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S1:  Altitude Correction  

The absolute values of the engineering tangent altitudes connected with the MIPAS 
level 1b data are known to have uncertainties up to several kilometres (Kiefer et al, 
2007). The discrepancies typically vary by about 1.5 km within one orbit (in the case 
of ESA processor version ≥IPF/4.61 and <IPF/4.67), but are more or less constant for 
a single profile. Thus, any cloud top determination algorithm based only on the level 
1b dataset is exposed to the same errors.   

The absolute pointing information can be retrieved either in terms of pressure at the 
tangent point (Ridolfi et al., 2000) or geometrical tangent altitudes (von Clarmann et 
al, 2003). Both methods retrieve the relative pointing information in geometric 
coordinates. 

The following procedure is implemented to correct the L1b altitude information.  

(1) The pressure information is used from the ESA operational level 2 (L2) processing 
(Raspollini et al., 2006) together with the geopotential altitude from ECWMF 
reanalysis data, and the corresponding conversion to geometric altitudes to retrieve 
the pressure-based ‘true’ altitude. Geometric tangent altitudes for spectra with no 
pressure retrieval (e.g. due to cloud contamination and typically below a certain 
number of good quality L2 retrievals in the stratosphere) were computed by using the 
distance of the engineering tangent altitudes with respect to the lowest altitude level 
with retrieved pressure information.  

(2) If no L2-profile is available the correction introduced by Kiefer et al. (2007) for 
the engineering altitudes is applied. A database of mean tangent altitude corrections is 
tabulated from temperature-altitude retrievals (von Clarmann et al., 2003) for the time 
period September 2002 to March 2003. These values are mean corrections over single 
days for various latitude bins and are interpolated with respect to latitude and time to 
the corresponding L1b location during the processing.  

(3) If the observation time of the L1b profile is outside of the certain range of the 
Kiefer et al. correction, no altitude correction is applied and the original engineering 
altitudes are used.   

When applying these corrections, the tangent altitude is assumed to be accurate in the 
order of 500 m for option 1 and ~200 m for option 2, whereas the remaining 
uncertainty of option 3 is in the order of +/- 1.5 km (von Clarmann et al. 2003). 
However, item (3) was applied only for a marginal amount of the MIPAS profiles 

 

S2:  Improved NAT/Ice classification 

Due to the different absorption and scattering characteristics with respect to the 
wavelength and the particle type, colour ratios and brightness temperature differences 
(BTD) are valuable tools for cloud type classification. The identification of NAT 
follows the analysis of Spang and Remedios (2003) and the refinements of Höpfner et 
al. (2006a). Two colour ratios, the operational CIA and the so-called NAT index (NI), 



a colour ratio of the mean radiances of the 819-821 cm-1 divided by the 788.2-795.25 
cm-1 microwindows, show a significant separation for NAT particles with radii of less 
than 3 µm in the scatter diagram of measurements (see e.g. Figure 3 in Spang and 
Remedios, 2003), in modelled spectra (Figure 9 in Höpfner et al., 2006a), and in the 
framework of this more detailed study with the CSDB. An example of all modelled 
NAT spectra of the CSDB between 15 and 24 km in comparison to STS and ice 
spectra is presented in Figure.  

A simple NI threshold function (NIthres) was fitted to the data. The function is valid 
over a broad altitude range (12-25km): 
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The curve takes into account the fact that all modelled STS and ice spectra fall into 
the area below the threshold curve (not shown). The curve can be applied in the CIA 
range from 0.5 to 6, which covers optically thick to thin conditions. Spectra with CIA 
>6 are extreme events with low amount s of cloud in CSDB spectra and cannot be 
differentiated from cloud-free spectra. For classification purposes, it is necessary to 
compute CIA and NI for the measured spectrum. Then the FLAGNAT is set to one if NI  
> NIthres. 

Similar to the NI approach, the modelled spectra indicate that it is possible to 
differentiate between ice and STS with a BTD between 832.3-834.4 cm-1 and 947.5-
950.5 versus CIA similar to Figure S2.1 and presented in Figure S2.2a. A separation 
threshold function is now defined ICESTS(CIA ) (dashed line). However, for ice 
versus NAT particles this differentiation method becomes inconclusive. NAT particle 
radii greater than 3 µm do overlap with the region where the ice particles appear 
(Firure S2.2b). A second threshold function ICENAT(CIA ) is defined. Finally, a 
combination of these two constraints and the NAT index constraint allows an 
improved and distinct classification of ice spectra by: 

BTD833-948  >   ICENAT(CIA )  ⇒  FLAGICE  = 1 

ICENAT(CIA ) > BTD833-948 > ICESTS(CIA )   ∧    FLAGNAT = 0     ⇒    FLAGICE  = 1 

A more generalised form of a multi-BTD approach is realised by the naive Bayes 
classification introduced in Appendix 3.  

