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Abstract. A new analytical parameterization of homoge-
neous ice nucleation is developed based on extended classi-
cal nucleation theory including new equations for the critical
radii of the ice germs, free energies and nucleation rates as si-
multaneous functions of temperature and water saturation ra-
tio. By representing these quantities as separable products of
the analytical functions of temperature and supersaturation,
analytical solutions are found for the integral-differential su-
persaturation equation and concentration of nucleated crys-
tals. Parcel model simulations are used to illustrate the gen-
eral behavior of various nucleation properties under various
conditions, for justifications of the further key analytical sim-
plifications, and for verification of the resulting parameteri-
zation.

The final parameterization is based upon the values of the
supersaturation that determines the current or maximum con-
centrations of the nucleated ice crystals. The crystal concen-
tration is analytically expressed as a function of time and can
be used for parameterization of homogeneous ice nucleation
both in the models with small time steps and for substep pa-
rameterization in the models with large time steps. The crys-
tal concentration is expressed analytically via the error func-
tions or elementary functions and depends only on the fun-
damental atmospheric parameters and parameters of classical
nucleation theory. The diffusion and kinetic limits of the new
parameterization agree with previous semi-empirical param-
eterizations.

1 Introduction

Homogeneous freezing of haze particles and cloud droplets
plays an important role in crystal formation in cirrus, oro-
graphic, deep convective clouds and other clouds under low
temperatures. Development of parameterizations of homoge-
neous ice nucleation suitable for cloud and climate models
has been underway for the past several decades. These pa-
rameterizations have been mostly semi-empirical, based on
heuristic relations for various properties of ice nucleation:
nucleation rates, critical humidities, nucleated crystal con-
centrations, etc. These parameterizations have been devel-
oped using parcel model simulations and either experimental
data or some relations of classical nucleation theory or alter-
native nucleation theories.

These parameterizations can be separated into two general
types. The first type provides equations for the instantaneous
characteristics of the nucleation process at any given inter-
mediate time of nucleation. The second type considers the
entire nucleation process as a sub-step process (taking less
than one time step in a model) and derives equations for the
final characteristics of the nucleation process after the nucle-
ation has ceased: crystal concentrations, radii, masses.

Parameterizations of the first type.One of the most impor-
tant characteristics of freezing is the nucleation rate,Jhom,
the number of ice embryos formed per unit volume per unit
time. Heymsfield and Miloshevich (1993) used results from
the statistical molecular model of Eadie (1971) and fitted
Jhom,0 for pure water with a power law expression.

Jhom,0(T )= 10−X(Tc),X(T )=

4∑
i=0

Ai,HMT
i
c, (1)
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with Jhom,0 in cm−3 s−1, Tc is temperature in degrees Cel-
sius, andA0,HM = 606.3952, A1,HM = 52.6611, A2,HM =

1.7439, A3,HM = 0.0265, A4,HM = 1.536× 10−4. Experi-
mental data show that the freezing rates of haze particles
are smaller than given by this equation, since they are de-
pressed by the presence of solute. Sassen and Dodd (1988,
1989) suggested describing this depression of the nucleation
rate by introducing an effective freezing temperature

T ∗
= T + λSD1Tm, or 1Tf = T ∗

f − T = λSD1Tm, (2a)

whereT is temperature in degrees Kelvin,1Tm and1Tf
are the depressions of the melting and freezing temperatures
respectively. Then the nucleation freezing rateJf,hom of the
haze particles could be calculated with Eq. (1) but withT ∗

instead ofT . The valueλSD = 1.7 was chosen in Sassen and
Dodd (1988) as an average over the experimental data by
Rasmussen (1982) on the relationship between depressions
of the nucleation and melting temperatures for a number of
salts. It was clarified later that the coefficient 1.7 is not uni-
versal, and can vary over the range 1.4–2.4 and may reach
3–5 for some organic substances, depending on the chemi-
cal composition and concentration of a solute (Martin, 2000;
Chen et al., 2000; Lin et al., 2002; DeMott, 2002; Koop and
Zobrist, 2009).

DeMott et al. (1994) suggested a parameterization of1Tm
for ammonium sulfate as a function of molalitŷM. Molality
was evaluated in terms of the equilibrium particle diameter,
which was calculated using K̈ohler’s (1936) equation and the
freezing point depression was calculated with Eq. (2a). De-
Mott et al. (1994) used Eqs. (1), (2a) and their parameteri-
zation ofM̂ to calculate the frozen fractionFhf of the haze
particles at variousT and water saturation ratiosSw. Having
calculatedFhf at variousT andSw and assuming an expo-
nential size spectrum of haze particles, DeMott et al. (1994)
suggested a fit for the concentration of nucleated crystals as
an integral ofFhf over the haze size spectrum. This scheme
reproduced the experimental data on ice nucleation of haze
particles and was suitable for use in cloud models.

An important characteristic of homogeneous ice nucle-
ation is the critical humidity or the critical water saturation
ratio Shom

w,cr. Sassen and Dodd (1988, 1989) and Heymsfield
and Miloshevich (1995) parameterizedShom

w,cr as polynomial
fits by the temperature. Sassen and Benson (2000) gener-
alized these equations to account for wind shear. Koop et
al. (1998) and Bertram et al. (2000), based on their measure-
ments of the freezing temperaturesTf of aqueous solutions
droplets of sulfuric acid and ammonium sulfate, parameter-
ized Tf as polynomial functions of the solution concentra-
tion. Using these data and thermodynamic model of Clegg et
al. (1998), these authors developed parameterizations of the
critical humidities, water activity and freezing point depres-
sion as the polynomial functions of the water vapor pressure.

Koop et al. (2000) suggested a parameterization ofJhom,f
similar to Heymsfield and Miloshevich (1993) for pure water,

but accounted for solute effects parameterized with polyno-
mial fits of1aw = aw − ai

w, whereaw is the water activity
in the liquid solution andai

w is the activity of water in solu-
tion in equilibrium with ice. Koop et al. (2000) assumed that
in equilibrium aw is equal to the environmental water satu-
ration ratioSw, andai

w was parameterized as an exponential
function of the chemical potentials of water in pure ice and
pure liquid water, respectively.

Many of these empirically based dependencies can be de-
scribed with classical nucleation theory (CNT) for homo-
geneous and heterogeneous ice nucleation (Frenkel, 1946;
Dufour and Defay, 1963; Defay et al., 1966; Pruppacher
and Klett, 1997, hereafter PK97; Seinfeld, and Pandis, 1998;
Kashchiev, 2000). CNT was extended further in a number of
works as reviewed in Laaksonen et al. (1995), Mishima and
Stanley (1998), Ice Physics (1999), Slezov and Schmelzer
(1999). Subsequent extensions of CNT were performed by
Khvorostyanov and Sassen (1998a, 2002, hereafter KS98a,
KS02), by Khvorostyanov and Curry (2000, 2004a, b, 2005,
2009a, hereafter KC00, KC04a,b, KC05, KC09a) and Curry
and Khvorostyanov (2012, hereafter CK12). Analytical ex-
pressions for the critical radiircr of ice germs, critical ener-
gies1Fcr, and nucleation ratesJnuc derived in these works
describe the dependence of these quantities not only on the
temperatureT as in CNT, but also the dependencies on wa-
ter saturation ratioSw, finite radius of freezing particles, ex-
ternal pressure and some other factors. In particular, KS98a
showed that the concentrations of nucleated crystals calcu-
lated with this extended CNT were very close to those in
the semi-empirical scheme by DeMott et al. (1994). The ex-
pressions forrcr, 1Fcr, Jnuc for solution particles in KS98a
and KC00 depended on water saturation ratioSw, but depen-
dence on chemical composition vanished in the derivation.
Thus, these expressions predicted that nucleation characteris-
tics are a colligative property that do not depend on chemical
nature of solute substance. This was confirmed by Koop et
al. (2000) from an analysis of experimental data on freezing
temperatures of various substances. It was shown in KC04a,b
that the relation between the freezing and melting point de-
pressions analyzed in Sassen and Dodd (1988, 1989) can be
derived from the extended CNT.

Furthermore, the equivalence of the solution and pressure
effects discussed in Kanno and Angell (1977) and in Koop
et al. (2000) based on the experimental data was derived in
Khvorostyanov and Curry (2004a) from the extended CNT
in a simple quantitative form

1p=−Qp lnSw≈−Qp lnaw,Qp(T ,p)=
RTρiρw

Mw(ρw−ρi)
, (2b)

where1p is the external pressure,R is the universal gas con-
stant,ρi and ρw are the densities of ice and water,Mw is
the molecular weight of water. This equation relatesSw (or
equivalent molality) and1p, and shows that a decrease in
Sw (increase in solution molality) is equivalent to an increase
in 1p, with proportionality determined by the functionQp
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that depends on the densities and temperature. The propor-
tionality is1p ∼ −T lnSw with constant densities, although
they in turn depend onp, T . The value ofQp in Eq. (2b) cal-
culated in KC04a is very large,Qp ∼ 104 atm atT ∼ 273 K
and increases with decreasingT , so that a saturation ratio
Sw = 0.9 (ln Sw ≈ −0.1) at T ∼ 273 K is equivalent to a
high external pressure of∼ 103 atm. It was shown in KC04
that Eq. (2b) allows a simple quantitative description of the
solution-pressure equivalence in the depression of the melt-
ing and freezing points experimentally derived in Kanno and
Angell (1977) and is in a good agreement with the laboratory
measurements at high pressures. These comparisons show
that many empirical functional dependencies of nucleation
and parameterizations can be derived from CNT.

The densities of ice and water,ρi andρw, and other ther-
modynamic parameters of water and ice at low temperatures
and high pressures can be calculated from the equations of
state forwater and ice or can be obtained from standard ta-
bles recommendable from the new International Thermody-
namic Equation Of Seawater 2010 (TEOS-10) (e.g., Jeffery
and Austin, 1997; Feistel and Wagner, 2006; IOC, SCOR,
and IAPSO, 2010; McDougall et al., 2010; Holten et al.,
2011, 2012; Feistel, 2012; IAPWS, 2012). Reviews of the re-
cently refined equations of state for water and ice, the recent
developments of the nucleation theory and their applications
for ice nucleation and deliquescence-efflorescence phenom-
ena are given in Hellmuth et al., 2012a, b).

Parameterizations of homogeneous freezing of the second
typeas a sub-step process in the models include more inter-
mediate steps and assumptions. Such parameterizations are
also semi-empirical, and as examples we describe the param-
eterizations developed by Kärcher and Lohmann (2002a, b)
and Ren and MacKenzie (2005). The methods used in these
parameterizations are similar to the method developed by
Twomey (1959) for drop activation. The basis of these pa-
rameterizations is the equation for ice saturation ratioSi . The
sink term in this equation, the deposition rate in an ensemble
of the crystals, is defined as the time integral of the number
density of aerosol particles dnc(t0)/dt0 that freeze within the
time interval betweent0 andt0 + dt0, with monodisperse or
polydisperse model of the haze particles. To solve this non-
linear system of equations, the authors introduce several ad-
ditional hypotheses. Following Ford (1998a, b), a hypothe-
sis on the exponential time behavior of the nucleation rate
Rf,hom = dnc/dt0 was introduced

dnc

dt0
= Rf,hom(t0)= Rf,hom(t)exp

(
−
t − t0

τnuc

)
, (3)

where τnuc is a characteristic time scale of the nucleation
event, unknown for now, which has to be determined. Inte-
gration of Eq. (3) byt yields

Nc =

t∫
−∞

dt0Rf,hom(t0)= Rf,hom(t)τnuc. (4)

An additional heuristic hypothesis was introduced for the
timescale of the nucleation eventτnuc by Kärcher and
Lohmann (2002a, b) relating it to the temperature change rate
dT /dt ,

τ−1
nuc = cτ

(∣∣∣∣∂ lnJhom

∂T

∣∣∣∣)
Si=Si,cr

dT

dt
. (5)

The unknown parametercτ was parameterized in K̈archer
and Lohmann (2002a) as a function of temperature, and
was replaced with a constant valuecτ = 50 in Kärcher and
Lohmann (2002b). Ren and MacKenzie (2005) arrived at a
simpler expression,τ−1

nuc ≈ cτ (T )(dT /dt), wherecτ was ap-
proximated by the temperature polynomial. A further hy-
pothesis was that the ice saturation ratioSi changes only
slightly around its critical valueSi,cr during the nucleation
event, and it can be assumed thatSi(t)≈ Si,cr(T ). An addi-
tional assumption is that diffusional growth of the nucleated
crystals is described by the equations for the diffusion growth
regime with kinetic corrections. And finally, they assume that
homogeneous ice nucleation stops whenSi reaches a maxi-
mum, dS i /dt = 0 atSi,cr.

With these assumptions, Kärcher and Lohmann (2002b)
and Ren and MacKenzie (2005) found analytical solutions
for Rf,hom(t0) and the concentrations of the nucleated crys-
tals Nc, and studied several limiting cases. In particular,
they found for the diffusion growth regime,Nc ∼w3/2, and
Nc ∼ ρ

−1/2
is , wherew is the vertical velocity andρis is the sat-

urated vapor density over ice. For the kinetic crystal growth,
Ren and MacKenzie (2005) found thatNc ∼w for the large
particles, andNc ∼w2,Nc ∼ ρ−2

is for small particles.
Barahona and Nenes (2008) developed a similar sub-

step parameterization of homogeneous ice nucleation, using
Twomey’s (1959) upper limit approximation for ice supersat-
uration, and a representation for the nucleation rate similar to
that from Khvorostyanov and Curry (2004b)

ln
Jhom(Si)

Jhom(Si,cr)
= bτ (T )(Si − Si,cr). (6)

They used the temperature dependence forbτ (T ) from Koop
et al. (2000), made several auxiliary simplifications and ar-
rived at a parameterization that required an iterative numeri-
cal solution. All the parameterizations described above used
parcel models for tuning the parameters of the final parama-
terization equations.

