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Abstract. The role of ice in the formation of chemically ac-
tive halogens in the environment requires a full understand-
ing because of its role in atmospheric chemistry, including
controlling the regional atmospheric oxidizing capacity in
specific situations. In particular, ice and snow are important
for facilitating multiphase oxidative chemistry and as media
upon which marine algae live. This paper reviews the na-
ture of environmental ice substrates that participate in halo-
gen chemistry, describes the reactions that occur on such sub-
strates, presents the field evidence for ice-mediated halogen
activation, summarizes our best understanding of ice-halogen
activation mechanisms, and describes the current state of
modeling these processes at different scales. Given the rapid
pace of developments in the field, this paper largely addresses
advances made in the past five years, with emphasis given to
the polar boundary layer. The integrative nature of this field

is highlighted in the presentation of work from the molecular
to the regional scale, with a focus on understanding funda-
mental processes. This is essential for developing realistic
parameterizations and descriptions of these processes for in-
clusion in larger scale models that are used to determine their
regional and global impacts.

1 Introduction

Ice and snow substrates, while long considered to be by-
standers in environmental chemistry, are now known to play
important roles in a variety of atmospheric chemical phe-
nomena ranging from the scavenging of volatile organic
compounds by falling snow (Lei and Wania, 2004), to partici-
pation in photoreduction processes associated with deposited
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mercury (Durnford and Dastoor, 2011), and to sequestration
of persistent organic pollutants (Brown and Wania, 2008).
This review focuses on the role that ice and snow play in
the formation of volatile halogen-containing molecules in the
coldest parts of our atmosphere, for example in the bound-
ary layer at high latitudes and the upper troposphere-lower
stratosphere (UT-LS). It is likely that similar processes occur
in all snow-covered regions of the globe.

Ice-halogen chemistry was first explored for its impor-
tance to the Antarctic ozone hole, a phenomenon in which
the majority of ozone within the polar stratospheric vortex
is depleted annually for months at a time (summarized in
Solomon, 1999). A conceptual advance in our understanding
of atmospheric chemistry arose through coupled laboratory,
field and modeling studies that demonstrated that interactions
with polar stratospheric clouds convert relatively long-lived
halogenated species to more reactive species that ultimately
lead to ozone destruction. For example, compounds such as
ClONO2, HOCl and HCl adsorb to cloud surfaces, and are
converted via heterogenous reactions to gas phase Cl2 which
is readily photolyzed:

ClONO2 + HCl → HNO3 + Cl2 (R1)

HOCl+ HCl → Cl2 + H2O (R2)

This chemistry largely occurs on particles that are not com-
posed of pure ice, but rather solid nitric acid hydrates or su-
percooled solutions of sulfuric and nitric acid. This multi-
phase chemistry has similarities to that which prevails in the
polar boundary layer on sea ice surfaces, blowing snow and
the snowpack, as well as potentially in the UT-LS on ice crys-
tals. In particular, the chemistry in Reaction (R2) proceeds
on surfaces and in the bulk, likely through ionic processes
facilitated by the dissociation of HCl on the ice surface, as
described below.

Research related to ice chemistry in the Arctic and Antarc-
tic boundary layers has accelerated in recent decades, mo-
tivated by observations of ozone depletion events (ODEs)
that coincide with elevated levels of atmospheric brominated
compounds (Barrie et al., 1988), now known to be largely
reactive species such as BrO, Br and HOBr (as summarized
in Simpson et al., 2007b). Ozone loss can occur rapidly via
well-known gas phase catalytic processes involving bromine
radicals, such as Br and BrO. In addition, measurements of
active iodine in polar regions have been made (e.g.Saiz-
Lopez et al., 2007b).

Formation of reactive halogens and subsequent destruction
of ozone significantly changes the oxidizing conditions of
the boundary layer. For example, mercury compounds, oxi-
dized by halogen radicals, are deposited to the surface during
ODEs (Schroeder et al., 1998; Steffen et al., 2008). Simi-
larly, reactions with halogen radicals reduce the lifetimes of
dimethyl sulphide and other organic compounds that are nor-
mally controlled by OH (von Glasow and Crutzen, 2004). In

addition, due to changes in HOx cycling, OH levels them-
selves may be affected (e.g.Sjostedt et al., 2007). Recently,
it has been shown that a large degree of variability in ozone
in the Arctic is correlated with exposure to sea ice (Gilman
et al., 2010; Jacobi et al., 2010), which likely indicates cat-
alytic loss of ozone by halogens.

Ozone levels in the UT-LS can also be affected by het-
erogeneous reactions such as Reactions (R1) and (R2) occur-
ring on ice and other particle surfaces (Borrmann et al., 1996,
1997). Very low temperatures in the UT-LS promote forma-
tion of thin cirrus clouds over a large fraction of the Earth’s
surface area. Very short-lived substances (VSLS) containing
halogens decompose to release halogen atoms in this region.
However, air masses in the UT-LS are not as dynamically iso-
lated as they are in the polar stratosphere and boundary layer
in winter and spring, so attribution of ozone depletion to ice
chemistry in the UT-LS is difficult.

While the gas phase reactions for destruction of boundary
layer ozone by halogen radicals are analogous to those that
proceed in the polar stratosphere, the sources of the halogens
to the gas phase and the means by which they can be recy-
cled and maintained in reactive forms are distinctly differ-
ent. In the stratosphere, where residence times can be years
and where photodissociation rates are enhanced by the en-
ergetic UV fields, the halogen sources are well known and
include both chlorofluorocarbons and halons. By contrast, in
the polar boundary layer where photodissociation of small
brominated organics of biological origin does not proceed
fast enough at low solar angles, the focus of most recent re-
search has been on chemistry occurring on saline surfaces
including both the snowpack and sea ice surfaces. Reactive
processes, either driven photochemically or by gas-surface
chemical interactions, have been studied as a means by which
sea salt halides are oxidized to more reactive forms. For
example, one of a number of processes identified involves
HOBr oxidation of bromide, which can either recycle active
bromine or lead to its autocatalytic release (Fan and Jacob,
1992; Mozurkewich, 1995; Vogt et al., 1996):

HOBr+ HBr/Br− → Br2 + H2O/OH− (R3)

This is a multiphase process which, depending upon the sub-
strate, may or may not proceed faster under acidic conditions.
In particular, as described later in the paper, there is evidence
that some bulk reactions require acidity to proceed whereas
a number of interfacial ones do not.

The role of bromine in boundary layer ODEs was recog-
nized very early on, and it motivated early research in the
field. More recently, however, the complexity of the interre-
lationships between gas-surface chemistry, photochemistry,
and biological processes has been recognized (Dominé and
Shepson, 2002). For example, it is now known that nitrate in
snow photodissociates into reactive nitrogen forms (Honrath
et al., 2002; Beine et al., 2008), a process that generates OH
radicals within the snowpack. Similarly, H2O2 photolysis is
an important source of OH (Anastasio et al., 2007). Sunlight
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Fig. 1. Sources of halides in the polar boundary layer. A range of salinity values is indicated: frost flowers (Rankin et al., 2002), brine,
new ice (Ehn et al., 2007), multi-year ice (Timco and Weeks, 2010), basal snow (Toyota et al., 2011b), snow< 0.2 m (Toyota et al., 2011b),
background snow (Massom et al., 2001), frost flower (FF) contaminated snow (Obbard et al., 2009).

also leads to the release of small volatile organic compounds
(VOCs), either through direct photolytic processes or indi-
rectly via reactions with OH or halogen radicals (Grannas
et al., 2007). Biological processes play an additional role
through sea ice algae that convert inorganic halides into or-
ganic forms that are released to the ice environment.

Common to these processes is the presence of ice, whether
in the form of cirrus clouds, fresh sea ice, multi-year sea ice,
frost flowers, snowpack, or blowing snow. These materials
present a range of microenvironments in which inorganic and
organic halogenated species can interact, including the disor-
dered layer of enhanced mobility water molecules that exists
on the surface of a pure ice crystal, at the grain boundaries
forming within polycrystalline ice, or within the highly con-
centrated brine that co-exists with sea ice. The chemistry oc-
curring in these materials is complex, as described in this re-
view. Freeze concentration effects driven by freezing of sea
water greatly enhance solution ionic strengths and lead to
enhanced rates of chemical reaction. Similarly, ice surface
acidity may vary widely from nearly neutral conditions as-
sociated with sea water to highly acidic conditions produced
by deposition to the snowpack of Arctic Haze aerosol, trans-
ported from pollution sources in mid-latitudes (Barrie et al.,
1981). Lastly, the physical structures of the ice substrates are
important. Sea ice contains brine microchannels that permit
transport of reactants over large distances. By contrast, the
snowpack from freshly fallen snow will be highly porous and
with high surface area, where transport rates at the snow sur-
face will be determined by wind pumping (Colbeck, 1997;
Cunningham and Waddington, 1993).

The goal of this paper is to summarize the role that ice
and snow substrates play in promoting the formation and

transformations of reactive halogenated species in the tro-
posphere, with a prime focus on the polar boundary layer
but with connections to other parts of the atmosphere as well
including the upper troposphere. It is hoped that a compre-
hensive review will highlight current knowledge and future
needs for studies in different environments, such as snow-
covered regions in the mid-latitudes. This paper comple-
ments the 2007 review ofSimpson et al.(2007b) that fo-
cussed on the detailed relationship between active bromine
and ozone depletion events in the polar boundary layer. This
paper is distinguished fromSimpson et al.(2007b) by pro-
viding a more fully developed molecular level description of
the halogen interactions with ice and snow throughout the en-
vironment, not just in the polar boundary layer. In addition,
issues that have arisen in the past five years are given special
attention, such as biological sources of halogens in ice cov-
ered regions, photochemical and freezing-induced mecha-
nisms for halogen release, observations and potential sources
of active iodine, interpretation of satellite measurements of
active bromine, and recent advances in modeling these pro-
cesses. The potential for chlorine activation on cirrus clouds
is also discussed.

2 Inorganic halides and ice

This section describes the physical nature and composition
of different substrates upon which halogen activation may
occur in the polar boundary layer; see Fig.1.
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2.1 Sea ice

As sea water freezes, exclusion of solutes from the ice matrix
results in the formation of low salinity ice and high salinity
brine. Depending on growth dynamics, temperature, and ini-
tial salinity, the brine will be located within inclusions in the
bulk ice or at the ice surface as a liquid or slushy layer (with
salinities of 100 PSU, where PSU refers to practical salinity
unit which is roughly equivalent to the salt mass fraction,
expressed in parts per thousand). As temperatures decrease,
pressure changes force the brine from the ice via a process
known as brine expulsion, with some brine moving upwards
and most downwards. As the brine cools, salts reach their
solubility thresholds and may precipitate, depending on ki-
netic factors, leading to chemical fractionation between the
brine and the solids. For example, at 265 K, the precipita-
tion of mirabilite (Na2SO4·H2O) results in a relative deple-
tion of Na+ and SO2−

4 in the brine. Below 251 K, hydro-
halite (NaCl·2H2O) precipitates, leading to bromide enrich-
ment relative to chloride in the brine and vice versa in the
solid phase. Overall, these processes lead to enriched bro-
mide brine concentrations at young sea ice surfaces. Note
that fractionation does not occur in bulk analyses if snow
samples are melted. For that to occur, some physical sepa-
ration of the brine from the precipated species is required.
The relative affinity for polarizable ions, such as Br− and I−,
for the water-air interface may also enhance bromide relative
to chloride at the surface (Jungwirth and Tobias, 2001, 2006;
Gladich et al., 2011). The age of the exposed/underlying sea
ice is an important determinant for salinity; multi-year sea
ice has less accessible salt because most of the brine will
have drained away during the summer melt (Simpson et al.,
2007a).

2.2 Frost flowers

2.2.1 Frost flower formation

Under cold and calm conditions, the formation of new sea
ice may be associated with frost flower growth. Frost flower
blooms are especially common in coastal regions where off-
shore winds create new shore leads which can freeze over
(Domine et al., 2005). As temperatures drop and sea water
freezes, air which is supersaturated with water vapor con-
denses at imperfections at the surface. The highly saline brine
that forms at the ice surface is wicked up by the ice skele-
ton through the effects of surface tension and concentration
gradients.Style and Worster(2009) have shown theoretically
and experimentally that frost flowers can also grow when su-
persaturated air is produced immediately above an ice sur-
face which is sublimating into a cold, dry atmosphere. Frost
flower fields typically last for only a few days, at which point
they may be buried by the snow or melted by surface flood-
ing (Perovich and Richter-Menge, 1994). Due to the recent
interest in frost flowers, field studies (Alvarez-Aviles et al.,

2008; Obbard et al., 2009; Domine et al., 2005; Perovich
and Richter-Menge, 1994) and laboratory studies (Style and
Worster, 2009; Martin et al., 1995, 1996; Roscoe et al., 2011)
have focused on gaining a better understanding of the frost
flower growth process and chemical composition.

2.2.2 Halide levels in frost flowers

As a result of brine wicking, frost flowers are covered in
a highly saline brine (≈ 100 PSU, when measured as the
bulk salinity of a melted frost flower). The bulk melted con-
centration is about three times more saline than sea wa-
ter (< 35 PSU) (Perovich and Richter-Menge, 1994; Roscoe
et al., 2011), and the surface is likely even more saline. In
addition, the salinity is not uniformly distributed (Perovich
and Richter-Menge, 1994) and is also function of frost flower
age (Roscoe et al., 2011). For example (Alvarez-Aviles et al.,
2008) measured frost flower salinities ranging from 16 PSU
(mature frost flower tip) to 75 PSU (bulk young frost flower).
The enhancement in salinity is demonstrated by Fig.2, which
shows measured frost flower, brine, sea ice and sea water
salinities sampled at the Weddell Sea and Mertz Glacier
(Rankin et al., 2002). Depending on location, growth time
and temperature, frost flowers may become enriched in cer-
tain ions over others (Obbard et al., 2009). The precipitation
of mirabilite at warm temperatures leads to the formation of
frost flowers which are depleted in sulfate (Rankin et al.,
2002, 2000). Since bromide does not precipitate until tem-
peratures reach 245 K (ice/NaBr·5H2O eutectic) (Koop et al.,
2000), bromide is not expected to be removed from solution
in the majority of frost flowers and its enhanced concentra-
tion should be due to freeze-concentration effects alone.

If temperatures drop low enough for NaCl to precipitate,
as might occur with aged frost flowers or if aerosol particles
are formed from them, the bromide to chloride ratio may in-
crease in the frost flowers and associated brine. For exam-
ple, at 240 KKoop et al. (2000) calculated that the chlo-
ride concentration had increased by a factor of 11 in brine
while the bromide concentration has increased by a factor
of 38. Kalnajs and Avallone(2006) measured Cl−/Br− ra-
tios ranging from 269–367, much lower than the correspond-
ing sea water ratio of 650, for frost flowers collected from
the Barne Glacier, Antarctica, suggesting that a bromide-
enhanced brine has wicked up.