 



 

Figure S2.1: Correlation of cloud index CIA versus the colour ratio for NAT particle 
identification, the so-called NAT index (NI), in the latitude range 12-28 km. The 
radius dependency for NAT is colour-coded in green to light blue (0.5 to 5 µm). Dark 
blue crosses are related to ice and are mainly superimposed by STS symbols.  
 

  
 
Figure S2.2: Threshold functions (dashed line) for ice/STS (left) and ice/NAT (right) 
differentiation based on CSDB spectra in the altitude range 12-28 km for CIA versus 
BTD of the mean radiances of 832.3 to 834.4 cm-1 and 947.5 to 950.5 cm-1. 
Dependency on STS composition (e.g. 0248 := 2% HNO3 and 48% H2SO4 in orange 
to red) and radius (0.5 to 5 µm in green to light blue) are colour coded, respectively.  
 

S3:  Cloud type classification with naive Bayes classifier  

For a statistical classification of different cloud types a "naive Bayes classifier" was 
applied to CSDB spectra. This is a simple probabilistic classifier based on applying 
Bayes' theorem with strong (naive) independence assumptions. The classifier is 
trained by utilising the cloud radiance database prepared from the CSDB (Section 3.3) 
with one wavenumber resolution subset of spectra. Individual MIPAS measurements 



are classified on the basis of multiple brightness temperature differences derived from 
the corresponding radiance data. In spite of the over-simplified assumptions, the naive 
Bayes classifier seems to work reasonably well for various applications.  

Naive Bayes classification 

For an overview of the method, we follow the description from Hanson et al., (1991). 
Naive Bayes classifiers can handle an arbitrary number of independent variables 
whether continuous or categorical. Given a set of variables, X ={x1,x2,…,xd}, the aim 
is to construct the probability for the event Cj among a set of possible outcomes C = 
{ c1, c2, … , cd}. Using Bayes' rule:  
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where p(Cj | x1,x2,…,xd) is the posterior probability of class membership, i.e., the 
probability that X belongs to Cj. Since naive Bayes assumes that the conditional 
probabilities of the independent variables are statistically independent we can perform 
a decomposition to a product of terms 
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and rewrite the posterior as 
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Using Bayes' rule above, we label a new case X with a class level Cj that achieves the 
highest posterior probability. 

Training the classifier 

All possible brightness temperatures are computed for all input classes of spectra that 
represent a certain cloud class of the CSDB. We tested various microwindow sizes 
between 0.5 and 1 cm-1, whereby the most robust results were obtained for 1 cm-1 and 
selected for the implementation. The results were subsumed under histograms for 
each class and BTD. For the histograms, various bin sizes were tested for BTD (1-4 K) 
and finally 4 K was selected. The next step was to identify the ratios with the highest 
information content for cloud classification. Therefore the CSDB spectra were 
analysed. The product probabilities for the brightness temperatures were computed 
according to Equation A1. The class assignment is related to the highest resulting 
probability. Since the cloud type (classification) of the modelled input spectra is well 
known, a score value of correctness can be evaluated which then allows the optimal 
ratios to be selected by maximizing the correctly assigned spectra.  

Implementation 

The histograms of the selected optimal ratios for each class discussed above provide 
the basis for the classification method. Large overlap in the histograms indicates more 



difficulties in classification. Each brightness temperature difference of an input 
spectrum can be attributed to a specific probability pi in each class (cloud type). All 
selected brightness temperature differences then constitute a product probability 
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for each potential cloud class (j: histogram class) over all selected MW pairs (i: 
number of histograms). A maximum of 10 MW pairs were selected. The maximum of 
P={P1,…,Pm} explains the assignment to the cloud type class. As a consequence, it is 
possible to assign every single spectrum to a certain input cloud type. 

For polar winter conditions above 12 km altitude, the processor is set up to distinguish 
ice, NAT and STS (m=3). Below this altitude and for other seasons and latitudes, the 
classification only distinguishes liquid and ice water clouds (m=2). Additional 
refinements improve the results of the Bayes classification. For example, selection of 
the optimised histograms for specific latitude bands and seasons as well as for a 
defined range of optical thicknesses of the clouds (where CIA can act as a good proxy 
for optically thickness) results in better training results of the method. 

For application in the processor look-up tables of histograms for various latitude 
bands and CIA ranges are provided. Generally, in the data processing the classification, 
macro-, and micro- retrievals are restricted to the first 2-3 cloudy spectra in a MIPAS 
scan. 

An extension of the CSDB with aerosol spectra is planned and would give the 
opportunity for a more detailed cloud particle differentiation in the troposphere, for 
example between background aerosol, volcanic ash, liquid, and ice water clouds.  
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