In the studies reviewed above, it was assumed that stable
hexagonal ice Ih nucleates in supercooled water or solution
droplets. The thermodynamic parameters associated with ice
Ih were therefore used when interpreting the data. Evidence
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was provided recently that metastable cubic ice Ic may form
first in some cases at low temperatures, especially atT<200
K, with subsequent relaxation to the stable ice Ih (e.g., Mur-
ray et al., 2005, 2010; Murray and Bertram, 2006; Malkin et
al., 2012). However, uncertainty remains in the general con-
ceptual picture of this sequence of the processes, and a wide
spread in the current data on the thermodynamic parameters
for Ic, so that the nucleation rates for Ic estimated with CNT
may vary by many orders of magnitude (e.g., Murray et al.,
2010). We therefore assume in this work, as in most of the
others, that hexagonal ice Ih nucleates in droplets and use
the corresponding parameters for Ih. Calculations for Ic or
any other type of ice can be done using the same equations
derived in this work with corresponding changes of the ther-
modynamic parameters: the surface tension, melting heat,
saturated vapor pressure, etc.

We have shown above that many (or most) parameteriza-
tions of ice nucleation of the first type can be derived from
CNT. A question arises as to whether the more complicated
parameterizations of the second type (integral) can be also
derived from the CNT. This paper addresses homogeneous
freezing of deliquescent haze particles and water drops. The
new analytical parameterization developed here is based di-
rectly on extended classical nucleation theory with mini-
mum auxiliary hypotheses and simplifications. Parcel model
simulations are used in Sect. 2 to illustrate the general be-
havior of various nucleation properties under various condi-
tions, for justification of key analytical simplifications, and
for their verification. The new analytical solutions are de-
rived in Sect. 3, and the diffusion and kinetic limits are deter-
mined. It is shown that the new analytical dependencies agree
with the previous parameterizations and can be expressed in
terms of the primary parameters of modified classical theory.

2 Kinetics of homogeneous ice nucleation simulated
with a parcel model

2.1 Parcel model

The parcel model used here was described in Khvorostyanov
and Curry (2005, hereafter KC05). The parcel model is a
zero-dimensional or Lagrangian model of an adiabatic ris-
ing air parcel that cools, causing nucleation and growth of
the drops and crystals. All variables depend only on timet .
The dynamics in this parcel model is parameterized by pre-
scription of a vertical velocityw constant in time. The pri-
mary thermodynamic equations are the prognostic equations
for supersaturation and temperature. This system of equa-
tions includes terms that describe the phase transitions and
is closed using the two kinetic equations for the drop and
ice crystal size distribution functions that account for nucle-
ation, condensation and deposition, and two equations for the
droplets and crystals growth rates. Similar to the methodol-
ogy adopted for the Cirrus Parcel Model Comparison Project

(CPMCP, Lin et al., 2002), we exclude from consideration
coagulation among the droplets and aggregation between the
droplets and crystals, sedimentation, entrainment, turbulent
exchange, etc. to isolate the effects directly related to nucle-
ation processes. The system of equations comprising the par-
cel model is described below.

The heat balance is calculated using the equation for the
temperatureT in a wet adiabatic process:

dT

dt
= −γaw+

Le

cpρa
Icon+

Ls

cpρa
Idep+

Lm

cpρa
Ifr, (7)

whereγa is the dry adiabatic lapse rate,Le, Ls andLm are
the latent heats of condensation, deposition and melting (cal
g−1), cp is the specific heat capacity,ρa is the air density,
Icon, Idep and Ifr are the rates of condensation, deposition,
and freezing (g cm−3 s−1).

Both water and ice supersaturation govern ice nucleation
kinetics: water supersaturation determines the nucleation
process, and growth of ice particles is determined by ice su-
persaturation. We consider the equations for fractional wa-
ter and ice supersaturations,sw = (ρv − ρws)/ρws, andsi =

(ρv − ρis)/ρis, whereρv is the environmental water vapor
density,ρws andρis are the densities of vapor saturated over
water and ice, respectively. In a rising air parcel, supersatu-
ration is governed by two competing processes: supersatura-
tion generation by cooling in an updraft and supersaturation
absorption by the crystals in the vapor deposition process.

This process can be described by the supersaturation equa-
tions that account for homogeneous ice nucleation (KC05,
Sect. 2a therein):

1

(1+ sw)

dsw
dt

= c1ww−
012

ρv
Idep, (8a)

1

(1+ si)

dsi
dt

= c1iw−
02

ρv
Idep. (8b)

Here012 and02 are the psychrometric corrections associated
with the latent heat release at condensation derived in KC05,

02 = 1+
L2

s

cpRvT 2

ρis

ρa
,012 = 1+

LeLs

cpRvT 2

ρws

ρa
, (8c)

Idep is the deposition integral that describes the vapor flux
onto the crystals, and

c1w(T )=

(
Le

cpT

Mw

Ma
− 1

)
g

RaT
, (9)

c1i(T )=

(
Ls

cpT

Mw

Ma
− 1

)
g

RaT
, (10)

whereMw andMa are the molecular weights of water and air,
Ra is the gas constant of air. The vapor fluxIdep to the crys-
tals is the integral of the mass growth rate over the crystal
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size spectrum. We consider ice nucleation in haze particles
at water subsaturation, formation of water drops is not con-
sidered in this work and the termIcon is absent in Eqs. (8a,
b). However, bothsw andsi are required for further consid-
eration since ice nucleation is governed bysw, and crystal
growth is governed bysi . We assume that crystal size can be
characterized by an effective radiusrc, thenIdep is expressed
via crystal growth rate (drc/dt)

Idep(t)= 4πρi

∞∫
0

drc(t, t0)

dt
r2
c (t, t0)f (rc, t0)drc, (11)

wherefc(rc, t0) is the size distribution function of the crys-
tals nucleated at a timet0, andrc(t , t0) denotes the radius at
time t of a crystal nucleated at timet0. We use (drc/dt) in the
form similar to Fuchs (1959) and Sedunov (1974)

drc
dt

=
c3isi

rc + ξdep
, c3i =

Dvρis

ρi02
, (12)

ξdep=
4Dv

αdVw
, Vw =

(
8RT

πMw

)1/2

, (13)

whereDv is the water vapor diffusion coefficient,ξdep is the
kinetic correction to the radius growth rate,Vw is the thermal
speed of water vapor molecules,R is the universal gas con-
stant, andαd is the deposition coefficient. This equation for
drc/dt accounts for the kinetic correctionξdep.

Substitution of Eq. (12) into Eq. (11) yields

Idep(t)= si(t)
4πDvρis

02

∞∫
0

r2
c (t, t0)

rc(t, t0)+ ξdep
fc(rc, t)drc. (14)

The radiusrc(t , t0) at time t of a crystal nucleated at time
t0 is evaluated by integrating Eq. (12) with constantρi , ρis
during the relatively short time of integration,

rc(t, t0)= {(rc0+ξdep)
2
+2c3i[yi(t)−yi(t0)]}

1/2
−ξdep, (15)

whererc0 = ri(t0) is the initial crystal radius at the activation
time t0, andyi(t) is the integral ice supersaturation defined
as

yi(t)=

t∫
0

si(t
′)dt ′. (16)

Ice nucleation via haze freezing depends simultaneously on
T and sw, and we can consider the integrand in Eq. (14)
for Idep using a kinetic equation for the crystal size spec-
trum and introducing two activity spectra, by supersaturation
φs(T , sw) and by temperatureφT (T , sw)

∂fc(rc)

∂t
+
∂

∂r

(
drc
dt
fc

)
=

[
φs(T ,sw)

dsw
dt

+φT (T ,sw)
dT

dt

]
δ(rc − rc(t0))≡ ψfc, (17)

where the Dirac delta functionδ(rc−rc(t0)) describes nucle-
ation of a crystal with radiusrc(t0) andψfc denotes the right-
hand side that will be specified in the finite difference ap-
proximation as described below. Equation (17) can be viewed
as a generalization of the known relation for the drop acti-
vation on the CCN, where usually only the supersaturation
activity spectrum is accounted for (e.g., Twomey, 1959; Se-
dunov, 1974; Khvorostyanov and Curry, 2008, 2009b; Ghan
et al., 2011; Tao et al., 2012). We could consider each of
these spectra in Eq. (17) separately, and this will be done in
Sect. 3.3, Eqs. (52b, c), but a simpler and faster way is to use
an equivalent equation for concentration conservation

dNfr(t0)= fc(rc)drc = φs(T ,sw)dsw +φT (T ,sw)dT

= Rf,hom(t0)dt0, (18a)

whereRf,hom = dNc(t)/dt (cm−3 s−1) is the polydisperse
homogeneous freezing nucleation rate describing effects of
bothT andsw on freezing defined below.

The probability of freezing of a haze particle or a drop with
radiusra and volumev(ra) during the time interval fromt0
to t is

Pf,hom(ra, t)= 1− exp

−

t∫
t0

Jf,hom(t
′)v(ra)dt

′

 , (18b)

whereJf,hom is the homogeneous nucleation rate (cm−3 s−1)

considered in Sect. 3.2, Eq. (36). The crystal concentration
Nc in a polydisperse aerosol with uniform size and surface
properties can be calculated by integrating the probability of
freezingPf,hom of an individual haze or cloud droplet over
the size spectrumf (ra) of aerosol or droplets normalized to
the aerosol or drop concentrationNa:

Nc,hom(t)=

rmax∫
rmin

Pf,hom(ra, t)fa(ra)dra

=

rmax∫
rmin

1− exp

−

t∫
0

Jf,hom(t
′)v(ra)dt

′

fa(ra)dra. (18c)

The polydisperse nucleation rateRf,hom can be calculated as
(PK97, KC04a,b)

Rf,hom(t0)=
dNc,hom

dt
=

rmax∫
rmin

drafa(ra)v(ra)

×Jf,hom(t0)exp

−

t∫
0

Jf,hom(t
′)v(ra)dt

′

 , (18d)

wherev(ra) is the volume of a freezing particle with radius
ra, Jf,hom is the homogeneous nucleation rate that is calcu-
lated from the extension of the classical nucleation theory
(CNT) as developed by the authors and employed here (see
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Sect. 3.2). It is expressed via the activation and critical en-
ergies of an ice germ freezing that depend simultaneously
on the temperature and water saturation ratio. Substituting
the conservation law for the nucleated crystalsfc(rc)drc =

Rf,hom(t0)dt0 from Eq. (18a) into Eq. (14) forIdep and using
Eq. (15) we obtain

Idep= si
4πDvρis

02

t∫
0

rc,ef(t, t0)Rf,hom(t0)dt0, (19)

where we introduced the effective radiusrc,ef(t, t0), which is
the first multiplier in the integrand in Eq. (14)

rc,ef(t, t0)=
r2
c (t, t0)

rc(t, t0)+ ξdep
(20)

=
{[(rc0+ ξdep)

2
+ 2c3i(yi(t)− yi(t0))]

1/2
− ξdep}

2

[(rc0+ ξdep)2 + 2c3i(yi(t)− yi(t0))]1/2
.

Substituting Eq. (19) into Eq. (8b) and using Eq. (16) for
yi(t), we obtain an equation for integral ice supersaturation

1

(1+ y′

i )

dy′

i

dt
= c1iw−

02

ρv
Idep, (21)

where

Idep= y′

i
4πDvρis

02

t∫
0

rc,ef(t, t0)Rf,hom(t0)dt0. (22)

Substitution ofRf,hom from Eq. (18d) into Eq. (22) yields

Idep= y′

i
4πDvρis

02

 t∫
0

rc,ef(t, t0)

rmax∫
rmin

fa(ra)v(ra)

×Jf,hom(t0)exp

−

t∫
0

Jf,hom(t
′)v(ra)dt

′

dradt0

 (23)

Substitution of Eq. (23) into Eq. (21) and using the relation
ρv = (1+ y′

i )ρis yields

1

(1+ y′

i )

dy′

i

dt
= c1iw−

y′

i

(1+ y′

i )
(4πDv)

 t∫
0

rc,ef(t, t0) (24)

×

rmax∫
rmin

fa(ra)v(ra)Jf,hom(t0)exp

−

t∫
0

Jf,hom(t
′)v(ra)dt

′

dradt0


This equation describes evolution of integral ice supersatu-
ration. It is analogous to Twomey’s (1959) and Sedunov’s
(1974) supersaturation equations for the drop activation, but
includes a more complicated description of crystal nucle-
ation. The first term on the RHS describes supersaturation
generation by cooling action of updrafts, and the second term

accounts for its depletion by the newly nucleated and grow-
ing crystals.

We consider in this section homogeneous ice nucleation at
cold temperatures and not very vigorous updrafts when the
haze solution particles freeze at water subsaturation, so that
drops do not form. The crystal nucleation term in Eq. (17)
can be calculated in the finite difference scheme as

ψfc =1Nc,fr(1t)/1rc/1t, (25)

where1Nc,fr is the number concentration of the crystals nu-
cleated via homogeneous freezing in a time step1t and cal-
culated with Eq. (18c) using equations for the nucleation rate
Jf,hom (Eq. 36 here) and1rc denotes the first size step by
the crystal radii (0.1–0.2 µm). The crystal size spectrum in-
cludes 30 radius intervals: 10 steps by 0.1–1 µm and the next
20 steps increasing logarithmically to 100–350 µm. This di-
vision allows coverage of both small and large size ranges
without loosing accuracy.