2.2.3 Frost flowers as a direct source of halides

Rankin et al.(2002) first proposed frost flowers as a poten-
tially important source of reactive bromine.Kaleschke et al.
(2004) provide a parameterization for potential frost flower
(PFF) area which is based in part on laboratory studies for
frost flower growth (Martin et al., 1996) and depends on the
open water fraction and the surface air temperature. This
approach allows PFF to be calculated from satellite-based
imaging and meteorological data, for Antarctic conditions.
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Fig. 2. Salinities of frost flowers (darker grey), slush (white), ice (black) and seawater (lighter grey). Taken fromRankin et al.(2002) with
permission of the American Geophysical Union.

In the Kaleschke et al.(2004) study they showed that areas
of high PFF were strongly correlated with enhanced column
BrO and concluded that frost flowers are the source of reac-
tive bromine in bromine explosion events. However, a trajec-
tory study bySimpson et al.(2007a) showed that BrO lev-
els in air masses arriving at Barrow, Alaska did not correlate
with PFF contact.

Early on, frost flowers were estimated to have a specific
surface area (SSA) similar to fresh snow leadingRankin et al.
(2002) to estimate a total surface area (TSA) ranging from
50–1000 m2 per m2 of ice surface. As a result, it was believed
that frost flowers would provide a large surface area for bro-
mide activation. However, subsequent SSA measurements of
field (Domine et al., 2005; Obbard et al., 2009) and labora-
tory frost flowers (Roscoe et al., 2011) reveal that the SSA
is only slightly larger than the underlying sea ice. For ex-
ample,Obbard et al.(2009) measured SSA for frost flowers
collected from Hudson Bay ranging from 63 to 299 cm2 g−1

with a mean of 162 cm2 g−1. Similarly,Domine et al.(2005)
measured SSA for frost flowers of 185 cm2 g−1 from which
they calculate a TSA of 1.4 m2 per m2 of ice surface. Based
on the small TSA, these studies conclude that the direct role
of frost flowers in bromide activation may have been over-
stated.

2.2.4 Frost flowers as an indirect source of halides

It has also been suggested that frost flowers may be indirectly
responsible for halogen activation by acting as a source of
sea-salt aerosol (Rankin et al., 2000). The main evidence for
this is the observation that both frost flowers and fractionated
sea-salt aerosol are sulfate-depleted with respect to sea wa-
ter (Rankin et al., 2000, 2002; Wagenbach et al., 1998). For
example, frost flowers collected from the Weddell Sea and

near the Mertz Glacier were found to have a sulfate/sodium
weight ratio of 0.05–0.10, much lower than the standard sea-
water ratio of 0.25 but similar to that observed for winter-
time aerosol at Halley base of 0.107 (Rankin et al., 2002).
Beaudon and Moore(2009) were the first to observe a frost
flower chemical signature in Arctic snow. Snow samples col-
lected from the winter snowpack at the western edge of the
Vestfonna ice cap were fractionated in sodium and sulfate
with a SO2−

4 /Na+ ratio of 0.092 which is lower than that
of sea water but similar to that measured for Antarctic frost
flowers and aerosol. However, we note that sulfate-depleted
snow may also arise from precipitation of solid sulfates in
other processes involving brine, i.e. not exclusively via frost
flowers (e.g.Krnavek et al., 2012).

Although it has been proposed that frost flowers are a
source of sea-salt aerosol, the mechanism of aerosol pro-
duction from frost flowers is not known. Frost flowers are
mechanically rigid and difficult to fracture (Alvarez-Aviles
et al., 2008; Obbard et al., 2009; Domine et al., 2005) and
frost flower breakage has yet to be directly observed in the
field. Obbard et al.(2009) were the first to observe pieces of
broken frost flowers but these pieces were too large to have
been lofted. In addition, aerosol formation during the growth
of laboratory frost flowers was not observed under various
wind conditions (Roscoe et al., 2011). However, wind scour-
ing of the highly saline frost flower surface may be impor-
tant and it has also been suggested that frost flowers may in-
directly affect halogen chemistry by contaminating adjacent
snow (Obbard et al., 2009; Morin et al., 2008). Also, blow-
ing snow may cover frost flowers thus facilitating a bromine
explosion within the snowpack (Morin et al., 2008).
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2.2.5 Salty snow

It has been proposed that blowing saline snow on sea ice
could be a source of reactive bromine (Yang et al., 2008,
2010; Jones et al., 2009); this mechanism is discussed in
more detail in Sects. 5 and 6. It has also been proposed that
a bromine explosion could occur in the interstitial air within
a salty snowpack (Morin et al., 2008). Several processes lead
to enriched snow salinity. The upward migration of sea-salt
enriched brine from the sea ice to the snowpack by capillary
forces can affect snow salinity. Flooding, the infiltration of
seawater through cracks or brine-drainage channels that con-
nect the ocean to the sea-ice surface, also introduces brine
to the basal snow layer. Enriched salinities (> 2 PSU) have
been observed to a height of 0.1–0.2 m (Massom et al., 2001;
Domine et al., 2004; Toyota et al., 2011b) although most of
the enrichment is expected within the basal snow layer (Mas-
som et al., 2001; Toyota et al., 2011b), where salinities have
been observed to range from 0.43–36.9 PSU (Toyota et al.,
2011b). The salinity at the top of the snowpack is primarily
affected by (a) the deposition of sea-salt aerosol generated by
sea spray from the open ocean or nearby leads and polynyas
and (b) precipitation dilution. Snow at the top of the snow-
pack is generally associated with lower salinities. For exam-
ple, Massom et al.(2001) measured salinities ranging from
0.1–2.0 PSU in blowing snow collected just above the sur-
face. Although the salinity above a height of 0.2 m is fairly
low, wind scouring can re-expose salty snow surfaces (Simp-
son et al., 2007a). Snow blowing across bare sea ice may also
acquire additional salt which may be deposited to the snow-
pack.Domine et al.(2004) observed large amounts of Cl−

and Br− to be deposited to snow by wind, rapidly increasing
ionic concentration.Jones et al.(2009) also measured high
salt concentrations in surface snow and snow pits.

3 Organohalogens and ice

Sea ice is a habitat for organisms, such as microalgae, that
are capable of enduring extreme environments. Recent stud-
ies have revealed that such sea ice microalgae are a source of
organohalogens. Naturally produced halocarbons are a group
of compounds consisting of one to three carbon atoms with
one to three halogen atoms. Some are short-lived in the tro-
posphere, with atmospheric lifetimes shorter than 6 months.
The compounds listed in Table1 are all naturally pro-
duced, however, some have additional anthropogenic sources
(CHBrCl2, CHBr2Cl and CHBr3).

3.1 Production mechanisms

Investigations of halocarbon release have mostly focused on
micro- and macro-algae from subtropical and tropical re-
gions (Laturnus, 1996; Laturnus et al., 1996; Goodwin and
North, 1992; Collén et al., 1994; Tokarczyk and Moore,
1994). The suggested mechanism is through the scavenging

Table 1.Naturally produced short-lived halocarbons and their esti-
mated global atmospheric lifetime (Law and Sturges, 2007).

Compound Atmospheric lifetime (days)

CHBr3 26
CH2Br2 120
CHBrCl2 68
CHBr2Cl 79
CH2BrCl 150
CH3I 7
CH3CH2I 4
1-iodopropane 0.5
2-iodopropane 1.2
CH2ClI 0.1
CH2BrI 0.04
CH2I2 0.003

of superoxide radicals formed during photosynthesis. This
involves several enzymatic processes from the conversion of
O−

2 to H2O2 (ReactionR4) through the enzyme superoxide
dismutase (SOD), to the reduction of H2O2 to water through
haloperoxidases (ReactionR5) (Moore et al., 1996; Theiler
et al., 1978).

O−

2 + O−

2 + 2H+
→ H2O2 + O2 (R4)

H2O2 + X−
+ H+

→ HOX + H2O (R5)

where X= Cl, Br, I. During the reduction of H2O2, it is most
likely that HOCl is formed, which will rapidly react with
bromide, and if present iodide, forming HOBr and/or HOI
(as described in Sect. 4). Halocarbons can then be formed
through the reaction of HOCl, HOBr and HOI with the dis-
solved organic matter through the haloform Reaction (R6,
written for X= Cl), or less likely, through addition Reac-
tion (R7).

RCOCH3 + 3HOCl→ RCOOH+ CHCl3 + 2H2O (R6)

RC= CR′
+ HOCl → RC(OH)C(Cl)R′ (R7)

The haloform reaction, in combination with substitution re-
actions, is known to produce all of the above mentioned
halocarbons except iodomethane. All the brominated com-
pounds correlate with CHBr3, which is the main contribu-
tor of organo-bromine (Li et al., 1994; Abrahamsson et al.,
2004; Granfors et al., 2012). For the iodinated cases, CH2I2
contributes the most to organo-iodine, however, it is seldom
at concentrations above detection limits in open oceans (Car-
penter et al., 2007).

The formation of halocarbons is, thus, dependent on both
photosynthesis (Cota and Sturges, 1997; Abrahamsson et al.,
2004) and respiration, since all respiring cells produce H2O2.
Evidence that respiration is important is that production
of halocarbons has been observed during dark conditions
(Collén et al., 1994; Cota and Sturges, 1997), and in sea ice
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Table 2. Mixing ratios and surface water concentrations of organo-Br and organo-I. Data taken from:Carpenter et al.(2007), Yokouchi
et al.(1996, 1994, 2008, 2001), Butler et al.(2007), Penkett et al.(1985), Reifenḧauser and Heumann(1992a,b), Bottenheim et al.(1990),
Rasmussen et al.(1982), Hughes et al.(2009), Krysell (1991), Fogelqvist(1985), Fogelqvist and Tanhua(1995), Moore and Tokarczyk
(1993); Moore et al.(1993), Sturges et al.(1997), Schall and Heumann(1993); Schall et al.(1997), Abrahamsson et al.(2004), Chuck et al.
(2005).

Arctic atmosphere Arctic water, Antarctic atmosphere Antarctic water,
>60◦ N, pptv pmol l−1 >60◦ S, pptv pmol l−1

Br 2.9–27 24–110 8.1–30 3–230
I 2.9–4.0 0.1–2.2 0.11–2.4 3–19

brine where the pigment echinenone was present, which in-
dicates the presence of bacteria (Theorin et al., 2012).

In polar areas only a few attempts have assessed the
rate of production by sea ice algae. For cultures of organ-
isms living on ice, production rates for bromoform have
been determined to vary between 0.1–48 pmol µg chl a−1 h−1

(Cota and Sturges, 1997; Sturges et al., 1993). Another ap-
proach was presented byTheorin et al.(2012), who incu-
bated sea ice brine and found comparable production rates,
3–33 pmol µg chl a−1 h−1. From these data, using the values
given for primary productivity in the Arctic and the Antarc-
tic (Horner et al., 1992; Gosselin et al., 1997), the total an-
nual production of bromoform has been estimated to be in
the range of 1–100 Gg. Measurements of organo-halogens in
polar waters and atmosphere are summarized in Table2.

3.2 Fluxes from seawater in polar areas

Reviewing halocarbon fluxes from seawater in polar areas
is difficult since measurements in these areas are scarce
and the few measurements are dependent on time and lo-
cation of sampling.Carpenter et al.(2007) performed mea-
surements within 40 km from the sea ice in the austral
spring/summer and found positive saturation anomalies for
CHBr3 and CH2I2. The mean bromoform sea-air flux of
32 nmol m−2 day−1 and the mean saturation anomalies of
780 % were similar in magnitude to global shelf values, and
the surface maxima in halocarbon concentrations were as-
sociated with meltwater from nearby sea ice.Hughes et al.
(2009) estimated the air-sea flux of CHBr3 and CH2Br2 from
water measurements on the west side of the Antarctic Penin-
sula. The mean value of 84 CHBr3 nmol m−2 day−1 and
21 nmol CH2Br2 m−2 day−1 during ice-free periods could
be important if representative of the large areas of ice
edge blooms in the Southern Ocean. Flux measurements at
off-shore sites related to the summer ice edge were 8.3–
19 nmol m−2 day−1 for CHBr3 and 1.9–3.6 nmol m−2 day−1

for CH2Br2 (Abrahamsson et al., 2004). Hughes et al.(2012)
measured CH2Br2 and CHBr3 in coastal waters of the west-
ern Antarctic Peninsula, and found large interannual vari-
ations for CHBr3 but not for CH2Br2. They derived mean
CHBr3 emission rates of 117 and 29 nmol m−2 day−1 for di-
atom bloom and non-bloom waters, respectively. CHBr3 can

be an important bromine source in general but, owing to slow
photolysis, not under bromine explosion conditions.

Mattsson et al.(2012) measured CHBr3 and CH2ClI in sea
water and air in Antarctic waters. CHBr3 was clearly under-
saturated in seawater in a majority of the sampling sites while
CH2ClI had a saturation anomaly varying between−90 %
and 310 %.Chuck et al.(2005) measured halocarbons in sea
water and air at 60◦ S in February-March and found CHBr3,
CHBrCl2, CHBr2Cl to be under-saturated in sea water and
CH3I to be close to equilibrium with air.

In general, we note that the organohalogens are released
starting at roughly the same time at ODEs (e.g. March to
April in the northern hemisphere) and continue throughout
sunlit periods. The photolytic lifetimes of these species will
be shorter at later time periods that early spring, given that
strong UV is required.

3.3 Fluxes from sea ice

Sea ice may be a barrier to the transport of gases from sea-
water to the atmosphere. However, in ice-covered oceans, sea
ice can also act as a source of halocarbons when they are pro-
duced within sea ice brine (Theorin et al., 2012). Halocarbon
concentrations in sea ice brine are often higher than those
measured in sea water (Granfors et al., 2012; Theorin et al.,
2012) and during periods of biological production and melt-
ing, sea ice will contribute halocarbons to the atmosphere.
One uncertainty is the rate of transport for biogenic halocar-
bons through sea ice, which has not yet been determined in
the field. However, diffusion coefficients for gases such as
oxygen and SF6 have been experimentally derived byLoose
et al. (2011) giving diffusion coefficients (D) on the order
of 10−5 to 10−4 cm2 s−1. Estimation of D-values for CHBr3,
CH2ClI and CH2BrI in sea ice during freezing byGranfors
et al. (2012) resulted in aD on the order of 10−4 cm2 s−1.
This would mean thatD is approximately 100 times larger
for CHBr3 and CH2ClI and a 1000 times larger for CH2BrI
than the diffusion coefficients in water that can be derived
for halocarbons using constants given byWilke and Chang
(1955). The faster diffusion is possibly due to gas phase
transport of the volatile halocarbons in gas bubbles formed
in the ice during freezing, either trapped in the ice during the
freezing process or formed due to supersaturation caused by
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the formation of gases through respiration or photosynthesis
(Mock et al., 2002).

