeling.
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Fig. 17.Same as Fig. 16, but for the analysis increment. Lower panels show the latitude-pressure distribution of the percentage ratio of the
zonal mean analysis increment to the zonal mean analysis ensemble mean concentration. The red (blue) colour indicates relatively positive
(negative) values.

6 Conclusions

An advanced data assimilation system for tropospheric
chemical compositions, the CHASER-DAS, is developed
based on the CHASER model and the LETKF scheme. The
data assimilation system is applied to integrate observa-
tion information obtained from multiple satellite measure-
ments, namely, NO2 data from OMI, O3 data from TES,
CO data from MOPITT, and O3 and HNO3 data from MLS.
The data assimilation provides multiple constraints on tro-
pospheric composition and allows us to simultaneously opti-
mize the atmospheric distributions of various chemical com-
positions together with the emissions of O3 precursors (NOx
and CO) while taking their chemical feedbacks in the CO-
OH-NOx-O3 system into account. In the simultaneous data
assimilation system, improved atmospheric concentrations of
chemically-related species have the potential to improve the
emission inversion, while the improved emissions estimates
will benefit the atmospheric concentration analysis through
a reduction in the model forecast error. A covariance local-
ization technique is applied to neglect the covariance among
non-related or weakly-related variables which may suffer
significantly from errors in the ensemble sampling and the
forecast model.

The improvement obtained by the assimilation demon-
strates that multi-species data assimilation provides valu-
able information on various chemical fields. The OmF anal-
ysis confirmed significant error reductions for both bias and
RMSE from the data assimilation. The standard deviation
around the mean of the OmF is generally comparable to the

observation error, indicating that the data assimilation is suc-
cessfully performed. Significant reductions of both bias (by
85 %) and RMSE (by 50 %) against independent data sets for
various chemical fields show that multi-species data assimi-
lation is a very effective way of combining observation infor-
mation and compensating for systematic model errors. The
improvements include enhanced tropospheric NO2 columns
over industrial areas (with a global mean bias reduction of
40–85 %), especially over China, reduced positive O3 bias in
the middle and upper troposphere (by 60 %), reduced nega-
tive CO bias in the Northern Hemisphere in the lower tro-
posphere (by 40–90 %), especially over East Asia and North
America, and a reduced negative HNO3 bias in the extratrop-
ical UTLS (by 70–85 %). Comparisons against ozonesonde
and aircraft data confirmed improvements in the vertical pro-
files of O3 and its precursors in the free troposphere and the
UTLS through the data assimilation. The data assimilation
removes most of the bias from the middle troposphere to the
lower stratosphere against ozonesonde data, from 30–40 % to
within 10 %. The results confirm that the assimilated satellite
data have highly valuable information about the tropospheric
chemical processes, although further improvements are re-
quired for the lower tropospheric processes.

OSEs have been conducted to quantify the relative impor-
tance of each data set on constraining the emissions and con-
centrations. The assimilation of each individual dataset has
a strong influence on both assimilated and non-assimilated
species through the use of inter-species error correlations and
through the chemical model. For instance, the assimilation of
upper tropospheric O3 and HNO3 obtained from MLS was
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useful to reduce the bias in the tropospheric NO2 columns.
Comparisons against independent ozonesonde data showed
that both MLS and TES O3 data largely improve the O3 pro-
files in the free troposphere and the UTLS. Note that all the
assimilated data contribute to the global mean O3 bias re-
duction compared to ozonesonde data in the middle tropo-
sphere (between 750 and 450 hPa) in July, through their in-
fluences on various chemical states that affect O3 variations.
Especially this last result demonstrates the strength of the
simultaneous assimilation of multiple datasets for different
species. These inter-species influences can be tightly associ-
ated with the changes in OH. The simultaneous assimilation
increased tropospheric OH concentrations in July by 5–15 %
in the tropics and the Southern Hemisphere mainly due to the
assimilation of OMI NO2 and TES O3 data, respectively. The
large improvement in July may be related to summertime ac-
tive chemical processes in the Northern Hemisphere.