2.2 Simulation results

The design of the simulations generally follows the proto-
col of the Cirrus Parcel Model Comparison Project (CPMCP;
Lin et al., 2002). To simulate the ice crystal nucleation pro-
cess, the parcel model was run for 1 h with most initial data
specified following the CPMCP and varying some parame-
ters to estimate the sensitivity of the results. We describe the
results for three values of the vertical velocity,w = 4, 20,
and 100 cm s−1, two values of the initial temperature,T0 =

−40◦C and−60◦C, and two values of the aerosol concen-
tration,Na = 200 cm−3, and with increasedNa = 500 cm−3.
The initial humidities were chosen as RHW0 = 90 % for
T0 = −40◦C and RHW0 = 78 % forT0 = −60◦C. The ini-
tial pressurep0 was specified to be 340 hPa. The parcel
model includes the option of isolating specific ice crystal
nucleation modes. Here we consider only the homogeneous
freezing of deliquescent haze particles, excluding the other
modes (heterogeneous freezing, deposition, contact, immer-
sion). Integration over the haze size spectrum was performed
using a lognormal size spectrum of soluble haze particles
with the mean radius of 0.02 µm and dispersionσs = 2.5. The
time steps were 0.01–0.2 s in the main program, but the time
step can be divided further, if necessary, in the nucleation
or condensation subroutines to meet stability conditions. The
accuracy of the calculations was controlled by comparing the
total number of crystals nucleated with those obtained by in-
tegration over the size spectrum of the grown crystals at the
end of a parcel run. If the error exceeded 5 % (especially
at low temperatures), the time and radius steps were varied
and several additional runs were performed until the error
became less than 5 %.

Figures 1 and 2 illustrate the effect of the vertical veloc-
ity (w = 4 and 20 cm s−1) on the kinetics of homogeneous
freezing atT0 = −40◦C andNa = 200 cm−3. It is seen that
the nucleation process has two branches with increasing and

Atmos. Chem. Phys., 12, 9275–9302, 2012 www.atmos-chem-phys.net/12/9275/2012/
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Fig. 1.  Kinetics of homogeneous nucleation at T0c = -40 º C, 
RHW0 = 90 %, p0 =340 hPa, Na = 200 cm-3 and two vertical 
velocities, w=4 cm s-1, and w=20 cm s-1. (a) Relative humidity 
over water RHW, defined as 100xSw; (b) critical radius rcr; (c) 
critical free energy ∆Fcr; 
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3 nucleation rates for a particle with 
radius of 0.11 µm; (e) polydisperse nucleation rates, Rf,hom = 
dNfr/dt; (f) crystal concentration. 
 

Fig. 1. Kinetics of homogeneous nucleation atT0c = −40◦C, RHW0 = 90 %,p0 = 340 hPa,Na = 200 cm−3 and two vertical velocities,
w = 4 cm s−1, andw = 20 cm s−1. (a) Relative humidity over water RHW, defined as 100·Sw,th; (b) critical radiusrcr; (c) critical free energy
1Fcr; (d) homogeneousJf,homr

3
a nucleation rates for a particle with radius of 0.11 µm;(e)polydisperse nucleation rates,Rf,hom= dN fr /dt,

defined by Eq. (18d);(f) crystal concentration.

decreasing supersaturations. At the ascending branch, the
first term on the right-hand side of Eq. (21) or Eq. (24) with
supersaturation generation dominates; therefore the relative
humidity and supersaturation increase from the initial val-
ues to the maximum values reached at the timetmax. At the
descending branch, RHW,sw, andsi decrease due to domi-
nation of the second term on the RHS of Eq. (21) or Eq. (24)

with supersaturation depletion. Due to cooling in the par-
cel, RHW increases in the ascending branch and reaches at
w = 4 cm s−1 a maximum of 97.7 % att ∼ 35 min, then be-
gins to decrease (Fig. 1a).

The critical or threshold water and ice supersaturations
sw,cr andsi,cr can be defined as the points where the nucle-
ation rates become significant and the crystal concentrations

www.atmos-chem-phys.net/12/9275/2012/ Atmos. Chem. Phys., 12, 9275–9302, 2012
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Fig. 2. Comparison (continuation) of kinetics of homogeneous 
ice nucleation at w = 4 cm s-1 (solid circles) and w = 20 cm s-1 
(triangles) at -40 º C and the other parameters as in Fig. 1. (a) 
Supersaturations over water, sw, and ice, si, % and corresponding 
critical supersaturations.   
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(b) crystal mean radius, µm; (c) ice water content, g m-3; (d) 
crystal supersaturation relaxation time, min; (e) relative amount 
of condensed ice, %;  (f) vapor excess, mg m-3. Fig. 2.Comparison (continuation) of kinetics of homogeneous ice nucleation atw = 4 cm s−1 (solid circles) andw = 20 cm s−1 (triangles) at

−40◦C and the other parameters as in Fig. 1.(a) Supersaturations over water,sw, and ice,si , % and corresponding critical supersaturations.
(b) Crystal mean radius, µm;(c) ice water content, g m−3; (d) crystal supersaturation relaxation time, min;(e) relative amount of condensed
ice, %;(f) vapor excess, g m−3.

reach some threshold values, e.g.,Nc ∼ 10−3 l−1 (a more rig-
orous quantitative description is given in Khvorostyanov and
Curry, 2009a). The water and ice supersaturation pass in the
ascending branch the first critical values ofsw,cr1 = −4.2 %
and si,cr1 = 42 % at aboutt ≈ 22 min, reach maxima of
−2.45 % and 46 % respectively att = 33.67 min, then de-

crease in the descending branch to the second critical values
reached at aboutt = 40 min (Fig. 2a). Note that the change in
ice supersaturation1si = si,max− si,cr1 ≈ 4 %, or1si/si,max
is less than 10 %. Thus it can be assumed that nucleation oc-
curs at almost constant ice supersaturation.
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Noticeable ice nucleation withw = 4 cm s−1 begins after
the first critical pointsw,cr1 at t ≈ 22 min (Fig. 1d, e, f). At
the time of maximum RHW andsw, the crystal critical radius
and energy reach minima of 1.36×10−7 cm and 1.38×10−12

erg respectively (Fig. 1b, c), while the nucleation rate per
particle (Jf,homr

3
h , with rh = 0.11 µm) and the polydisperse

nucleation rateRf,hom reach maxima of 4.90× 10−6 s−1

and 4.93× 10−4 cm−3 s−1 (Fig. 1d, e). The values ofrcrand
1Fcr are substantially greater, whileJf,homr

3
h andRf,hom are

smaller at the later times, although the temperature continues
to decrease. This illustrates an important key role of humidity
in ice nucleation.

In contrast to drop activation, the ice nucleation process
continues aftertm along the descending branch until the point
when the second critical valuessw,cr and si,cr are reached
(this process has been mostly disregarded in previous param-
eterizations of ice nucleation.) The entire nucleation process
takes 15–20 min withw = 4 cm s−1, and the final crystal con-
centration is 66 l−1 (Fig. 1f). The crystal mean radius grows
to 43 µm byt = 1 h, the ice water content (IWC) increases to
0.044 g m−3 and the supersaturation relaxation timeτfc de-
creases from more than 3 h at the beginning of nucleation to
17 min by the end of simulation. This indicates that deposi-
tion of the vapor is not instantaneous but a significant amount
of vapor is deposited over a period of hours.

For quantitative illustration, it is convenient to introduce
the two quantities, vapor excess,1Mv, and the relative
amount, or percentage of condensed ice, Frcon,

1Mv = ρvsi,Frcon = IWC/(IWC +1Mv)× 100. (26)

These quantities characterize the mass of uncondensed ice
and the fraction of condensed ice. In a bulk model with
instantaneous condensation and deposition,1Mv = 0, and
Frcon = 100 %, but it is not so in this microphysical model
with explicit calculation of supersaturation. Fig. 2f shows
that the vapor excess is greater or comparable to IWC and
the fraction of condensed ice is less than 50 % during 30 min.
This means that optical thickness and emissivity of cirrus
clouds at the initial stages of their formation are significantly
smaller than predicted in a bulk model.

The corresponding curves for the case withw = 20 cm s−1

(solid circles in Figs. 1 and 2) show much faster nucleation,
about 5 min. The other features of the nucleation process are
qualitatively similar, with some quantitative differences. The
minimum critical radius and energy are somewhat smaller,
the nucleation rates increase by almost two orders of magni-
tude, and the final crystal concentration increases to 649 l−1,
almost 10 times greater than withw = 4 cm s−1. Because of
more numerous crystals and their competition for vapor, the
mean crystal radius is smaller than withw = 4 cm s−1, but
the relaxation timeτfc is also smaller with a minimum of 2.6
min. The deposition is faster withw = 20 cm s−1, but the va-
por excess and fraction of condensed ice are still smaller for
15–20 min that would be in a bulk model with instantaneous
deposition (Fig. 2e, f).

A comparison of the results withNa = 200 cm−3 and
500 cm−3 atT0 = −40◦C,w = 4 cm s−1 is shown in Figs. 3
and 4; all other parameters are as before. This comparison
shows that a significant increase inNa causes very weak ef-
fect on nucleation kinetics and all the resulting quantities.
Nucleation with higherNa begins and ceases a little earlier,
and the resulting crystal concentration is 68.6 l−1 vs. 66 l−1

with Na = 200 cm−3; that is, an increase 2.5 times inNa
causes and increase of only 4 % inNc. This remarkable in-
sensitivity to the initial concentration of deliquescent freez-
ing aerosol indicates a kind of “saturation” with respect to
Na at values ofNa much smaller than these values typical for
the upper troposphere.

The fraction of nucleated haze particles (the ratioNc/Na),
is tiny (66 l−1)/(200 000 l−1)= 3.3× 10−4, which is much
smaller than the typical fraction of CCN activated into the
drops,∼ 0.3–0.7. This very small fraction of freezing solu-
tion particles is explained by the following factors: (a) very
strong negative feedback by the water supersaturation: even
a small decrease insw causes a significant decrease in the
nucleation rateJf,hom,; and (b) much faster crystal growth
at high ice supersaturation than drop growth at small water
supersaturation.

The effect of temperature is illustrated in Figs. 5 and
6, where a comparison is made for the cases−40◦C and
−60◦C, atw = 4 cm s−1, and all other parameters as before.
The critical and maximum water supersaturations (negative)
decrease and ice supersaturations increase with decreasing
temperature. Minimum critical radius and energy are compa-
rable at both temperatures, while the nucleation rates grow
4–7 times at lowerT . The crystal concentration increases
almost 4 times to 242 l−1 at lowerT (Fig. 5f), but crystal
growth is slower; therefore the mean radius is about 4 times
smaller and the fraction of condensed ice is lower by the
end of simulation att = 1 h, and the supersaturation relax-
ation times are close,∼ 15–17 min, since increase in crys-
tal concentration is balanced by decrease in the mean radius
(Fig. 6). Thus, the amount of condensed ice is again smaller
than would be in a bulk model.

Some properties of the nucleation rates allow simplifica-
tion of the nucleation equations. The nucleation rates are very
small at all stages of the process,Jf,homr

3
h<10−5–10−4 s−1

andRf,hom<10−3–10−1 cm−3 s−1 even at their maxima; see
Figs. 1d, e, 3d, e, 5d, e. Therefore Eqs. (18b–d) for homoge-
neous nucleation rate can be substantially simplified since

exp

−

t∫
0

Jf,hom(t
′)v(ra)dt

′

≈1−

t∫
0

Jf,hom(t
′)v(ra)dt

′. (27)

The probability Pf,hom(ra, t) (Eq. 18b) of homogeneous
freezing of a haze particle or a drop with radiusra and vol-
umev(ra) during the time interval fromt0 to t can be simpli-
fied as

www.atmos-chem-phys.net/12/9275/2012/ Atmos. Chem. Phys., 12, 9275–9302, 2012
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Fig. 3. Comparison of homogeneous nucleation kinetics at Na = 
200 cm-3 and 500 cm-3. The other parameters are: T0c = -40 º C, 
RHW0 = 90 %, p0 =340 hPa, w=4 cm s-1. (a) Relative humidity 
over water RHW and threshold humidity RHWth, defined as 
100⋅Sw,th; (b) critical radius rcr;  
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(c) critical free energy ∆Fcr; (d) homogeneous Jf,homra

3 nucleation 
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Fig. 3. Comparison of homogeneous nucleation kinetics atNa = 200 cm−3 and 500 cm−3. The other parameters are:T0c = −40◦C,
RHW0 = 90 %, p0 = 340 hPa,w = 4 cm s−1. (a) Relative humidity over water RHW, defined as 100· Sw,th; (b) critical radiusrcr; (c)
critical free energy1Fcr; (d) homogeneousJf,homr

3
a nucleation rates for a particle with radius of 0.11 µm;(e)polydisperse nucleation rates,

Rf,hom= dNfr /dt, defined by Eq. (18d);(f) crystal concentration.

Pf,hom(ra, t)= 1− exp

−

t∫
t0

Jf,hom(t
′)v(ra)dt

′


≈

t∫
t0

Jf,hom(t
′)v(ra)dt

′. (28)

Equation (18c) for the crystal concentrationNc,hom in a poly-
disperse aerosol can be simplified as

Nc,hom(t)=

rmax∫
rmin

Pf,hom(ra, t)fa(ra)dra,

≈

rmax∫
rmin

t∫
t0

Jf,hom(t
′)v(ra)fa(ra)dt

′dra. (29)
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Fig. 4. Comparison (continuation) of homogeneous ice 
nucleation kinetics at Na =200 cm-3 (solid circles) and 500 cm-3 
(triangles), at -40 º C and the other parameters as in Fig. 3. (a) 
Supersaturations over water, sw, and ice, si, and critical  
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supersaturations, sw,cr, and ice, si,cr, %; (b) crystal mean radius, 
µm; (c) ice water content, g m-3;  (d) crystal supersaturation 
relaxation time, min; (e) relative amount of condensed ice, %;  
(f) vapor excess, mg m-3. 