Recent laboratory studies in a cold room have shown that
iodinated halocarbons diffuse very slowly through consol-
idated ice, suggesting that movement from under the ice
through to the brine on its surface may be slower than release
from neighbouring open leads (Shaw et al., 2011). The slow
diffusion times through the brine channels opens up the pos-
sibility for photochemical decomposition/change to occur to
the halocarbons while in the sea ice substrate.

Determining the transit rates through the ice is important
as pointed out bySaiz-Lopez and Boxe(2008), who have
proposed a mechanism for iodine release from sea-ice sur-
faces using a multiphase chemical model. This study sug-
gested that biological production of inorganic iodine from
marine algae contained within and underneath sea-ice, and
subsequent diffusion through sea-ice brine channels leads to
accumulation in the brine layer on the surface of sea-ice.
The levels of inorganic iodine released through this mech-
anism could account for the observed IO concentrations in
the Antarctic springtime environment. However, there are un-
certainties including the possibility that HOI will react with
organics present and the rate of diffusion through ice.

3.4 Frost flowers

In addition to inorganic halides, it has also been shown that
frost flowers could be a source of organo-Br and organo-I to
the atmosphere. The concentrations found in the frost flowers
reflected the concentrations found in brine, organo-Br 140–
360 pmol l−1 and organo-I 1.2–5.1 pmol l−1. As mentioned
in Sect. 2, the lifetime of frost flowers is relatively short
and, during these events, an additional source of organo-Br
and organo-I might be present (Granfors et al., 2012). Fluxes
have yet to be measured from frost flowers, making this an
interesting area for future work.

3.5 Snowpack

Alkyl halides are present in snowpack interstitial air, some-
times at mixing ratios higher than the surrounding atmo-
sphere, suggestive of an uncharacterized source (Swanson
et al., 2007). Measurements were conducted at both mid-
latitude and polar sites, and a wide range of organohalogen
species were observed. It is hypothesized that the molecules
are formed within the quasi-liquid layer of the ice crystals
by nucleophilic attack of a halide ion to an alcohol. How-
ever, a biological source cannot be ruled out. Described in
the Supplement are calculations of the photochemical life-
times of such species when in the interstitial air of a variety
of snowpacks, from melting snow to a coastal snowpack to
cold polar snow. As shown in Fig.3, it is noteworthy that
the lifetimes of the organoiodides within the snowpacks are
sufficiently short that considerable photochemistry may be
occurring within this environment.
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Fig. 3. Upper frame: albedo and e-folding depth for light penetra-
tion in a coastal snowpack. Lower frame: photolysis lifetime iso-
pleths versus snowpack depth and solar zenith angle for the pho-
tolysis of select species in a coastal snowpack. See Supplement for
details.

4 Molecular level understanding of multiphase
oxidation chemistry

The above sections have mostly addressed the bulk avail-
ability of halogenated species, and this section addresses
their multiphase chemistry at a molecular level. In partic-
ular, while ice chemistry is distinct from bulk-phase aque-
ous chemistry, it nevertheless has strong connections to this
long-standing field. Through this work it was recognized that
a variety of atmospheric oxidants are active in the aqueous
phase. Also, the speed of oxidation reactions generally in-
creases with increasing atomic number, e.g. the ratios of the
rate constants for reactions with dissolved O3 are 1/105/1012

for Cl−/Br−/I− (Buxton et al., 1988; Liu et al., 2001). Fi-
nally, aqueous reactions are frequently accelerated by acidic
conditions (Eigen and Kustin, 1962; Liu et al., 2001).

The first evidence that analogous chemistry may occur on
ice and ice-like substrates came from stratospheric ozone
hole studies. Although we know now that stratospheric halo-
gen activation occurs largely via aerosol and clouds that are
composed of ice under only the coldest conditions (Solomon,
1999), many of the earliest lab studies were conducted on ice
surfaces at temperatures below 190 K. It was shown that re-
actions involving adsorbed forms of HCl and HBr proceed
rapidly with other halogenated molecules. In general, surface
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phase ionization and solvation processes are crucial for such
chemistry to occur. The details of this chemistry have been
reviewed previously (Abbatt, 2003; Huthwelker et al., 2006).

As Sect. 2 has illustrated, the structure of boundary layer
snow and ice will promote a mix of both aqueous and solid
phase processes. In pristine environments, falling snow and
a fresh snow pack will promote surface chemistry at the
atmosphere-ice boundary. Alternatively, sea ice and frost
flowers consist of both ice and concentrated brines, so that
bulk aqueous phase processes will occur in these saline envi-
ronments. We start with a molecular-level description of rel-
evant surfaces, and then describe multiphase oxidative pro-
cesses. A summary of the most important halogen activa-
tion processes is provided in Conclusions and Open Issues
(Sect. 7.2).

4.1 Microscopic view of the substrate

4.1.1 Brines and quasi-liquid layers

At the interface between the gas phase and solid ice phase,
there exists a disordered region referred to as the quasi-liquid
layer (QLL) (Döppenschmidt and Butt, 2000; Wei et al.,
2002; Rosenberg, 2005; Li and Somorjai, 2007; Kahan and
Donaldson, 2007). Water molecules adopt a more random
orientation than in the crystalline form, giving rise to an en-
vironment different from both bulk ice and the liquid water
surface. The thickness of the QLL increases with increas-
ing temperature (Döppenschmidt and Butt, 2000) and in the
presence of impurities (Döppenschmidt and Butt, 2000; Mc-
Neill et al., 2006). There is evidence to suggest that reactivity
in/on the QLL may also be unique and thus care should be
taken in modeling the QLL using known liquid-phase kinet-
ics (Kahan and Donaldson, 2007; Kahan et al., 2010a,b; Kuo
et al., 2011). When high ionic strengths are involved (e.g. sea
ice), the concept of a pure QLL will not be applicable (Kuo
et al., 2011). Instead, separation of liquid brine from solid ice
is thermodynamically predicted.

4.1.2 Halide distribution

Koop et al.(2000) suggested that both sea-salt aerosols and
seawater on the ice pack will be partially liquid at tempera-
tures as low as 230 K with increasing bromide and chloride
concentrations as well as with decreasing temperature. Re-
cent work suggests that enriched surface concentrations of
halides can be adequately predicted using a thermodynamic
analysis.Cho et al.(2002) presented a formulation derived
from ideal solution thermodynamics for predicting both the
volume fraction of the unfrozen phase as well as the concen-
tration of excluded solutes. The authors studied dilute solu-
tions of NaCl using NMR spectroscopy to probe brine pock-
ets within the ice matrix and found measured concentrations
and liquid fractions to be in good agreement with their pre-
dictions.

More recently,Křepelov́a et al. (2010) studied the sur-
face of frozen NaCl solutions using x-ray photoelectron spec-
troscopy and found the composition of the unfrozen phase at
the surface to be well predicted by the NaCl-H2O phase di-
agram.Wren et al.(2010) studied the kinetics of the hetero-
geneous ozonation of bromide at the surface of frozen NaBr
solutions and found the kinetics to be consistent with forma-
tion of a brine at the surface whose composition reflects the
expected bulk composition. Molecular dynamics simulations
by Carignano et al.(2007) andBauerecker et al.(2008) also
showed that Na+ and Cl− ions are excluded from the ice
matrix during freezing into QLLs located at the interfaces.
However, recent work byWren and Donaldson(2011) has
shown that surface enrichment due to freezing is not always
well predicted by thermodynamics.

4.1.3 Surface affinity of halides

There now exists extensive theoretical (e.g.Jungwirth and
Tobias, 2001; Jungwirth et al., 2006; Jungwirth and Tobias,
2006; Gladich et al., 2011) and experimental (Petersen et al.,
2004; Ghosal et al., 2005; Clifford and Donaldson, 2007) ev-
idence to suggest that the heavy halide ions are surface ac-
tive. The affinity of these ions for the air-aqueous interface
may have important implications for halide activation chem-
istry occurring at the surface of a liquid brine layer. In par-
ticular, the strong surface affinity of iodide may compensate
for its naturally low sea water concentration. However, the
degree of surface enhancement is complicated because there
are cross ion effects, and surface enhancement may not be
the same depending on the mix of ions (Wingen et al., 2008;
Gladich et al., 2011; Richards et al., 2011). As well, fast sur-
face reactions may ultimately deplete the bulk, underlying
brine or seawater layers, slowing the kinetics.

4.1.4 Acidity of sea ice surfaces and aerosol

Attention has been paid to the acidity of sea ice and brine
substrates, given that pH may play a role in halogen activa-
tion (see Sect. 4.2.1). Seawater pH, which is naturally alka-
line, is buffered by the carbonate system. An important con-
sideration is the effect on brine pH of the precipitation of car-
bonate salts during freezing.Dieckmann et al.(2008, 2010)
have identified ikaite (CaCO3·6H2O) as the dominant cal-
cium carbonate polymorph in both the Arctic and the Antarc-
tic. Although ikaite, which is thermodynamically predicted
to precipitate at ca. 268 K (Morin et al., 2008) is more sol-
uble than other polymorphs of calcium carbonate (e.g. cal-
cite, CaCO3, which precipitates at ca. 271 K), its formation
appears to be favoured kinetically (Dieckmann et al., 2008).
Morin et al.(2008), building on initial work bySander et al.
(2006) performed a modelling study which showed that the
identity of the precipitating calcium carbonate polymorph is
important in determining the alkalinity of the brine. This con-
cept is illustrated in Fig.4, taken fromSander and Morin
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Fig. 4. Total alkalinity (AT) of the brine during the freezing of
seawateras calculated by the FREZCHEM model with (a) carbon-
ate precipitation artificially “switched off” (labeled “No precip”)
(b) precipitation of calciteonly (“FREZCHEM calcite”) and (c) pre-
cipitation of ikaite (“FREZCHEM ikaite”) only. Taken from Sander
and Morin (2010) with permission of the authors.

(2010), which shows the total alkalinity of the brine as a
function of temperature for different precipitation scenarios,
referenced to the alkalinity of seawater. When carbonate pre-
cipitation is not considered, the only effect of decreasing
temperature is cryo-concentration and hence brine alkalinity
increases with decreasing temperature. When calcite precip-
itation is considered, cryo-concentratioin of the brine is min-
imal and precipitation of calcite results in a decrease in brine
alkalinity well below the seawater value. Under this sce-
nario, subsequent acidification of the brine by atmospheric
trace acids could potentially lead to low pH and thus favour
bromine explosion chemistry (Sander et al., 2006). However,
when ikaite precipitates, the alkalinity of the brine does not
drop below its initial value. This is due to the fact that the
precipitation of ikaite at 268 K cannot fully compensate for
the cryo-concentration of the alkalinity that occurs prior to
precipitation (as illustrated in Fig.4). Given that ikaite has
been identified in the field, this latter scenario may be more
representative, i.e. the alkalinity is reduced relative to a case
where no carbonate precipitation occurs but to not as low
values as if calcite were to precipitate.

A range of bulk pH values has been measured. For exam-
ple,Kalnajs and Avallone(2006) measured the pH of melted
frost flowers, sea ice and non-frost flower snow. The pH of
the frost flower samples is similar to sea water, suggesting
that acidification by trace atmospheric gases did not occur.
In comparison, the pH of Arctic snow has been found to
range from 4.6–6.13 (de Caritat et al., 2005). However, bulk
(i.e. melted sample) pHs do not necessarily reflect the effec-
tive surface pH.

Fig. 5. Molecular dynamics model results for the adsorption of
HCl molecule to an ice surface via ionization to form a chloride
ion and a H3O+ ion, as indicated in(C). Taken from Gertner
and Hynes (1996). Reprinted with permission from AAAS.

4.1.5 Non-reactive interactions of halogenated gases
with ice

Laboratory exposure of halogenated gases to snow and ice
surfaces at atmospheric temperatures leads to substantial up-
take for hydrogen halides such as HCl, HBr and HI (Abbatt,
2003; Huthwelker et al., 2006). Because of its high abun-
dance in the stratosphere, HCl has also received consider-
able interest from theoreticians (Girardet and Toubin, 2001;
Toubin et al., 2003; Bianco and Hynes, 2006). The question
of whether HCl adsorbs molecularly or readily dissociates at
the ice surface is clearly of importance for halogen activation
(Bianco and Hynes, 2006; Horn et al., 1992). In particular,
recent modeling results show that at submonolayer coverage
and very low, non-atmospheric temperatures (tens of degrees
Kelvin), molecular HCl can co-exist on ice with ionized HCl
(Buch et al., 2002) and some calculations predict that the
dissociation mechanism is not thermally activated (Gertner
and Hynes, 1998; Svanberg et al., 2000). In these models,
the ionization is driven by the number of dangling hydrogen
bonds, with favorable sites offering 3 dangling H-bonds on
the ice surface. Instead, other models predict efficient sol-
vation of Cl− when it is incorporated in the first ice layer
(Gertner and Hynes, 1996, 1998), as shown in Fig.5. Those
processes are favored by the higher water activities present
at more atmospherically-relevant temperatures, providing a
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plausible mechanism for the increasing degree of HCl ion-
ization with increasing temperature seen in experiments.

For other species, molecular dynamics (MD) simulations
have been recently performed on liquid water, as a model for
the aqueous surface that might arise on ice surfaces. For ex-
ample, MD simulations have been carried out for the uptake
of the ClO radical at the surface of liquid water (Du et al.,
2009). Simulation results show that the ClO radical has a
higher propensity to be adsorbed on the air-water interface
than to be dissolved in the bulk, thus opening up the possi-
bility for interfacial chemistry.

4.2 Heterogeneous processes

In this section we address what is known about heteroge-
neous oxidation chemistry involving reaction of halide ions
with a number of oxidants. We note that many of the stud-
ies below follow-on from earlier work on halogen activa-
tion conducted to understand polar stratospheric ozone. From
this work, it was learned that ionic mechanisms dominate in
many systems, such as Reactions (R1) and (R2) which are
driven in large part by the dissociation of HCl on the surface
(Sodeau et al., 1995; Banham et al., 1996; Horn et al., 1998).
We discuss this chemistry in the following sub-sections by
oxidant.

4.2.1 HOBr, HOCl

The heterogeneous reactions of HOBr play a central role in
boundary layer ozone depletion and potential UT-LS chem-
istry on cirrus clouds. This arises because HOBr represents
a significant fraction of the total active bromine budget,
whereas HBr plays a minor role. A major advance arose from
the recognition that heterogeneous bromine activation may
proceed autocatalytically if gas phase HOBr oxidizes con-
densed phase bromide leading to the ultimate production of
more than one HOBr gas phase molecule (Fan and Jacob,
1992; Mozurkewich, 1995; Vogt et al., 1996). This has led
to the term “bromine explosion” to refer to the rapid rise of
active bromine that can ensue.

