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S1: Altitude Correction

The absolute values of the engineering tangertudés connected with the MIPAS
level 1b data are known to have uncertainties upeteeral kilometres (Kiefer et al,
2007). The discrepancies typically vary by abo&tkim within one orbit (in the case
of ESA processor versiariPF/4.61 anckIPF/4.67), but are more or less constant for
a single profile. Thus, any cloud top determinatadgorithm based only on the level
1b dataset is exposed to the same errors.

The absolute pointing information can be retrieedtier in terms of pressure at the
tangent point (Ridolfi et al., 2000) or geometritahgent altitudes (von Clarmann et
al, 2003). Both methods retrieve the relative pomtinformation in geometric
coordinates.

The following procedure is implemented to corréet L1b altitude information.

(1) The pressure information is used from the EpArational level 2 (L2) processing
(Raspollini et al., 2006) together with the geoptitd altitude from ECWMF
reanalysis data, and the corresponding conversiagebmetric altitudes to retrieve
the pressure-based ‘true’ altitude. Geometric tanhgdtitudes for spectra with no
pressure retrieval (e.g. due to cloud contaminatod typically below a certain
number of good quality L2 retrievals in the stratosre) were computed by using the
distance of the engineering tangent altitudes wetdpect to the lowest altitude level
with retrieved pressure information.

(2) If no L2-profile is available the correctiontioduced by Kiefer et al. (2007) for
the engineering altitudes is applied. A databas@edn tangent altitude correctioss
tabulated from temperature-altitude retrievals (@armann et al., 2003) for the time
period September 2002 to March 2003. These val@esiaan corrections over single
days for various latitude bins and are interpolat&t respect to latitude and time to
the corresponding L1b location during the procegsin

(3) If the observation time of the L1b profile isiteide of the certain range of the
Kiefer et al. correction, no altitude correctionaigplied and the original engineering
altitudes are used.

When applying these corrections, the tangent diitis assumed to be accurate in the
order of 500 m for option 1 and ~200 m for optionvizhereas the remaining
uncertainty of option 3 is in the order of +/- kB (von Clarmann et al. 2003).
However, item (3) was applied only for a marginaloaint of the MIPAS profiles

S2:  Improved NAT/lceclassification

Due to the different absorption and scattering atiaristics with respect to the
wavelength and the particle type, colour ratios lbnghtness temperature differences
(BTD) are valuable tools for cloud type classifioat The identification of NAT
follows the analysis of Spang and Remedios (2068)the refinements of Hopfner et
al. (2006a). Two colour ratios, the operatio8$| and the so-called NAT index (NI),



a colour ratio of the mean radiances of the 819881 divided by the 788.2-795.25
cm* microwindows, show a significant separation forNgarticles with radii of less

than 3um in the scatter diagram of measurements (seeFggre 3 in Spang and

Remedios, 2003), in modelled spectra (Figure 9 dpfHer et al., 2006a), and in the
framework of this more detailed study with the CS? example of all modelled

NAT spectra of the CSDB between 15 and 24 km in mamnson to STS and ice
spectra is presented in Figure.

A simple NI threshold functionNlne9 Was fitted to the data. The function is valid
over a broad altitude range (12-25km):

NI, .(Cl ) = (0.1536+0.71531CI , —0.03003CTI ;)™

The curve takes into account the fact that all MedeSTS and ice spectra fall into
the area below the threshold curve (not shown). dthvge can be applied in ti&a
range from 0.5 to 6, which covers optically thickthin conditions. Spectra witBla

>6 are extreme events with low amount s of clou€8DB spectra and cannot be
differentiated from cloud-free spectra. For clasation purposes, it is necessary to
computeCla andNI for the measured spectrum. Then the FlyAds set to one iNI

> Nlthres

Similar to the NI approach, the modelled spectra indicate that ipassible to

differentiate between ice and STS with a BTD betw882.3-834.4 cih and 947.5-

950.5 versuLla similar to Figure S2.1 and presented in Figur&&2A separation

threshold function is now definelCESTSCIl, ) (dashed line). However, for ice
versus NAT particles this differentiation methodtt@es inconclusive. NAT particle
radii greater than 3um do overlap with the region where the ice particippear

(Firure S2.2b). A second threshold functittENAT(Cls ) is defined. Finally, a

combination of these two constraints and the NAWei constraint allows an
improved and distinct classification of ice spediya