Fig. 4. Comparison (continuation) of homogeneous ice nucleation kinetics atNa = 200 cm−3 (solid circles) and 500 cm−3 (triangles), at
−40◦C and the other parameters as in Fig. 3.(a) Supersaturations over water,sw, and ice,si , and critical supersaturations,sw,cr, and ice,
si,cr, %; (b) crystal mean radius, µm;(c) ice water content, g m−3; (d) crystal supersaturation relaxation time, min;(e) relative amount of
condensed ice, %;(f) vapor excess, g m−3.

The crystal nucleation rateRf,hom (Eq. 18d) in a polydisperse
aerosol can be simplified and is obtained by differentiating of
Eq. (29) byt :

Rf,hom(t)=
dNc,hom

dt
≈

rmax∫
rmin

fa(ra)v(ra)Jf,hom(t)dra. (30)

3 Parameterization of homogeneous ice nucleation
kinetics

In this section, a new parameterization of homogeneous ice
nucleation kinetics is derived, based on extended classical
nucleation theory and analytical solutions of the supersatura-
tion equation.
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Fig. 5. Comparison of homogeneous nucleation kinetics at T =  
-40 °C and –60 °C. The other parameters are: RHW0(-40 °C) = 
90 % and RHW0(-60 °C) = 78 %, p0 =340 hPa, w=4 cm s-1. (a) 
Relative humidity over water RHW; (b) critical radius rcr;  
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(c) critical free energy ∆Fcr; (d) homogeneous Jf,homra

3 nucleation 
rates for a particle with radius of 0.11 µm; (e) polydisperse 
nucleation rates, Rf,hom = dNfr/dt; (f) crystal concentration. 
 

Fig. 5.Comparison of homogeneous nucleation kinetics atT = −40◦C and−60◦C. The other parameters are: RHW0(−40◦C) = 90 % and
RHW0(−60◦C) = 78 %,p0 = 340 hPa,w = 4 cm s−1. (a) Relative humidity over water RHW;(b) critical radiusrcr; (c) critical free energy
1Fcr; (d) homogeneousJf,homr

3
a nucleation rates for a particle with radius of 0.11 µm;(e)polydisperse nucleation rates,Rf,hom= dNfr /dt,

defined by Eq. (18d);(f) crystal concentration.

3.1 General properties of nucleation and freezing rate

3.1.1 General features of homogeneous ice nucleation
kinetics

The general features of homogeneous ice nucleation kinetics
are illustrated in more detail in Fig. 7. The symbolstcr,1 and

tcr,2 denote the 1st and 2nd times when the critical (thresh-
old) ice supersaturationssi,cr1 andsi,cr2 are reached (marked
with ellipses), that is, the start and end of nucleation;tmax
is the time when maximum ice and water supersaturations,
si,max and sw,max, are reached. Figure 7 shows that homo-
geneous ice nucleation has features that are both similar and
different from drop nucleation. In both cases, supersaturation
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increases due to cooling by the updraft, but in contrast to drop
activation, ice nucleation begins at water subsaturations of a
few percent at timetcr,1, when a critical ice supersaturation
si,cr,1 is reached.

The si(t) and sw(t) curves consist of two branches with
increasing and decreasing supersaturations. However, in con-
trast to the drop activation, nucleation does not cease attmax,
when maximumsi,max and sw,max are reached. Only about
half of the final crystal concentration has been nucleated by
this time (the ellipse in Fig. 7b), and nucleation continues
along the branch with decreasing supersaturation to the point
tcr,2, si,cr2 when si(t) again intersects the linesi,cr(t). It is
seen that an increase in bothsw andsi is linear almost to the
maximum, and bothsw andsi can be well approximated with
linear functions.

The basic equations describing kinetics of homogeneous
ice nucleation include the integro-differential equations for
water and ice supersaturations derived in Sect. 2, and the
equation for crystal radius growth rate with account for ki-
netic effects. In addition, we need an equation for homoge-
neous nucleation rate of haze particles with account for solu-
tion effects, an equation for the critical supersaturationsw,cr,
and equations for the critical radius and energy of homoge-
neous nucleation.

3.1.2 Freezing rate

The equation for the critical water supersaturationsw = Sw−

1 was derived in Khvorostyanov and Curry (2009a, hereafter
KC09a) based on the extension of classical nucleation theory

sw,cr = Shom
w,cr − 1 = [(T /T0)exp(Hv,fr +Hf,hom)]

1/Gn − 1

≈(T /T0)[1−(Hv,fr+Hf,hom)]
MwL

ef
m/RT≈(T /T0)

MwL
ef
m/RT ,(31)

whereGn = (RT/MwL
ef
m) is a dimensionless parameter,Lef

m
is the specific melting heat averaged over temperature,R is
the universal gas constant,Mw is the molecular weight of
water,Hv,fr andHf,hom are functions of the melting heat, wa-
ter and ice densities, external pressure and surface tension
(KC09a). The last approximate equality in Eq. (31) is written
neglecting effects of external pressure (small for this case),
and for very slow nucleation rates (see KC09a). The corre-
sponding ice saturation ratioSi and supersaturationsi can be
obtained using standard relations betweensw andsi .

The polydisperse freezing rateRf,hom = dNc(t0)/dt0 can
be calculated using classical nucleation theory as described
by Eq. (18d). It was illustrated in Figs. 1 and 2 that at typ-
ical cooling rates (w), the inner integral in the exponent of
Eq. (18d) is close to 1. Therefore, Eq. (30) can be used as a
good approximation forRf,hom:

Rf,hom(t0)=
dNfr

dt
=

rmax∫
rmin

drafa(ra)v(ra)Jf,hom(t0). (32)

This expression can be further simplified if the depletion of
v(ra) andfa(ra) are small during freezing, which is usually a

good approximation with abundant concentrations of freez-
ing particles

Rf,hom(t0)≈ Jf,hom(t0)

rmax∫
rmin

drafa(ra)v(ra)=Nav̄aJf,hom(t0), (33)

wherev̄a is the mean aerosol volume averaged over the haze
size spectrum

v̄a =
4

3
π

1

Na

rmax∫
rmin

r3
afa(ra)dra. (34)

In general,Na andv̄a vary with time; however, the fraction of
haze particles nucleated into crystals is very small compared
to the initial haze population. Therefore,Idep in Eq. (23) can
be further simplified assumingNa ≈ const,v̄a ≈ const.

Idep= y′

i
4πDvρis

02
Nav̄a

t∫
0

rc,ef(t, t0)Jf,hom(t0)dt0. (35)

3.2 Separation of the temperature and supersaturation
dependencies

The nucleation rateJf,hom(T , sw) can be calculated using
classical nucleation theory (CNT) (PK97)

Jf,hom = 2Ncont

(
ρw

ρi

kT

h

)( σis

kT

)1/2
exp

(
−
1Fact+1Fcr

kT

)
, (36)

whereρw and ρi are the densities of water and ice,σis is
the surface tension at the solution-ice interface,1Fact and
1Fcr are the activation and critical energies of an ice germ
freezing,Ncont is the number of molecules in contact with
a unit area of ice surface,k andh are the Boltzmann’s and
Planck’s constants. In CNT, the energy1Fact is a function
of temperature;1Fcr is a function of the critical germ radius
rcr, which is also a function ofT (PK97). More general an-
alytical expressions forrcr(T , Sw, rd, 1p) and1Fcr(T , Sw,
rd,1p) were derived in Khvorostyanov and Sassen (1998a),
Khvorostyanov and Curry (2000, 2004a, b). Here we use a
somewhat simpler expression from KS98a, KC00, KC04a,b
with account forT andSw,

rcr(T ,Sw)=
2σis

ρiLef
m (T )

[
ln
(
T0
T
S
Gn
w

)] ,
Gn =

RT

MwLef
m

; 1Fcr(T ,Sw)=
4

3
πσisr

2
cr

=
(16π/3)σ 3

is[
ρiLef

m(T ) ln
(
T0
T
S
Gn
w

)]2
, (37a)

whereGn ∼ 0.4–0.6 with relatively weakT -dependence
(KC09a). Analytical solution of the supersaturation equation
requires some simplifications; in particular, it is desirable to
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Fig. 6. Comparison of homogeneous nucleation kinetics at T =-
40 °C and –60 °C (continuation). The other parameters are: 
RHW0(-40 °C) = 90 % and RHW0(-60 °C) = 78 %, p0 =340 hPa, 
w=4 cm s-1. (a) Supersaturations over water, sw, and ice, si, %;  
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(b) crystal mean radius, µm; (c) ice water content, g m-3;  (d) 
crystal supersaturation relaxation time, min; (e) relative amount 
of condensed ice, %;  (f) vapor excess, mg m-3. 
 

Fig. 6. Comparison of homogeneous nucleation kinetics atT = −40◦C and −60◦C (continuation). The other parameters are:
RHW0(−40◦C) = 90 % and RHW0(−60◦C) = 78 %,p0 = 340 hPa,w = 4 cm s−1. (a) Supersaturations over water,sw, and ice,si , %;
(b) crystal mean radius, µm;(c) ice water content, g m−3; (d) crystal supersaturation relaxation time, min;(e) relative amount of condensed
ice, %;(f) vapor excess, g m−3.

find a representation ofJf,hom with separatedT - andSw or
sw-dependencies. Here, we express1Fcr via water supersat-
urationsw using Eq. (37a) and the relationSw = 1+ sw, then 1Fcr =

(16π/3)σ 3
is{

ρiLef
m(T ) ln

[
T0
T
(1+ sw)Gn

]}2
. (37b)

This equation for1Fcr can be transformed so that the de-
pendencies ofT andsw are separated, following KC04b. It

Atmos. Chem. Phys., 12, 9275–9302, 2012 www.atmos-chem-phys.net/12/9275/2012/
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Fig. 7. General features of homogeneous ice 
nucleation kinetics (evolution of water and ice 
supersaturations and crystal concentration) 
illustrated with a parcel model run with the 
parameters: initial temperature Tc = -40 °C, 
sw(t = 0) = -0.1 (-10 %), lognormal size 
spectrum of haze particles with mean 
geometric radius of 0.02 µm and 
concentration Na = 200 cm-3. The symbols tcr,1 
and tcr,2 (marked with ellipses) denote the 1st 
and 2nd times when critical (threshold) ice 
supersaturations si,cr1 and si,cr2 are reached, that 
is, the start and end of nucleation; tmax is the 
time when maximum ice and water 
supersaturations si,max, sw,max are reached; sw,cr 
denote the curves of critical (threshold) water 
and ice supersaturations. The point denoted by 
ellipse on the curve Nc(t) with the symbols 
si,max, sw,max is the point at tmax where maximum 
sw and si are reached. The curve Nc(t) above 
this point corresponds to ice nucleation at  
tmax < t < tcr,2.  
 
 
 
 
 
 

Fig. 7. General features of homogeneous ice nucleation kinetics (evolution of water and ice supersaturations and crystal concentration)
illustrated with a parcel model run with the parameters: initial temperatureTc = −40◦C,sw(t = 0)= −0.1 (−10 %), lognormal size spectrum
of haze particles with mean geometric radius of 0.02 µm and concentrationNa = 200 cm−3. The symbolstcr,1 andtcr,2 (marked with ellipses)
denote the 1st and 2nd times when critical (threshold) ice supersaturationssi,cr1 andsi,cr2 are reached, that is, the start and end of nucleation;
tmax is the time when maximum ice and water supersaturationssi,max, sw,max are reached;sw,cr denote the curves of critical (threshold)
water and ice supersaturations.

was found from observations and model simulations that ho-
mogeneous freezing of haze droplets in cirrus clouds usually
occurs at small water subsaturations of−2 % to−10 %, i.e.,
sw = −2× 10−2 to −10× 10−2, so that|sw| � 1 (see e.g.,
Figs. 1–7 here; Sassen and Dodd, 1989; Lin et al., 2002).
Since|sw| � 1, we can expand the denominator in Eq. (37b)
into a power series insw. The logarithmic term can be trans-
formed as

ln

[
T0

T
(1+ sw)

Gn

]
≈ ln

[
T0

T
(1+Gnsw)

]
≈ ln

(
T0

T

)
+Gnsw = ln

(
T0

T

)(
1+

Gnsw

ln(T0/T )

)
, (38)

where we used a relation ln(1+Gnsw)≈Gnsw for |sw| � 1
andGn ∼ 0.4–0.6. Substituting this expansion into Eq. (37b),
we obtain

1Fcr(T ,sw)≈1Fcr,0(T )[1− κssw], (39)

where

κs =
2Gn

ln(T0/T )
=

2RT

MwLef
m ln(T0/T )

, (40a)

1Fcr,0 =
(16π/3)σ 3

is

[ρiLef
m(T ) ln(T0/T )]2

. (40b)

That is, 1Fcr,0 is the critical energy for pure water de-
fined by Eq. (37b) but atSw = 1 or sw = 0, i.e., it depends
only on temperature but does not depend on supersatura-
tion. ForT ∼ −50◦C,Gn ∼ 0.5, andκs ∼ 5, then withsw =