Initial laboratory studies, many motivated by stratospheric
issues, demonstrated that a general class of reactions pro-
ceed on ice surfaces involving the hypohalous acids, HOCl
and HOBr (Hanson and Ravishankara, 1992b; Abbatt and
Molina, 1992; Abbatt, 1994):

HOX + HY → XY + H2O (R8)

where X, Y= Cl, Br.
As described in this section, HCl and HBr adsorb strongly

to ice, likely existing in a dissociated form; the hydrated
halides may be similar in chemical nature to those in con-
centrated brines. In particular, under the partial pressures of
HBr used in the laboratory, the ice surface is likely to melt
to form a thermodynamically stable solution in which the
strong acids are fully dissociated (Hanson and Ravishankara,

Fig. 6.Formation of Br2 (and loss of HOBr) when gas phase HOBr
is exposed to a frozen NaCl/NaBr solution at 233 K at roughly 400 s
in a coated-wall flow tube. Note that no gas phase BrCl is formed.
Taken fromAdams et al.(2002) with permission of the authors.

1992a), as occurs with HCl at somewhat higher partial pres-
sures. HOCl and HOBr are considerably weaker acids than
the hydrogen halides, and so they adsorb to ice surfaces to a
lesser extent (Hanson and Ravishankara, 1992b; Abbatt and
Molina, 1992). Under the low temperatures used for these
studies, these reactions proceed rapidly with close-to-unity
HOX uptake coefficients for surfaces exposed to HY. These
studies build upon aqueous chemistry work. For example, the
rate constants for the analogous aqueous reactions are ex-
tremely rapid, with the rates highest for the larger, more po-
larizable halides (Eigen and Kustin, 1962; Beckwith et al.,
1996). Unless the acidity is very high, Reaction (R8) pro-
ceeds via a mechanism whereby the proton reacts with an
HOX·Y− intermediate.

Laboratory experiments have confirmed that the central re-
action of the bromine explosion, Reaction (R3), will readily
occur. In particular, the mass accommodation coefficient of
HOBr to deliquesced salt particles and ice is large (Abbatt,
1994; Abbatt and Waschewsky, 1998). Also, Br2 is formed
when frozen NaCl/NaBr solutions are exposed to HOBr
(Kirchner et al., 1997; Adams et al., 2002; Huff and Abbatt,
2002), as shown in Fig.6. Most importantly,Adams et al.
(2002) illustrated that HOBr reacts with frozen NaCl/NaBr
solutions forming Br2 initially, and then BrCl when the sur-
face becomes depleted of bromide. In the environment, if an
ice surface has been processed by reaction with HOBr or
other oxidants, then BrCl may be observed as a product in
place of Br2. These reactions occur over a wide range of so-
lution acidities, with little impact on yields or kinetics. Stud-
ies at polar boundary layer temperatures have confirmed that
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analogous chemistry is driven by the uptake of HOCl and
HOI to frozen salt solutions (Huff and Abbatt, 2000; Holmes
et al., 2001). In particular, with HOI, the product of the re-
action with frozen NaCl/NaBr solutions is IBr until all the
bromide is depleted, at which point ICl starts to form.

In summary, laboratory studies provide convincing evi-
dence that HOBr heterogeneous chemistry central to the Arc-
tic boundary layer bromine explosion proceeds rapidly, form-
ing gas phase Br2, so long as sufficient surface bromide is
available. It is important to note that with icy substrates sur-
face acidity appears to not play a significant role in the chem-
istry (Adams et al., 2002), in contrast to studies conducted
with aqueous salt solutions, for which acidity was required
for bromine release to occur (Fickert et al., 1999). That is,
if chemistry is occurring in brines then acidity may be im-
portant; if it is more on ices or the surfaces of concentrated
brines, then acidity may not be as much an issue. The chem-
istry proceeds sufficiently rapidly that mass transfer from the
atmosphere to a snowpack/ice surface is very likely rate lim-
iting, as described byHuff and Abbatt(2000). HOCl and
HOI also react rapidly, in an analogous manner to HOBr.

4.2.2 Ozone

The first evidence that ozone can oxidize halides in an ice
substrate demonstrated that frozen seawater liberates gas
phase Br2 when exposed to O3 (Oum et al., 1998). These
experiments were conducted just below freezing, and Br2
concentrations were observed to rise in sync with increasing
exposure to ozone. This bromine activation process is impor-
tant given that it can occur in the dark, prior to polar sunrise,
and it may provide the seed bromine that becomes ampli-
fied through the HOBr-driven bromine explosion reactions
described above. For this reason its mechanism has been the
focus of much research.

Early work implied that an interfacial reaction plays an
important role. Reaction between gas phase ozone and aque-
ous bromide particles proceeds faster than predicted by bulk
phase kinetics (Anastasio and Mozurkewich, 2002; Hunt
et al., 2004). Also, changes in the spectral properties of the
near-surface region of aqueous solutions indicate an interfa-
cial reaction (Clifford and Donaldson, 2007). The detailed
mechanism of this interfacial process is not well known, but
likely goes through a Langmuir-Hinshelwood-like process
(Oldridge and Abbatt, 2011), as observed for a large num-
ber of ozone heterogeneous reactions. In particular, ozone is
thought to first adsorb to a surface before it, or its decomposi-
tion products, then reacts with other surface species. Spectro-
scopic observation of frozen sodium bromide solutions and
iodide solutions indicates that similar chemistry occurs be-
low freezing as for aqueous substrates (Oldridge and Abbatt,
2011; Wren et al., 2010).

A question that arises is whether the same reaction mech-
anism proceeds faster interfacially or predominantly in the
bulk brine phase. This has direct relevance to environmen-

tal modeling because a highly reactive interfacial layer may
be readily depleted of bromide by ozone, thus leading to re-
duced halogen supply to the atmosphere. Or, does replenish-
ment of bromide from within the bulk occur rapidly? Quan-
titative separation of the bulk and surface phase kinetics in
one study indicates that the surface layer reaction dominates,
for 253 K frozen solutions of NaCl/NaBr with compositions
close to those of seawater (Oldridge and Abbatt, 2011). Un-
der conditions of higher ozone concentrations than are atmo-
spherically relevant, the bulk reaction dominates the kinet-
ics but in the atmospheric regime the kinetics are better de-
scribed by a surface reaction with Langmuir-Hinshelwood-
like kinetics. The same study showed that surfaces formed
by freezing solutions that are both acidic and neutral promote
fast kinetics (Oldridge and Abbatt, 2011), consistent with the
rate determining step of the reaction mechanism not involv-
ing a proton. The lab studies do not report rapid diminution
of halogen production rates with time, as might occur if bro-
mide is being depleted at the surface. This indicates that there
is rapid replenishment of bromide from the bulk brine to the
surface.

In summary, we are confident that ozone readily oxidizes
iodide and bromide when present in frozen solutions such as
sea ice or when marine aerosol is deposited to the snowpack.
There is no evidence that chloride is oxidized if the other
halides are present. Under atmospheric conditions, the reac-
tion occurs most rapidly at the interface, via a process that is
not accurately modeled using bulk-phase parameters.

4.2.3 Hydroxyl radical

OH is an efficient oxidant of aqueous halides via an acid-
assisted mechanism (Finlayson-Pitts, 2003). Two studies
have examined whether gas phase OH radicals heteroge-
neously oxidize aqueous halides. Notably, gas phase OH was
generated photochemically from the photodissociation of O3
in the presence of water vapor and deliquesced NaCl parti-
cles (Oum et al., 1998). Cl2 was observed to form at rates
considerably faster than can be accounted for by bulk phase
chemistry, leading to the suggestion that facile surface chem-
istry takes place, perhaps involving two OH·Cl− complexes:

OH · Cl− + OH · Cl− → Cl2 + 2OH− (R9)

The net reaction is the same as if Cl− oxidation were
proceeding in the bulk phase but, instead, the chemistry
is thought to be driven by high concentrations of surface
complexes that form from elevated surface concentration of
halides. Also, a proton is not included in the rate-determining
step, so that the predicted rate of the chemistry is pH inde-
pendent, unlike the more traditional bulk-phase pathway.

Exposure of high gas phase OH concentrations to aque-
ous and dessicated solutions of both pure NaBr and mixed
NaCl/NaBr yielded Br2 (Frinak and Abbatt, 2006; Sjostedt
and Abbatt, 2008). Only considerable OH exposure, pre-
sumably to the point that Br− is consumed, leads to the
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observation of Cl2 as a gas phase product in the aqueous
case. The oxidation is efficient, with the measured yield of
Br2 consistent with nearly every OH radical being involved
in oxidation of Br−.

The only study of halogen release from frozen solutions
via OH oxidation has observed similar results (Sjostedt and
Abbatt, 2008). Again, preferential oxidation of the large
halides was observed, with the primary product being Br2,
but significant levels of IBr and BrCl being observed as well.
The observation of oxidized iodine, in the form of IBr, is in-
teresting because iodide was present in the frozen solutions
at extremely low levels (≈ 10−5 M). This is consistent with
iodide being preferentially oxidized over the smaller halides.
Cl2 was never observed as a product. Indeed the Br2 product
signal showed no indication of depletion with time, indica-
tion that there is a mechanism for replenishment of bromide
to the substrate surface, presumably by diffusion through a
brine.

To conclude, these studies indicate that halides within ice
films are readily oxidized by gas phase OH radicals. It is ap-
parent that iodide and bromide oxidation will proceed before
chloride oxidation, but chloride oxidation may occur if the
larger halides are absent. As with HOBr and O3 chemistry,
these processes proceed rapidly on pH neutral substrates but
with somewhat higher efficiency at low pH.

4.2.4 N2O5/NO3

For many years it has been recognized that reactive ni-
trogen oxides are able to oxidize condensed phase halides
(Finlayson-Pitts, 2003). These studies were largely con-
ducted on dessicated salts and involved a range of oxidants,
including NO2 and N2O5. This early work set the stage for
subsequent investigations on the oxidation of aqueous solu-
tions by both NO3 and N2O5 which have illustrated that ox-
idation also occurs with bulk phase solutions. In the case of
NO3, halides are oxidized readily (Rudich et al., 1996):

NO3 + X−
→ X + NO−

3 (R10)

Once the halogen atom is formed, it will readily yield dihalo-
gens as described above. No studies with NO3 have been con-
ducted on frozen salt solutions but it is likely that the same
chemistry will prevail.

For N2O5, most attention has been given to the ClNO2
product that arises when chloride concentrations are suffi-
ciently high in solution that the hydrated NO+

2 intermedi-
ate reacts with Cl− rather than with H2O (Behnke et al.,
1997). N2O5 also reacts with dissolved bromide to form
BrNO2 (Schweitzer et al., 1998). Similar chemistry occurs
when halides are present within an ice substrate. Early re-
ports of this chemistry were motivated by understanding po-
lar stratospheric processes, and experiments were conducted
with low temperatures (< 200 K) and HCl delivered from
the gas phase (Leu, 1988; Tolbert et al., 1988). The findings
were that N2O5 is lost only slightly faster on an ice surface

that has been exposed to HCl but the products change, likely
due to ClNO2 formation. Analogous studies have since been
performed with HBr, yielding BrNO2 as the product (Seisel
et al., 1998). The only N2O5 study conducted with frozen
NaCl/KBr solutions reports that the ratio of ClNO2 to Br2
products is controlled by the ratio of the Cl− to Br− ratio in
the brine, which in turn was demonstrated to vary as expected
with temperature (Lopez-Hilfiker et al., 2012). In particular,
Br2 was produced∼ 30× more efficiently than ClNO2, so
correspondingly lower concentrations of Br− in the brine can
lead to equivalent yields of Br2 and ClNO2.

4.3 Photochemical processes

A detailed analysis of the photochemical complexities asso-
ciated with many species relevant to polar atmospheric chem-
istry has been given in a recent review (Anastasio et al.,
2012). By focusing primarily on halogens, the material dis-
cussed below complements both that work andGrannas et al.
(2007). In addition, we provide an estimate of photochemi-
cal lifetimes of a wide variety of species in different modeled
snowpack environments in the Supplement (see Fig.3). The
focus in this section is on photochemistry occurring within
the condensed phase in the snowpack or sea ice. However,
this does not rule out the potential importance for gas-phase
photochemistry occurring with species in the interstitial air
in a snowpack. But, there has been little quantified in this
regard.

Several snowpack inorganic compounds undergo direct
photochemistry to generate important atmospheric oxidants
that can drive halogen chemistry, most notably nitrate ions,
nitrite species (NO−2 along with nitrous acid or the nitroacid-
ium ion, H2ONO+), and hydrogen peroxide. All absorb sun-
light reaching the troposphere and range from very weakly
absorbing H2O2, which has a molar absorptivity at 300 nm
of approximately 1 M−1 cm−1 to HONO with a peak mo-
lar absorptivity of 57 M−1 cm−1 at 370 nm. The rate of pho-
tolysis also depends on the quantum yield, concentration
of absorbing species, and intensity of photolysing radiation.
Therefore, although H2O2 is relatively weakly absorbing, the
H2O2 concentration and quantum yield in the snowpack are
large enough to make its photolysis significant (Anastasio
and Chu, 2009; Chu and Anastasio, 2005, 2007; King et al.,
2005; France et al., 2011, 2012). Understanding the photo-
chemistry of HOx, NOx and NOy species on ice is there-
fore particularly important because of the impacts of their
products on the release of active halogens. For conditions in
Halley Bay, Antarctica, the rate of OH formation in snow
grains from H2O2 photolysis is 70 nmol l−1 h−1, which is an
order of magnitude higher than the sum of the rates of OH
or NOx formation from photolysis of NO−3 and NO−

2 (Anas-
tasio et al., 2012). For Arctic Springtime coastal snowpacks
in Barrow, Alaska the relative contribution of hydroxyl rad-
ical production by H2O2, NO−

3 and, NO−

2 photolysis were
reported as 60 %, 4 % and 16 %, respectively (France et al.,
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Fig. 7. Formation of gas phase halogens, primarily Br2 (red line)
upon exposure of frozen NaCl/NaBr/NaNO3 mixtures to ultraviolet
light at roughly 100 min. Reprinted with permission from Abbatt et
al. (2010). Copyright 2010 American Chemical Society.

2012). This means that nitrate and nitrite ions are less impor-
tant sources of OH in snow grains compared to H2O2 photol-
ysis (Anastasio and Robles, 2007; Chu and Anastasio, 2005;
Yang et al., 2002; France et al., 2012) and the generation rate
of OH in snow grains is greater (by as much as a factor of
about 10) than the production rate of NOx. The optical prop-
erties of the snowpack are critical in calculating the produc-
tion rate of hydroxyl radicals in the snowpack and sea-ice:
France et al.(2007, 2010) illustrate how the snowpack mor-
phology, solar zenith angle, snowpack depth and overhead
ozone column can all affect the production rate of hydroxyl
radicals in the snowpack.