BTDg33.948 > |CENAT(C|A) = FLAGc =1
ICENAT(Cla ) > BTDg33.946> ICESTSCIa) L FLAGuAT=0 = FLAGce =1

A more generalised form of a multi-BTD approacthraslised by the naive Bayes
classification introduced in Appendix 3.
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Figure S2.1: Correlation of cloud indeXIa versus the colour ratio for NAT particle
identification, the so-called NAT index (NI), indhatitude range 12-28 km. The
radius dependency for NAT is colour-coded in greehght blue (0.5 to um). Dark
blue crosses are related to ice and are mainlyrisapesed by STS symbols.
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Figure S2.2: Threshold functions (dashed line) for ice/STS )laftd ice/NAT (right)
differentiation based on CSDB spectra in the algtwange 12-28 km fdCla versus
BTD of the mean radiances of 832.3 to 834.4"cand 947.5 to 950.5 chn
Dependency on STS composition (e.g. 0248 := 2% k&l 48% HSO,in orange
to red) and radius (0.5 ton in green to light blue) are colour coded, respebt.

S3:  Cloud typeclassification with naive Bayes classifier

For a statistical classification of different clotygpes a "naive Bayes classifier" was
applied to CSDB spectra. This is a simple probsiliclassifier based on applying
Bayes' theorem with strong (naive) independenceinagBons. The classifier is

trained by utilising the cloud radiance databaspared from the CSDB (Section 3.3)
with one wavenumber resolution subset of spectdividual MIPAS measurements



are classified on the basis of multiple brightrtessperature differences derived from
the corresponding radiance data. In spite of tle-simplified assumptions, the naive
Bayes classifier seems to work reasonably wel/ésious applications.

Naive Bayes classification

For an overview of the method, we follow the dgstoph from Hanson et al., (1991).
Naive Bayes classifiers can handle an arbitrary bemof independent variables
whether continuous or categorical. Given a setasfables X ={X1,%,...,%}, the aim
is to construct the probability for the evegjtamong a set of possible outcontes
{c1, &, ..., @}. Using Bayes' rule:

p(Cj | X5 Xg 00 Xg) = P(Xs Xg e Xy |Cj)p(Cj)

where p(Cj | X1,%,...,%) IS the posterior probability of class membership,, the
probability thatX belongs toCj. Since naive Bayes assumes that the conditional
probabilities of the independent variables arastteally independent we can perform

a decomposition to a product of terms

d
p(X|C;) = H p(% 1C;),
and rewrite the posterior as
d
p(Cj | X) = p(Cj)H p(xklcj)' (A1)

Using Bayes' rule above, we label a new casath a class leveC; that achieves the
highest posterior probability.

Training the classifier

All possible brightness temperatures are computealf input classes of spectra that
represent a certain cloud class of the CSDB. Wkedegarious microwindow sizes
between 0.5 and 1 ¢cmwhereby the most robust results were obtained fori* and
selected for the implementation. The results weressmed under histograms for
each class and BTD. For the histograms, variousiaes were tested for BTD (1-4 K)
and finally 4 K was selected. The next step waslé¢atify the ratios with the highest
information content for cloud classification. Thieme the CSDB spectra were
analysed. The product probabilities for the brigisg temperatures were computed
according to Equation Al. The class assignmentlsted to the highest resulting
probability. Since the cloud type (classificatiaf)the modelled input spectra is well
known, a score value of correctness can be evalwalech then allows the optimal
ratios to be selected by maximizing the correctlyigned spectra.

I mplementation

The histograms of the selected optimal ratios fmheclass discussed above provide
the basis for the classification method. Large layemn the histograms indicates more



difficulties in classification. Each brightness ftesnature difference of an input
spectrum can be attributed to a specific probaghlitin each class (cloud type). All
selected brightness temperature differences thestitate a product probability

N
P,»=|;||O.,,-

for each potential cloud clasg histogram class) over all selected MW pairs (
number of histograms). A maximum of 10 MW pairs eveelected. The maximum of
P={P4,...,By} explains the assignment to the cloud type clAssa consequence, it is
possible to assign every single spectrum to aiodrput cloud type.

For polar winter conditions above 12 km altitudes processor is set up to distinguish
ice, NAT and STSn(=3). Below this altitude and for other seasons latitldes, the
classification only distinguishes liquid and ice teraclouds i=2). Additional
refinements improve the results of the Bayes diaasion. For example, selection of
the optimised histograms for specific latitude mrmohd seasons as well as for a
defined range of optical thicknesses of the claudsereCl, can act as a good proxy
for optically thickness) results in better trainirggults of the method.

For application in the processor look-up tableshistograms for various latitude
bands andCl, ranges are provided. Generally, in the data peiegshe classification,
macro-, and micro- retrievals are restricted tofttst 2-3 cloudy spectra in a MIPAS
scan.

An extension of the CSDB with aerosol spectra iganped and would give the
opportunity for a more detailed cloud patrticle éifintiation in the troposphere, for
example between background aerosol, volcanic aghd) and ice water clouds.
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