−3× 10−2 (−3 %), the termκssw ∼ −0.15� 1. The sec-
ond order term in expansion byκssw in Eq. (39) contributes

∼ 3.5 %; therefore, retaining only the first term in Eq. (39) is
justified. Substitution of Eq. (39) into Eq. (36) yields

Jf,hom(T ,sw)= J
(0)
f,hom(T )exp[us(T )sw(t)], (41a)

Jf,hom(T ,sw)= J
(0)
f,hom(T )[bhom(T )]

sw(t), (41b)

so thatJf,hom can be written such that thesw-dependence is
presented in the exponential or power law forms, similar to
those derived in KC04b for heterogeneous nucleation. The
parametersus andbhom are

us(T )=
1Fcr,0

kT

2Gn
ln(T0/T )

=
2R

kMwLef
m

1Fcr,0

ln(T0/T )

=
2NAv

MwLef
m

1Fcr,0

ln(T0/T )
, (42a)

bhom(T )= exp(us), (42b)

where k is the Boltzmann constant,NAv is the Avogadro
number, andJ (0)f,hom is defined by Eq. (36) with1Fcr,0(T )

from Eq. (40b), i.e., atsw = 0. Thus,Jf,hom(T , sw) is pre-
sented in a separable form as a product of the two factors:
J
(0)
f,hom(T ,sw = 0) depends onT but does not depend onsw,

and the dependence onsw is separated into the exponent in
Eqs. (41a), (42a). An estimate shows that at cirrus conditions
us ∼ (2–4)× 102

� 1. Sincesw<0 in the nucleation process,
the value ofussw is negative. Ifsw ∼ −(4 to 10)× 10−2, at
typical nucleation conditions, the value of|ussw| ≥ 10, and
we have an inequality exp(ussw)� 1.

www.atmos-chem-phys.net/12/9275/2012/ Atmos. Chem. Phys., 12, 9275–9302, 2012
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Fig. 8. Homogeneous nucleation ratesJf,hom(T ,sw),

J
(0)
f,hom(T ,sw = 0), their ratio Jf,hom(T ,sw)/J

(0)
f,hom(T ,sw = 0),

and exp(ussw) that determines this ratio. Calculations for the same
conditions as in Fig. 7. It is seen thatJf,hom/J

(0)f,hom is very
close to exp(usw), which is a good approximation to this ratio.

Numerical simulation with the parcel model shows that
changes inJ (0)f,hom in Eq. (41a) are several orders of mag-
nitude smaller than variations in exp(ussw). This is illus-
trated in Fig. 8, which shows thatJ (0)f,hom(T ,sw = 0)∼ (4–

5)× 105 cm−3 s−1 and only varies slightly during the nucle-
ation event, whileJf,hom(T ,sw) varies (decreases from max-
imum) by 10 orders of magnitude during nucleation. This
is caused by the effect of exp(ussw), which reaches a max-
imum ∼ 10−5 at t = 34.5 min, the time of maximum ofsw.
Figure 8 shows that the ratioJf,hom(T ,sw)/J

(0)
f,hom(T ,sw = 0)

is very close to exp(ussw), confirming the validity of the an-
alytical separability ofT andsw in Eqs. (41a, b). Further, the
primary variations inJf,hom(T ,sw) occur due to variations in
sw, while changes due to the temperature are several orders
smaller. Therefore, the deposition integralIdep in Eq. (35)
can be presented in a form that substantially simplifies cal-
culations

Idep= y′

i
4πDvρis

02
Nav̄aJ

(0)
f,hom

t∫
0

rc,ef(t, t0)exp[ussw(t0)]dt0, (43a)

or introducing the integralJ0i as

Idep= y′

i
4πDvρis

02
Nav̄aJ

(0)
f,homJ0i, (43b)

J0i =

t∫
0

rc,ef(t, t0)exp[ussw(t0)]dt0. (43c)

3.3 Evaluation of nucleation rate and crystal
concentration

We seek a solution to the supersaturation equation, similar
to that used in the parameterizations of drop activation (e.g.,
Twomey, 1959; Sedunov, 1974; Khvorostyanov and Curry,
2008, 2009b; Ghan et al., 2012; Tao et al., 2012), as a linear
approximation but with the initial critical (threshold) values.
The initial values are zero for drop activation but are equal
to some nonzero critical valuessw,cr, si,cr with account for
the specifics of ice nucleation as illustrated in the previous
figures

si(t)= y′

i (t)= si,cr + a1it, yi(t)= si,crt + (a1i/2)t
2, (44)

sw(t)=y
′
w(t)=sw,cr+a1wt, yw(t)=sw,crt+(a1w/2)t

2. (45)

The integral supersaturationsyw andyi are written assum-
ing for simplicity that the time is counted from the moment
t0 = tcr when sw,cr and si,cr are reached, then according to
Eq. (16) the initial timet0 = tcr = 0. The parametersa1w and
a1i can be specified in various ways, which yield the lower
and upper limits of the solution similar to drop activation.
An approximation that gives a lower bound of the solution
can be obtained witha1w = c1ww. The difference between
the limits is on the order of 10–15 % or smaller, and we
for simplicity will consider the approximationsa1w = c1ww,
anda1i = c1iw, as prompted by the Eqs. (8a), (8b), (24), and
(44), (45). Figures 2 and 7 show that the increase1si =

c1iw(tmax− t0)∼ 0.04 (4 %) during ice nucleation fromt0
to tmax is much smaller than the initial criticalsi,cr ∼ 0.42
(42 %) or maximumsi,max ∼ 0.46 (46 %). Since1si � si,cr,
we can neglect the increase1si of si in Eq. (44) during a
nucleation event, which was also neglected by Kärcher and
Lohmann (2002a, b), and Ren and MacKenzie (2005). We
also assume thatsi(t)≈ const≈ si,cr. In contrast, we cannot
neglect the term1sw = c1ww(tmax− t0) because water su-
persaturation varies substantially and determines variations
in Jf,hom (Fig. 7). Thus, assuming againt0 = tcr = 0,

si(t)= y′

i (t)= si,cr, yi(t)= si,crt, (46a)

sw(t)=y
′
w(t)=sw,cr+c1wwt, yw(t)=sw,crt+(c1ww/2)t

2. (46b)

Substitution ofsw(t) into the separable nucleation rate in
Eq. (41a) yieldsJf,hom(T , sw) as a function of time in the
form

Jf,hom[T ,sw(t)]=J
(0)
f,hom(Tcr)exp(ussw,cr)exp(usc1wwt), (47a)

where us is defined in (42a). We assume here, based on
Fig. 8, that the major time dependence is determined bysw,
and the temperature dependence is determined nearTcr. Di-
viding Jf,hom(t) by Jf,hom(t0) at some initialt0, we obtain the
time dependenceJf,hom(t) of the form

Jf,hom(t)= Jf,hom(t0)exp[usc1ww(t − t0)]. (47b)

Atmos. Chem. Phys., 12, 9275–9302, 2012 www.atmos-chem-phys.net/12/9275/2012/
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For t0 = tcr, Eq. (47b) can be rewritten with Eq. (46b) as

ln
Jf,hom[sw(t)]

Jf,hom[sw,cr(tcr)]
=usc1ww(t−tcr)=us(T )[sw(t)−sw,cr]. (47c)

Using the relation following from the Clausius-Clapeyron
equation

sw+1 = ciw(si+1),ciw = exp[−Lm(T0−T )/RvT0T ], (47d)

whereRv is the vapor gas constant andT0 = 273.15, we ex-
presssw in Eq. (47c) via the ice saturation ratioSi = si + 1
and obtain

ln
Jf,hom[sw(t)]

Jf,hom[sw,cr(tcr)]
= us(T )ciw(T )[Si(t)− Si,cr]. (47e)

This expression has the same form as Eq. (6) hypothesized
by Barahona and Nenes (2008), and their coefficientbτ fit-
ted with empirical data is expressed now from the extended
classical nucleation theory asbτ (T )= us(T )ciw(T ). Equa-
tion (47b) can be also rewritten as

Jf,hom(t)= Jf,hom(t0)exp[(t − t0)/τnuc], (48)

where we introduced the characteristic “nucleation time”τnuc

τnuc = (c1wwus)
−1

=

[
c1ww

1Fcr,0

kT

2Gn
ln(T0/T )

]−1

(49)

= (c1ww)
−1kL

ef
m ln(T0/T )

2Rv1Fcr,0
= (c1ww)

−1MwL
ef
m ln(T0/T )

2NAv1Fcr,0
,

wherek is the Boltzmann constant andNAv is the Avogadro
number. The temporal dependence ofJf,hom(t) as in Eq. (48)
was hypothesized by Ford (1998a, b), Kärcher and Lohmann
(2002a, b) and Ren and MacKenzie (2005) and the timeτnuc
was found by fitting to some auxiliary relations Eqs. (3), (5)
above. Here, the time dependence ofJf,hom(t) and the time
τnuc are derived in terms of the extended classical nucleation
theory with the dependence onSw. Equation (49) shows that
τ−1

nuc ∼ c1ww, that is, according to Eq. (5), is proportional
to (dT /dt), in agreement with Eq. (5), the other factors in
Eq. (49) determine∂ lnJhom/∂T and the empirical coefficient
cτ in Eq. (5). Thus, the approach based on extended CNT
confirms the functional forms hypothesized in the previous
parameterizations by Ford (1998a, b), Kärcher and Lohmann
(2002a, b), Ren and MacKenzie (2005), Barahona and Nenes
(2008), and allows to express them via the fundamental ther-
modynamic parameters reducing the number of hypothesized
relations and quantities.

The linear approximation Eq. (46b) forsw(t) allows
description of the time evolution of the nucleation rate
Rf,hom(t) and crystal concentrationNc(t). Substitution of
Eq. (47a) into Eq. (33) yields

Rf,hom(t0)≈Nav̄aJ
(0)
f,hom(Tcr)exp(ussw,cr)exp(βt),

≈Nav̄aJ
(0)
f,hom(Tcr)exp[ussw(t)] (50)

β = usc1ww = τ−1
nuc. (51)

Integration over time assumingt0 = tcr = 0 givesNc(t)

Nc(t)=

t∫
0

Rf,hom(t)dt

≈Nav̄aJ
(0)
f,hom(Tcr)β

−1exp(ussw,cr)[exp(βt)− 1].

≈Nav̄aJ
(0)
f,hom(Tcr)β

−1
{exp[ussw(t)] − exp(ussw,cr)}. (52a)

This is the parameterization forNc(t) that we searched
for. The dependencies ofNc on sw andT are separated in
Eq. (52a), this allows to introduce the activity spectraϕs(T ,
sw) andϕT (T , sw) by sw andT defined in Eqs. (17), (18a).
Differentiation of Eq. (52a) bysw andT yields

ϕs(T ,sw) (52b)

=
∂Nc

∂sw
≈Nav̄aJ

(0)
f,hom(Tcr)(c1ww)

−1exp(ussw,cr)exp(βt),

ϕT (T ,sw)= (52c)
∂Nc

∂T
≈Nav̄aJ

(0)
f,hom(Tcr)

∂

∂T
{β−1exp(ussw,cr)[exp(βt)− 1]}.

The activity spectrumϕs(T , sw) characterizes the rate of ice
nucleation with increasing humidity and constant tempera-
ture, (similar to considered for drop activation), the spec-
trum ϕT (T , sw), vice versa, characterizes the rate of ice nu-
cleation with decreasing temperature and constant humidity.
Such processes may occur under natural conditions of cirrus
clouds formation with advection of humid air and weak vari-
ations ofT , or with advection of cold air and weak changes
of humidity. Using Eqs. (52b, c), the relative role of varia-
tions of the temperature and humidity can be estimated, or
these processes can be studied in isolation in a cloud cham-
ber.

The relation betweenβ and t in Eq. (52a) deter-
mines the regime of growth ofNc with time. For exam-
ple, atT = −40◦C with us ∼ 250, c1w ∼ 10−5 cm−1, and
w ∼ 10 cm s−1, an estimate givesβ ∼ 2.5× 10−2 s−1 and
τnuc = β−1

∼ 40 s. Thus, for small times,t � β−1
∼ 40 s,

yielding a linear growth ofNc(t) with time

Nc(t)= tNav̄aJ
(0)
f,hom(Tcr)exp(ussw,cr). (53)

For large times,t � β−1
= 40 s, we obtain from Eq. (52a)

an exponential time dependence

Nc(t)=Nav̄aJ
(0)
f,hom(Tcr)τnucexp(ussw,cr+βt)∼ exp[ussw(t)]. (54)

In this regime, ln[Nc(t)] ∼ t , and explains the linear depen-
dence of ln[Nc(t)] with time in Figs. 1–7.

It is interesting to note that Eq. (54) for homogeneous nu-
cleation can be presented in the form similar to the empirical
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parameterization suggested in Meyers et al. (1992) for het-
erogeneous freezing. We can writeNc(t) in Eq. (54) as

Nc(sw)=exp(lnAM+ussw), AM=Nav̄aJ
(0)
f,hom(Tcr)τnuc. (55)

Using Eq. (47d), we replacesw with si and obtain

Nc(si)= exp(aM + bMsi), (56a)

aM = lnAM + us(ciw − 1)= ln[Nav̄aJ
(0)
f,hom(Tcr)τnuc]

+us(ciw − 1), bM = usciw . (56b)

Equation (56a) can be also presented as a power law by ice
supersaturation

Nc(si)= bH(cH)
si , bH = exp(aM), cH = exp(bM). (56c)

The aerosol concentrationNa is included inAM in Eq. (55)
but can be placed also in front of the exponent. These param-
eters are expressed via the primary atmospheric and aerosol
quantities and substantially vary with temperature and cool-
ing rate viaw in us. Thus, the empirical parameterizations of
the type of Meyers et al. (1992) can be derived from extended
CNT.