Such a rapid production of OH implies rapid oxidation of
snow-grain organics, which probably leads to the observed
release of volatile organics (Anastasio and Robles, 2007;
Sumner et al., 2002). The organics that may be oxidized are
highly complex in composition, being derived from precip-
itation scavenging, dry deposition and biological processes
(McNeill et al., 2012). Just as organics can be oxidized,
so too can photochemically produced OH oxidize dissolved
halides. A recent report has shown that gas phase halogens,
such as Br2 and IBr, can be released when OH radicals are
generated by photolysis of frozen halide-nitrate ion solutions
(Abbatt et al., 2010), as shown in Fig.7. Nitrogen dioxide
and HONO were also formed in the chemistry where the ni-
trate ions were the source of the hydroxyl radicals, which
subsequently oxidised the halide ions present. Yields of halo-
gens were higher in acidic solutions, supporting higher rates
of OH generation. While this chemistry is likely occurring
in a brine solution, there is also the potential for interfacial
chemistry given the experiments described earlier, where ex-
posure to gas phase OH was shown to lead to the halogen
release from a variety of frozen sodium halide substrates.

Although many natural and anthropogenic organic com-
pounds are present in high latitude/altitude and related
ice (McNeill et al., 2012), their photochemistry has been
thought to have little direct effect on halogen activation,
aside from photochemical decomposition of some short lived
organohalides in the snowpack (see Sect. 3 and Supple-
ment) and by organics acting as an OH sink or source. How-
ever, it is of note that simulations of the photochemical be-
haviours of persistent organic pollutants, such as polychlo-
rinated biphenyls (PCBs), in artificial snow recently enabled
simultaneous monitoring of their photochemical changes and
volatilization fluxes from the solid matrix. The PCBs stud-
ied underwent reductive dehalogenation reactions upon ir-
radiation atλ > 290 nm which competed with a desorp-
tion process responsible for the pollutant loss from snow
(Matykiewiczov́a et al., 2007).

In addition, the influence of chromophoric dissolved or-
ganic matter (CDOM) which is available in polar sea ice may
have an important but indirect effect on the photochemical
processes discussed above. Specifically, these materials may
absorb light at wavelengths similar to those absorbed by ni-
trate ions and hydrogen peroxide. In this context it has been
shown that photo-bleaching of CDOM in sea-ice brine occurs
with differential efficiencies at different Antarctic sites. The
implication is that at the locations where the photobleaching
is efficient, increased UV penetration would result and more
effective photolysis of the species which produce the halide
oxidants would follow (Ortega-Retuerta et al., 2010). Very
recent work demonstrates that the UV penetration depth is
not only affected by the concentration of CDOM in snow-
pack but also the concentrations of humic and black carbon
within the snowpack (France et al., 2012). Snow impacted
by sea spray, and thus containing high halide concentrations,
has a reduced light penetration depth and a reduced hydroxyl
radical production rate relative to similar snowpacks unaf-
fected by sea spray (France et al., 2011).

The direct influence of photoactive species on halogen ac-
tivation may also be important. For example, recent spectro-
scopic studies performed on air-salt water interfaces suggest
that the photooxidation of halides by chlorophyll leads to the
formation of halogen atoms and other halogenated species
(Reeser et al., 2009). It is possible that such photoactive or-
ganic species may similarly mediate halogen activation on
frozen media.

At the theoretical level, halogen-ice photochemistry has
received recent interest.Woittequand et al.(2009), computed
the absorption spectra for HF and HCl at the ice surface con-
sidering a physisorbed state.Ončák et al.(2008) then mod-
eled the absorption spectra using on the fly quantum dynam-
ics HF, HCl and HBr on (H2O)N clusters forN = 0–5. Three
structures were considered: clusters with intact HX, contact
ion structures and solvent separated ion pairs. Upon either
partial or full acidic dissociation of HX (see Sect. 4.1) a
charge transfer-to-solvent band emerges. This CTTS band
shifts the onset of the absorption spectrum by 40–60 nm
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to larger wavelengths for both HCl and HBr, making the
molecule more susceptible to photodissociation. The atmo-
spheric significance of this shift has not yet been evaluated.

4.4 Freeze-induced processes

Slowly freezing seawater leads to salt exclusion into salty
brines, as described in Sects. 2 and 4.1, opening up the poten-
tial for subsequent “freeze-induced” processing to take place
(Pruppacher and Klett, 1997; Kurková et al., 2011) in small
liquid inclusions (Pincock and Kiovsky, 1966; Betterton and
Anderson, 2001; Cho et al., 2002). They can also act as sites
for “freeze concentration” and acidity changes, which can
lead to unusual chemical pathways (Takenaka et al., 1996).

Substantial electrical potential differences between the
solid ice and unfrozen liquid can be generated upon freezing.
For example, for the cases of sodium chloride and sodium
hydroxide, the chloride ions are incorporated more into the
ice lattice as HCl, whereas Na+ and OH− remain in the liq-
uid phase (Workman and Reynolds, 1950). Behaviour of this
type leads to measurable pH differences at surfaces and can
be important in exerting control on the chemistry (Cheng
et al., 2010; Robinson et al., 2006; Anastasio et al., 2012).
Reactions may take place subsequently during the freezing
process and the differential incorporation of ions into the
ices, which generate transiently charged interfaces, can pro-
vide interesting kinetic effects. However, it has been shown
that the concentration of the rejected solutes remaining in
the liquid phase during freezing is the prime factor account-
ing for faster kinetics in most cases. The impact of “freeze-
concentration” on polar chemistry has not been evaluated. A
key study has outlined a modified acceleration model for re-
actions in ice especially relevant to higher order processes
(Takenaka and Bandow, 2007).

The effect of freezing on a variety of acidified and neu-
tral, nitrite ion and halide-containing mixtures has been
investigated (O’Driscoll et al., 2006, 2008). Several tri-
halide ions were formed, including I2Cl−, I2Br−, ICl−2 ,
and IBr−2 , in mechanisms suggested by spectroscopic data
to involve INO (iodine nitrogen oxide) and the nitroacid-
ium ion, [H2ONO]

+. Hence the freeze-concentration ef-
fect was utilized to operate in liquid “micropockets” con-
taining various halides within water-ice structures. The ni-
troacidium ion acted as an efficient proton transfer chap-
erone to the chloride- and bromide-containing interhalide
ions to eventually give [Br-I-Br]− and [Cl-I-Cl]− ion pre-
cursors to the interhalogens, IBr and ICl.This chemistry was
subsequently modified to mimic naturally occurring condi-
tions more closely and also to incorporate the use of hy-
drogen peroxide as an oxidant. In contrast to the earlier
work, the freeze-induced production of IBr−

2 was thereby ob-
served to occur up to pH< 5.1, i.e. comparable to the polar
snowpack (O’Sullivan and Sodeau, 2010; O’Sullivan, 2011).
Other products monitored, namely nitric oxide and molecular

iodine, play significant roles in atmospheric compositional
change (O’Driscoll et al., 2008).

The most important multiphase oxidation processes de-
scribed in Sect. 4 are summarized under Conclusions and
Open Issues (Sect. 7.2).

5 Field evidence for halogen activation on ice in the
troposphere

Halogen activation from ice surfaces has been the focus of
many field studies and this section focuses on the latest de-
velopments in the measurements of such species in both po-
lar latitudes as well as in the upper troposphere.

5.1 In-situ measurements of bromine and chlorine

This subsection focuses first on polar boundary layer chem-
istry, where bromine activation has been of prime impor-
tance. In addition, recent studies have observed some degree
of chlorine chemistry as well. It concludes with a discussion
of in-situ measurements from the upper troposphere, where
the activation of chlorine also occurs, in this case on cirrus
cloud crystals.

The idea that halogens are activated on the sea ice, per-
haps with involvement from frost flowers or other highly
saline surfaces, gained traction from a number of observa-
tions includingFoster et al.(2001), Tackett et al.(2007), and
other observations summarized inSimpson et al.(2007b).
However, recent measurements and satellite observations by
Jones et al.(2009), and modeling studies (Yang et al., 2008),
have raised the possibility that halogen activation can also
be initiated following blowing snow events, and subsequent
aerosol chemistry. In particular,Jones et al.(2009) observed
a surface-based ODE at Halley Bay on the Weddell Sea in
Antarctica, which followed a blowing snow event at that site.
These observations coincided with a satellite-observation of
a BrO “cloud”. Surface snow and snow pit analyses showed
that bromide was significantly enriched at the surface after
the wind event, and then decayed significantly after the event,
implying that it had been oxidized.

In a follow-up study,Jones et al.(2010) used 1987 Hal-
ley ozonesonde data to show that ozone loss between 1 and
3 km altitude was always associated with significant atmo-
spheric depressions, windy conditions, and lofted or blowing
snow. Published ozonesonde data from other Antarctic sta-
tions, some of which were accompanied by ground-based or
satellite BrO observations, further supported a link between
blowing snow, halogen activation and ozone loss.Begoin
et al.(2010) linked satellite observations of column BrO with
a cyclonic weather system to infer that Arctic BrO events can
indeed be triggered by blowing snow events. During the OA-
SIS2009 campaign at Barrow, AK,Frieß et al.(2011) con-
ducted simultaneous measurements of BrO and aerosol ex-
tinction vertical profiles. These measurements showed that
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Fig. 8. Vertical profiles for BrO and aerosol optical depth (AOD) at Barrow, AK during OASIS2009 show that in some cases, such as for
11 April, the enhanced BrO is surface-based, while in some cases, the enhancement is aloft (14 April). However, as shown here, in both
cases, BrO seems well-correlated with AOD. Figure courtesy of Udo Frieß.

elevated BrO often coincided with enhanced aerosol optical
depth, and that there were sometimes enhanced layers of BrO
and aerosol extinction. However, enhanced BrO and aerosol
extinction were also sometimes close to the surface. Two ex-
ample days are shown in Fig.8, which shows AOD and BrO
vertical profile data retrieved from the MAXDOAS, for 11
and 14 April 2009 at Barrow. Those observations imply that
indeed activation of bromine on aerosol surfaces can be an
important mechanism, e.g. as shown for 14 April. However,
even for 11 April 2009, when the enhanced BrO is surface-
based, that enhanced BrO was well-correlated with AOD.
These observations point out the need for 1-D profiles of
the halogen atom precursors (Br2, BrCl, and Cl2) along with
aerosol size, number and composition data. The relationships
between blowing snow and halogen activation have not been
directly observed, during or after blowing snow events. In the

future, the autonomous monitors such as (Knepp et al., 2010;
Bauguitte et al., 2011) will provide useful data to confirm if
these events occur. In particular, it is important to be able to
measure ozone, BrO and meteorological data simultaneously
(Knepp et al., 2010).

During the OASIS2009 campaign,Liao et al. (2011b,
2012) conducted measurements of bromine species, includ-
ing Br2, HOBr, and BrO, via chemical ionization mass spec-
trometry (CIMS), obtaining maximum values of 45, 25 and
40 pptv, respectively. The HOBr and Br2 data are consistent
with the Fan and Jacob(1992) mechanism, in that HOBr
was observed with a diurnal profile consistent with daytime
photochemical production, and night-time uptake on surfaces
with simultaneous production of Br2. Buys et al.(2012)re-
port high resolution observations of Br2, BrCl and BrO made
in coastal Antarctica using CIMS during Austral spring in
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2007. The authors report mixing ratios of Br2, BrCl and BrO
up to to 45 pptv, 6 pptv, and 13 pptv, respectively. In addi-
tion, both CIMS and soluble bromine measurements made
onboard the NOAA WP-3D aircraft over the Arctic Ocean in
April 2008 showed that active bromine was consistently ele-
vated when ozone was depleted in the marine boundary layer
(Neuman et al., 2010).

It has also become important to understand the impact of
temperature on halogen activation and chemistry, given that
the Arctic climate is rapidly changing, and this is having a
large impact on the extent and nature of sea ice (Serreze and
Barry, 2011). Recently,Pöhler et al.(2010) conducted mea-
surements of BrO from the Amundsen Gulf in the eastern
Beaufort Sea. They found that maximum BrO concentrations
increased linearly as the temperature decreased from 258 K,
perhaps due to precipitation of NaCl·2H2O and concurrent
concentration of Br− in the quasi brine layer, as described
earlier.Pöhler et al.(2010) interpret the greater flux of active
bromine at low temperature to a greater temperature gradient
in the near-surface layer. This observation is consistent with
the Arctic observations ofTarasick and Bottenheim(2002),
that severe ODEs only occur with surface temperatures be-
low 253 K. However, care should be exercised in interpreting
such observations for ozone itself, since the temperature ob-
served during ODEs may not correspond to the temperature
that applied during the chemical depletion, which may oc-
cur upwind (Tarasick and Bottenheim, 2002; Avallone et al.,
2003).

Progress on Arctic chlorine chemistry has been slower
than for bromine.Kieser et al.(1993) and Jobson et al.
(1994) showed that chlorine atom chemistry was impor-
tant, as supported by observations of other species (Muthu-
ramu et al., 1994). Read et al.(2007) recently observed evi-
dence for chlorine atom chemistry at Halley Bay, with cal-
culated Cl atom concentrations during ODEs as large as
3× 104 molecules cm−3, and thus not significantly different
from those calculated during ODEs in the Arctic. However,
as discussed byKeil and Shepson(2006), the previous ob-
servations of Br/Cl indicate that there must be a source of
chlorine atoms other than BrCl.

Chlorine chemistry and bromine chemistry in the gas
phase are intimately linked, for example by a cross reaction
between ClO and BrO that gives rise to OClO. In addition,
the reaction of chlorine atoms with VOCs is an important
source of HO2, which participates in bromine recycling via
formation of HOBr from BrO. The importance of chlorine
chemistry in the polar boundary layer was demonstrated by
Pöhler et al.(2010), who observed OClO in the early morn-
ing hours at concentrations as high as 25 pptv in the Amund-
sen Gulf. As well, there are new, unpublished measurements
of Cl2 (alluded to inStephens et al., 2012) arising from the
OASIS 2009 Barrow campaign.

Chlorine chemistry is just being recognized as important
in the polar boundary layer. However, this has been the prime
focus of work in the upper troposphere where there is no ev-

idence as yet that bromine and iodine ice chemistry is im-
portant. In particular, in the upper troposphere/lower strato-
sphere (UT-LS), the combination of high water vapor con-
centrations and low temperatures promotes formation of cir-
rus clouds, which cover about one-third of the globe (Wang
et al., 1996). Ice crystals are of variable size, on the order of
a few to tens of microns, and are consistently being formed
and precipitating. Unlike clouds at lower altitudes, cirrus can
be very thin with low total water contents, and surface area
densities that are not significantly larger than those in back-
ground aerosols.