In comparison to the a priori emissions based on bottom-
up inventories (EDGAR3.2+GFED2.1+REAS1.1), the opti-
mized emissions of both NOx and CO are generally higher
over most industrial areas, especially in the northern mid-
latitudes, implying that the emission inventories underesti-
mate sources. The NOx emissions estimated from the simul-
taneous data assimilation are different from those from the
emission inversion system in which only the emissions are
optimized from observations. The results indicate a large un-
certainty in the a posteriori NOx emissions due to model er-
rors when estimating from NO2 data only, with an uncer-
tainty of up to 40 % over industrial areas and up to 30 % over
biomass burning areas, as measured by the impact of the con-
centration assimilation on the a posteriori emissions. The si-
multaneous assimilation of multiple chemical observations
is very useful to represent the chemical processes in a realis-
tic way by removing model errors, and it provides important
effects upon the emission inversion. The CO emissions esti-
mated in this study may not have enough constraint from ob-
servations, because the calculation period is too short and the
observational information is insufficient. Nevertheless, com-
parison of our results to previous inverse modeling studies
(e.g. Kopacz et al., 2010) is very encouraging. The uncer-
tainties in the a priori emissions, based on an extrapolation
of year 1995 and 2000 inventories, caused large increments
especially over anthropogenic source areas. The data assim-
ilation also increases the lightning NOx sources over land,
especially in boreal summer, indicating that the lightning pa-
rameterization used in the simulation has a large uncertainty.

As a result of the simultaneous optimization, the tropo-
spheric O3 burden is increased by 5.6 % in July, with almost
equal contributions from the emission optimization and the
direct adjustment to the concentration fields. The emission
optimization dominated the changes in the O3 profiles in the
PBL in the tropics and at northern mid-latitudes, whereas the
direct concentration adjustment was much more important in
the free troposphere. This reveals the importance of the si-

multaneous adjustment of the emissions and concentrations
for the tropospheric ozone budget and profile analyses.

7 Discussions: future challenges

The CHASER-DAS provides valuable information for the
future development of both models and observations. The en-
semble spread can be a measure of the analysis uncertainty.
The observed large analysis spreads for O3 and NO2 in the
tropical upper troposphere and near the surface indicate a
requirement for further constraints from additional observa-
tions or high quality data to improve the analysis. The analy-
sis increment obtained during the data assimilation cycle pri-
marily relates to persistent model biases. The positive analy-
sis increments obtained for O3 and CO imply that CHASER
tends to underestimate (overestimate) O3 (CO) concentra-
tions in lower/middle troposphere and tends to overestimate
(underestimate) them in the upper troposphere. This informa-
tion is useful to identify sources of the model error and im-
prove the performance of both model and data assimilation.
The large analysis spreads and increments near the surface
also indicate a requirement for better emission data sets.

The simultaneous assimilation of multiple satellite
datasets is an important development for improving chemi-
cal weather forecasting (e.g.Kaminski et al., 2008) and better
understanding the processes controlling the atmospheric en-
vironment. However, further developments are still required.
First, more observation data are required to constrain O3 and
its precursors, especially near the surface. Retrieval sensitiv-
ity to the lowermost troposphere is critical for the emission
inversion and the near surface air quality analysis. For in-
stance, adding the near infrared (NIR) channel to the MO-
PITT retrieval increases the near surface sensitivity (Deeter
et al., 2010), which may help to improve the analysis, while
the IASI retrievals may contain information on the spatial
extent of plumes (Coheur et al., 2009). Also, the emissions
of O3 precursors other than NOx and CO, such as VOCs,
have a pronounced influence on tropospheric chemistry. Fur-
ther constraints are required for these fields; in particular,
satellite CH2O data may provide a significant constraints on
VOCs emissions. Apart from the lower tropospheric obser-
vations, high quality satellite observations in the UTLS are
needed for O3 and HNO3, potentially augmented with CO
and PAN as well as short-lived gases such as NO2 (ESA,
2012). Second, the model resolution is too coarse to describe
accurately small scale processes. A chemical data assimila-
tion requires observations with sufficient spatial and tempo-
ral resolution to capture the heterogeneous distribution of tro-
pospheric composition. In order to better take into account
the small scale information available in the dataset, it is im-
portant to increase the model resolution close to the data set’s
resolution, as suggested byPajot et al.(2011) and demon-
strated using regional data assimilation systems (e.g.Hanea
et al., 2004). In addition, the combined use of satellite and
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surface in-situ data may provide strong constraints on the
near surface analysis at high resolution. Third, introduction
of a reasonable bias correction scheme is important to im-
prove the analysis, especially when multiple data sets are si-
multaneously assimilated (e.g.Dee, 2005).