If we consider the nucleation process at longer times and
near the point of the maximum supersaturations in Figs. 1–7,
the vapor depletion becomes substantial and finally exceeds
supersaturation production. Then a more accurate considera-
tion should include evaluation of the deposition integralIdep
and supersaturation equation, which is done in the following
subsections.

3.4 Evaluation of the deposition integralI dep

Evaluation of Idep is analogous to that developed in
Khvorostyanov and Curry (2008, 2009b) for drop nucleation;
however integration for ice nucleation is more complicated
due to the exponential activity spectrum. Substitution ofyi(t)

from Eq. (46a) into Eq. (20) forrc,ef(t , t0) yields

rc,ef(t, t0)=
{[(rc0+ ξdep)

2
+Bi(t − t0)]

1/2
− ξdep}

2

[(rc0+ ξdep)2 +Bi(t − t0)]1/2
, (57)

where

Bi = 2ci3si,cr. (58)

To evaluate the integral inIdep in Eq. (43a), we presentrc,ef(t ,
t0) in Eq. (57) in the integrand of Eq. (43a) as a sum of three
terms

rc,ef(t, t0)=
r2(t, t0)

r(t, t0)+ ξdep
= r

(1)
c,ef + r

(2)
c,ef + r

(3)
c,ef, (59)

where

r
(1)
c,ef(t, t0)= [(r0 + ξdep)

2
+Bi(t − t0)]

1/2, (60a)

r
(2)
c,ef(t, t0)= −2ξdep, (60b)

r
(3)
c,ef(t, t0)= ξ2

dep[(r0 + ξdep)
2
+Bi(t − t0)]

−1/2, (60c)

Substitution of Eq. (59) with Eqs. (60a)–(60c) into Eq. (43a)
for Idep yields

Idep(t)= y′

i
4πDvρis

02
Nav̄aJ

(0)
f,homexp(ussw,cr)J0i(t), (61)

whereJ0i(t) introduced in Eq. (43c) is presented as a sum of
the three terms

J0i(t)=

3∑
k=1

J
(k)
0i =

3∑
k=1

t∫
0

r
(k)
c,ef(t, t0)exp(βt0)dt0. (62)

Substitution of Eqs. (60a)–(60c) into Eq. (62) and evaluation
of the integralsJ0i(t) given in Appendix A yields

J0i(t)= exp(βt)9, (63)

where9 is defined by the equations

9 =91 +92 +93, (64)

91 = eλB
1/2
i β−3/2

[
0

(
3

2
,λ

)
−0

(
3

2
,λ+βt

)]
, (65)

92 = 2ξdepβ
−1(e−βt − 1). (66)

93 = eλξ2
dep(βBi)

−1/2
[
0

(
1

2
,λ

)
−0

(
1

2
,λ+βt

)]
(67)

λ=
β(r0 + ξdep)

2

Bi
=
(usc1ww)(r0 + ξdep)

2

2ci3si,cr
. (68)

Here0(α, x) is the incomplete Euler’s gamma function, its
properties and asymptotics are defined in Appendix A. Using
Eq. (63) forJ0i(t), and the relationussw,cr +βt = sw(t), the
deposition termIdep in Eq. (61) can be written as

Idep(t)= y′

i
4πDvρis

02
(Nav̄aJ

(0)
f,hom)exp[ussw(t)]9. (69)

Note that the water supersaturationsw(t) at a timet is present
in the exponent.
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The function9 defined by Eqs. (64)–(67) can be trans-
formed and reduced to the functions more convenient for cal-
culations. Using the recurrent relation for0(3/2, x) (Grad-
shteyn and Ryzhik, 1994, see Appendix A)

0(α+ 1,λ)= α0 (α,λ)+ λαe−λ, (70a)

and the relation between gamma function and error function
erf(x),

0(1/2,λ)=
√
π [1− erf(

√
λ)], (70b)

we can transform the gamma function in91 as

0

(
3

2
,λ

)
=

1

2
0

(
1

2
,λ

)
+λ1/2e−λ=

√
π

2
[1−erf(

√
λ)]+λ1/2e−λ.(71)

Substituting this relation into Eqs. (65), (67) we can rewrite
91 and 93 with use of only erf(x)=8(x) and without
gamma function, which is more convenient for applications

91 = eλB
1/2
i β−3/2

{
(
√
π/2)[8(

√
λ+βt)−8(

√
λ)] (72)

+e−λ[λ1/2
− (λ+βt)1/2e−βt ]

}
93 = eλξ2

dep(βBi)
−1/2√π [8(

√
λ+βt)−8(

√
λ)]. (73)

Then the function9 is expressed with use of only8(x)=

erf(x):

9(t)=eλβ−1/2√π [8(
√
λ+βt)−8(

√
λ)][(1/2)B1/2

i β−1

+ξ2
depB

−1/2
i ] +B

1/2
i β−3/2

[λ1/2
− (λ+βt)1/2e−βt ]

+2ξdepβ
−1(e−βt − 1). (74)

This expression can be further simplified by expressing the
transcendent function erf(x) via the elementary function tanh
following Ghan et al. (1993)

erf(x)≈ tanh[(2/
√
π)x]. (75)

Then9 becomes:

9(t)= eλβ−1/2√π
[
tanh(2

√
(λ+βt)/π) (76)

− tanh(2
√
λ/π)

]
[(1/2)B1/2

i β−1
+ ξ2

depB
−1/2
i ]

+B
1/2
i β−3/2

[λ1/2
− (λ+βt)1/2e−βt ]

+2ξdepβ
−1(e−βt − 1).

Now, the deposition integralIdep in Eq. (69) is expressed
only via the elementary functions. Another transition to the
elementary functions can be done using equations for erf(x)

given in Ren and MacKenzie (2005, 2007). In the next sec-
tions, the solutions of equations for supersaturation and crys-
tal concentration will be expressed via9. Although these
expressions may look complicated, the analytical represen-
tation Eqs. (74), (76) reduce unavoidable errors caused by
finite difference representations and numerical calculations
and enables the derivation of simple asymptotic limits ofIdep
andNc for the diffusion and kinetic regimes of crystal growth
as shown below.

3.5 Solution of equations for supersaturation and
crystal concentration

Substituting Eq. (69) forIdep into the integral supersaturation
equation Eq. (21), multiplying it by (1+ y′

i ) and using the
relationρv = ρis(1+ y′

i ), yields

dy′

i

dt
= c1iw(1+ y′

i )−
02

ρis
Idep,= c1iw(1+ y′

i ) (77)

−(4πDv)y
′

i (Nav̄aJ
(0)
f,hom)exp[ussw(t)]9.

At t = tmax with maximum supersaturationssi,max and
sw,max, the condition dsi /dt = dy′

i /dt = 0 is satisfied, thus,
the LHS of Eq. (77) is zero, which yields

exp[ussw,max(tmax)]

= c1iw(1+ si,max)s
−1
i,max(4πDv)

−1(Nav̄aJ
(0)
f,hom)

−19−1. (78)

Now we can rewrite Eq. (33) forRf,hom(t) with account for
Jf,hom from Eq. (41a) as

Rf,hom(t0)≈Nav̄aJf,hom(t0)=Nav̄aJ
(0)
f,homexp[ussw(t0)]

=Nav̄aJ
(0)
f,homexp[ussw,cr +βt0]. (79)

The crystal concentration at the timet is obtained by inte-
grating overt0

Ncm(tm)=

tmax∫
tcr,1

Rf,hom(t0)dt0

≈Nav̄aJ
(0)
f,hom(T )β

−1exp[ussw,max(tmax)]

× {1− exp[−β(tmax− tcr,1)]}

≈Nav̄aJ
(0)
f,hom(T )β

−1exp[ussw,max(tmax)]. (80)

The last equation accounts for the fact that (tmax− tcr,1)�

β−1 orβ(tmax−tcr,1)� 1 according to Eq. (54). Substituting
exp[ussw,max(tmax)] from Eq. (78) and using the approximate
equalitysi,max ≈ si,cr due to small variations ofsi during nu-
cleation as discussed above, we obtain finally an analytical
parameterization of the concentration of the crystals in ho-
mogeneous freezing nucleation:

Nc(tmax)=Kgen(1+ si,cr)s
−1
i,cr9

−1, (81)

Kgen= (4πDv)
−1u−1

s (c1i/c1w). (82)

Equation (81) givesNc at time tmax with maximum super-
saturation, i.e., at the end of the 1st stage with growingsi .
Some previous parameterizations assumed thatNc(tmax) at
the timetmax of maximum supersaturations is the final crys-
tal concentration. However, as we have seen in Figs. 2, 4, 6,
7, during the descending branch attmax<t<tcr,2, sw(t) de-
creases but still exceedssw,cr, therefore nucleation continues
after tmax until tcr,2, andNc(tmax) is approximately half the
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totalNc,tot(tcr,2) after the cease of nucleation att>tcr,2. Eval-
uation of the 2nd stage att>tmax with decreasing supersatu-
ration in principle can be done in a similar way as fort<tmax,
although it is somewhat more complicated. To simplify the
solution, we can use the solutions fort = tmax and slightly
tune them using the results of the parcel model runs. Their
detailed analysis shows that the totalNc,tot(tcr,2) at t>tcr,2,
when nucleation has ceased, is proportional toNc(tmax); that
is,Nc,tot can be obtained as

Nc,tot ≈KcorNc(tmax). (83)

Numerical experiments with the parcel model show that
Kcor ∼ 1.8 to 2.2 (Fig. 7). A more precise fit shows that this
coefficient can be chosen as a function of the vertical velocity
w as

Kcor(w)= 1.85+ (2− 1.85)(w/wsc) at w<2 m s−1, (84)

Kcor(w)= 2.0, at w ≥ 2 m s−1, (85)

andwsc = 2 m s−1. Even a simpler choice of the average is
Kcor ∼ 2, which accounts for about half of the crystals nucle-
ating at decreasing supersaturation attmax<t<tcr,2, still gives
satisfactory results.

3.6 Limiting cases

The important asymptotics can be obtained by analysis of
the characteristic parameters of the solution Eqs. (81), (82)
with 9 from Eq. (74). The parameterλ in Eq. (68) can be
rewritten in the form

λ=
β(r0 + ξdep)

2

Bi
=

(
r0 + ξdep

3

)2

,

3=

(
Bi

β

)1/2

=

(
2ci3si,cr

usc1ww

)1/2

. (86)

Here3 is a scaling length that characterizes the ratio of the
crystal growth rate Eq. (12) to the supersaturation generation
rate (the first term on the RHS of Eq. 77). Now we present
asymptotics of the solution Eq. (81) atλ� 1 andλ� 1. The
values ofλ and3 and the physical meaning of the asymptotic
limits are analyzed below.

3.6.1 Diffusion growth limit

The valuesλ� 1 in Eq. (86) imply smallξdep and r0, and
are typical of the diffusion regime of crystal growth with the
deposition coefficientαd ∼ 1 or αd>0.1 with not very large
w and not very lowT . In this case, we can neglect in Eq. (74)
for 9 all terms withξdep andr0. Note that erf(λ1/2)→ 0 at
λ� 1 → 0 according to (A29). Using the estimates above,
we can assume thatβtmax � 1, use the expansion (A27) for
erf[(λ+βtmax)

1/2) and neglect the terms with exp(−βtmax).
Then9 is simplified in this diffusion regime as

9dif ≈ (
√
π/2)eλB1/2

i β−3/2 (87)

≈ (π/2)1/2(c3isi,cr)
1/2u

−3/2
s (c1ww)

−3/2.

Substitution of this expression into Eqs. (81), (82) yields

Ncm,dif =Ki,dif(1+ si,cr)s
−3/2
i,cr (c1iw)

3/2, (88)

Ki,dif = (2πDv)
−3/2

(
ρi02

ρis

)1/2

u
1/2
s

(
c1w

c1i

)1/2

(89)

=
1

(2πDv)3/2

(
ρi02

ρis

)1/2[ 2R

kMwLef
m

1Fcr,0(T )

ln(T0/T )

]1/2(
c1w

c1i

)1/2

.

The properties of this solution are discussed below and com-
pared with the other limits.

3.6.2 Kinetic growth, small and large particles limits

The limit λ� 1 is seen from Eq. (86) to be associated with
the kinetic regime with largeξdep (small αd) or with large
initial particle radiusr0 of freezing particles. It can be studied
using the asymptotic property of erf(x) at x � 1 (Appendix
A, Eq. A27)

erf(
√
λ)= 1−

1
√
π
λ−1/2e−λ

(
1−

1

2λ

)
. (90)

Expanding in Eq. (74) for9 the functions erf(
√
λ) and

erf(
√
λ+βtmax) with Eq. (90), neglecting again the terms

with exp(−βtmax) and the termsλ−3/2 compared toλ−1/2,
and collecting the terms of the same order,9 can be written
as

9kin = β−1/2λ−1/2
[(1/2)B1/2

i β−1
+ ξ2

depB
−1/2
i ]

+B
1/2
i β−3/2λ1/2

− 2ξdepβ
−1

= (r0 + ξdep)
−1

[(1/2)Biβ
−2

+ ξ2
depβ

−1
] + (r0 − ξdep)β

−1. (91)

This case is divided into 2 subcases: (a) whenξdep is large
(small deposition coefficientαd) but r0 is small (small parti-
cles limit), that is,ξdep� r0; and (b) whenr0 is large (large
particles limit); that is,ξdep� r0, which may correspond to
both diffusion or kinetic regimes. These limits are considered
below.