Halides are present on surfaces of cirrus crystals through
gas-particle interactions. Especially important is the uptake
of acidic gases, such as HCl and HBr (see Sect. 4), which oc-
curs readily despite the surfaces having less surface disorder
than is prevalent at higher temperatures. The mixing ratio of
inorganic chlorine and inorganic bromine in the UT-LS are
100 and 5 pptv, respectively. Chlorine is mainly in the form
of HCl (Marcy et al., 2007), and is the result of photolysis
and oxidation of organic source gases such as methyl chlo-
ride, chloroform, and methyl chloroform (Law and Sturges,
2007). To some extent inorganic chlorine and bromine can
be transported directly to the UT-LS, but such sources likely
represent the minor fraction of total halogens in this region
(Law and Sturges, 2007). Given the low mixing ratios of in-
organic chlorine, the HCl surface coverage on the surface of
cirrus cloud particles is expected to be low.

The importance of heterogeneous reactions that can acti-
vate chlorine in the UT-LS is reasonably well understood, in
part by analogy to that occurring at higher altitudes in the
chemically perturbed polar vortices (Solomon et al., 1997;
Hofmann and Solomon, 1989; Borrmann et al., 1996). De-
tailed three-dimensional modeling (Solomon et al., 1997)
showed that chlorine activation on cirrus several km above
the tropopause might explain observations of enhanced ClO
first observed outside the polar vortex at high latitudes
(Toohey et al., 1991), and later at mid-latitudes (Avallone
et al., 1993). Such enhancements, if widespread, were able
explain up to half of the ozone losses at mid-latitudes. Obser-
vations at high latitudes in winter and spring (Thornton et al.,
2003, 2005) support the general view that oxidation of HCl
by ClONO2 and, possibly, HOCl drives chlorine activation
by forming Cl2, i.e. via Reactions (R1) and (R2). The rela-
tive roles of water ice and background aerosols in chlorine
activation in the UT-LS, however, remain poorly understood.
In particular, the regions where ice chemistry would stand out
most are the mid-latitude and tropical tropopause, where it is
both wet and cold. In these regions, the abundance of inor-
ganic chlorine is very small – of order tens of pptv and detec-
tion of the active halogen chlorine species (primarily ClO) is
challenging. Additionally, sulfate aerosol surface area densi-
ties are relatively high, so that there is some chlorine hetero-
geneous activation already, and additional surface area pro-
vided by ice does not have as dramatic effect as higher up in
the ozone hole.
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There are rare, but important exceptions where chemistry
on ice may dominate over aerosol, such as in regions of
deep convection where water vapor (and potentially, chlorine
source gases) is injected into the lowermost stratosphere at
low latitudes and in regions that are relatively particle-free.
However, these conditions tend to be short-lived, making it
difficult to coordinate observations of halogen species to test
hypotheses. In two recent studies, anomalously high abun-
dances of ClO were observed at the tropopause under con-
ditions where abundances of background aerosols were very
low (Thornton et al., 2007; von Hobe et al., 2011). In one
case (Thornton et al., 2007), water vapor was subsaturated
relative to ice at the time of the observations; there was a
very strong correlation between active chlorine abundances
and aerosol surface area densities, suggesting that even un-
der such conditions, the presence of ice is not required for
chlorine activation. Under these conditions, which were rel-
atively warm (208–215 K), the reaction of HCl and ClONO2
appears to be fast enough so that virtually all of the HCl is
converted into active chlorine in a few hours. A key to such
rapid conversion appeared to be high water content of the
aerosols, such that the heterogeneous reaction coefficient was
larger than would otherwise have been the case at low rela-
tive humidities.

Particularly noteworthy were the observations in the trop-
ics (von Hobe et al., 2011), when concurrent measurements
clearly demonstrated the presence of large ice particles at
very low temperatures. It was concluded that activation was
primarily due to Reaction (R1); however, even under these
conditions of high ice surface areas, temperatures below
200 K, and high solar illumination, it was not possible to
distinguish between chemistry that may have occurred on
ice surfaces versus that which could have occurred in back-
ground aerosol alone.

Several additional studies are worth noting. Motivated by
inference of anomalously high abundances of OClO in twi-
light in the Arctic lower polar stratosphere (Pierson et al.,
1999), a laboratory study found generation of OClO follow-
ing uptake of ClO onto ice (McKeachie et al., 2004). Al-
though such a process mainly affects partitioning within the
ClOx family, the inferred role of a ClO-H2O complex may
play a role in chlorine-cirrus chemistry at mid- and lower lat-
itudes that has yet to be explored. In addition, heterogeneous
halogen activation involving bromine species in aircraft con-
trails and aircraft-influenced cirrus (Meilinger et al., 2005)
may shift the partitioning of the radicals that influence ozone
from a condition of ozone production to one of destruction
(Toohey et al., 2010). Unfortunately, there are no direct ob-
servations of the important halogen species within aircraft-
influenced regions.

5.2 Interpretations of BrO satellite measurements

Since the work ofWagner and Platt(1998), Richter et al.
(1998), andChance(1998), ground based-DOAS has been

significantly extended with the series of satellite-borne
UV-Vis nadir instruments (GOME/ERS-2 –Richter et al.,
1998, SCIAMACHY/ENVISAT – Bovensmann et al., 1999,
GOME-2/MetOp-A –Munro et al., 2006, and OMI/Aura
– Levelt et al., 2006) from which the now familiar global
maps of the BrO vertical column density (BrOVCD) are de-
rived. A particular characteristic of the BrO maps in polar
regions are the BrO “hotspots”: vast areas over the sea ice
zone with enhanced BrOVCD which are evident during the
spring months. The frequently observed BrO hotspots have
recently been defined as regions where BrOVCD is elevated
by at least 2× 1013 molec cm−2 relative to the zonal mean
(Salawitch et al., 2010). From the earliest observations they
have been assumed to be associated with boundary layer
bromine release. As described below, it is possible that other
atmospheric phenomena may drive these apparent hotspots
in some cases.

While satellite observations provide unsurpassed informa-
tion on BrO spatial distribution, the derived vertical col-
umn measurement of BrO cannot in itself verify assumptions
about bromine sources because of the lack of vertical profile
information; indeed, there has been much uncertainty about
the extent to which elevated column BrO may have contri-
butions from the boundary layer, free troposphere, or strato-
sphere, perhaps related to low tropopause heights. The satel-
lite data can, however, be used to derive a tropospheric VCD
by subtracting a stratospheric component from the total VCD
as discussed below.

Early approaches were based on the assumption that
there was little longitudinal variability in stratospheric BrO
(Richter et al., 1998; Wagner and Platt, 1998; Wagner
et al., 2001). This key assumption, that all variability in the
BrOVCD would arise in the troposphere, was recognized at
the time as being a potential source of error to the analysis
(Richter et al., 1998, e.g.). Recent approaches have used nu-
merical models to derive stratospheric BrOVCD (e.g.Theys
et al., 2009, 2011; Salawitch et al., 2010). Theys et al.(2009)
used the BASCOE 3-D chemistry transport model to de-
rive stratospheric profiles of total inorganic bromine (Bry).
They argued that the key steps for deriving the BrO profile
involved proxies for both stratospheric dynamics and pho-
tochemistry. For example, given the equivalent lifetimes of
Bry and stratospheric ozone, they used the correlation be-
tween Bry and O3

VCD to parameterize stratospheric dynami-
cal processes in the stratosphere. Modelled BrO profiles were
successfully validated by comparison with ground-based,
balloon-borne and satellite limb observations of stratospheric
BrO.

In Salawitch et al.(2010) stratospheric Bry was derived
from assimilated CFC-12 profiles (Wamsley et al., 1998).
Stratospheric BrO was then obtained from the BrO/Bry ra-
tio output from the Whole Atmosphere Community Cli-
mate Model. The authors used aircraft profiles of BrO mea-
sured during the ARCTAS (Jacob et al., 2010) and ARCPAC
(Brock et al., 2011) campaigns to derive the tropospheric
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BrOVCD, and using this suite of data, explored observed
BrO “hotspots”. In contrast to the traditional view described
above,Salawitch et al.(2010) showed that, on occasion,
the spatial pattern of hotspots mirrored that of stratospheric
markers: tropopause height, satellite-measured O3

VCD, and
modeled stratospheric BrOVCD. On other occasions, en-
hancements of BrO in the troposphere, often above the con-
vective boundary layer, were large enough to affect the
BrOVCD. It thus appeared that BrO hotspots observed in the
satellite-derived BrOVCD could arise from enhancements in
either the troposphere or stratosphere.

Theys et al.(2011) analyzed GOME-2 data to arrive at re-
sults that generally supportedSalawitch et al.(2010). For the
strong polar BrO hotspots, the authors found that the hotspots
could not be explained by stratospheric influence alone. Sup-
ported by simulations with the p-TOMCAT modelYang et al.
(2010) andTheys et al.(2011) further concluded that these
hotspots were consistent with the release of bromine from
sea salt aerosol generated during blowing snow events, which
themselves are linked to low pressure systems and hence a
lower tropopause height; see Fig.9. This conclusion is con-
sistent with the studies ofJones et al.(2009, 2010) andBe-
goin et al.(2010). Further support for the rapid evolution of
some BrO from blowing snow was provided byChoi et al.
(2012) using aircraft observations coupled with satellite data.

5.3 IO measurements in polar regions

The detection of reactive iodine species in the polar re-
gions has only been made during the last decade. In the
Antarctic, iodine monoxide (IO) has been detected using
ground-based techniques such as zenith sky spectroscopy
(Frieß et al., 2001), active long-path DOAS (Saiz-Lopez
et al., 2007b) and multi-axis DOAS (Frieß et al., 2010),
and from space (Saiz-Lopez et al., 2007a; Scḧonhardt et al.,
2008). IO mixing ratios up to 20 pptv have been observed in
the coastal Antarctic boundary layer during springtime (Saiz-
Lopez et al., 2007b). The IO seasonal cycle is remarkably
similar to that of bromine oxide (BrO) showing a distinct
maximum in spring and a secondary peak during autumn.
The satellite measurements of IO have been a major devel-
opment in polar halogen research, providing confirmation of
active iodine chemistry over coastal and continental Antarc-
tic. These high levels of iodine may have widespread impact
on catalytic ozone destruction in the Antarctic lower tropo-
sphere, yet the sources of such a large iodine burden remain
an open question (Saiz-Lopez and Boxe, 2008; Frieß et al.,
2010; Saiz-Lopez et al., 2012). In particular, it has been sug-
gested that large mixing ratios of IO up to 50 ppbv can be
confined within the snowpack and would then interact with
the overlying atmosphere (Frieß et al., 2010). Alternatively,
recent observations (Atkinson et al., 2012) of I2 around the
Weddell Sea suggest that molecular iodine is an important
precursor, as suggested inSaiz-Lopez and Boxe(2008).

Fig. 9. Tropospheric BrO vertical columns from GOME-2 (satel-
lite) and p-TOMCAT (model) including bromine emissions from
sea salt aerosol production through blowing snow events across the
Chukchi Sea region of Arctic from 3 to 5 April 2008 (upper panels)
and over the Ross Sea of Antarctica from 22 to 24 October 2007
(lower panels). Taken fromTheys et al.(2011) with permission of
the authors.

It has been suspected for some time that iodine chemistry
must be occurring in the Arctic springtime, as witnessed from
the excess iodide observed in the fine aerosol at Alert (Barrie
et al., 1994; Sturges and Barrie, 1988).

However, somewhat surprisingly, in the Arctic regions, IO
has only been measured at very localized scales at much
lower levels than in the Antarctic, in contrast to BrO. For ex-
ample,Hönninger(2002) observed one instance of IO using
MAXDOAS at Alert, Nunavut. However, in the Amundsen
Gulf, Pöhler et al.(2010) observed no IO above their de-
tection limit of 0.3 pptv. In contrast, at Hudson Bay in the
Canadian sub-Arctic, IO mixing ratios up to 3.4 pptv have
been observed using long-path DOAS (Mahajan et al., 2010).
This level of IO is enough to significantly enhance the rate of
ozone depletion by bromine radicals through coupling be-
tween IO and BrO. The presence of detectable IO was spo-
radic and seemingly coinciding with iodocarbon emissions
from open water polynyas that form in the sea. It is clear
that methods affording lower limits of detection for IO are
needed, and that more routine measurements in the Arctic
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are needed to understand the apparent differences in iodine
chemistry between the north and south polar regions.

6 Model predictions and implications for the polar
boundary layer

In this section we discuss halogen activation studies over en-
vironmental ices using 0-D, 1-D, and 3-D models in both
the ozone depleting (ODE) and non-ozone depleting regimes.
Given the complicated nature of the multiphase activation of
halogens from environmental ices, it is essential to develop
models that describe in sufficient detail the nature of this
chemical system and its coupling to atmospheric transport
processes. In remote regions, bromine activation has been
the major focus of recent work. The nonlinear nature of the
chemistry makes modeling an essential tool to gain insight
into processes occurring. The complicated meteorological
situation, including rapidly changing boundary layer heights,
must be modeled to correctly describe measurements.

6.1 Models used to understand bromine measurements
and ozone over environmental ices

The dominant origin of reactive bromine over environmental
ices has been assumed to be seawater. Bromide in seawater
is much less abundant than chloride but, as described above
in Sect. 4, is more easily oxidized. As well, gas phase Cl
atoms have faster loss rates in the atmosphere than Br, mak-
ing the latter more important in catalytic loss of ozone. Re-
cent model studies have focused on process level understand-
ing and devising scenarios to explain bromine activation and
ozone loss under different conditions. Mechanisms that have
been included in models include:

1. A mechanism that relates gaseous bromine to frost flow-
ers (e.g.Rankin et al., 2002; Kaleschke et al., 2004). For
example, sea-salt aerosol particles produced from frost
flower fields (Piot and von Glasow, 2008).

2. Release of gas phase bromine from sea-ice or from
snow-covered sea-ice via a combination of multiphase
reactions (Simpson et al., 2007a; Toyota et al., 2011a).

3. Bromine release from blowing snow, e.g. via uplifting
of salt-containing snow to the atmosphere, followed by
sublimation to form aerosol (Yang et al., 2008), or via
reactions occurring on saline blowing snow (Jones et al.,
2009)

4. Reactions in/on the snow pack (e.g.Thomas et al.,
2011).

While it is not clear which mechanisms cause ODEs,
most predict increased bromine release with increased wind
speed, which increases surface-air exchange. Some also pre-
dict higher concentrations of halogens with increased bound-
ary layer stability. The difficulty with all modeling associated

with halogen release from environmental ices is the com-
plexity of the chemical and physical processes involved. Sec-
tions 2 and 4 have illustrated that physical properties such as
liquid layer thickness, surface acidity, and surface concentra-
tions still have large uncertainties. Difficulties also include a
lack of knowledge as to where trace species exist in environ-
mental ices, as knowledge of their location is lost upon melt-
ing the sample to measure the concentration. Therefore, even
initial concentrations of reactants can be difficult to define,
as discussed inThomas et al.(2011). The chemical complex-
ity illustrated by lab studies also makes the results difficult to
include in models. Ultimately, parameterizations and simpli-
fied chemistry is needed, with sufficient detail to both explain
observations and capture the important physical chemistry.