Appendix A

System ability check based on synthetic observations

It is of great interest to test the ability of the data assimila-
tion system to improve the O3 analysis in the presence of an
emission error. We conducted an idealized data assimilation
experiment, the so-called twin experiment (e.g.Ghil et al.,
1991), by perturbing both the initial condition and the NOx
emission. The purpose of this experiment is to demonstrate
that the data assimilation is properly implemented and quan-
tify how the emission optimization influences the O3 anal-
ysis, as similarly performed byConstantinescu et al.(2007)
andMessina et al.(2011). Under the assumption of the per-
fect model scenario (i.e. a forecast model provides a perfect
representation of the atmosphere), the actual background er-
ror (Pb without model errorsQ) and observation error (R)
statistics can be determined precisely, so that the perfect
model experiment allows us to demonstrate the importance
of the data assimilation without unexpected model and ob-
servation errors.

A time series of a reference solution (or true state) for
O3 and NO2 fields was generated by the simulation (with-
out any assimilation) of the CTM using unperturbed emis-
sions (i.e. the a priori emissions used for the real data assim-
ilation). The reference solution was used to obtain artificial
observation data and initial conditions for ensemble simula-
tions and to validate the analysis. The artificial observation
data were obtained from the true state, with the addition of
zero-mean Gaussian random noise as observation errors with
standard deviations of 10 % of the reference concentration. It
was assumed that observation stations were located at 6.25 %
(12.5 %) of the model grid points for O3 (NO2) in the hori-
zontal; the vertical partial column with 3 km resolution was
assimilated every 6 h. The state vector includes O3 concen-
tration and NOx emissions. The O3 data was used to update
the O3 concentration, while the NO2 data was used to up-
date NOx emissions. The number of the assumed observa-
tions was larger than that in the real world, and it will affect
the data assimilation performance. However, this idealized
setting helps to demonstrate the ability of the system with
enough constraints from observations. The simulated fields
on 1 November 2007, were used in the initial assimilation
cycle, and the analysis for 7–8 November was evaluated. The
background error covariance for the initial assimilation cycle
was obtained from the the lagged average forecast (Hoffman
and Kalnay, 1983); the initial ensemble concentration fields

were obtained from the reference simulation during 28 Octo-
ber to 4 November 2007.

Because of the biased emissions (constructed based on the
annual mean a priori emissions), the model simulation with-
out data assimilation has large errors in the simulated O3
fields in the lower troposphere. The mean O3 RMSE normal-
ized by the background concentration averaged over 10◦ S–
50◦ N latitudinal bands at 950 hPa is 23.7 % for the model
simulation, which is almost the same as the initial error of
25.0 %. The assimilation of O3 data reduces it to 16.5 %. The
assimilation of NO2 data helped to improve the O3 analysis
by reducing the errors included in the O3 simulation due to
biased NOx emissions; the normalized O3 RMSE is 14.2 %
with a regional mean NOx emission bias (RMSE) reduction
of 41 (30) %. The assimilation of both O3 and NO2 data pro-
vided the best performance analysis, with a normalized O3
RMSE of 11.7 %, which is almost equivalent to the assumed
observation error (i.e. 10 %). In contrast, in the free tropo-
sphere (e.g. at 500 hPa), assimilation of O3 data provided a
much more significant improvement of the O3 analysis than
that provided by the NO2 data. These results confirm that
the simultaneous optimization for O3 concentration and its
precursors emissions is a powerful framework for the tropo-
spheric chemistry analysis.
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Edwards, D. P., Ṕetron, G., Novelli, P. C., Emmons, L. K.,
Gille, J. C., and Drummond, J. R.: Southern Hemisphere
carbon monoxide interannual variability observed by
Terra/Measurement of Pollution in the Troposphere (MOPITT),
J. Geophys. Res., 111, D16303,doi:10.1029/2006JD007079,
2006.

Elbern, H. and Schmidt, H.: Ozone episode analysis by four-
dimensional variational chemistry data assimilation, J. Geophys.
Res., 106, 3569–3590, 2001.

Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission
rate and chemical state estimation by 4-dimensional variational
inversion, Atmos. Chem. Phys., 7, 3749–3769,doi:10.5194/acp-
7-3749-2007, 2007.
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