(a) λ � 1, ξdep � r0, kinetic regime, small particles limit

With these conditions,r0 can be neglected compared toξdep,
and Eq. (91) for9 is simplified

9kin,s = (1/2)Biβ
−2ξ−1

dep= ci3si,cru
−2
s (c1ww)

−2(αdVw/4Dv). (92)

Substitution into the general Eq. (81) yieldsNcm =Nc at
maximumswm

Ncm,kin,s =Ki,kin,s(1+ si,cr)s
−2
i,cr(c1ww)

2, (93)

Ki,kin,s =
1

(πDv)

us

αdVw

(
ρi02

ρis

)
c1i

c1w
. (94)

Thus, in this limitNcm ∼w2, in agreement with Ren and
MacKenzie (2005), but all coefficients are expressed now
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without empirical constants andNcm ∼ ρ−1
is (T ). Note also

that the crystal concentration is inversely proportional to the
deposition coefficient,Ncm ∼α−1

d ; that is, the smallerαd or
the more polluted clouds, the greater nucleated crystal con-
centration. Gierens et al. (2003) discussed possible reasons
for αd as small as 10−3; in these cases, the dependence 1/αd
can be significant. This is in agreement with the data from
the INCA field experiment (Ovarlez et al., 2002; Ström et
al., 2003; Haag et al., 2003; Gayet et al., 2004; Monier et al.,
2006) that found greater ice crystal concentrations in cirrus
in the more polluted Northern Hemisphere than in the cleaner
Southern Hemisphere. This could be caused not only by the
heterogeneous ice nucleation mode, but also by a small de-
position coefficient in homogeneous nucleation in polluted
areas.

(b) Initial r0 is large andr0�ξdep, large particles limit

Neglectingξdepcompared tor0, Eq. (91) can be further trans-
formed

9kin,l =
1

2r0
Biβ

−2
+ r0β

−1
= r0β

−1

(
Bi

2βr2
0

+ 1

)
(95)

= r0β
−1

[(2λ)−1
+ 1] ≈ r0β

−1.

The last equality takes into account thatλ� 1, so the first
term in the parentheses is much smaller than the second and
can be neglected. Substituting this9kin,l into the general so-
lution Eq. (81), we obtain

Ncm,l = (4πDv)
−1(1+ si,cr)s

−1
i,crr

−1
0 (c1iw). (96)

That is, the dependence onw is linear,Ncm ∼w. This linear
w-dependence is in agreement with predictions in Kärcher
and Lohmann (2002a, b) and in Ren and MacKenzie (2005).
The termρis(T ) is absent; thus the temperature dependence
is much weaker than in the previous cases, and is caused by
theT -dependence ofDv, c1i, andsi,cr.

3.7 Physical interpretation

Two examples of calculations using this new parameteriza-
tion are shown in Fig. 9 and Fig. 10. The crystal concentra-
tionsNc(w) calculated in the diffusion approximation with
the new Eqs. (87)–(89) andαd = 1 (denoted KC2012) for
an air parcel ascending with a vertical velocityw is shown
in Fig. 9. The applicability of the diffusion approximation
is justified by the smallλ∼ 10−3 to 0.03 withαd = 1 for
all w. It is compared with the parameterizations by Sassen
and Benson (2000; SB2000, tow = 1 m s−1), Liu and Pen-
ner (2005; LP2005), K̈archer and Lohmann (2002; KL2002).
Also shown here are the results of several parcel model sim-
ulations from Lin et al. (2002) according to the protocols of
CPMCP for the three values ofw = 4, 20 and 100 cm s−1.
Simulations were performed by Cotton, DeMott, Jensen,
Kärcher, Lin, Sassen, and Liu as indicated in Fig. 9 (the

models are described in Spice et al., 1999; DeMott et al.,
1994; Jensen et al., 1994; Kärcher and Lohmann, 2002a, b;
Lin, 1997; Sassen and Dodd, 1988, and Khvorostyanov and
Sassen, 1998a; Liu and Penner, 2005); the results of parcel
simulations from Khvorostyanov and Curry (2005) are added
(KC2005). This figure shows that the new parameterization
KC2012 lies within the spread of the parcel models results,
being closer to the lower limit, and to the parcel simula-
tions by Jensen who used a model with spectral microphysics
and explicit supersaturation (Jensen et al., 1994). KC2012 is
in qualitative agreement with Sassen and Benson (2000) at
smallw and is especially close to the parameterization by
Kärcher and Lohmann (2002a, b), although it was based on
a substantially different approach. This supports the valid-
ity of the new parameterization based on an extension of the
classical nucleation theory and shows that semi-empirical ap-
proaches lead to results that can be derived from the extended
classical nucleation theory.

Figure 10 shows a comparison of the full solution
Eqs. (81)–(85) with the diffusion limit Eqs. (87)–(89) atαd =

1 and the kinetic limit Eqs. (92)–(94) atαd = 0.04, 0.01 and
0.001. The diffusion approximation (solid circles) is valid at
λ� 1, and limited atw ≤ 170 cm s−1; the kinetic limit is
valid atλ� 1 and withαd = 0.04 is limited atw>30 cm s−1.
This figure illustrates good accuracy of the two approxima-
tions for corresponding valuesλ and underscores the impor-
tant role of the deposition coefficient. With smallαd, such
as in polluted clouds, the crystal concentrations are substan-
tially higher than withαd = 1 for clean clouds. So, polluted
crystalline clouds should have a substantially greater albedo
effect and this parameterization provides a quantitative tool
for its estimation.

4 Conclusions

A new analytical parameterization of the homogeneous
freezing suitable for cloud and climate models is derived
from the extended classical nucleation theory and analyti-
cal solutions to the supersaturation equation. This param-
eterization includes the time dependence and can be used
both for calculations of the crystal concentrations in cloud
models with small time steps (e.g., Jensen et al., 1994;
Khvorostyanov and Sassen, 1998b, 2002; Spice et al., 1999;
Lin et al. 2002; Sassen et al., 2002; Khvorostyanov et al.,
2001, 2003, 2006; Randall et al., 2003; Khairoutdinov and
Randall, 2003; Fridlind et al., 2004; Krakovskaia and Pir-
nach, 2004; Khain et al., 2004; Morrison et al., 2005; Seifert
and Beheng, 2006; Monier et al., 2006; Grabowski and Mor-
rison, 2008; Klein et al., 2009; Xue et al., 2010; Fan et al.,
2011; Curry and Khvorostyanov, 2012; Tao et al., 2012) and
for substep parameterizations in the mesoscale models (e.g.,
Zhang et al., 2011; Veltishchev et al., 2011) and in the large-
scale climate models and GCMs with time steps that can
be greater than the nucleation timeτnuc (e.g., Lohmann and

www.atmos-chem-phys.net/12/9275/2012/ Atmos. Chem. Phys., 12, 9275–9302, 2012
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Fig. 9. Comparison of the new 
parameterization (81), (82) of the crystal 
concentration Nc(w) as a function of w from 
this work (KC2012) with the 
parameterizations by Sassen and Benson 
(2000, SB2000, limited to w = 100 cm s-1), Liu 
and Penner (2005, LP2005), Kärcher and 
Lohmann (2002, KL02), and with parcel 
model simulations from Lin et al. (2002) 
(Cotton, DeMott, Jensen, Kärcher, Lin, 
Sassen, X.-Liu, as indicated in the legend) and 
from Khvorostyanov and Curry, 2005 
(KC2005) for the three values of w = 4, 20 and 
100 cm s-1. 
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Fig. 10. Comparison of the full solution (81), (82) with Ψ defined in (74) at two values of αd = 1 

and 0.04 (Full sol.) with diffusion limit (87) - (89) and kinetic limit  (92) - (94). The diffusion 

approximation (solid circles) is valid at λ << 1, and limited here at w ≤ 170 cm s-1; the kinetic 

limit is valid at λ >>1 and with αd = 0.04 is limited here at w > 30 cm s-1; both limits are denoted 
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Fig. 10.Comparison of the full solution (81), (82) with9 defined in
(74) at two values ofαd = 1 and 0.04 (Full sol.) with diffusion limit
(87)–(89) and kinetic limit (92)–(94). The diffusion approximation
(solid circles) is valid atλ� 1, and limited here atw ≤ 170 cm s−1;
the kinetic limit is valid atλ� 1 and withαd = 0.04 is limited here
atw>30 cm s−1; both limits are denoted with ellipses.

Kärcher, 2002; Morrison and Gettelman, 2008; Gettelman et
al., 2008; Sud et al., 2009).

We identify three different regimes of crystal homoge-
neous nucleation in cold clouds, depending on the cooling
time of an air parcel. At small times,t � τnuc(∼ 40 s), the
crystal concentrations increase linearly with time and pro-
portional to the concentration of the freezing haze particles
Na. At larger times,t � τnuc, but smaller than the timetmax
of maximum supersaturation in the parcel,Nc increases ex-
ponentially with time. Crystal concentrations in these two
regimes are proportional to the homogeneous nucleation rate
and concentration of the aerosol particles. If uplift of an iso-
lated parcel continues so thatt>tmax and t>tcr2, the super-

saturation reaches and passes a maximum and falls below the
threshold value, then a third regime occurs that can be called
limiting regime. The dependence on the nucleation rate and
haze concentration vanishes in this regime, although concen-
tration of nucleated crystals is much smaller than the concen-
tration of haze particles.

Expressions for the crystal concentrationNc in the third
limiting regime are very simple, and somewhat surprising.
They do not include most of the basic factors present in
the original supersaturation equation: neither nucleation rate
Jhom(T , sw) nor concentrationNa of the haze particle, nor
any characteristics of volume or size spectra or chemical
composition. The reason whyNc does not depend onNa can
be explained by the fact thatNc is usually on the order of a
few or a few tens per liter (rarely, a few hundred), whileNa is
typically on the order of a few hundred per cubic centimeter.
That is, only very small fraction of haze particles freezes, and
the dependence ofNc onNa vanishes at values ofNa much
smaller than those available in the upper troposphere studied
here. However, ifNa is small,Nc is limited byNa.

The major factors that govern homogeneous ice nucleation
in the third limiting regime are the vertical velocity,w, the
temperature,T , and the critical (threshold) saturation ratio
si,cr. The equations forNc derived here show that to first
approximation in the diffusion limit,Nc ∼w3/2, andNc ∼

ρ
−1/2
si (T ), both dependencies are the same as in Kärcher and

Lohmann (2002a, b) and in Ren and MacKenzie (2005) in
the diffusion growth limit. However, the actual dependence
of Nc onw andT is more complicated and somewhat differ-
ent sinces−3/2

i,cr also includes dependence onw andT , and
the critical supersaturationsi,cr also depends onT and sub-
stantially grows toward lowT ; the coefficientKi,dif depends
on T also via factorsDv, c1w, c1i, us. In the kinetic growth
or large particle limits,Nc can be proportional tow2 or to
w, depending on the initial particle radius, in agreement with
the previous semi-empirical parameterizations.
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The nucleation rate derived here varies exponentially with
time, and this dependence is characterized by some scal-
ing nucleation timeτnuc as in Ford (1998a, b), K̈archer and
Lohmann (2002a, b), and Ren and MacKenzie (2005). The
time τnuc is expressed here directly via the parameters of
CNT and fundamental physical constants.

The accuracy of the parameterization equations forNc was
estimated by comparison with data onNc from the Interna-
tional Cirrus Parcel Model Comparison Project (CPMCP)
(Lin et al., 2002) and parcel simulation results. The aver-
age error of this parameterization relative to the parcel runs
described here is about ±5–15 %. This is a satisfactory ac-
curacy, considering that the difference inNc among various
models in CPMCP was much greater.