We begin with a discussion of recent box modeling work
on halogen release during bromine explosion events, fol-
lowed by recent one-dimensional models. Finally we present
results from three-dimensional chemical transport models in
the context of both ground based and satellite measurements.

6.2 Box models

Studies using box models proved instrumental in deciphering
the “bromine explosion” mechanism in the 1990s (e.g.Fan
and Jacob, 1992; McConnell et al., 1992; Vogt et al., 1996)
and have been used since to investigate details of the halo-
gen release and recycling mechanisms (Sander et al., 1997;
Michalowski et al., 2000; Evans et al., 2003).

Recent box model studies have focused on the initiation
step for the bromine explosion, with one issue being the pH
of the bromide-containing substrates. In particular, seawater
is strongly buffered, however if the bromine explosion pro-
ceeds via aqueous (as opposed to frozen) surfaces, then an
acidifed solution is required (Fickert et al., 1999). As de-
scribed in Sect. 4, the alkalinity of aqueous brines is affected
by the form of calcium carbonate that precipitates (Sander
et al., 2006; Morin et al., 2008). Sander and Morin(2010)
have introduced the bromide/alkalinity ratio, which is a more
relevant metric to study the preconditions of bromine explo-
sions than simply alkalinity. Due to changes in the amount
of available water through cryo- and evapoconcentration the
bromide molality increases strongly during cooling of a salt
solution, and therefore the precipitation of ikaite together
with the concentration effects can facilitate the occurrence
of a bromine explosion. A physical separation of the precipi-
tated material and the solution is required for this mechanism
to work as otherwise the precipitate would get dissolved upon
acidification of the solution.

On the other hand, as pointed out in Sect. 4, there is ex-
perimental evidence evidence from ice and frozen solution
experiments that the variation of pH is less important than
for bromide activation from aqueous solutions. For example,
Adams et al.(2002) showed that the pH of NaCl/NaBr solu-
tions before freezing did not have a significant influence on
halogen release arising from HOBr uptake.
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Box models are also often used to understand measure-
ments of OH, NOx, and/or halogens made over snow and
ice (e.g.Sjostedt et al., 2007; Chen et al., 2007; Bloss et al.,
2010; Liao et al., 2011a). These types of 0-D models do not
directly include the influence of environmental ices, but in-
stead constrain many species to measured values in order to
determine the influence of chemistry occurring over snow/ice
on the oxidation capacity of the boundary layer (e.g. the ra-
tio OH/HOx). While these studies have their drawbacks, they
are useful for determining if the observed halogens have an
influence on oxidation, for example if the measured ratio of
OH/HOx is affected. Given they are constrained by measure-
ments of longer-lived species, they may not determine, for
example, the influence of halogens on ozone.

RecentlyBloss et al.(2010) looked at the interaction be-
tween NOx and halogen chemistry using parameterized halo-
gen and NOx sources in a 0-D model to understand chemistry
in the Antarctic boundary layer. Their model showed that
conversion of NO to NO2 was dominated by reaction with
halogen oxides, as was expected based on the nitrate oxy-
gen isotope anomaly measured during polar sunrise ODEs
(Morin et al., 2007).

Recent box modeling also investigated the sensitivity of
ODE development to other reactants, as well as the implica-
tions for the oxidation capacity of the atmosphere (Piot and
von Glasow, 2009). This study found that elevated mixing ra-
tios of HCHO, H2O2, DMS, Cl2, and HONO reduced Br and
BrO levels but increased HOBr and HBr, while additional
volatile organics had the opposite effect. Increased HOBr and
HBr concentrations speed up the release of bromine from
aerosol, but also increased the deposition of bromine. Ele-
vated levels of NOy led to increased bromine deposition and
less ozone depletion.

Connected to bromine explosions and ODEs are con-
current atmospheric mercury depletion events (AMDEs), in
which gaseous elementary mercury (GEM) is transformed
into reactive gaseous mercury (RGM) and particulate mer-
cury (Schroeder et al., 1998). The recent review on AMDEs
by Steffen et al.(2008) highlighted the difficulties in mod-
eling the interaction between halogens and mercury as
many reaction pathways and rates are still uncertain.Xie
et al. (2008) used a multiphase box model to conclude
that Br atoms were the most important Hg oxidants, using
known chemistry. Using a different box model,Hedgecock
et al. (2008) also included a simple parameterization of re-
emission of reduced mercury from the snow. They concluded
that the net deposition of mercury was irrelevant, however a
limitation is that their model did not include advection.

6.3 One-dimensional models

An attempt to reproduce a bromine explosion event using
a 1-D model from first principles using salt aerosol from
frost flowers was presented byPiot and von Glasow(2008).
Even though this mechanism now appears not to be the most

likely (see Sect. 2), this study demonstrated the role of bro-
mide containing aerosol in bromine activation. It also showed
without recycling of deposited bromine compounds on snow
an ODE does not occur and O3 loss is limited. These results
might also help in investigating the role of blowing snow for
bromine release. Earlier work using 1-D models was key in
showing that sea-salt aerosol alone cannot produce the levels
of reactive bromine present during ozone depletion events
(Lehrer et al., 2004) and suggested that halogen release from
the sea-ice surface may be a significant source of halogens.

Thomas et al.(2011) were the first to develop a chem-
ically sophisticated coupled 1-D snow-atmosphere model
(MISTRA-SNOW), which they applied to conditions of the
Greenland plateau during a three-day period during summer
2008. This study focused on the remote Arctic, far away from
oceanic bromine sources and ODEs. This study treated the
surface of snow grains as a reactive, initially acidic aqueous
layer that contained bromide, chloride, and nitrate. By mod-
eling multiphase chemistry in all model levels, they could
explicitly simulate activation of bromine and production of
NOx in interstitial air and subsequent transport to the atmo-
sphere. They showed that halogen activation could be occur-
ring even in pristine environments with relatively low bro-
mide impurities in the surface snow. Modeled interstitial air
transport processes included both wind pumping and molec-
ular diffusion. High wind speeds increase snow pack ventila-
tion and are important for reproducing the observed atmo-
spheric bromine mixing ratios. They reproduced observed
diurnal cycles and mixing ratios of BrO and NO, which
had a minimum at mid-day due to variation of the bound-
ary layer height, while the interstitial air BrO mixing ratio
peaks at mid-day (Fig.10). They also discussed connections
between bromine and nitrate chemistry over snow-covered
regions, which occur both in the condensed and gas phases,
and pointed out the importance of recycling of bromine on
aerosol. The results showed a model can describe the chem-
istry and physics of a coupled snow-atmosphere system.

An emerging topic in this field is the mechanism for io-
dine activation. A 1-D chemical transport model was de-
veloped to explain measurements of very high IO and BrO
at Halley, Antarctica (Saiz-Lopez et al., 2008). This model
suggested that rapid cycling of higher iodine oxides might
be responsible for this long apparent lifetime of IO. Iodine
chemistry increased O3 depletion by about 3 times com-
pared to bromine chemistry alone. It was found that the ad-
dition of iodine chemistry significantly enhances the shifts in
the OH/HO2 and NO/NO2 ratios caused by halogen chem-
istry. In the model, very large iodine precursor fluxes (1×

1010 molecules cm−2 s−1 to sustain IO levels, up to 20 pptv)
were required to reproduce measured IO levels, due to the
short lifetime of IO and the slower aerosol recycling for io-
dine (which helps to sustain BrO levels). Future measure-
ments are needed to determine if these large fluxes occur over
sea ice.
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Fig. 10. Model predicted BrO using a 1-D coupled snow-
atmosphere model, MISTRA-SNOW, during summer 2008 com-
pared to measured BrO mixing ratios above the snow(C). The
model predicts enhanced BrO mixing ratios in the interstitial air (B,
D) due to snow chemistry. Taken fromThomas et al.(2011) with
permission of the authors.

6.4 Three-dimensional models

The ultimate goal is to connect 0-D and 1-D process stud-
ies to 3-D chemical transport models that are used to un-
derstand processes at wider spatial and temporal scales. In
recent years, scenarios that may explain bromine libera-
tion have been included in 3-D models. In these studies the
bromine source is parameterized using likely sources, which
has resulted in simulation of polar spring bromine explosions
and ODEs. In an earlier 3-D model, boundary layer BrO
mixing ratios were estimated based on prescribed satellite-
derived BrO columns (Zeng et al., 2003), however our un-
derstanding of satellite derived tropospheric BrO columns is
still developing (see Sect. 5.2). More recent studies have in-
cluded bromine release from sea-salt aerosols produced from
abraded frost flowers (Zhao et al., 2008), deposited ozone on
ice/snow as a trigger for bromine oxidation followed by re-
cycling due to HOBr, BrONO2, and HBr deposition (Toyota
et al., 2011a), and bromine release from sea-salt aerosols pro-
duced during blowing snow events (Yang et al., 2008, 2010).
Although there are significant differences in the details of the
bromine release included, all of these models employ param-
eterizations linking the bromine release with environmen-
tal conditions, such as wind speed, temperature, humidity,
and boundary layer height. Connecting bromine release to
these factors results in better agreement with measurements,
strongly indicating that enhanced bromine concentrations in
the atmosphere that cause ODEs are closely connected to
the meteorological conditions. For example, increased snow-
atmosphere chemical exchange is associated with high wind
speeds. More chemically sophisticated treatments of halogen
activation in 3-D modeling are needed in order to validate
current mechanisms and to capture the details of the release
processes in 3-D models.

One issue under consideration is that blowing snow events
are frequently observed in both the Arctic and Antarctic. The
extreme meteorological conditions during blizzards include

high surface wind speeds that can lift a number of snow
particles (that contain impurities of bromide and chloride)
into the air. In particular, when wind speeds reach a thresh-
old speed of∼ 8 m s−1, snow particles can be dislodged
from the snowpack. Above∼ 12 m s−1 these particles can be
lofted into the atmosphere (Jones et al., 2009) where their
large surface area is available for multiphase chemistry.Yang
et al. (2008) linked a sublimation process of uplifted snow
grains to formation of aerosol with sea-salt components. Us-
ing their model they obtain an absolute sea-salt production
rate which is 35 times greater than the ocean source under
typical Antarctic conditions (Yang et al., 2008). The pro-
duced sea-salt aerosols may release gas phase bromine after
acidification. With implementation of this bromine source in
a 3-D CTM, the major features of the satellite observed tro-
pospheric column BrO are captured by the model as shown in
Fig. 9 (Yang et al., 2010; Theys et al., 2011), although many
uncertainties are clearly inherent in such modeling.

Toyota et al.(2011a) used the 3-D model GEM-AQ to
reproduce tropospheric column BrO in April 2001 using a
simple scheme of air-snowpack interactions. They modeled
bromine release by connecting Br2 activation to ozone depo-
sition to snow-covered sea-ice (assuming an infinite source
of bromide in the snow-pack), and included recycling mech-
anisms involving HOBr, BrONO2, and HBr. The major fea-
tures of satellite derived tropospheric BrO were reproduced
using this mechanism for halogen release in the Arctic.

There are other ways that winds may impact snow chem-
istry. For example, based on observations of enhanced BrO
over the Weddell Sea which were correlated with conditions
under which there were high wind speeds and saline blowing
snow,Jones et al.(2009) showed that maximum contact be-
tween gas and uplifted snow grains occurs under high wind
conditions and attributed ODE events to saline blowing snow.
This explanation for halogen activation may be more likely in
storms with high humidity, where the extent to which snow
particles can sublime to form aerosols is limited. However
this mechanism of halogen release has yet to be included in a
3-D CTM. In addition, high winds increase the rate at which
the overlying atmospheric air exchanges with that in the
snow-pack and would also increase the importance of halo-
gen liberation via surface processes on snow/ice (McConnell
et al., 1992; Tang and McConnell, 1996; Michalowski et al.,
2000; Lehrer et al., 2004; Thomas et al., 2011; Toyota et al.,
2011a).

7 Conclusions and open issues

7.1 Substrates for halogen activation

First-year sea ice is a potentially important source of reactive
halogens due to its highly saline surface (Sect. 2.1). The role
of frost flowers may be less significant than initially expected
but may indirectly influence halide activation chemistry by
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contributing salinity to adjacent snow (Sect. 2.2). Salty snow
which is lofted into the atmosphere is now being consid-
ered as an additional source of reactive bromine, although
we stress that activation will probably also occur in the in-
terstitial air within snow. The relative importance of these
sources of reactive bromine may vary on regional and tem-
poral scales. In particular, it is interesting to consider dif-
ferences between the hemispheres, such as there being more
acidity arising from pollution sources in the North. Differ-
ences in precipitation and temperature regimes are also im-
portant to consider, with wet, warm conditions leading to en-
hanced precipitation rates that will dilute snow salinity.

Finally, our detailed understanding of the molecular-level
nature of sea ice and snow surface is still evolving. Without
an accurate knowledge of the effective surface halide con-
centrations and surface pHs, the role of co-existing species
such as organics, and the size of brine layers as a function
of temperature, our understanding of halide activation will
remain limited. Laboratory studies should study increasingly
complex environmentally-relevant ices. As well, lab results
should be tested by studying activation on samples taken
from the environment.

7.2 Active halogen sources

It is important to summarize the multiphase chemistry de-
scribed in Sect. 4, in the context of what processes are likely
to be most important under atmospheric conditions. In par-
ticular, the conventional wisdom has been to focus on gas-
surface reactions, with either sea ice or snow pack, as giving
rise to active halogens. As well, recycling reactions may oc-
cur on aerosol. During the long polar night, O3 is the most
likely candidate for initiating bromine activation. Lab stud-
ies uniformly indicate efficient bromine activation, driven
by a complicated surficial process only now being quantita-
tively understood (see Sect. 4.2). Use of bulk-phase chem-
istry within an assumed aqueous brine volume will likely
lead to inaccurate predictions. Once sunlight is present, the
uptake coefficients of other species, notably OH and HOBr,
are better defined, being close to unity. And so, the rates
at which such species may activate halides will likely be
strongly mass transfer limited, unless generated in situ within
the snowpack. Of these two, HOBr will be the more impor-
tant once reasonable levels of bromine activation have oc-
curred, given the low abundance of OH. All of the lab studies
conclusively indicate that HOBr readily activates bromide,
lending support to the original bromine explosion hypothe-
sis. Acidity of the substrate appears to be necessary if the
activation occurs on true brines but not if on icy substrates.

For the initial activation of bromine, OH chemistry is po-
tentially important. The importance of N2O5 as a halide oxi-
dant should not be discounted in environments that have pol-
lution impacts, or even if it is formed indirectly via nitrate
photolysis in the snowpack. Of the other halogen activation
mechanisms, the potential impacts of freezing concentration

(Sect. 4.4) are the most tenuous – there is as yet no easy way
to connect laboratory studies to field behavior. On the other
hand, the modeling study ofThomas et al.(2011) clearly
shows photochemical processes that generate OH from ni-
trate or hydrogen peroxide (of the type described in Sect. 4.3)
can quantitatively account for active halogen levels in some
environments.

One issue that deserves special attention and represents
a major challenge to the community is our lack of knowl-
edge of substrate acidity and halide composition. It has been
clearly demonstrated (for example, with HOBr; see Sect. 4.2)
that the products of these heterogeneous reactions are very
much dependent on the surface halide composition, which
will change during the course of prolonged exposure to at-
mospheric oxidants. Of particular interest also is the pH of
sea ice, brine and snow surfaces. While there is a strong de-
pendence of activation on pH for aqueous substrates (Fick-
ert et al., 1999), this dependence largely disappears on ices
formed by freezing salt solutions (Adams et al., 2002). Re-
actions with ozone, OH, and photochemical activation can
also occur via neutral substrates (Oum et al., 1998; Sjostedt
and Abbatt, 2008; Oldridge and Abbatt, 2011; Wren et al.,
2010). In light of these results, low surface pH can accelerate
but may not be a necessary criterion for halide activation.

While studies of polar boundary layer have largely focused
on the inorganic sources of active halogens, this review high-
lights that a number of halocarbons are associated with ice
covered regions (see Sects. 3.3 to 3.5). While some of the
species formed are sufficiently long-lived that they may not
contribute to these active halogen loadings, the organo-iodine
species and some of the organo-bromides may be important.
In particular, release of these species starts at the same time
as ODEs are observed in the early spring, although sufficient
ultraviolet is not necessarily present to photolyze them. De-
termining the balance between biotic and abiotic production
of iodine in snow-covered regions is clearly a priority. To il-
lustrate open issues, as mentioned in Sect. 3.3, it is possible
that biologically produced iodine may diffuse through sea-
ice brine to the brine layer on the surface of sea-ice. Deter-
mining the rates of such a process are a challenge but impor-
tant.

7.3 Role of meteorology in boundary layer ozone loss

Although it is commonly thought that a stable boundary
layer is a necessary prerequisite for a bromine explosion
event, vigorous meteorological conditions that give rise,
for example, to blowing snow may prompt ODEs as well.
Do the two different meteorological regimes correspond to
different bromine sources? It is possible that air masses
containing active bromine could have experienced a storm
and lost their wind speed before arriving at the measure-
ment site (Yang et al., 2010). If so, local snowpack pho-
tochemistry will be less important and might not be nec-
essary to support a bromine explosion. On the other hand,
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the snowpack chemistry could be enhanced by the wind
pumping process due to perturbations of winds and/or pres-
sure. Under strong wind speeds, there could be more radi-
cal bromine-precursors being pumped into the interstitial re-
gion to accelerate bromine liberation (Toyota et al., 2011a).
It is hard to judge whether pumping air into the snowpacks
is more efficient than lifting particles into the air in terms of
bromine activation efficiency. The actinic fluxes and hence
photochemistry will be reduced in blowing snow likely re-
quiring more than one release scenario. As well, activa-
tion occurs under low wind conditions. The question then
arises whether the processes that control bromine explo-
sions are driven more by dynamics or chemistry, or whether
both are important. Future studies are needed using 1-D
models to investigate situations with different wind speeds,
varying snowpack ventilation, boundary layer height, and
the resulting impact on predicted chemistry because surface
concentrations are strongly modulated by boundary layer
height (as shown inThomas et al., 2011). Both 1-D and
3-D model studies should address how stability influences
halogen chemistry and the extent of ozone loss due to the
non-linear nature of this chemistry, which is further compli-
cated by the complex boundary layer dynamics in the polar
regions (as discussed inAnderson and Neff, 2008). Further
measurement of the sea salt aerosol produced and the chem-
ical composition of the lifted particles during blowing snow
events may help us to answer this question. The chemical
complexity within 3-D models must increase, to tease out
the dynamical-chemical relationships.

7.4 Effects of climate change

In the Arctic, the aerial extent of perennial sea-ice has been
rapidly declining (Comiso, 2002), accompanied by an in-
crease in younger, thinner sea ice (Maslanik et al., 2007).
As described above, younger sea ice has a higher bulk salin-
ity and is more likely to be covered in a highly saline brine.
Furthermore, snow layer thickness is also a function of sea
ice age with thicker snowpacks on multi-year ice often ac-
companied by a lower salinity. Polynyas and leads, which are
important for frost flower formation, are particularly prone to
change in a warming climate, being areas of thinner ice and
reduced ice cover (Morales Maqueda et al., 2004).

The importance of environmental ice-atmosphere chem-
ical interactions in a changing climate was highlighted by
Voulgarakis et al.(2009). Assuming complete loss of Arc-
tic sea-ice during spring and summer, the composition of the
Arctic troposphere was simulated with and without bromine
release from sea-ice. The loss of sea-ice resulted in a large
ozone increase, especially during spring, attributed mainly to
bromine chemistry. While the connections between the pres-
ence of sea-ice and halogen chemistry are not yet fully un-
derstood and it is unlikely that all sea-ice will disappear in
the spring time, this study shows that a decrease in ice and
snow has the potential to alter atmospheric composition. As

another complication, it is predicted that much more first-
year sea ice will form in the future, with little change in to-
tal winter-time sea ice coverage. Any increase or decrease in
halogen chemistry due to changes in sea ice cover or char-
acter will have resulting impacts on atmospheric oxidation
and may impact the lifetime of pollution transported to the
polar regions. Additional measurements (Jacobi et al., 2010)
indicate that low ozone levels are the normal state of the Arc-
tic spring, suggesting large-scale removal of O3 by halogens.
This points out the need to establish connections between
tropospheric ozone and halogen chemistry due to the role of
tropospheric O3 in the warming of the Arctic (Quinn et al.,
2008) and global climate (IPCC, 2007).

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
6237/2012/acp-12-6237-2012-supplement.pdf.
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von Glasow, R., Ǵomez Mart́ın, J. C., McFiggans, G., and Saun-
ders, R. W.: Atmospheric Chemistry of Iodine, Chem. Rev., 112,
1773–1804,doi:10.1021/cr200029u, 2012.

Salawitch, R. J., Canty, T., Kurosu, T., Chance, K., Liang, Q.,
da Silva, A., Pawson, S., Nielsen, J. E., Rodriguez, J. M., Bhar-
tia, P. K., Liu, X., Huey, L. G., Liao, J., Stickel, R. E., Tanner,
D. J., Dibb, J. E., Simpson, W. R., Donohoue, D., Weinheimer,
A., Flocke, F., Knapp, D., Montzka, D., Neuman, J. A., Nowak,
J. B., Ryerson, T. B., Oltmans, S., Blake, D. R., Atlas, E. L.,
Kinnison, D. E., Tilmes, S., Pan, L. L., Hendrick, F., Van Roozen-
dael, M., Kreher, K., Johnston, P. V., Gao, R. S., Johnson, B., Bui,
T. P., Chen, G., Pierce, R. B., Crawford, J. H., and Jacob, D. J.:
A new interpretation of total column BrO during Arctic spring,
Geophys. Res. Lett., 37, L21805,doi:10.1029/2010GL043798,
2010.

Sander, R. and Morin, S.: Introducing the bromide/alkalinity ratio
for a follow-up discussion on “Precipitation of salts in freezing
seawater and ozone depletion events: a status report”, by Morin
et al., published in Atmos. Chem. Phys., 8, 7317–7324, 2008,
Atmos. Chem. Phys., 10, 7655–7658,doi:10.5194/acp-10-7655-
2010, 2010.

Sander, R., Vogt, R., Harris, G. W., and Crutzen, P. J.: Modelling
the chemistry of ozone, halogen compounds, and hydrocarbons
in the arctic troposphere during spring, Tellus B, 49, 522—532,
doi:10.1034/j.1600-0889.49.issue5.8.x, 1997.

Sander, R., Burrows, J., and Kaleschke, L.: Carbonate precipitation
in brine – a potential trigger for tropospheric ozone depletion
events, Atmos. Chem. Phys., 6, 4653–4658,doi:10.5194/acp-6-
4653-2006, 2006.

Schall, C. and Heumann, K. G.: GC determination of volatile
organoiodine and organobromine compounds in Arctic seawa-
ter and air samples, Fresenius J. Anal. Chem., 346, 717–722,
doi:10.1007/BF00321279, 1993.

Schall, C., Heumann, K. G., and Kirst, G. O.: Biogenic volatile
organoiodine and organobromine hydrocarbons in the Atlantic
Ocean from 42◦ N to 72◦ S, Fresenius J. Anal. Chem., 359, 298–
305,doi:10.1007/s002160050577, 1997.
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and De Mazìere, M.: Global observations of tropospheric BrO
columns using GOME-2 satellite data, Atmos. Chem. Phys., 11,
1791–1811,doi:10.5194/acp-11-1791-2011, 2011.

Thomas, J. L., Stutz, J., Lefer, B., Huey, L. G., Toyota, K., Dibb, J.
E., and von Glasow, R.: Modeling chemistry in and above snow
at Summit, Greenland – Part 1: Model description and results,
Atmos. Chem. Phys., 11, 4899–4914,doi:10.5194/acp-11-4899-
2011, 2011.

Thornton, B. F., Toohey, D. W., Avallone, L. M., Harder, H., Mar-
tinez, M., Simpas, J. B., Brune, W. H., and Avery, M. A.: In situ
observations of ClO near the winter polar tropopause, J. Geo-
phys. Res., 108, 8333,doi:10.1029/2002JD002839, 2003.

Thornton, B. F., Toohey, D. W., Avallone, L. M., Hallar, A. G.,
Harder, H., Martinez, M., Simpas, J. B., Brune, W. H.,
Koike, M., Kondo, Y., Takegawa, N., Anderson, B. E., and
Avery, M. A.: Variability of active chlorine in the lower-
most Arctic stratosphere, J. Geophys. Res., 110, D22304,
doi:10.1029/2004JD005580, 2005.

Thornton, B. F., Toohey, D. W., Tuck, A. F., Elkins, J. W., Kelly,
K. K., Hovde, S. J., Richard, E. C., Rosenlof, K. H., Thomp-
son, T. L., Mahoney, M. J., and Wilson, J. C.: Chlorine activation
near the midlatitude tropopause, J. Geophys. Res., 112, D18306,
doi:10.1029/2006JD007640, 2007.

Timco, G. W. and Weeks, W. F.: A review of the engineering
properties of sea ice, Cold Reg. Sci. Technol., 60, 107–129,
doi:10.1016/j.coldregions.2009.10.003, 2010.

Tokarczyk, R. and Moore, R. M.: Production of volatile organohalo-
gens by phytoplankton cultures, Geophys. Res. Lett., 21,

www.atmos-chem-phys.net/12/6237/2012/ Atmos. Chem. Phys., 12, 6237–6271, 2012

http://dx.doi.org/10.1016/j.atmosenv.2006.06.065
http://dx.doi.org/10.1021/j100016a073
http://dx.doi.org/10.1029/1999RG900008
http://dx.doi.org/10.1029/97JD01525
http://dx.doi.org/10.5194/acp-8-1445-2008
http://dx.doi.org/10.1029/2011JD016649
http://dx.doi.org/10.1034/j.1600-0889.1993.t01-1-00004.x
http://dx.doi.org/10.1016/0004-6981(88)90349-6
http://dx.doi.org/10.1029/97JC01860
http://dx.doi.org/10.1029/2009GL037304
http://dx.doi.org/10.1016/S1352-2310(02)00105-X
http://dx.doi.org/10.1021/jp0012698
http://dx.doi.org/10.1016/j.atmosenv.2006.11.064
http://dx.doi.org/10.1029/2006JD007785
http://dx.doi.org/10.1021/jp0738356
http://dx.doi.org/10.1021/jp9525806
http://dx.doi.org/10.1029/96GL02572
http://dx.doi.org/10.5194/acp-2-197-2002
http://dx.doi.org/10.5194/acp-2-197-2002
http://dx.doi.org/10.1126/science.202.4372.1094
http://dx.doi.org/10.5194/acp-9-831-2009
http://dx.doi.org/10.5194/acp-11-1791-2011
http://dx.doi.org/10.5194/acp-11-4899-2011
http://dx.doi.org/10.5194/acp-11-4899-2011
http://dx.doi.org/10.1029/2002JD002839
http://dx.doi.org/10.1029/2004JD005580
http://dx.doi.org/10.1029/2006JD007640
http://dx.doi.org/10.1016/j.coldregions.2009.10.003


6270 J. P. D. Abbatt et al.: Halogen activation via interactions with environmental ice and snow

285–288,doi:10.1029/94GL00009, 1994.
Tolbert, M. A., Rossi, M. J., and Golden, D. M.: Antarc-

tic Ozone Depletion Chemistry: Reactions of N2O5 with
H2O and HCl on Ice Surfaces, Science, 240, 1018–1021,
doi:10.1126/science.240.4855.1018, 1988.

Toohey, D., McConnell, J., Avallone, L., and Evans, W.: Aviation
and Chemistry and Transport Processes in the Upper Tropo-
sphere and Lower Stratosphere, B. Am. Meteor. Soc., 91, 485–
490,doi:10.1175/2009BAMS2841.1, 2010.

Toohey, D. W., Brune, W. H., Chan, K. R., and Anderson, J. G.: In
situ measurements of midlatitude ClO in winter, Geophys. Res.
Lett., 18, 21–24,doi:10.1029/90GL02673, 1991.

Toubin, C., Picaud, S., Hoang, P. N. M., Girardet, C., Lynden-Bell,
R. M., and Hynes, J. T.: Adsorption of HF and HCl molecules
on ice at 190 and 235 K from molecular dynamics simulations:
Free energy profiles and residence times, J. Chem. Phys., 118,
9814–9823, 2003.

Toyota, K., McConnell, J. C., Lupu, A., Neary, L., McLinden, C.
A., Richter, A., Kwok, R., Semeniuk, K., Kaminski, J. W., Gong,
S.-L., Jarosz, J., Chipperfield, M. P., and Sioris, C. E.: Analy-
sis of reactive bromine production and ozone depletion in the
Arctic boundary layer using 3-D simulations with GEM-AQ: in-
ference from synoptic-scale patterns, Atmos. Chem. Phys., 11,
3949–3979,doi:10.5194/acp-11-3949-2011, 2011a.

Toyota, T., Massom, R., Tateyama, K., Tamura, T., and Fraser,
A.: Properties of snow overlying the sea ice off East Antarc-
tica in late winter, 2007, Deep-Sea Res. Pt. II, 58, 1137–1148,
doi:10.1016/j.dsr2.2010.12.002, 2011b.

Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halo-
gen release from sea-salt aerosol in the remote marine boundary
layer, Nature, 383, 327–330,doi:10.1038/383327a0, 1996.

von Glasow, R. and Crutzen, P. J.: Model study of multiphase DMS
oxidation with a focus on halogens, Atmos. Chem. Phys., 4, 589–
608,doi:10.5194/acp-4-589-2004, 2004.

von Hobe, M., Grooß, J.-U., G̈unther, G., Konopka, P., Gensch, I.,
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