Appendix A

Evaluation of the integrals

J
(k)
0i =

t∫
0

r
(k)
c,ef(t, t0)exp(βt0)dt0

These integrals are defined in Eq. (62) withβ in Eq. (51),Bi

in Eq. (58) andr(k)c,ef(t, t0) defined in Eqs. (60a, b, c)

β = usc1ww,Bi = 2ci3si,cr, (A1)

r
(1)
c,ef(t, t0)= [(r0 + ξdep)

2
+Bi(t − t0)]

1/2, (A2)

r
(2)
c,ef(t, t0)= −2ξdep, (A3)

r
(3)
c,ef(t, t0)= ξ2

dep[(r0 + ξdep)
2
+Bi(t − t0)]

−1/2. (A4)

The first of these integrals is

J
(1)
0i =

t∫
0

r
(1)
c,ef(t, t0)exp(βt0)dt0 (A5)

=

t∫
0

[(r0 + ξdep)
2
+Bi(t − t0)]

1/2exp(βt0)dt0,

Introducing a new variablex = t0/t , it is transformed

J
(1)
0i = B

1/2
i t3/2

1∫
0

(1− x+ a)1/2exp(βtx)dx, (A6a)

a =
(ξdep+ r0)

2

Bi t
. (A6b)

Introducing now a new variable,z= 1−x, this integral trans-
forms into

J
(1)
0i = B

1/2
i t3/2eβtJ

(1)
1i , J

(1)
1i =

1∫
0

(z+ a)1/2exp(−βtz)dz.(A7)

The next change of the variable,z′ = z+ a, yields

J
(1)
1i = eλ

1+a∫
a

z′1/2exp[−βtz′]dz
′
, (A8)

andλ does not depend ont

λ= aβt =
(ξdep+ r0)

2β

Bi
=
(usc1ww)(ξdep+ r0)

2

2ci3si,cr
. (A9)

We introduce a new variablex′
= βtz′. The limitsz′ = a and

z′ = (1+ a) transform intox′
= aβt = λ and x′

= βt(1+

a)= λ+βt . Then we have

J
(1)
1i (A10a)

=
exp(λ)

(βt)3/2

 ∞∫
λ

x′1/2exp(−x′)dx′
+

λ+βt∫
∞

x′1/2exp(−x′)dx′

 ,
=

exp(λ)

(βt)3/2

[
0

(
3

2
,λ

)
−0

(
3

2
,λ+βt

)]
Here0(µ,λ) is the incomplete Euler’s gamma function

(Gradshteyn and Ryzhik, 1994)

0(µ,λ)=

∞∫
λ

xµ−1exp(−x)dx. (A10b)

Substitution of Eqs. (A10a) into (A7) yields

J
(1)
0i = eβtB

1/2
i β−3/2eλ

[
0

(
3

2
,λ

)
−0

(
3

2
,λ+βt

)]
. (A11)

Calculation of the second integralJ (2)0i is much easier:

J
(2)
0i =

t∫
0

r
(2)
c,ef(t, t0)exp(βt0)dt0 = −2ξdep

t∫
0

exp(βt0)dt0

= −2ξdepβ
−1

[eβt − 1] = eβt2ξdepβ
−1

[e−βt − 1]. (A12)

The third integral is

J
(3)
0i =

t∫
0

r
(3)
c,ef(t, t0)exp(βt0)dt0

= ξ2
dep

t∫
0

exp(βt0)

[Bi(t − t0)+ (r0 + ξdep)2]1/2
dt0. (A13)

Similar to evaluation of the first integral, introducing a new
variablex = t0/t , and thenz= 1−x, this integral is reduced
to

J
(3)
0i =

ξ2
dept

1/2eβt

B
1/2
i

J
(3)
1i , J

(3)
1i =

1∫
0

exp(−βtz)

(z+ a)1/2
dz, (A14)
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wherea is the same as in Eq. (A6b). Introducing now a new
variablez′ = βtz, we obtain

J
(3)
1i = (βt)−1/2J

(3)
2i , J

(3)
2i =

βt∫
0

exp(−z′)

(z′ + λ)1/2
dz′ (A15)

The integralJ (3)2i here is similar to Eq. (A7). Substituting here
x = z′+λ, and accounting for the change of the limits (0,βt)

to (λ, λ+βt) yields

J
(3)
2i = eλ

λ+βt∫
λ

x−1/2e−xdx

= eλ

 ∞∫
λ

x−1/2e−xdx+

λ+βt∫
∞

x−1/2e−xdx


= eλ

[
0

(
1

2
,λ

)
−0

(
1

2
,λ+βt

)]
, (A16)

where0(α,x) is again the incomplete gamma function. Sub-
stituting Eq. (A16) into Eq. (A15) and into Eq. (A14), we
obtain

J
(3)
0i = eβtξ2

dep(βBi)
−1/2eλ

[
0

(
1

2
,λ

)
−0

(
1

2
,λ+βt

)]
. (A17)

It is more convenient in many cases to use the error function
8(x)= erf(x) defined as

erf(x)≡8(x)=
2

√
π

x∫
0

e−x
′2

dx′ (A17a)

instead of incomplete gamma functions, for which coding
and finding asymptotics can be easier. This can be done us-
ing the relations (Gradshteyn and Ryzhik, 1994, Chapter 8,
Eqs. 8.359 and 8.356)

0(1/2,λ)=
√
π [1− erf(

√
λ)], (A18)

0(α+ 1,λ)= α0 (α,λ)+ λαe−λ. (A19)

Using these two relations, the0(3/2, λ) can be transformed
as

0

(
3

2
,λ

)
=

1

2
0

(
1

2
,λ

)
+ λ1/2e−λ (A20)

=

√
π

2
[1− erf(

√
λ)] + λ1/2e−λ.

Collecting all three integralsJ (k)0i yields

J0i =

3∑
k

J
(k)
0i = eβt9, 9 =91 +92 +93, (A21)

91 = eλB
1/2
i β−3/2

[
0

(
3

2
,λ

)
−0

(
3

2
,λ+βt

)]
(A22)

= eλB
1/2
i β−3/2

{(
√
π/2)[8(

√
λ+βt)−8(

√
λ)]

+e−λ[λ1/2
− (λ+βt)1/2e−βt)]}. (A23)

92 = 2ξdepβ
−1(e−βt − 1). (A24)

93 = eλξ2
dep(βBi)

−1/2
[
0

(
1

2
,λ

)
−0

(
1

2
,λ+βt

)]
(A25)

= eλξ2
dep(βBi)

−1/2√π [8(
√
λ+βt)−8(

√
λ)]. (A26)

These expressions are used in Sect. 3 for evaluation of the
deposition integralJdep in the parameterization of homoge-
neous nucleation.

The asymptotic expansion of8(
√
λ) at largeλ� 1 with

account for the first three terms is (Gradshteyn and Ryzhik,
1994, Eq. 8.254)

8(
√
λ)=erf(

√
λ)=1−

1
√
π
λ−1/2e−λ

(
1−

1

2λ
+

3

4λ2

)
. (A27)

It follows from this equation and Eq. (A.17a) that

lim
x→∞

8(x)= 1,

∞∫
0

e−x
′2

dx′
=

√
π

2
. (A28)

The other limit at small argumentx � 1 with account
for only the first term is (Gradshteyn and Ryzhik, 1994,
Eq. 8.253)

lim
x→0

8(x)=
2

√
π
x exp(−x2). (A29)

The incomplete gamma function is related to the gamma
function as

0(µ,∞)= 0(µ). (A30)

The last function has the property

0(1/2)=
√
π. (A31)

These asymptotic properties of8(x) and0(µ) are used in
Sect. 3 for evaluation of the asymptotic behavior of the solu-
tions to the supersaturation equations and parameterizations
of homogeneous ice nucleation processes.
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Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
Trans. Farad. Soc., 32, 1152–1161, 1936.

Koop, T. and Zobrist, B.: Parameterizations for ice nucleation in
biological and atmospheric systems, Phys. Chem. Chem. Phys.,
11, 10839–10850, 2009.

Koop, T., Ng, H. P., Molina, L. T., and Molina, M. J.: A new optical
technique to study aerosol phase transitions: The nucleation of
ice from H2SO4 aerosols, J. Phys. Chem. A, 102, 8924–8931,
1998.

Koop, T., Luo, B. P., Tsias, A., and Peter, T.: Water activity as the
determinant for homogeneous ice nucleation in aqueous solu-
tions, Nature, 406, 611–614, 2000.

Krakovskaia, S. V. and Pirnach, A. M.: A theoretical study of the
microphysical structure of mixed stratiform frontal clouds and
their precipitation, Atmos. Res., 47–48, 491–503, 2004.

Laaksonen, A., Talanquer, V., and Oxtoby, D. W.: Nucleation: Mea-
surements, theory and atmospheric applications, Ann. Rev. Phys.
Chem., 46, 489–524, 1995.

Lin, R.-F.: A numerical study of the evolution of nocturnal cirrus by
a two-dimensional model with explicit microphysics. PhD thesis,
The Pennsylvania State University, 199 pp., 1997.

Lin, R.-F., Starr, D. O’C., DeMott, P. J., Cotton, R., Sassen, K.,
Jensen, E., K̈archer, B., and Liu, X.: Cirrus parcel model compar-
ison project. Phase 1: The critical components to simulate cirrus
initiation explicitly, J. Atmos. Sci., 59, 2305–2329, 2002.

Liu, X. H. and Penner, J. E.: Ice nucleation parameterization for
global models, Meteorol. Z., 14, 499–514, 2005.

Lohmann, U. and K̈archer, B.: First interactive simulations
of cirrus clouds formed by homogeneous freezing in the
ECHAM general circulation model, J. Geophys. Res., 107, 4105,
doi:10.1029/2001JD000767, 2002.

Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J.,
and Salzmann, C. G.: Structure of ice crystallized from
supercooled water, P. Natl. Acad. Sci., 109, 1041–1045,
doi:10.1073/pnas.1113059109, 2012.

Martin, S. T.: Phase transitions of aqueous atmospheric particles,
Chem. Rev., 100, 3403–3453, 2000.

McDougall, T. J., Feistel, R., Millero, F. J., Jackett, D. R., Wright,
D. G., King, B. A., Marion, G. M., Chen, C., Spitzer, P., and
Seitz, S.: The International Thermodynamic Equation Of Sea-
water 2010 (TEOS-10): Calculation and Use of Thermodynamic
Properties, UNESCO 2009, IOC Manuals and Guides, 150 pp.,
www.teos10.org, 2010.

Meyers, M. P., DeMott, P. J., and Cotton, W. R.: New primary ice-
nucleation parameterizations in an explicit cloud model, J. Appl.
Meteor., 31, 708–721, 1992.

Mishima, O. and Stanley, H. E.: The relationship between liquid,
supercooled and glassy water, Nature, 396, 329–335, 1998.

Monier, M., Wobrock, W., Gayet, J.-F., and Flossmann, A.: Devel-
opment of a detailed microphysics cirrus model tracking aerosol
particle’s histories for interpretation of the recent INCA cam-
paign, J. Atmos. Sci., 63, 504–525, 2006.

Morrison, H. and Gettelman, A.: A new two-moment bulk strati-
form cloud microphysics scheme in the community atmosphere
model, version 3(CAM3). Part I: Description and numerical tests,
J. Clim., 21, 3642–3659,doi:10.1175/2008JCLI2105.1, 2008.

Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A new double-
moment microphysics parameterization for application in cloud
and climate models, Part 1: Description, J. Atmos. Sci., 62,
3683–3704, 2005.

Murray, B. J. and Bertram, A. K.: Formation and stability of cu-
bic ice in water droplets, Phys. Chem. Chem. Phys., 8, 186–192,
2006.

Murray, B. J., Knopf, D. A., and Bertram, A. K.: The formation
of cubic ice under conditions relevant to Earth’s atmosphere, Na-
ture, 434, 202–205, 2005.

Murray, B. J., Broadley S. L., Wilson, T. W., Bull, S. J., Wills, R.
H., Christenson, H. K., and Murray E. J.: Kinetics of the homo-
geneous freezing of water, Phys. Chem. Chem. Phys., 12, 10380–
10387, 2010.

Ovarlez, J., Gayet, J.-F., Gierens, K., Ström, J., Ovarlez, H., Au-
riol, F., Busen, R., and Schumann, U.: Water vapour mea-
surements inside cirrus clouds in Northern and Southern
hemispheres during INCA, Geophys. Res. Lett., 29, 1813,
doi:10.1029/2001GL014440, 2002.

Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Pre-
cipitation, 2nd ed., Kluwer Academic Publishers: Boston, MA,
954 pp., 1997.

Randall, D., Krueger, S., Bretherton, C., Curry, J., Duynkerke, P.,
Moncrieff, M., Ryan, B., Starr, D., Miller, M., Rossow, W., Tse-
lioudis, G., and Wielicki, B.: Confronting models with data. The
GEWEX Cloud Systems Study, B. Am. Meteorol. Soc., 84, 455–
469, 2003.

Rasmussen, D. H.: Thermodynamic and nucleation phenomena: A
set of experimental observations, J. Cryst. Growth, 56, 56–66,
1982.

Ren, C. and MacKenzie, A. R.: Cirrus parameterisation and the role
of ice nuclei, Q. J. Roy. Meteorol. Soc., 131, 1585–1605, 2005.

Ren, C. and MacKenzie, A. R.: Closed-form approximations to
the error and complementary error functions and their appli-
cations in atmospheric science, Atmos. Sci. Lett., 8, 70–73,
doi:10.1002/asl.154, 2007.

Sassen, K. and Benson, S.: Ice nucleation in cirrus clouds: A model
study of the homogeneous and heterogeneous nucleation modes,
Geophys. Res. Lett., 27, 521–524, 2000.

Sassen, K. and Dodd, G. C.: Homogeneous nucleation rate for
highly supercooled cirrus cloud droplets, J. Atmos. Sci., 45,
1357–1369, 1988.

Sassen, K. and Dodd, G. C.: Haze particle nucleation simulation in
cirrus clouds, and application for numerical and lidar studies, J.
Atmos. Sci., 46, 3005–3014, 1989.

Sassen, K., Wang, Z., Khvorostyanov, V. I., Stephens, G. L., and
Bennedetti, A.: Cirrus cloud ice water content radar algorithm
evaluation using an explicit cloud microphysical model, J. Appl.
Meteorol., 41, 620–628, 2002.

www.atmos-chem-phys.net/12/9275/2012/ Atmos. Chem. Phys., 12, 9275–9302, 2012

http://dx.doi.org/10.1029/2001JD000767
http://dx.doi.org/10.1073/pnas.1113059109
www.teos10.org
http://dx.doi.org/10.1175/2008JCLI2105.1
http://dx.doi.org/10.1029/2001GL014440
http://dx.doi.org/10.1002/asl.154


9302 V. I. Khvorostyanov and J. A. Curry: Homogeneous ice nucleation for cloud and climate models

Sedunov, Y. S.: Physics of Drop Formation in the Atmosphere, Wi-
ley, New York, 234 pp., 1974.

Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics
parameterization for mixed-phase clouds. Part 1: Model descrip-
tion, Meteorol. Atmos. Phys., 92, 45–66,doi:10.1007/s00703-
005-0112-4, 2006.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and
Physics, Wiley, New York, 1326 pp., 1998.

Slezov, V. V. and Schmelzer, J. W. P.: Kinetics of nucleation–growth
processes: the first stages, in: Nucleation Theory and Applica-
tions, edited by: Schmelzer, J. W. P., Röpke, G., and Priezzhev, V.
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